山东大学《集成电路设计基础》课件1

合集下载

第1单元集成电路基础ppt课件

第1单元集成电路基础ppt课件

产品
钢筋 小轿车 彩电 计算机 集成电路
单位质量对国民生产值(GNP: Gross National Product)的贡献
1 5 30 1000 2000
1. 集成电路概述
1965年,Intel联 合创始人戈登·摩尔提 出了他著名的理论: 半导体芯片上可集成 的元器件的数目每12 个月便会增加一倍。
品测试,由封装测试公司(Assemble & Test)完成。
IC芯片
引线框架冲制 局部镀金 粘接芯片 导线丝焊接
模塑料
制柸
高频预热
模具塑封
成品
打弯成型 去溢料
引线切筋
镀锡
2. 集成电路产业链
常见封装形式
2. 集成电路产业链
➢ 集成电路测试业
集成电路产业链中测试与产品的设计、芯片制造和封装 的关系如下所示
2. 集成电路产业链
➢ 集成电路芯片制造业 现代集成电路芯片制造业(Foundry)以订单加工为主业
,只负责利用企业现有成熟工艺进行芯片制造。
晶圆尺寸(mm)
Φ38→Φ50→Φ75→Φ100→Φ125→Φ150→Φ200→Φ300→Φ450→…
加工特征尺寸
μm:8.0→6.0→5.0→4.0→3.0→2.0→1.5→1.0→0.8→0.6→0.35→0.25 →0.18→0.13→
1956年,威廉·肖克莱(William Shockley)、约翰·巴丁 (John Bardean)、沃特·布拉顿(Walter Brattain)共同获得 诺贝尔物理学奖。
1. 集成电路概述
1952年5月,英国皇家研究所的达默(G. W. A. Dummer )第一次提出“集成电路”的设想。
1958年9月,美国德州仪器(TI)公司的杰克·基尔比( Jack Kilby)发明集成电路,1959年2月申请专利并于1964年 获得授权,2000年12月获得诺贝尔物理学奖。

【精品课件】集成电路设计基础

【精品课件】集成电路设计基础

IE E
注意:
αFIF αRIR
C A
n B
p
n A’
E NPN管
虽然NPN晶体管常被设想为在两个N沟层之间夹着一个 P型区的对称型三层结构。但与MOS器件不同的是:集电 区与发射区这两个电极不能互换。
改进的EM模型
Cbc
B RB Cbe
C
RC
Cjs
I bc BR I be
BF
Ibe- Ibc
RE
L0-版图上几何沟道长度,L0-2 LD=L为有效沟道长度 ;
γ φ φ VTH-阈值电压:V T H V T 0 2 F V S B 2 F
MOS1模型器件工作特性
(2)饱和区 当VGS>VTH,VDS>VGS-VTH,MOS管工作在饱和区。 电流方程为:
λ ID SK 2 PL 0 W 2L DV G SV T H 21V DS
(3)两个衬底PN结 两个衬底结中的电流可用类似二极管的公式来模拟。
MOS1模型衬底PN结电流公式
G
+
+
CGB
rS
CGS VGS -
S +
CBS
-
VGD
I DS
-
-
-
VBS
V BD
+
+
CGD rD
D
CBD
当VBS<0时
IBS
qISS kT
VBS
当VBS>0时
IBSISSexpqkVB TS1
B
当VBD<0时 当VBD>0时
MOS器件二阶效应
(5)沟道长度调制效应 当VDS增大时,MOS管的漏端沟道被夹断并进入饱和,

集成电路的设计基础71页PPT

集成电路的设计基础71页PPT
集成电路的设计基础

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
71

集成电路设计基础.

集成电路设计基础.

2018/8/14
《集成电路设计基础》
25
外延生长
分子束外延生长(MBE:Molecular Beam Epitaxy) 这种方法有生长半导体器件级质量的膜的能 力,生长厚度有原子级精度。MBE系统的基本 要求是超高真空,基本工艺流程包含产生轰击 衬底上生长区的III、V族元素的分子束等。 MBE几乎可以在GaAs基片上生长无限多的外 延层,经过MBE法,衬底在垂直方向上的结构 变化具有特殊的物理性质。
2018/8/14
《集成电路设计基础》
30
掩模的制版工艺
(3) 接触曝光制作的掩模图案失真较大,原 因有: a、图画在纸上,因为热胀冷缩、受潮起 皱、铺不平等引起失真; b、初缩时,照相机有失真; c、步进重复照相时,同样有失真; d、从掩模到晶圆上成像,还有失真。
2018/8/14
《集成电路设计基础》
2018/8/14
《集成电路设计基础》
4
无生产线集成电路设计技术
随着集成电路发展的过程,其发展的总 趋势是革新工艺、提高集成度和速度。 设计工作由有生产线集成电路设计到无 生产线集成电路设计的发展过程。 无生产线(Fabless)集成电路设计公司。 如美国有200多家、台湾有100多家这样 的设计公司。
2018/8/14 《集成电路设计基础》 27
掩模的制版工艺
(1)早期掩模制作方法:
先把版图分层画在纸上,每一层掩模一种图案。 版图画得很大,可以达到50×50㎝2或100×100㎝2, 将其贴在墙上,用照相机拍照。然后缩小10~20倍, 变成 5×5 ~ 2.5×2.5㎝2 或 10×10 ~ 5×5㎝2 的精细底 片。这一过程称为初缩。 接下去, 将初缩版装入步进重复照相机,进一步缩 小到2×2㎝2或3.5~3.5㎝2,一步一幅印到铬(Cr)板上, 如下图所示,形成一个阵列。

集成电路设计基础

集成电路设计基础
《集成电路设计基础》 集成电路设计基础》
山东大学 信息学院 刘志军
上次课
第9章 晶体管与模拟集成电路基本单元设计 章 § 9.1 § 9.2 § 9.3 § 9.4 晶体管的版图设计 电流源电路设计 基准电压源设计 差分放大器电路设计
2010-9-2
《集成电路设计基础》
2
第10章 数字集成电路基本单元与版图 章
《集成电路设计基础》
27ቤተ መጻሕፍቲ ባይዱ
CMOS反相器 反相器
(2) CMOS物理结构的剖视图如图所示。其中n沟道 晶体管是在p阱区中制作的;而P沟道晶体管是在n 型衬底上制作的。两个晶体管的栅极联在一起形成 输入端。
2010-9-2
《集成电路设计基础》
28
CMOS反相器 反相器
开关特性
我们希望反相器的上升时间和下降时间近似相等, 我们希望反相器的上升时间和下降时间近似相等, 则 需要使PMOS管的沟道宽度必须加宽到NMOS管沟道宽 需要使PMOS管的沟道宽度必须加宽到NMOS管沟道宽 度的 n / p倍左右。 倍左右。
2010-9-2 《集成电路设计基础》 9
TTL基本电路及版图实现 基本电路及版图实现
或非门电路
L = A+ B
2010-9-2
《集成电路设计基础》
10
TTL基本电路及版图实现 基本电路及版图实现
上图中(a) 表示TTL或非门的逻辑电路, 上图中(a) 表示TTL或非门的逻辑电路,图(b) 是它的符号。 由图可见, 或非逻辑功能是对 TTL 是它的符号 。 由图可见 , 或非逻辑功能是对TTL 与非门的结构改进而来的,即用两个晶体管T 与非门的结构改进而来的,即用两个晶体管T2A和 T2B 代替T2。 若两输入端为低电平, 则T2A和T2B 均 代替T 若两输入端为低电平, 将截止, 将截止,IB3=0,输出为高电平。若A、B两输入端 输出为高电平。 中有一个为高电平, 中有一个为高电平 , 则 T2A 或 T2B 将饱和 , 导致 IB3 将饱和, 导致I > 0 , IB3便使T3 饱和, 输出为低电平。 这就实现 便使T 饱和, 输出为低电平 。 了或非功能。 了或非功能。

集成电路的设计基础共70页PPT资料

集成电路的设计基础共70页PPT资料

《集成电路设计基础》
24
反相器实例
参照上述的硅栅工艺设计规则,下图以 反相器(不针对具体的器件尺寸)为例给出 了对应版图设计中应该考虑的部分设计规则 示意图。
对于版图设计初学者来说,第一次设计 就能全面考虑各种设计规则是不可能的。
为此,需要借助版图设计工具的在线DRC 检查功能来及时发现存在的问题,具体步骤 参见本书第十四章。
20
版图几何设计规则
Metal设计规则示意图
08.05.2020
《集成电路设计基础》
21
版图几何设计规则
Pad相关的设计规则列表
编号 6.1
描述 最小焊盘大小
尺寸 90
目的与作用 封装、邦定需要
6.2
最小焊盘边间距
80
防止信号之间串绕
6.3
最小金属覆盖焊盘
6.0
保证良好接触
6.4
焊盘外到有源区最小距
08.05.2020
《集成电路设计基础》
18
版图几何设计规则
contact设计规则示意图
08.05.2020
《集成电路设计基础》
19
版图几何设计规则
Metal相关的设计规则列表
编号 1
描述
尺寸
金属宽度
2.5
目的与作用 保证铝线的良好电导
2
金属间距
2.0
防止铝条联条
08.05.2020
《集成电路设计基础》
1 引言
版图(Layout)
版图是集成电路从设计走向制
造的桥梁,它包含了集成电路尺 寸、各层拓扑定义等器件相关的 物理信息数据。
集成电路制造厂家根据这些数据 来制造掩膜。
08.05.2020

集成电路设计基础—封装与测试

集成电路设计基础—封装与测试
(1)划片槽与焊盘 在一个晶圆上分布着许多块集成电路,在封装时要将各块 集成电路切开。这个切口就叫划片槽。
划片槽示意图
2021/4/5
《集成电路设计基础》
14
集成电路设计中的封装考虑
(2)高速芯片封装 在高频和高速系统设计时,不同封装形式的引脚的寄生参 数必须加以考虑 。
几种封装形式下引脚的寄生电容和电感的典型值
功能测试 只对在集成电路设计之初所要求的运算功能或逻辑功 能是否正确进行测试。
2021/4/5
《集成电路设计基础》
31
数字集成电路测试技术
数字集成电路测试技术中要解决的问题主要有:故障模型的 提取,测试矢量的生成技术,电路的可测试结构设计方法等。
(1)固定故障模型
故障模型就是将物理缺陷的影响模型化为逻辑函数的逻辑 及时延等方面的特征。目前用得最多的故障模型是单固定 型故障,即是任何时候电路中只有一条信号线固定为0 (或1)值,无论电路输入取什么值时该线取值不变。
7
集成电路封装的内容
(3) 保证自硅晶圆的减薄、划片和分片开始,直到芯片粘 接、引线键合和封盖等一系列封装所需工艺的正确实施, 达到一定的 规模化和自动化;
(4) 在原有的材料基础上,提供低介电系数、高导热、高机 械强度等性能优越的新型有机、无机和金属材料;
(5) 提供准确的检验测试数据,为提高集成电路封装的性能 和可靠性提供有力的保证。
4
§ 12.1集成电路封装技术基础
• 集成电路封装对集成电路有着极其重要 的作用,主要有以下四个方面:
2021/4/5
《集成电路设计基础》
5
集成电路封装的作用
(1)对集成电路起机械支撑和机械保护作用。 (2)对集成电路起着传输信号和分配电源的作用。 (3)对集成电路起着热耗散的作用。 (4)对集成电路起着环境保护的作用。

《集成电路设计》PPT课件

《集成电路设计》PPT课件

薄层电阻
1、合金薄膜电阻
采用一些合金材料沉积在二氧化 硅或其它介电材料表面,通过光 刻形成电阻条。常用的合金材料 有: 钽 Ta 镍铬Ni-Cr 氧化锌 ZnO 铬硅氧 CrSiO
2、多晶硅薄膜电阻
掺杂多晶硅薄膜也是一个很好的电阻 材料,广泛应用于硅基集成电路的制 造。
3、掺杂半导体电阻
不同掺杂浓度的半导体具有不同 的电阻率,利用掺杂半导体的电 阻特性,可以制造电路所需的电 阻器。
sio2
半导体
串联 C=
Ci Cs Ci +Cs
Tox
N+
P
sio2
金 属
PN金+sio属2
纵向结构
横向结构
MOS 电容电容量
ε ε Cox=
A 0 sio2
Tox
Tox: 薄氧化层厚度;A: 薄氧化层上 金属电极的面积。
一般在集成电路中Tox 不能做的太薄,所以要想提高电容量,只能增加面积。 N+层为 了减小串联电阻及防止表面出现耗尽层。
Csub s
(b)
(c)
§ 4.3 集成电路的互连技术和电感
互连线
单片芯片上器件之间互连:金属化工艺,金属铝 薄膜 电路芯片与外引线之间的连接(电路芯片与系统的 互联):引线键合工艺
为保证模型的精确性和信号的完整性,需要对互连线的版图结构加以约 束和进行规整。
各种互连线设计应注意的问题
为减少信号或电源引起的损耗及减少芯片 面积,连线应尽量短。
第四章
集成电路设计
第四章
集成电路是由元、器件组成。元、器件分为两大类:
无源元件 电阻、电容、电感、互连线、传输线等
有源器件 各类晶体管
集成电路中的无源源件占的面积一般都比有源器件大。 所以设计时尽可能少用无源元件,尤其是电容、电感和大阻值的电阻。

《集成电路设计》课件

《集成电路设计》课件
蒙特卡洛模拟法
通过随机抽样和概率统计的方法,模 拟系统或产品的失效过程,评估其可 靠性。
可靠性分析流程
确定分析目标
明确可靠性分析的目 的和要求,确定分析 的对象和范围。
进行需求分析
分析系统或产品的使 用环境和条件,确定 影响可靠性的因素和 条件。
进行失效分析
分析系统或产品中可 能出现的失效模式和 原因,确定失效对系 统性能和功能的影响 。
DRC/LVS验证
DRC/LVS验证概述
DRC/LVS验证是物理验证中的两个重要步骤,用于检查设计的物 理实现是否符合设计规则和电路图的要求。
DRC验证
DRC验证是对设计的物理实现进行规则检查的过程,以确保设计的 几何尺寸、线条宽度、间距等参数符合设计规则的要求。
LVS验证
LVS验证是检查设计的物理实现与电路图一致性的过程,以确保设 计的逻辑功能在物理实现中得到正确实现。
版图设计流程
确定设计规格
明确设计目标、性能指标和制造工艺要求 。
导出掩模版
将最终的版图导出为掩模版,用于集成电 路制造。
电路设计和模拟
进行电路设计和仿真,以验证电路功能和 性能。
物理验证和修改
进行DRC、LVS等物理验证,根据结果进 行版图修改和完善。
版图绘制
将电路设计转换为版图,使用专业软件进 行绘制。
集成电路设计工具
电路仿真工具
用于电路设计和仿真的软件, 如Cadence、Synopsys等。
版图编辑工具
用于绘制版图的软件,如Laker 、Virtuoso等。
物理验证工具
用于验证版图设计的正确性和 可靠性的软件,如DRC、LVS等 。
可靠性分析工具
用于进行可靠性分析和测试的 软件,如EERecalculator、 Calibre等。

《集成电路设计导论》课件

《集成电路设计导论》课件

IC设计的测试和验证
探讨IC设计的测试和验证技术, 以确保设计的正确性和可靠性。
总结与展望
集成电路设计的现状与未来趋势
总结集成电路设计的现状并展望未来的发展趋 势,如人工智能芯片和物联网应用。
集成电路设计中的挑战与机遇
探讨集成电路设计中面临的挑战和机遇,如功 耗优化和设计验证等。
《集成电路设计导论》 PPT课件
这是一套《集成电路设计导论》的PPT课件,针对集成电路的概念、分类和历 史发展等主题进行介绍,通过丰富的内容和精美的图片,让学习更加生动有 趣。
第一章:集成电路概述
集成电路的定义
介绍集成电路的基本概念和定义,以及其在电子领域中的重要作用。
集成电路的分类
分析不同类型的集成电路,包括数字集成电路、模拟集成电路和混合集成电路。
探讨集成电路设计中常用的仿真 技术,如时序仿真、噪声仿真和 功耗仿真等。
CMOS工艺的基本原理和特点,以及其在集成电路设计中的应用。
2
CMOS电路设计基础
讨论CMOS电路设计的基本原则和技巧,包括逻辑门设计和布局。
3
CMOS电路的布局与布线
解释CMOS电路布局与布线的重要性,以及如何进行最佳布局和布线。
第五章:模拟电路设计
模拟电路设计基础
介绍模拟电路设计的基本原理和 技术,包括信号放大、滤波和稳 压等。
模拟电路的建模与仿真
讨论模拟电路的建模方法和仿真 技术,以验证电路设计的准确性 和性能。
模拟电路的测试和调试
探讨模拟电路的测试和调试方法, 以保证电路的可靠性和稳定性。
第六章:数字电路设计
1
数字电路的逻辑设计
第四章:数模转换电路设计
数模转换电路的种类

《集成电路基础》课件

《集成电路基础》课件
《集成电路基础》ppt课件
目录
• 集成电路简介 • 集成电路的制造工艺 • 集成电路的设计与仿真 • 集成电路的可靠性分析 • 集成电路的发展趋势与挑战
01
集成电路简介
Chapter
集成电路的定义
01
集成电路是将多个电子元件集成在一块衬底上,完成一定的电路或系统功能的微 型电子部件。
02
它采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布 线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个 管壳内,成为具有所需电路功能的微型结构。
包括测试机、探针台、分选机等 。
封装类型 测试目的 测试方法 测试设备
根据封装材料和结构的不同,可 以分为塑料封装、陶瓷封装、金 属封装等。
包括功能测试、参数测试、可靠 性测试等。
03
集成电路的设计与仿真
Chapter
集成电路设计的基本概念
集成电路设计是将电子系统或电路集成在一块芯片上的 过程,包括电路设计、布局设计和版图生成等步骤。
01
金属化与互连
在芯片表面形成金属互连线,实现芯 片内部元件之间的连接。
05
03
光刻与刻蚀
通过光刻技术将电路图形转移到晶圆 表面,然后进行刻蚀,将图形转移到 薄膜上。
04
掺杂与离子注入
通过掺杂或离子注入的方法,改变薄 膜的导电性能,形成不同元件的PN结 、电极等。
集成电路的制程技术
制程技术分类
分为平面型集成电路和立体型集 成电路,其中平面型集成电路占 据主导地位。
02
仿真工具可以模拟实际制造过 程中的各种条件,如温度、电 压和制造工艺的变化,以评估 设计的性能和可靠性。
03

山东大学《集成电路设计基础》课件6

山东大学《集成电路设计基础》课件6

2020/7/29
《集成电路设计基础》
30
互连 线设计中应注意的事项
对于各种互连线设计,应该注意以下方面:
为减少信号或电源引起的损耗及减少芯片面积, 连线尽量短。
为提高集成度,在传输电流非常微弱时(如 MOS栅极),大多数互连线应以制造工艺提供的 最小宽度来布线。
2020/7/29
《集成电路设计基础》
有源电阻 将晶体管进行适当的连接和偏置,利用晶体管的
不同的工作区所表现出来的不同的电阻特性来做电阻。
2020/7/29
《集成电路设计基础》
6
薄层集成电阻器
合金薄膜电阻
采用一些合金材料沉积在二氧化硅或其它介电材 料表面,通过光刻形成电阻条。常用的合金材料有: (1)钽(Ta); (2)镍铬(Ni-Cr); (3)氧化锌SnO2;(4)铬硅氧CrSiO。 多晶硅薄膜电阻
交流电阻: rds
VDS I DS
VGS V
VGS I DS
VGS V
1 gm
tox
n ox
L 1 W (V VTN )
2020/7/29
《集成电路设计基础》
16
有源电阻
饱和区的NMOS有源电阻示意图:
IDS I
Ron
o
rds
VGS >VTN
o
V
VDS
有源电阻的几种形式:
D VB
S (a)
CMOS工艺发展到深亚微米阶段后,互 连线的延迟已经超过逻辑门的延迟,成 为时序分析的重要组成部分。
这时应采用链状RC网络、RLC网络或进 一步采用传输线来模拟互连线。
2020/7/29
《集成电路设计基础》
33
互连线

《集成电路设计》课件

《集成电路设计》课件
《集成电路设计》PPT课件
本课程将详细介绍集成电路设计的全过程及其重要性,并深入探讨了现代集 成电路设计中使用的常见工具、案例和技术趋势。
课程介绍
什么是集成电路设计
集成电路设计是指将多个电子元件(如晶体管、电阻和电容)集成在一颗芯片上的过程。
集成电路的应用领域
集成电路广泛应用于计算机、通信、消费电子等领域,为现代科技的发展提供了重要支持。
电路功能仿真与验证
使用仿真工具验证电路的功能和性能, 优化电路设计,确保其符合预期。
电路版图绘制
完成电路的版图设计,包括引脚、连线、 电路层等
如LTspice、Cadence等,用于 电路的仿真和性能验证。
物理布局软件
如Cadence Virtuoso、 Synopsys IC Compiler等,用于 电路的布局和版图设计。
仿真验证工具
如ModelSim、VCS等,用于验 证电路功能和时序正确性。
案例分析
1 典型的集成电路设计案例
例如CPU芯片、无线通信芯片和图像处理器等,它们都使用了复杂的集成电路设计技术。
2 设计难点和解决方案
针对不同案例的设计难点,介绍了相应的解决方案和创新技术。
技术发展趋势
当前集成电路设计的热点
如AI芯片、边缘计算芯片和物联网芯片等,都是当 前研究和发展的热点。
未来发展方向
包括更小尺寸、更低功耗、更高性能和更强功能的 集成电路设计趋势。
总结
集成电路设计的重要性
良好的集成电路设计可以提高系统性能、降低功耗和成本,推动技术进步和产业发展。
集成电路设计流程
1
电路原理设计
2
基于需求分析,设计电路的逻辑结构和
功能,并进行逻辑仿真和验证。

《集成电路设计基础》课件

《集成电路设计基础》课件
学习纠正和避免常见设计错误的方法和技巧。从仔细检查到团队合作,探索有效的方法 来提高设计准确性。
案例研究:常见的集成电路
逻辑门电路设计案例
通过案例研究,深入了解逻辑门电路的设计流程和关键 要点。掌握逻辑门电路的设计技巧和方法。
数字集成电路
探索数字集成电路的设计原理和应用。了解数字集成电 路在电子产品中的重要性和作用。
3
重要的设计工具和软件
介绍常用的电路模拟软件和PCB设计工具,帮助您开展高效的集成电路设计。掌 握合适的工具和软件是提高设计效率的关键。
常见的集成电路设计误区
1 常见的设计错误
了解集成电路设计中常见的错误和问题。从电路连接错误到信号干扰,掌握并避免这些 常见误区将有助于提高设计质量。
2 如何避免并纠
欢迎来到《集成电路设计基础》PPT课件。在这个演示文稿中,我们将探索集 成电路设计的基本概念和流程,介绍重要的工具和常见误区,并通过案例研 究展示常见的集成电路设计。
课程简介
探索集成电路设计的目的和重要性,了解课程大纲。通过此课程,您将掌握 集成电路设计的基本知识和技能,为您的电路设计之旅奠定基础。
半导体基础知识
深入了解PN结和二极管特性以及基本的晶体管工作原理。掌握半导体器件的 基本原理和性质,为后续的集成电路设计打下基础。
集成电路设计流程
1
概述和步骤
了解集成电路设计流程的概述和各个步骤。从需求分析到电路布局,每个步骤都 是构建优秀电路设计的重要环节。
2
电路设计和验证方法
探索电路设计的不同方法和验证技术。了解仿真和实验验证的重要性,确保设计 的准确性和可靠性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/7/29
〈集成电路设计基础〉
3
第1章 集成电路设计导论
1.1 集成电路的发展 1.2 集成电路的分类 1.3 集成电路设计步骤 1.4 集成电路设计方法 1.5 电子设计自动化技术概论 1.6 九天系统综述
2020/7/29
〈集成电路设计基础〉
4
集成电路
Integrated Circuit ,缩写IC IC是通过一系列特定的加工工艺,将 晶体管、二极管等有源器件和电阻、电容、 电感等无源器件,按照一定的电路互连, “集成”在一块半导体晶片(如硅或砷化 镓)上,封装在一个外壳内,执行特定电 路或系统功能的一种器件。
2020/7/29
〈集成电路设计基础〉
12
❖集成电路单片集成度和最小特征尺寸的发展曲线
2020/7/29
〈集成电路设计基础〉
13
❖IC在各个发展阶段的主要特征数据
发展 阶段
主要特征 元件数/芯片
特征线宽(um)
速度功耗乘积 (uj)
栅氧化层厚度 (nm)
结深(um)
芯片面积 (mm2) 被加工硅片直 径(mm)
2020/7/29
〈集成电路设计基础〉
29
➢ 全定制集成电路
➢ 优点:
• 所设计电路的集成度最高 • 产品批量生产时单片IC价格最低 • 可以用于模拟集成电路的设计与生产
▪ 缺点:
• 设计复杂度高/设计周期长 • 费用高
▪ 应用范围
• 集成度极高且具有规则结构的IC(如各种类型的存储器芯片) • 对性能价格比要求高且产量大的芯片(如CPU、通信IC等) • 模拟IC/数模混合IC
时序仿真 满足
版图自动 布局、布线
不满足 后仿真
满足
流片、封装、测试
功能要求
系统建模 (Matlab等)
不满足 电路仿真
满足 手工设计
版图 不满足
后仿真 满足
流片、封装、测试
VLSI数字IC的设计流图
模拟IC的设计流图
2020/7/29
〈集成电路设计基础〉
27
1.4 集成电路设计方法
➢ 全定制方法(Full-Custom Design Approach) ➢ 半定制方法(Semi-Custom Design Approach) ➢ 定制法 ➢ 可编程逻辑器件(PLD:Programmable Logic
100-125
150
〈集成电路设计基础〉
ULSI (1990)
107-108 <1
<10-2 15-10 0.2-.01 50-100 >150
14
❖Intel 公司CPU芯片集成度的发展
Intel’s CPU
Year of introduction
Transistors
4004
1971
2,250
2020/7/29
〈集成电路设计基础〉
30
二、半定制方法
半定制集成电路(Semi-Custom Design Approach) ——即设计者在厂家提供的半成品基础 上继续完成最终的设计,只需要生成诸 如金属布线层等几个特定层次的掩膜。 根据需求采用不同的半成品类型。
2020/7/29
〈集成电路设计基础〉
31
半定制方法
半定制的设计方法
分为门阵列(GA:Gate Array)法和门海 (GS:Sea of Gates)法两种:
门阵列(GA:Gate Array)
有通道门阵列:就是在一个芯片上将预先制造完毕的 形状和尺寸完全相同的逻辑门单元以一定阵列的形式 排列在一起,每个单元内部含有若干器件,阵列间有 规则布线通道,用以完成门与门之间的连接。未进行 连线的半成品硅圆片称为“母片”
2020/7/29
〈集成电路设计基础〉
32
• “母片”的示意图:
2020/7/29
〈集成电路设计基础〉
33
门海
▪ 门海(SOC:Sea-of-Gate)
▪ 无通道门阵列:也是采用母片结构,它可以将没有 利用的逻辑门作为布线区,而没有指定固定的布线
通道,以此提高布线的布通率并提供更大规模的集
成度。 ▪ 门海设计技术是把由一对不共栅的P管和N管组成的
2020/7/29
〈集成电路设计基础〉
10
集成电路发展的特点:
➢ 特征尺寸越来越小(0.10um) ➢ 硅圆片尺寸越来越大(8inch~12inch) ➢ 芯片集成度越来越大(>2000K) ➢ 时钟速度越来越高( >500MHz) ➢ 电源电压/单位功耗越来越低(1.0V) ➢ 布线层数/I/0引脚越来越多(9层/>1200)
进行数字计算和逻辑函数运算的一类集成电路。 ➢ 模拟集成电路(Analog IC):
是指处理模拟信号(连续变化的信号)的集成电路, 通常又可分为线性集成电路和非线性集成电路 :
线性集成电路:又叫放大集成电路,如运算放大器、 电压比较器、跟随器等。 非线性集成电路:如振荡器、定时器等电路。 ➢ 数模混合集成电路(Digital - Analog IC) : 例如 数模(D/A)转换器和模数(A/D)转换器等。
基本单元铺满整个芯片(除I/O区外),基本单元 之间无氧化隔离区,布线通道不确定,宏单元连线 在无用器件区上进行。
现已进入到:
VLSI ULSI GSI
2020/7/29
〈集成电路设计基础〉
9
集成电路的发展
年份 1989年 1993年
特征尺寸 1.0µm 0.6µm
水平标志 微米(M) 亚微米 (SM)
1997年
2001年
0.35µm
0.18µm
深亚微米 超深亚微米 (DSM) (VDSM)
表1 CMOS工艺特征尺寸发展进程
MOS IC 双极IC
SSI
<102
<100
<30
MSI
102103 100500 30100
LSI
103105 5002000 100300
VLSI 105107 >2000
>300
ULSI管数目划分的集成电路规模
2020/7/29
〈集成电路设计基础〉
22
按使用的基片材料分类
Device)设计方法
2020/7/29
〈集成电路设计基础〉
28
一、全定制方法
全定制集成电路(Full-Custom Design Approach)
适用于要求得到最高速度、最低功耗和最省面积的芯片设 计。 即在晶体管的层次上进行每个单元的性能、面积的优化设 计,每个晶体管的布局/布线均由人工设计,并需要人工 生成所有层次的掩膜(一般为13层掩膜版图)。对每个器 件进行优化,芯片性能获得最佳,芯片尺寸最小。
2020/7/29
〈集成电路设计基础〉
24
按应用领域分类
❖ 标准通用集成电路 通用集成电路是指不同厂家都在同时生产的用量极大
的标准系列产品。这类产品往往集成度不高,然而社会 需求量大,通用性强。 ❖ 专用集成电路
根据某种电子设备中特定的技术要求而专门设计的 集成电路简称ASIC,其特点是集成度较高功能较多,功 耗较小,封装形式多样。
➢ 1950年:成功制出结型晶体管
➢ 1952年:英国皇家雷达研究所第一次提出“集成电路” 的设想
➢ 1958年:美国德克萨斯仪器公司制造出世界上第一块 集成电路(双极型-1959年公布)
➢ 1960年:制造成功MOS集成电路
2020/7/29
〈集成电路设计基础〉
8
集成电路的发展
从此IC经历了:
SSI MSI LSI
2020/7/29
〈集成电路设计基础〉
19
1.2 集成电路的分类
器件结构类型 集成度 使用的基片材料 电路的功能 应用领域
2020/7/29
〈集成电路设计基础〉
20
按器件结构类型分类
双极集成电路:主要由双极型晶体管构成
NPN型双极集成电路 PNP型双极集成电路
金属-氧化物-半导体(MOS)集成电路:主要由MOS 晶体管(单极型晶体管)构成
NMOS PMOS CMOS(互补MOS)
双极-MOS(BiMOS)集成电路:是同时包括双极和 MOS晶体管的集成电路。综合了双极和MOS器件两 者的优点,但制作工艺复杂。
2020/7/29
〈集成电路设计基础〉
21
按集成度分类
集成度:每块集成电路芯片中包含的元器件数目
类别
数字集成电路
模拟集成电路
2020/7/29
〈集成电路设计基础〉
11
摩尔定律
一个有关集成电路发展趋势的著名预 言,该预言直至今日依然准确。
集成电路自发明四十年以来,集成电路芯 片的集成度每三年翻两番 ,而加工特征尺寸缩 小 2 倍。 即由Intel公司创始人之一Gordon E. Moore 博士1965年总结的规律,被称为摩尔定律。
2020/7/29
MSI (1966)
102-103 10-5 102-10
120-100 2-1.2 <10 50-75
LSI (1971)
VLSI (1980)
103-105 5-3 10-1
105-107 3-1
1-10-2
100-40
40-15
1.2-0.5 10-25
0.5-.02 25-50
• 单片集成电路
是指电路中所有的元器件都制作在同一块半 导体基片上的集成电路。在半导体集成电路中最 常用的半导体材料是硅,除此之外还有GaAs等。
• 混合集成电路
厚膜集成电路 薄膜集成电路
2020/7/29
〈集成电路设计基础〉
相关文档
最新文档