2015年高考真题江苏卷理科数学(含答案解析)
2015年高考数学真题解析之圆锥真题(理科)
2015高考圆锥曲线真题汇总(理科)1.(14分)(2015•广东)已知过原点的动直线l 与圆C 1:x 2+y 2﹣6x+5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数 k ,使得直线L :y=k (x ﹣4)与曲线 C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.2.(本小题满分16分)如图,在平面直角坐标系xOy 中,F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程. 3.(本小题满分12分,(1)小问5分,(2)小问7分)的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1 (2求椭圆的离心率.e4.(本题满分15分)上两个不同的点A ,B 关于直线对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).5.(本小题满分12分)在直角坐标系xoy 中,曲线C :与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.6.(本小题满分14分)0)a b 的左焦点为(,0)F c -,离心率为点M 在椭圆上且位于第一象限,直线FM 被圆44b 截得的线段的长为c ,(Ⅰ)求直线FM 的斜率; (Ⅱ)求椭圆的方程;(Ⅲ)设动点P 在椭圆上,若直线FP 的斜率大于,求直线OP (O 为原点)的斜率的取值范围.7.如图,椭圆E 过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q 立?若存在,求出点Q 的坐标;若不存在,请说明理由.8.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,记得到的平行四边形CD AB 的面积为S .(1)设()11,x y A ,()22C ,x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明(2)设1l 与2l 的斜率之积为,求面积S 的值. 9.(本小题满分12(0a b >>)的半焦距为c ,原点O到经过两点(),0c ,()0,b 的直线的距离为 (Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆若椭圆E 经过A ,B 两点,求椭圆E 的方程.10.【2015高考山东,理20】平面直角坐标系xoy 中,,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ),P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i(Ⅱ)求ABQ ∆面积的最大值.11.已知抛物线21:4C x y =的焦点F 也是椭圆1C 与2C 的公共弦的长为(1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC u u u r 与BDu u u r同向(ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形12.(本小题满分14分)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:OQP ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.13.(本小题满分13分)设椭圆E点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为 ()0b ,,点M 在线段ABOM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵E 的方程.14.(本题满分12分)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与有两个交点A ,B ,线段AB 的中点为M . 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点,延长线段OM与C 交于点P ,四边形OAPB 能否为平行四边15.已知椭圆E 221(a 0)y b b 过点(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1xmy m R ,()交椭圆E 于A ,B 两点,判断点AB 为直径的圆的位置关系,并说明理由.16.(本小题14分)已知椭圆C :,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q,使得∠=∠?若存在,求点Q的坐标;若不存在,说明理由.OQM ONQ参考答案1.(1)(3,0);(2)(x﹣)2+y2=,其中<x≤3;(3)k的取值范围为(﹣,)∪{﹣,}.【来源】2015年全国普通高等学校招生统一考试理科数学(广东卷带解析)【解析】试题分析:(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k)x+16k2=0,令△=(3+8k)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L :y=k (x ﹣4)与曲线C 只有一个交点时, k 的取值范围为(﹣,)∪{﹣,}.点评:本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于中档题.2.(12)1y x =-或1y x =-+.【来源】2015年全国普通高等学校招生统一考试数学(江苏卷带解析)【解析】试题分析(1点F 到左准线l 的距离为3,解方程组即得(2)因为直线AB 过F ,所以求直线AB 的方程就是确定其斜率,本题关键就是根据PC=2AB 列出关于斜率的等量关系,这有一定运算量.首先利用直线方程与椭圆方程联立方程组,解出AB 两点坐标,利用两点间距离公式求出AB 长,再根据中点坐标公式求出C 点坐标,利用两直线交点求出P 点坐标,再根据两点间距离公式求出PC 长,利用PC=2AB 解出直线AB 斜率,写出直线AB 方程.试题解析:(1,1c =,则1b =,(2)当x AB ⊥轴时,,又C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B ,将AB 的方程代入椭圆方程,得()()2222124210k x k x k +-+-=,,C 的坐标为若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线C P 的方程为则P 点的坐标为因为C 2P =AB ,所以,解得1k =±.此时直线AB 方程为1yx =-或1y x =-+. 考点:椭圆方程,直线与椭圆位置关系3.(1(2【来源】2015年全国普通高等学校招生统一考试理科数学(重庆卷带解析) 【解析】 试题解析:(1)本题中已知椭圆上的一点到两焦点的距离,因此由椭圆定义可得长轴长,即参数a 的值,而由1PQ PF ⊥,应用勾股定理可得焦距,即c 的值,因此方程易得;(2)要求椭圆的离心率,就是要找到关于,,a bc 的一个等式,题中涉及到焦点距离,因此我们仍然应用椭圆定义,设,则a m,样在1Rt PQF ∆中求得,在12Rt PF F ∆中可建立关于,a c 的等式,从而求得离心率.(112|PF ||PF |22224a a ,故=2.设椭圆的半焦距为c ,由已知12PF PF ⊥,因此22221212|FF ||PF ||PF |222223c ,即22b1a c(2)解法一:如图(21)图,设点P 00(,y )x 在椭圆上,且12PF PF ⊥,则2220y c由12|P F |=|||P F |PQ ,得0>0x ,从而由椭圆的定义,1212|P F||P F |2,|Q F ||Q Fa a,从而由122|PF |=|PQ |=|PF |+|QF |,有11|QF |42|PF |a又由12PF PF ⊥,1|PF |=|PQ |知1|2|PF |222224.aa b a解法二:如图由椭圆的定义,1212|P F ||P F |2,|Q F ||Q F |2a a ,从而由122|PF |=|PQ |=|PF |+|QF |,有11|QF |42|PF |a又由12PF PF ⊥,1|PF |=|PQ |知1|2|PF |112|PF |2|PF |a ,|2(2-2)2(21)a a a由12PF PF ⊥,知22222122|PF ||P F ||PF |(2)4c c ,因此21222|PF ||P F |(22)(21)962632ceaa考点:考查椭圆的标准方程,椭圆的几何性质.,直线和椭圆相交问题,考查运算求解能力. 4.(1(2【来源】2015年全国普通高等学校招生统一考试理科数学(浙江卷带解析)【解析】(1)可设直线AB的解,再由AB 中点也在直线上,即可得到关于m 的不等式,从而求解;(2将AOB ∆表示为t 的函数,从而将问题等价转化为在给定范围上求函数的最值,从而求解.试题解析:(1)由题意知0m ≠,可设直线AB消去y ,得AB(2)令O 到直线AB,设AOB ∆的面积为()S t ,等号成立,故AOB ∆考点:1.直线与椭圆的位置关系;2.点到直线距离公式;3.求函数的最值. 5.【来源】2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析) 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:在x =C在x =-C(Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-.当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力6.(Ⅰ)(Ⅱ);(Ⅲ)【来源】2015年全国普通高等学校招生统一考试理科数学(天津卷带解析)【解析】(Ⅰ) ,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得在第一象限,可得M的坐标为,解得1c =,所以椭圆方程为(Ⅲ)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,即(1)y t x =+(1)x ≠-,y,整理得22223(1)6x t x ++=,又由已知,得或10x -<<, 设直线OP 的斜率为m(0)y mx x =≠,与椭圆方程联立,整理可得①当,有(1)0y t x =+<,因此0m >,于,得②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是,得综上,直线OP 的斜率的取值范围是考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.7.(1(2)存在,Q 点的坐标为(0,2)Q . 【来源】2015年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【解析】(1E 上.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点. 如果存在定点Q ,即||||QC QD =. 所以Q 点在y 轴上,可设Q 点的坐标为0(0,)y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M 、N 两点.,解得01y =或02y =.所以,若存在不同于点P 的定点Q 满足条件,则Q 点的坐标只可能为(0,2)Q . 下面证明:对任意的直线l ,均有当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,A 、B 的坐标分别为1122(,),(,)x y x y .得22(21)420k x kx ++-=. 其判别式22168(21)0k k ∆=++>,易知,点B 关于y 轴对称的点的坐标为22(,)B x y '-.所以QA QB k k '=,即,,Q A B '三点共线. 故存在与P 不同的定点(0,2)Q ,使得. 考点:本题考查椭圆的标准方程与几何性质、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.8.(1)详见解析(2【来源】2015年全国普通高等学校招生统一考试理科数学(上海卷带解析) 【解析】证明:(1)直线1:l 110y x x y -=,点C 到1l 的距离解:(2)设1:l y kx =,则设()11,x y A ,()22C ,x y .由2221y kxx y =⎧⎨+=⎩,得由(1)考点:直线与椭圆位置关系9.【来源】2015年全国普通高等学校招生统一考试理科数学(陕西卷带解析)【解析】试题分析:(Ⅰ)先写过点(),0c ,()0,b 的直线方程,再计算原点O 到该直线的距离,进而可得椭圆E 的离心率;(Ⅱ)先由(Ⅰ)知椭圆E 的方程,设AB 的方程,联立()2222144y k x x y b⎧=++⎪⎨+=⎪⎩,消去y ,可得12x x +和12x x 的值,进而可得k ,再利用可得2b 的值,进而可得椭圆E 的方程.试题解析:(Ⅰ)过点(),0c ,()0,b 的直线方程为0bx cy bc ,则原点O 到直线的距离 12c ,得2222a b a c ,解得离心率32. (Ⅱ)解法一:由(Ⅰ)知,椭圆E 的方程为22244xy b . (1)依题意,圆心()2,1M -是线段AB 的中点,且AB |10.易知,AB 不与x 轴垂直,设其直线方程为(2)1yk x ,代入(1)得2222(14)8(21)4(21)40k x k k x k b设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x k k由124x x ,得28(21)4,14k k k 解得12. 从而21282x x b .|10,得22)10,解得23b .故椭圆E 的方程为21123y .解法二:由(Ⅰ)知,椭圆E 的方程为22244xy b . (2)依题意,点A ,B 关于圆心()2,1M -对称,且|10. 设1122(,y ),B(,y ),A x x 则2221144x y b ,2222244x y b ,两式相减并结合12124,y 2,x x y 得1212-4()80x x y y .易知,AB 不与x 轴垂直,则12x x ≠,所以AB 的斜率12121.2y y x x 因此AB 直线方程为1(2)12y x ,代入(2)得224820.x x b所以124x x ,21282x x b .|10,得22)10,解得23b .故椭圆E的方程为21123y .考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.10.(Ⅱ)(i )2; 【来源】2015年全国普通高等学校招生统一考试理科数学(山东卷带解析)【解析】试题分析:(Ⅰ)根据椭圆的定义与几何性质列方程组确定,a b 的值,从而得到椭圆的方程;(Ⅱ)(Ⅰ)设()00,P x y ,,由题意知()00,Q x y λλ--,然后利用这两点分别在两上椭圆上确定λ 的值; (Ⅱ)设()()1122,,,A x y B x y ,结合韦达定理求出弦长,选将O A B ∆的面积表示成关于,k m 的表达式,然后,令利用一元二次方程根的判别式确定的范围,从而求出OAB ∆的面积的最大值,并结合(Ⅰ)的结果求出△面积的最大值.试题解析:(Ⅰ)由题意知24a = ,则2a = ,可得1b = , 所以椭圆C(Ⅱ)由(Ⅰ)知椭圆E(Ⅰ)设()00,P x y ,,由题意知()00,Q x y λλ--所以2λ=(Ⅱ)设()()1122,,,A x y B x y 将y kx m =+代入椭圆E 的方程, 可得()2221484160k x kmx m +++-= 由0∆> ,可得22416m k <+ ①因为直线y kx m =+与轴交点的坐标为()0,m所以OAB ∆的面积将y kx m =+ 代入椭圆C 的方程可得()222148440k x kmx m +++-= 由0∆≥ ,可得2214m k ≤+ ② 由①②可知01t <≤当且仅当1t = ,即2214m k =+由(Ⅰ)知,ABQ ∆ 面积为3S ,所以ABQ ∆面积的最大值为考点:1、椭圆的标准方程与几何性质;2、直线与椭圆位置关系综合问题;3、函数的最值问题.11.(1(2)(i (ii )详见解析.【来源】2015年全国普通高等学校招生统一考试理科数学(湖南卷带解析)【解析】试题分析:(1)根据已知条件可求得2C 的焦点坐标为)1,0(,再利用公共弦长为求解;(2)(i )设直线l 的斜率为k ,则l 的方程为1+=kx y ,由214y k x x y=+⎧⎨=⎩得216640x kx +-=,根据条件可知AC =u u u v BD u u u v,从而可以建立关于k 的方程,即可求解;(ii )根据条件可说因此AFM ∠是锐角,从而180MFD AFM ∠=-∠o 是钝角,即可得证试题解析:(1)由1C :24x y =知其焦点F 的坐标为(0,1),∵F 也是椭圆2C 的一焦点, ∴ 221a b -=①,又1C 与2C 的公共弦的长为,1C 与2C 都关于y 轴对称,且1C 的方程为24x y =,由此易知1C 与2C 的公共点的坐标为联立①,②,得29a =,28b =,故2C 的方程为(2)如图f ,11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,(i )∵AC u u u v 与BD u u u v 同向,且||||BD AC =,∴AC u u u v BD =u u u v,从而31x x -=42x x -,即12x x -=34x x -,于是()2124x x +-12x x =()2344x x +-34x x ③,设直线l 的斜率为k ,则l 的方程为1+=kx y ,由214y kx x y=+⎧⎨=⎩得216640x kx +-=,而1x ,2x 是这个方程的两根,∴124x x k +=,124x x =-④,由得22(98)16640k x kx ++-=,而3x ,4x 是,将④⑤带入③,得∴()2298k+=169⨯,解得,即直线l 的斜率为(ii )由24x y =得,∴1C 在点A 处的切线方程为令0=y ,而11(,1)FA x y =-u u u r ,于是因此AFM ∠是锐角,从而180MFD AFM ∠=-∠o 是钝角.,故直线l 绕点F 旋转时,MFD ∆总是钝角三角形.考点:1.椭圆的标准方程及其性质;2.直线与椭圆位置关系. 【名师点睛】本题主要考查了椭圆的标准方程及其性质以及直线与椭圆的位置关系,属于较难题,解决此类问题的关键:(1)结合椭圆的几何性质,如焦点坐标,对称轴,222c b a +=等;(2)当看到题目中出现 直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整体代换到后面的计算中去,从而减少计算量.12.(Ⅱ)存在最小值8.【来源】2015年全国普通高等学校招生统一考试理科数学(湖北卷带解析) 【解析】(Ⅰ)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r ,且||||1DN ON ==u u u r u u u r,所以00(,)2(,)t x y x t y --=-,且2200220()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -=由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故,代入22001x y +=,可得 (Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有 (2)当直线l 的斜率存在时,设直线由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ①又由,20,y kx m x y =+⎧⎨-=⎩由原点O 到直线PQ 的距离为②当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,OPQ ∆的面积取得最小值8. 考点:椭圆的标准方程、几何性质,直线与圆、椭圆的位置关系,最值.13. 【来源】2015年全国普通高等学校招生统一考试理科数学(安徽卷带解析)【解析】试题分析:(Ⅰ)由题设条件,可得点M 的坐标为(Ⅱ)由题设条件和(Ⅰ)的计算结果知,直线AB 的方程为,得出点N 的坐标为,设点N关于直线AB的对称点S 的坐标为则线段NS的中点T 的坐标为利用点T在直线AB上,以及1NS ABk k⋅=-,解得3b=,所以,从而得到椭圆E试题解析:(Ⅰ)由题设条件知,点M 的坐标为(Ⅱ)由题设条件和(Ⅰ)的计算结果可得,直线AB 的方程为,点N的坐标设点N关于直线AB的对称点S 的坐标为则线段NS的中点T的坐标为.又点T在直线AB上,且1NS ABk k⋅=-,从而有解得3b=,所以,故椭圆E 的方程为考点:1.椭圆的离心率;2.椭圆的标准方程;3.点点关于直线对称的应用.14.(Ⅰ)详见解析;【来源】2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ带解析)【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b =+代入229x y m+=得2222(9)20k x kbx b m+++-=,故.于是直线OM 的斜率,即9OM k k ⋅=-.所以直线OM 的斜率与因为直线l 过点,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OMP 的横坐标为P x的坐标代入直线l 的方程得四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.于是.因为0,3i i k k >≠,1i =,2,所以当l 的斜率为时,四边形OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.15.212y ;(Ⅱ)AB 为直径的圆外. 【来源】2015年全国普通高等学校招生统一考试理科数学(福建卷带解析) 【解析】解法一:(Ⅰ)由已知得2222,2,2,b c a a b c 解得222a b c所以椭圆E 212y .(Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x .由22221(m 2)y 230,142x my my x y 得1222y +y =,y y =2m 2,从而22m 2.2222220000095()y (my )y (m +1)y +44x2222121212()(y )(m +1)(y )44x x y y22221212012(m +1)[(y )4y ](m +1)(y y )4y y y ,故222222012222|AB|52553(m +1)25172my (m +1)y 042162(m 2)m 21616(m 2)m m yAB 为直径的圆外. 解法二:(Ⅰ)同解法一.(Ⅱ)设点1122(y ),B(,y ),A x x ,则112299GA (,),GB (,).44x y x y u u u r由22221(m 2)y 230,142x my my x y得所以1222,y y =2m 2, 121212129955GA GB ()()(my )(my )4444x x y y y y u u u r u u u r 22212122252553(m +1)25(m +1)y (y )4162(m 2)m 216m y m y22172016(m 2)m 所以cos GA,GB0,GA GB u u u r uu u ru u u r u u u r又,不共线,所以AGB 为锐角.故点AB 为直径的圆外.考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系. 16.【来源】2015年全国普通高等学校招生统一考试理科数学(北京卷带解析)【解析】(Ⅰ)由于椭圆C点()01P,且离心率22a=,椭圆C的方程为(0,1),(,)P Am nQ,直线PA(Ⅱ)(0,1),(,)P B m n-Q,直线PB的方程为:PB与x轴交于点N设0(0,)Q y,tan tanOQM ONQ OQM ONQ∠=∠∴∠=∠Q,(注:点()A m n,()0m≠在椭圆C上,,使得OQM ONQ∠=∠.考点:1.求椭圆方程;2.求直线方程及与坐标轴的交点;3.存在性问题.。
2015年陕西高考理科数学试题及答案
2015年高考陕西省理科数学真题一、选择题1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .933.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( ) A .5B .6C .8D .104.二项式(1)()nx n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .75.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+ 6. “sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要 7.对任意向量,a b ,下列关系式中不恒成立的是( ) A .|?|||||a b a b ≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22(a b)(a b)a b +-=-8.根据下边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .29.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p =>C .p r q =<D .p r q =>10.某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B .1142π- C .112π- D .112π+ 12.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值D .点(2,8)在曲线()y f x =上二、填空题13.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p=15.设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为三、解答题17.C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c . 向量(),3m a b =与()cos ,sin n =A B 平行.()I 求A ; ()II 若7a =,2b =求C ∆AB 的面积.18.如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.()I 证明:CD ⊥平面1C A O ;()II 若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值.19.设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:()I 求T 的分布列与数学期望ET ;()II 刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . ()I 求椭圆E 的离心率;()II 如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.21.设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,n x 的各项和,其中0x >,n ∈N ,2n ≥.()I 证明:函数()()F 2n n x f x =-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为n x ),且11122n n n x x +=+; ()II 设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x 与()n g x 的大小,并加以证明.22.如图,AB 切O 于点B ,直线D A 交O 于D ,E 两点,C D B ⊥E ,垂足为C .()I 证明:C D D ∠B =∠BA ;()II 若D 3DC A =,C 2B =,求O 的直径.23.在直角坐标系x y O 中,直线l 的参数方程为13232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C 的极坐标方程为23sin ρθ=.()I 写出C 的直角坐标方程;()II P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.2015年高考陕西省理科数学真题答案一、选择题 1.答案:A 解析过程: 由==⇒=2{x }{0,1},M xx M=≤⇒=<≤N {x lg 0}N {x 0x 1}x所以0,1MN ⎡⎤=⎣⎦,选A2.答案:B解析过程:由图可知该校女教师的人数为,选B3.答案:C 解析过程:试题分析:由图像得, 当时,求得, 当时,,选C4.答案:B 解析过程:二项式(1)nx +的展开式的通项是1r rr n T C x +=,令2r =得2x 的系数是2n C ,因为2x 的系数为15,所以215n C =,即2300n n --=,解得:6n =或5n =-, 因为n N +∈,所以6n =,选C 5.答案:D 解析过程:试题分析:由几何体的三视图可知该几何体为圆柱的截去一半, 所以该几何体的表面积为,选 6. 答案:A11070%150(160%)7760137⨯+⨯-=+=sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=21121222342πππ⨯⨯+⨯⨯⨯+⨯=+D解析过程:ααα=⇒-=22cos 20cos sin 0αααα⇒-+=(cos sin )(cos sin )0所以sin cos 或sin =-cos αααα=,选A 7.答案:B 解析过程:因为cos ,a b a b a b a b ⋅=<>≤,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误; 向量的平方等于向量的模的平方,所以选项C 正确;22(a b)(a b)a b +-=-所以选项D 正确,选B8.答案:C 解析过程:初始条件:;第1次运行:;第2次运行:; 第3次运行:;;第1003次运行:; 第1004次运行:.不满足条件,停止运行, 所以输出的,故选 B .9.答案:B 解析过程:()ln p f ab ab ==,()ln22a b a bq f ++==, 11(()())ln ln 22r f a f b ab ab =+==函数()ln f x x =在()0,+∞上单调递增,因为2a b ab +>,所以()()2a bf f ab +>, 所以q p r >=,故选C10.答案:D 解析过程:设该企业每天生产甲、乙两种产品分别为、吨,则利润2006x =2004x =2002x =2000x =⋅⋅⋅⋅⋅⋅0x =2x =-0?x ≥23110y =+=x y 34z x y =+由题意可列,其表示如图阴影部分区域:当直线过点时,取得最大值, 所以,故选D 11.答案:D解析过程:如图可求得,,阴影面积等于 若,则的概率是,故选B . 12.答案:A 解析过程:假设选项A 错误,则选项B 、C 、D 正确,()2f x ax b '=+, 因为1是()f x 的极值点,3是()f x 的极值,所以(1)0(1)3f f '=⎧⎨=⎩,203a b a b c +=⎧⎨++=⎩,解得23b ac a=-⎧⎨=+⎩,因为点(2,8)在曲线()y f x =上,所以428a b c ++=, 解得:5a =,所以10b =-,8c =, 所以2()5108f x x x =-+因为()215(1)10(1)8230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以假设成立,选A 二、填空题 13.答案:5 解析过程:设数列的首项为,则,32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩340x y z +-=(2,3)A z max 324318z =⨯+⨯=2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤(1,1)A (1,0)B 21111114242ππ⨯-⨯⨯=-||1z ≤y x ≥211142142πππ-=-⨯1a 12015210102020a +=⨯=所以,故该数列的首项为 14.答案:22 解析过程:抛物线22(0)y px p =>的准线方程是2px =-, 双曲线221x y -=的一个焦点1(2,0)F -, 因为抛物线22(0)y px p =>的准线 经过双曲线221x y -=的一个焦点, 所以22p-=-,解得22p = 15.答案:(1,1) 解析过程:因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则, 因为,所以, 所以曲线在点处的切线的斜率, 因为,所以,即,解得, 因为,所以,所以,即的坐标是 16.答案:1.2 解析过程:建立空间直角坐标系,如图所示:原始的最大流量是, 设抛物线的方程为(), 因为该抛物线过点,所以,15a =5xy e =xy e '=xy e =()0,10101x k y e ='===P ()00,x y 00x >001y x =1y x =21y x'=-1y x=P 02201x x k y x ='==-121k k ⋅=-2011x -=-21x =01x =±00x >01x =01y =P ()1,1()11010222162⨯+-⨯⨯=22x py =0p >()5,22225p ⨯=解得,所以,即, 所以当前最大流量是,故原始的最大流量与当前最大流量的比值是三、解答题 17.答案:(I );(II ).解析过程:(I )因为,所以,由正弦定理,得 又,从而,由于,所以(II)解法一:由余弦定理,得而得,即因为,所以.故ABC 的面积为2sin sin3B=,从而sin 7B =,又由a b >,知A B >,所以cos B =故sin sin()C A B =+sin()3B π=+sin coscos sin33B B ππ=+=254p =2252x y =2225y x =()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰161.2403=3π//m n sin 3cos 0a B b A sinAsinB 3sinBcos A 0sin 0B ≠tan 3A 0A π<<3A π=2222cos a b c bc A 7b 2,a 3πA =2742c c 2230c c 0c3c ∆133bcsinA 22所以ABC ∆的面积为133sin 2bc A = 18.答案:(I )证明见解析;(II )解析过程:(I )在图1中,因为AB=BC=1,AD=2,E 是AD 的中点,BAD=,所以BE AC 即在图2中,BE ,BE OC 从而BE 平面又CD BE ,所以CD 平面. (II)由已知,平面平面BCDE , 又由(1)知,BE ,BE OC所以为二面角的平面角,所以.如图,以O 为原点,建立空间直角坐标系,因为, 所以 得 ,.设平面的法向量, 平面的法向量,平面与平面夹角为,则,得,取,,得,取, 6∠2π⊥⊥1OA ⊥⊥1A OC ⊥1A OC 1A BE ⊥⊥1OA ⊥1A OC ∠1--C A BE 1OC 2A π∠=11B=E=BC=ED=1A A BC ED 12222(,0,0),E(,0,0),A (0,0,),C(0,,0),2222B 22BC(,,0),122A C(0,,)CD BE (2,0,0)1BC A 1111(,,)n x y z 1CD A 2222(,,)n x y z 1BC A 1CD A θ1110n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩111100x y y z -+=⎧⎨-=⎩1(1,1,1)n 2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩22200x y z =⎧⎨-=⎩2(0,1,1)n =从而, 即平面与平面夹角的余弦值为 19.答案:()I T 的分布列为:ET=32(分钟)()II解析过程:以频率估计概率得T 的分布列为从而 (分钟) (II)设分别表示往、返所需时间,的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟, 所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:.解法二:故.20.答案:()I ()II22x y +=1123 解析过程:(I )过点(c,0),(0,b)的直线方程为,12cos |cos ,|n n θ=〈〉==1BC A 1CD A 30.910.4400.132⨯+⨯=12,T T 12,T T 121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=121212(A)P(70)P(35,40)P(40,35)P T T T T T T 12P(40,40)T T 0.40.10.10.40.10.10.09=⨯+⨯+⨯=(A)1P(A)0.91P 0bx cy bc则原点O 到直线的距离,由, 得,解得离心率. (II)解法一:由(I )知,椭圆E 的方程为. (1)依题意,圆心M(-2,1)是线段AB 的中点,且. 易知,AB 不与x 轴垂直, 设其直线方程为,代入(1)得设则 由,得解得. 从而.于是. 由,得,解得. 故椭圆E 的方程为. 解法二:由(I )知,椭圆E 的方程为. (2)依题意,点A ,B 关于圆心M(-2,1)对称,且. 设则,,两式相减并结合 得.bc d a==12d c 2222a b a c 3c a 22244x y b |AB |10(2)1y k x 2222(14)8(21)4(21)40k x k k x k b 1122(,y ),B(,y ),A x x 221212228(21)4(21)4,.1414k k k b x x x x k k 124x x 28(21)4,14k k k 12k 21282x x b 12|AB ||x x =-==|AB |1022)1023b 221123x y 22244x y b |AB |101122(,y ),B(,y ),A x x 2221144x y b 2222244x y b 12124,y 2,x x y 1212-4()80x x y y易知,AB 不与x 轴垂直,则,所以AB 的斜率 因此AB 直线方程为, 代入(2)得所以,. 于是. 由,得,解得. 故椭圆E 的方程为. 21.答案: (I )证明见解析;(II )当时, , 当时,,证明见解析. 解析过程:(I )则 所以在内至少存在一个零点. 又,故在内单调递增, 所以在内有且仅有一个零点. 因为是的零点,所以,12x x ≠12121k .2ABy y x x 1(2)12yx 224820.x x b 124x x 21282x x b 12|AB ||x x =-==|AB |1022)1023b 221123x y 1x ()()n n f x g x 1x ≠()()n n f x g x 2()()212,n n n F x f x x x x (1)10,n F n 1211111112()1220,12222212n n n n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-()n F x 1,12⎛⎫ ⎪⎝⎭n x 1()120n n F x x nx -'=++>1,12⎛⎫ ⎪⎝⎭()n F x 1,12⎛⎫ ⎪⎝⎭n x n x ()n F x ()=0n n F x即,故. (II)解法一:由题设, 设 当时,当时, 若, 若,所以在上递增,在上递减,所以,即.综上所述,当时, ;当时 解法二 由题设, 当时,当时, 用数学归纳法可以证明. 当时, 所以成立. 假设时,不等式成立,即. 那么,当时,11201n n nx x 111=+22n n n x x 11().2nn n x g x 211()()()1,0.2nn n n n x h x f x g x x x x x 1x ()()n n f x g x 1x ≠()111()12.2n n n n x h x x nx --+'=++-01x ()11111()22n n n n n n h x x x nx x ----+'>++-11110.22n n n n n n x x 1x ()11111()22n n n n n n h x x x nx x ----+'<++-11110.22n n n n n n x x ()h x (0,1)(1,)+∞()(1)0h x h ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x 211()1,(),0.2n n n n n x f x x xx g x x 1x ()()n n f x g x 1x ≠()()n n f x g x 2n 2221()()(1)0,2f x g x x 22()()f x g x (2)n k k =≥()()k k f x g x +1n k. 又 令,则 所以当,,在上递减;当,,在上递增. 所以,从而 故.即,不等式也成立.所以,对于一切的整数,都有.解法三:由已知,记等差数列为,等比数列为, 则,,所以, 令当时, ,所以. 当时, 而,所以,.若, ,, 当,,, 从而在上递减,在上递增.所以, 111k+1k 11()()()2k k k k k k x f x f x x g x x x 12112k k x k x k 11k+121111()22k k k k x k x k kx k x g x 1()11(x 0)k k k h x kx k x ()()11()(k 1)11(x 1)k k k k h x k x k k xk k x --'=+-+=+-01x ()0k h x '<()k h x (0,1)1x ()0kh x '>()k h x (1,)+∞()(1)0k k h x h 1k+1211()2k k x k x k g x 11()()k k f x g x +1n k 2n ≥()()n n f x g x k a k b k1,2,, 1.n 111a b 11n n n a b x ()11+1(2n)n k x a k k n-=-⋅≤≤1(2),k k b x k n -=≤≤()()111(x)1,0(2).n k k k k k x m a b x x k n n ---=-=+->≤≤1x =k k a b ()()n n f x g x 1x ≠()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--2k n ≤≤10k 11n k -+≥01x 11nk x ()0k m x '<1x 11n k x ()0km x '>()k m x (0,1)()k m x (1,)+∞()(1)0k k m x m所以当又,,故 综上所述,当时, ;当时 22.答案:()I 见解析()II 直径为3解析过程:(Ⅰ)因为是的直径,则, 又,所以,又切于点,得,所以; (Ⅱ)由(Ⅰ)知平分,则, 又,从而,由,解得,所以, 由切割线定理得,解得, 故,即的直径为3.23.答案: ()I 22(-3x y +=()II (3,0)解析过程:(1)由,得,从而有,所以 (2)设,又, 则 24.已知关于x 的不等式x a b +<的解集为{}24x x <<. ()I 求实数a ,b 的值;()II答案:()I a=-3,b=1()II 4解析过程:(Ⅰ)由,得,01(2),k k x x a b k n >≠>≤≤且时,11a b 11n n a b ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x DE O 90BED EDB ∠+∠=︒BC DE ⊥90CBD EDB ∠+∠=︒AB O B DBA BED ∠=∠CBD DBA ∠=∠BD CBA ∠3BA AD BC CD ==BC=AB =222AB BC AC =+4AC =3AD =2AB AD AE =⋅6AE =3DE AE AD =-=O ρθ=2sin ρθ=22x y +=(223x y +-=132P t ⎛⎫+ ⎪⎝⎭C PC ==x a b +<b a x b a --<<-由题意得,解得;,时等号成立, 故24b a b a --=⎧⎨-=⎩3,1a b =-==+≤4===1t =min 4=。
2015年高考新课标全国Ⅰ理科数学试题及答案(word解析版)
2015年普通高等学校招生全国统一考试(新课标Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年新课标全国Ⅰ,理1】设复数z 满足1i 1zz+=-,则( )(A )1 (B )2 (C )3 (D )2 【答案】A【解析】由1i 1z z +=-得()()()()1i 1i 1i i 1i 1i 1i z -+--+===++-,故1z =,故选A . (2)【2015年新课标全国Ⅰ,理2】sin20cos10cos160sin10︒︒-︒︒=( )(A )32- (B )32 (C )12- (D )12-【答案】D【解析】原式1sin 20cos10cos20sin10sin302=︒︒+︒︒=︒=,故选D .(3)【2015年新课标全国Ⅰ,理3】设命题P :n N ∀∈,22n n >,则P ⌝为( )(A )n N ∀∈,22n n > (B )n N ∃∈,22n n ≤ (C )n N ∀∈,22n n ≤ (D )n N ∃∈,22n n = 【答案】C【解析】P ⌝:n N ∀∈,22n n ≤,故选C . (4)【2015年新课标全国Ⅰ,理4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.60.648C ⨯+=,故选A .(5)【2015年新课标全国Ⅰ,理5】已知()00,M x y 是双曲线C :2212x y -=上的一点,1F 、2F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是( ) (A )33,33⎛⎫- ⎪ ⎪⎝⎭ (B )33,66⎛⎫- ⎪ ⎪⎝⎭ (C )2222,33⎛⎫- ⎪ ⎪⎝⎭ (D )2323,33⎛⎫- ⎪ ⎪⎝⎭【答案】A【解析】由题知()13,0F -,()23,0F 且220012x y -=,所以()()1200003,3,MF MF x y x y •=---•-- 2220003310x y y =+-=-<,解得03333y -<<,故选A . (6)【2015年新课标全国Ⅰ,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,得163r =.所以米堆的体积为21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭,故堆放的米约为3201.62229÷≈,故选B . (7)【2015年新课标全国Ⅰ,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+ (B )1433AD AB AC =-(C )4133AD AB AC =+ (D )4133AD AB AC =-【答案】A【解析】由题知()11143333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+,故选A .(8)【2015年新课标全国Ⅰ,理8】函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知1425342πωϕπωϕ⎧+=⎪⎪⎨⎪+=⎪⎩ ,取得ωπ=,所以()cos 4f x x ππ⎛⎫=+ ⎪⎝⎭,令22,4k x k k Z πππππ<+<+∈,解得1322,44k x k k Z -<<+∈,故单调减区间为132,244k k ⎛⎫-+ ⎪⎝⎭,k Z ∈,故选D .(9)【2015年新课标全国Ⅰ,理9】执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A )5 (B )6 (C )7 (D )8 【答案】C【解析】执行第1次,0.01,1,0,0.5,0.5,t S n m S S m =====-=20.25,1,m m n ===0.50.01S t =>=,是,循环;执行第2次,0.25,20.125,2,S S m m m n =-==== 0.250.01S t =>=,是,循环;执行第3次,0.125,20.0625,3,S S m m m n =-==== 0.1250.01S t =>=,是,循环;执行第4次,0.0625,20.03125,4,S S m m m n =-====0.06250.01S t =>=,是,循环; 执行第5次,0.03125,20.015625,5,S S m m m n =-====0.031250.01S t =>=,是,循环; 执行第6次,0.015625,20.0078125,6,S S m m m n =-====0.0156250.01S t =>=,是,循环;执行第7次,0.0078125,20.00390625,7,S S m m m n =-====0.00781250.01S t =>=,否,输出7n =,故选C .(10)【2015年新课标全国Ⅰ,理10】25()x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )60 【答案】C【解析】在()52x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为21253230C C C =,故选C . (11)【2015年新课标全国Ⅰ,理11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为 1620π+,则r =( )(A )1 (B )2 (C )4 (D )8 【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=+,解得2r =故选B .(12)【2015年新课标全国Ⅰ,理12】设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )(A )3[,1)2e - (B )33[,)24e - (C )33[,)24e (D )3[,1)2e【答案】D【解析】设()(21)x g x e x =-,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()0g x '<,当12x >-时,()0g x '>;当12x =-时,[]12max ()2g x e -=-.当0x =时,(0)1g =-,(1)30g e =>,直线y ax a =-恒过点()1,0且斜率为a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得312a e≤<,故选D . 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2015年新课标全国Ⅰ,理13】若函数2()ln()f x x x a x =++为偶函数,则a = . 【答案】1【解析】由题知()2ln y x a x =++是奇函数,所以()()()222ln ln ln x a x x a x a x x +++-++=+-ln 0a ==,解得1a =.(14)【2015年新课标全国Ⅰ,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 . 【答案】2232524x y ⎛⎫±+= ⎪⎝⎭ 【解析】设圆心为(),0a ,则半径为4a -,则()22242a a -=+,解得32a =±,故圆的方程为2232524x y ⎛⎫±+= ⎪⎝⎭.(15)【2015年新课标全国Ⅰ,理15】若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则y x 的最大值为 . 【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连 线的斜率,由图可知,点()1,3A 与原点连线的斜率最大,故yx的最大值为3.(16)【2015年新课标全国Ⅰ,理16】在平面四边形ABCD 中,75A B C ∠=∠=∠=︒,2BC =,则AB 的取值范围是 .【答案】()62,62-+【解析】如图所示,延长BA ,CD 交于点E ,则可知在ADE ∆中,105DAE ∠=︒,45ADE ∠=︒,30E ∠=︒,所以设12AD =,22AE x =,624DE x +=,CD m =,因为2BC =,所以62sin1514x m ⎛⎫++⋅︒=⇒ ⎪⎪⎝⎭62624x m ++=+, 所以04x <<,而62262424AB x m x x m +-=+-=+2622x =+-, 所以AB 的取值范围是()62,62-+.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2015年新课标全国Ⅰ,理17】(本小题满分12分)n S 为数列{}n a 的前n 项和,已知0n a >,243n n n a a S +=+(Ⅰ)求{}n a 的通项公式, (Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和. 解:(Ⅰ)由2243n n n a a S +=+,可知2111243n n n a a S ++++=+,可得()2211124n n n n n a a a a a +++-+-=,即()()()2211112n n n n n n n n a a a a a a a a ++++-=-=+- 由于0n a >,可得12n n a a +-=.又2111243a a a +=+,解得11a =-(舍去),13a = 所以{}n a 是首项为3,公差为2的等差数列,通项公式为21n a n =+. ……6分(Ⅱ)由21n a n =+可知,111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭. 设数列{}n b 的前n 项和为n T ,则1211111112355721233(23)n n n T b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎣⎦ ……12分(18)【2015年新课标全国Ⅰ,理18】(本小题满分12分)如图, 四边形ABCD 为菱形,120ABC ∠=︒,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥. (Ⅰ)证明:平面ACE ⊥平面AFC .(Ⅱ)求直线AE 与直线CF 所成角的余弦值. 解:(Ⅰ)连接BD ,设BD AC G =,连接EG ,FG ,EF .在菱形ABCD 中,不妨设1GB =,由120ABC ∠=︒,可得3AG GC ==.由BE ABCD ⊥平面,AB BC =,可知AE EC =. 又AE EC ⊥,所以3EG =,且EG AC ⊥.在Rt EBG ∆中,可得2BE =,故22DF =.在Rt FDG ∆中,可得62FG =.在直角梯形BDFE 中,由2BD =,2BE =,22DF =,可得322EF =. 从而222EG FG EF +=,所以EG FG ⊥,又AC FG G =,可得EG AFC ⊥平面. 因为EG AEC ⊂平面,所以AEC AFC ⊥平面平面. ……6分(Ⅱ)如图,以G 为坐标原点,分别以GB , GC 方向为x 轴,y 轴正方向,GB 为单位长,建立空间直角坐标系G xyz -.由(Ⅰ)可得()0,3,0A -,()1,0,2E , 21,0,2F ⎛⎫- ⎪ ⎪⎝⎭,()0,3,0C . 所以()1,3,2AE =,21,3,2CF ⎛⎫=-- ⎪ ⎪⎝⎭. ……10分故()3cos ,3AE CF AE CF AE CF•==-,所以直线AE 与直线CF 所成角余弦值为33-. ……12分 (19)【2015年新课标全国Ⅰ,理19】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费1x 和年销售量()11,2,,8y i =数据作了初步处理,得到下面的散点图及一些统计量的值.xy w()1211x xx +-∑()1211x w w +-∑()()111x xx y y +--∑ ()()111x w w y y +--∑46.6 56.3 6.8 289.8 1.6 1469108.8表中11w x =,11118x w w +=∑. (Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题:(i )年宣传费49x =时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利率的预报值最大? 附:对于一组数据()11,u v ,()22,u v …….. (),n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i nii uu v vuuβ==--=-∑∑,ˆˆv u αβ=-. 解:(Ⅰ)由散点图可以判断,y c d x =+适宜作为年销售量y 关于年宣传费x 的回归方程类型.……2分 (Ⅱ)令w x =,先建立y 关于w 的线性回归方程.由于()()()81821108.8681.6iii i i w w yyd w w==--===-∑∑, 56368 6.8100.6c y d w =-=-⨯=,所以y 关于w 的线性回归方程为100.668y w =+,因此y 关于w 的线性回归方程为100.668y x =+. ……6分 (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销售量y 的预报值100.66849576.6y =+=,年利润z 的预报值0.2576.64966.32z =⨯-=.……9分(ii )根据(Ⅱ)的结果知,年利润z 的预报值()0.2100.66813.620.12z x x x x =⨯+-=-++. 所以当13.66.82x ==,即46.24x =时,z 取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.……12分(20)【2015年新课标全国Ⅰ,理20】(本小题满分12分)在直角坐标系xOy 中,曲线2:4x C y =与直线()0y kx a a =+>交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解:(Ⅰ)由题设可得()2,M a a ,()2,N a a -,或()2,M a a -,()2,N a a .又2x y '=,故24x y =在2x a =处的导数值为a .C 在点()2,a a -处的切线方程为()2y a a x a -=-,即0ax y a ++=.故所求切线方程为0ax y a ++=和0ax y a --=. ……5分(Ⅱ)存在符合题意的点.证明如下:设()0,P b 为符合题意的点,()11,M x y ,()22,N x y ,直线PM ,PN 的斜率分别为1k ,2k .将y kx a =+代入C 的方程得2440x kx a --=.故124x x k +=, 124x x a =-.从而()()()1212121212122kx x a b x x k a b y b y b k k x x x x a+-++--+=+==.当b a =-时,有120k k +=, 则直线PM 的倾角与直线PN 的倾角互补,故OPM OPN ∠=∠,所以点()0,P a -符合题意.……12分(21)【2015年新课标全国Ⅰ,理21】(本小题满分12分)已知函数()31,()ln 4f x x axg x x =++=-.(Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用{}min ,m n 表示,m n 中的最小值,设函数}{()min (),()(0)h x f x g x x =>,讨论()h x 零点的个数. 解:(Ⅰ)设曲线()y f x =与x 轴相切于点()0,0x ,则0()0f x =,0()0f x '=,代入可解得012x =,34a =-. 因此,当34a =-时,x 轴为曲线()y f x =的切线. ……5分(Ⅱ)当()1,x ∈+∞时,()ln 0g x x =-<,从而{}()min (),()()0h x f x g x g x =≤<,故()h x 在()1,+∞无零点.当1x =时,若54a ≥-,则5(1)04f a =+≥,{}(1)min (1),(1)(1)0h fg g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<.{}(1)min (1),(1)(1)0h fg f ==<,故1x =不是()h x 的零点.当()0,1x ∈时,()ln 0g x x =->,所以只需考虑()f x 在()0,1的零点个数.(i )若3a ≤-或0a ≥,则2()3f x x a '=+/在()0,1无零点,故()f x 在()0,1单调.而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在()0,1有一个零点;当0a ≥时,()f x 在()0,1无零点.(ii )若30a -<<,则()f x 在0,3a ⎛⎫- ⎪ ⎪⎝⎭单调递减,在,13a ⎛⎫- ⎪ ⎪⎝⎭单调递增,故在()0,1中,当3a x =- 时,()f x 取得最小值,最小值为213334a a a f ⎛⎫-=-+ ⎪ ⎪⎝⎭.①若03a f ⎛⎫-> ⎪ ⎪⎝⎭,即304a -<<,()f x 在()0,1无零点.②若03a f ⎛⎫-= ⎪ ⎪⎝⎭,即34a =-,()f x 在()0,1有唯一零点.③03a f ⎛⎫-< ⎪ ⎪⎝⎭,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在()0,1有两个零点;当534a -<≤-时,()f x 在()0,1有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当34a >-或54a <-时,()h x 有三个零点. ……12分请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)【2015年新课标全国Ⅰ,理22】(本题满分10分)(选修4-1:几何证明选讲)如图AB 是O 直径,AC 是O 切线,BC 交O 与点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线;(Ⅱ)若3OA CE =,求ACB ∠的大小.解:(Ⅰ)连接AE ,由已知得AE BC ⊥,AC AB ⊥.在Rt AEC ∆中由已知得DE DC =,故DEC DCE ∠=∠. 连接OE ,则OEB OBE ∠=∠.又90ACB ABC ∠+∠=︒,所以90DEC OEB ∠+∠=︒,故90OED ∠=︒,DE 是O 的切线 ……5分 (Ⅱ)设1CE =,AE x =,由已知得AB =BE =由射影定理,2AE CE BE =,所以2x =x =60ACB ∠=︒. ……10分(23)【2015年新课标全国Ⅰ,理23】(本小题满分10分)(选修4-4:坐标系与参数方程)直角坐标系xOy 中.直线1:2C x =-,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.解:(Ⅰ)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(Ⅱ)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=故12ρρ-=,即MN =2C 半径为1,所以2C MN ∆的面积为12. ……10分(24)【2015年新课标全国Ⅰ,理24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()12f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(Ⅰ)当1a =时,()1f x >化为12110x x +--->.当1x ≤-,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x ≤<.所以()1f x >解集为2,23x ⎛⎫∈ ⎪⎝⎭. ……5分(Ⅱ)由题设可得12,1()312,112,x a x f x x a x a x a x a --<⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,()21,0B a +,(),1C a a +,ABC ∆的面积为()2213a +.由题设得()22163a +>,故2a >.所以a 的取值范围为()2,+∞.……10分。
2015年高考重庆理科数学试题及答案(word解析版)
2015年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则( )(A )A B = (B )A B =∅ (C )A B (D )B A【答案】D【解析】A={1,2,2}B={2,3}B A B A B A ⇒⊂≠⇒⊂≠,且,故选D .(2)【2015年重庆,理2】在等差数列{}n a 中,若24a =,42a =,则6a =( )(A )1- (B )0 (C )1 (D )6 【答案】B【解析】利用264+2a a a =可求得60a =,故选B . (3)【2015年重庆,理3】重庆市2013年各月的平均气温(C ︒)数据的茎叶图如右,则这组数据的中位数是( ) (A )19(B )20 (C )21.5 (D )23【答案】B 【解析】这组数据是8,9,12,15,18,20,20,23,23,28,31,32. 中位数是20+20202=,故选B .(4)【2015年重庆,理4】“1x >”是“()12log 20x +<”的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B【解析】12log (2)01x x +<⇒>-,故选B .(5)【2015年重庆,理5】某几何体的三视图如图所示,则该几何体的体积为( )(A )13π+ (B )23π+ (C )123π+ (D )223π+【答案】A【解析】该立体图形是由一个三棱锥和一个半圆柱拼接而成的,其体积为两部分体积之和:211(1)212113223ππ⨯⨯⎛⎫⨯⨯⨯⨯+=+ ⎪⎝⎭,故选A . (6)【2015年重庆,理6】若非零向量,a b 满足22||||3a b =,且()()32a b a b -⊥+,则a 与b 的夹角为( ) (A )4π (B )2π (C )34π (D )π 【答案】A【解析】()(32)()(32)0a b a b a b a b -⊥+⇒-+=,结合22||||3a b =,可得2||3a b b =,2cos ,,,[0,],24||||a b a b a b a b a b ππ∴<>==<>∈⇒<>=,故选A .(7)【2015年重庆,理7】执行如图所示的程序框图,若输入k 的值为8,则判断框图可填入的条件是( )(A )34s ≤ (B )56s ≤ (C )1112s ≤ (D )1524s ≤【答案】C【解析】10,022s k k s ==⇒==是,是,114+24k s ⇒==,是,1116++246k s ⇒==,是11118+++2468k s ⇒==,否,判断框内应该填11111++=24612s ≤,故选C .(8)【2015年重庆,理8】已知直线l :()10x ay a R +-=∈是圆C :224210x y x y +--+=的对称轴,过点()4,A a -作圆C 的一条切线,切点为B ,则||AB =( )(A )2 (B) (C )6 (D)【答案】C【解析】()()22:-2-14C x y +=,其圆心坐标为2,1C (),半径2r =.由题意可知直线:10()l x ay a R +-=∈是圆的直径所在直线,它过圆心2,1C (),所以21101(4,1)a a A AC +⨯-=⇒=-⇒--⇒=知,6AB ==,故选C .(9)【2015年重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα--=( )(A )1 (B )2 (C )3 (D )4 【答案】C【解析】2sin5tan 2tansin cos 5cos5ππαααπ=⇒=⊗,3cos()cos[()]sin()sin cos cos sin cos 1052555sin()sin()sin()sin cos cos sin cos55555ππππππαααααπππππααααα-+-++∴===---- 将⊗式带入上式可得:3cos()103sin()5παπα-=-,故选C . (10)【2015年重庆,理10】设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线交于点D .若D 到直线BC 的距离小于a )(A )()()1,00,1- (B )()(),11,-∞-+∞ (C )()()0,2 (D )((),2,-∞+∞【答案】A【解析】由题意可得:22(,0),(,0),(,),b b A a F c B c AF c a BF a a ∴=-=.在Rt ABD ∆中,由射影定理有:22222()()()b BF c a c a a BF AF DF DF AF c a a +-=⋅⇒===-.即点D 到直线BC 的距离为22()()c a c a a +-,由题意得:22()()c a c a a +-<01ba a c a+⇒<<.而双曲线的渐近线斜率(1,0)(0,1)bk k a =±∴∈-,故选A .二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2015年重庆,理11】设复数()i ,a b a b R +∈()()i i a b a b +-= . 【答案】3【解析】复数i(,)a b a b R +∈223a b =+=.22(i)(i)3a b a b a b ∴+-=+=. (12)【2015年重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是 (用数字作答).【答案】52【解析】71535215517()()1582222r r rrr r r r T C x C x r x --+=⋅=∴-=∴=.故35()2x x +的展开式中8x 的系数为2521522C =. (13)【2015年重庆,理13】在ABC ∆中,0120B =,2AB =,P ABC -的角平分线3AD =,则AC = . 【答案】6【解析】由正弦定理可得:2sin 451530sin sin 2AD AB ADB ADB BAD BAC B ADB =⇒∠=⇒∠=⇒∠=⇒∠=∠, 30C ∴∠=,再由正弦定理可得:6sin sin AC ABAC B C=⇒=.考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. (14)【2015年重庆,理14】如图,圆O 的弦,AB CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = . 【答案】2【解析】由切割线定理可得:21296,3PA PC PD PD CD CE ED =⋅⇒=⇒=⇒==.再由相交弦定理可得:2AE BE CE DE BE ⋅=⋅⇒=.(15)【2015年重庆,理15】已知直线l 的参数方程为11x ty t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为235cos24(0,)44ππρθρθ=><<.则直线l 与曲线C 的交点的极坐标为 .【答案】()2,π【解析】直线l 的直角坐标方程为2y x =+.222222cos 24(cos sin )4 4.x y ρθρθθ=∴-=∴-=由 222240y x x x y y =+=-⎧⎧⇒⎨⎨-==⎩⎩222x y ρ∴=+=.由35sin 0=44y ππρθθθπ==<<⇒及. 故直线l 与曲线C 的交点的极坐标为2,π(). (16)【2015年重庆,理16】若函数()1f x x x a =++-的最小值为5,则实数a = __.【答案】4或-6【解析】分情况讨论:(1)当1a ≤-时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,所以|1|56a a +=⇒=-;(2)当1a >时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,|1|54a a +=⇒=,综上,可得实数a =6-或4.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程. (17)【2015年重庆,理17】(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同, 从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(Ⅰ)令A 表示事件“三种粽子各取到一个”,则()11123531014C C C P A C ==. (Ⅱ)X 所有可能取值为0,1,2,且()383107015C P X C ===,()12283107115C C P X C ===, ()21283101215C C P X C ===.故分布列见表:且X 0 1 2 P715715 115()77130121515155E X =⨯+⨯+⨯=(个). (18)【2015年重庆,理18】(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设()2sin sin 3cos 2f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求()f x 的最小正周期和最大值;(Ⅱ)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.解:(Ⅰ)由题()()213cos sin 3cos sin 21cos22f x x x x x x =-=-+=3sin 23x π⎛⎫--⎪⎝⎭,故()f x 的最小正周期 T π=,最大值为23-. (Ⅱ)由2,63x ππ⎡⎤∈⎢⎥⎣⎦知023x ππ≤-≤,从而当0232x ππ≤-≤即5612x ππ≤≤时,()f x 单调递增;当223x πππ≤-≤即52123x ππ≤≤时,()f x 单调递减.因此,()f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减.(19)【2015年重庆,理19】(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)如图,三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,2ACB π∠=,,D E 分别为线段,AB BC 上的点,且2CD DE ==,22CE EB ==.(Ⅰ)证明:DE ⊥平面PCD ;(Ⅱ)求二面角A PD C --的余弦值.解:(Ⅰ)因PC ⊥平面ABC ,DE ⊂平面ABC ,故PC DE ⊥.又2CD DE ==,2CE =,故CDE ∆为等腰直角三角形,且CD DE ⊥.因PC CD C =,PC ⊂平面PCD ,CD ⊂平面PCD , 所以DE ⊥平面PCD .(Ⅱ)如图,取CE 的中点F ,连DF .由(Ⅰ)知CDE ∆为等腰直角三角形,故DF CE ⊥,1DF CF FE ===.又2ACB π∠=,故//DF AC ,因此23DF FB AC CB ==,从而32AC =.以C 为原点,,,CA CB CP 的方向分别为,,x y z 轴的正方向建立空间直角坐标系C xyz -.则()0,0,0C ,3,0,02A ⎛⎫ ⎪⎝⎭,()0,2,0E ,()1,1,0D ,()0,0,3P ,故1,1,02DA ⎛⎫=- ⎪⎝⎭,()1,1,3DP =--,()1,1,0DE =-.设()1111,,n x y z =为平面APD 的法向量,则110n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩即111112030x y x y z -=⎧⎨--+=⎩,取11y =得()12,1,1n =.由(Ⅰ)知DE ⊥平面PCD ,故DE 即为平面PCD 的法向量.因1113cos ,||||n DE n DE n DE ⋅==⋅,故所求二面角A PD C --的余弦值为3. (20)【2015年重庆,理20】(本小题满分12分,(Ⅰ)小问7分,(Ⅱ)小问5分)设函数()()23xx axf x a R e +=∈.(Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)若()f x 在[)3,+∞上为减函数,求a 的取值范围. 解:(Ⅰ)由题()()()()2226336x xxxx a e x ax e x a x af x ee+-+-+-+'==,因()f x 在0x =处取得极值,故()00f '=,得0a =.因此()23x f x x e -=,()()263x f x x x e -'=-.从而()31f e =,()31f e'=,所以曲线()y f x =在点()()1,1f 处的切线方程为()331y x e e-=-即30x ey -=.z yxF PEDC BA(Ⅱ)由题知()0f x '≤对3x ≥恒成立,故()2360x a x a -+-+≥即()3311a x x ≥---对3x ≥恒成立.显然()()3311g x x x =---在[)3,+∞单调递减,故()()max 932g x g ==-,所以92a ≥-,即a 的取值范围为9,2⎡⎫+∞⎪⎢⎣⎭. (21)【2015年重庆,理21】(本题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,过2F 的直线交椭圆于,P Q 两点,且 1PQ PF ⊥. (Ⅰ)若1||22PF =+,2||22PF =-,求椭圆的标准方程; (Ⅱ)若1||||PF PQ =,求椭圆的离心率e .解:(Ⅰ)由题122||||4a PF PF =+=,故2a =.又222124||||12c PF PF =+=,故23c =,因此2221b a c =-=,从而椭圆方程为2214x y +=.(Ⅱ)连1F Q ,由题()1114||||||22||a F P PQ QF F P =++=+,故()1||222F P a =-,从而21||2||F P a F P =-()221a =-,因此()2222124||||4962c PF PF a =+=-,所以()2296263e =-=-,得63e =-.(22)【2015年重庆,理22】(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)在数列{}n a 中,13a =,()2110n n n n a a a a n N λμ+++++=∈.(Ⅰ)若0λ=,2μ=-,求数列{}n a 的通项公式; (Ⅱ)若()0001,2k N k k λ+=∈≥,1μ=-,证明:010011223121k a k k ++<<+++. 解:(Ⅰ)由0λ=,2μ=-得212n n n a a a +=.因130a =>,故0n a >,得12n n a a +=.因此{}n a 是首项为3公比为2的等比数列,从而132n n a -=⋅.(Ⅱ)由题2101n n n a a a k +⎛⎫+= ⎪⎝⎭,因130a =>,故1230n a a a =>>>>>.因21000011111n n n n n a a a k k k a a k +==-+⋅+⎛⎫+ ⎪⎝⎭,即1001111n n n a a k k a +⎛⎫-=-⎪+⎝⎭, 故()0011111100000111113131213131k k k k i i i i i i a a a a k k a k k k ++===⎛⎫⎛⎫=+-=+->+-=+ ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,因此001212k k a a a a +>>>>>,从而00110001113122121k k i a k k k +=⎛⎫<+-=+⎪++⎝⎭∑. 综上可知010011223121k a k k ++<<+++.。
2015年高考全国卷2理科数学试题解析
f (log2 12) 2log2121 2log2 6 6 ,故 f (2) f (log212) 9 .
(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的 比值为
1
(A)
8
【答案】D
1
(B)
7
1
(C)
6
1
(D)
5
【解析】由三视图得,在正方体 ABCD A1B1C1D1 中,截去四面体 A A1B1D1 ,如图所示,,设正方
)
(A)21
(B)42
(C)63 (D)84
【答案】B
(5)设函数
f
(x)
12x1lo, xg2(12,
x), x
1,
,
f
(2)
f
(log 2 12)
(
)
(A)3 (B)6
(C)9 (D)12
【答案】C
【 解 析 】 由 已 知 得 f (2) 1 log 2 4 3 , 又 log2 12 1 , 所 以
1
【答案】
2
【解析】因为向量
a
b
与
a
2b
平行,所以
a
b
(k a
2b),则
k, 1 2k, 所以
1 2
.
x y 1 0, (14)若 x,y 满足约束条件 x 2 y 0, ,则 z x y 的最大值为____________.
(B)8
(C)4 6
(D)10
【答案】C
(完整版)2015年江苏省高考数学试卷答案与解析
2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g (x )与φ(x )=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4. 故答案为:4. 点评:本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k •a k+1)的值为 .考点:数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分析: 利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 解解:答:=+=++++=++=++,∴(a k •a k+1)=+++++++…+++++++…+=+0+0 =.故答案为:9.点评: 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤) 15.(14分)(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.考点: 余弦定理的应用;二倍角的正弦. 专题: 解三角形. 分析:(1)直接利用余弦定理求解即可. (2)利用正弦定理求出C 的正弦函数值,然后利用二倍角公式求解即可. 解答:解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB •ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB <BC ,∴C 为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f (t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln (1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。
2015年高考安徽理科数学试题及答案(word解析)
2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年安徽,理1,5分】i 为虚数单位,则复数2i1i-在复平面内所对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B【解析】由题意()()()2i 1i 2i 22i1i 1i 1i 1i 2+-+===-+--+,其对应的点坐标为()1,1-,位于第二象限,故选B .【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.(2)【2015年安徽,理2,5分】下列函数中,既是偶函数又存在零点的是( )(A )cos y x = (B )sin y x = (C )ln y x = (D )21y x =+ 【答案】A【解析】由选项可知,B 、C 项均不是偶函数,故排除B 、C ,A 、D 项是偶函数,但D 项与x 轴没有交点,即D项不存在零点,故选A .【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断()f x -与()f x 的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x 轴的交点以及与对应方程的解的个数是一致的.(3)【2015年安徽,理3,5分】设:12p x <<,:21x q >,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A【解析】由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件,故选A .【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题. (4)【2015年安徽,理4,5分】下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=【答案】C【解析】由题意,选项A ,B 的焦点在x 轴,故排除A ,B ,C 项渐近线方程为2214y x -=,即2y x =±,故选C .【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题. (5)【2015年安徽,理5,5分】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】D【解析】对于A ,若α,β垂直于同一平面,则α,β不一定平行,如果墙角的三个平面;故A 错误;对于B ,若m ,n 平行于同一平面,则m 与n 平行.相交或者异面;故B 错误; 对于C ,若α,β不平行,则在α内存在无数条与β平行的直线;故C 错误;对于D ,若m ,n 不平行,则m 与n 不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这 两条在平行;故选D .【点评】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系. (6)【2015年安徽,理6,5分】若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )32 【答案】C 【解析】设样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为DX ,则8DX =,即方差64DX =,而数据121x -,221x -,⋅⋅⋅,1021x -的方差()22212264D X DX -==⨯,所以其标准差为226416⨯=,故选C . 【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键 (7)【2015年安徽,理7,5分】一个四面体的三视图如图所示,则该四面体的表面积是( ) (A )13+ (B )23+ (C )122+ (D )22 【答案】B【解析】由题意,该四面体的直观图如下,ABD ∆,ACD ∆时直角三角形,ABC ∆,ACD ∆是等边三角形,则12212BCD ABD S S ∆∆==⨯⨯=,1322sin 6022ABC ACD S S ∆∆==⨯⨯︒=,所以四面体的表面积3212232BCD ABD ABC ACD S S S S S ∆∆∆∆=+++=⨯+⨯=+,故选B . 【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.(8)【2015年安徽,理8,5分】ABC ∆是边长为2的等边三角形,已知向量a ,b 满足2AB a =, 2AC a b =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4a b BC -⊥【答案】D【解析】依题意,()22BC AC AB a b a b =-=+-=,故2b =,故A 错误,222a a ==,所以1a =,又()2224222cos602AB AC a a b a ab ⋅=⋅+=+=⨯︒=,所以1a b ⋅=-,故B ,C 错误;设BC 中点为D ,则2AB AC AD +=,且AD BC ⊥,所以()4a b BC +⊥,故选D .【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.(9)【2015年安徽,理9,5分】函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c < 【答案】C【解析】由()()2ax b f x x c +=+及图像可知,x c ≠-,0c ->;当0x =时,()200bf c =>,所以0b >;当0y =,0ax b +=, 所以0bx a=->,所以0a <.故0a <,0b >,0c <,故选C . 【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及()0f 的符号是解决本题的关键.(10)【2015年安徽,理10,5分】已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-【答案】A【解析】由题意,()()sin f x x ωϕ=A +()0,0,0A ωϕ>>>,22T πππωω===,所以2ω=,则()()sin f x x ωϕ=A +,而当23x π=时,2322,32k k Z ππϕπ⨯+=+∈,解得2,6k k Z πϕπ=+∈,所以()()sin 206f x x A π⎛⎫=A +> ⎪⎝⎭,则当2262x k πππ+=+,即6x k ππ=+时,()f x 取得最大值.要比较()()()2,2,0f f f -的大小,只需判断2,-2,0与最近的最高点处对称轴的距离大小,距离越大,值越小,易知0,2与6π比较近,-2与56π-比较近,所以当0k =时,6x π=,此时00.526π-=,2 1.476π-=,当1k =-时,56x π=-,此时520.66π⎛⎫---= ⎪⎝⎭,所以()()()220f f f <-<,故选A .【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2015年安徽,理11,5分】731x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数是 (用数字填写答案).【答案】35【解析】由题意()732141771rrr r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令2145r -=,得4r =,则5x 的系数是4735C =.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.(12)【2015年安徽,理12,5分】在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6【解析】由题意2sin ρρθ=,转化为直角坐标方程为228x y y +=,即()22416x y +-=;直线()3R πθρ=∈转化为直角坐标方程为3y x =,则圆上到直线的距离最大值是通过圆心的直线,设圆心到直线的距离为d ,圆心的半径为r ,则圆到直线距离的最大值()2204424613D d r -=+=+=+=+-.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.(13)【2015年安徽,理13,5分】执行如图所示的程序框图(算法流程图),输出的n 为 . 【答案】4【解析】由题意,程序框图循环如下:①1a =,;1n =②131112a =+=+,2n =;③1713512a =+=+,3n =;④117171215a =+=+,4n =,此时, 171.4140.0030.00512-≈<,所以输出4n =. 【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a ,n 的值是解题的关键,属于基础题. (14)【2015年安徽,理14,5分】已知数列{}n a 是递增的等比数列,249a a +=,238a a =,则数列{}n a 的前n 项和等于 . 【答案】21n -【解析】由题意,14231498a a a a a a +=⎧⎨⋅==⎩,解得11a =,48a =或者18a =,41a =,而数列{}n a 是递增的等比数列,所以11a =,48a =,即3418a q a ==,所以2q =,因而数列{}n a 的前n 项和()111221112n n n n a q S q --===---. 【点评】本题考查等比数列的性质,数列{}n a 的前n 项和求法,基本知识的考查.(15)【2015年安徽,理15,5分】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 __.①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤【解析】令()3f x x ax b =++,求导得()23f x x a '=+,当0a ≥时,()0f x '≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以()3f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则()()()233311f x x x x '=-=+-,易知,()f x 在(),1-∞-,()1,+∞上单调递增,在[]1,1-上单调递减,所以()()1132f x f b b =-=-++=+极大,()()11320f x f b b ==-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实根的是①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内. (16)【2015年安徽,理16,12分】在ABC ∆中,4A π=,6AB =,AC =D 在BC 边上,AD BD =,求AD 的长.解:设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,由余弦定理得2222cos a b c bc BAC =+-∠223626cos 4π=+-⨯⨯1836(36)=+--90=,所以a =.又由正弦定理得sin sin b BAC B a ∠===, 由题设知04B π<<,所以cos B = 在ABD ∆中,由正弦定理得sin 6sin 3sin(2)2sin cos cos AB B B AD B B B Bπ===-【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查. (17)【2015年安徽,理17,12分】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,1123253()10A A P A A ==.(2)χ的可能取值为200,300,400,22251(200)10A P A χ===;31123232353(300)10A C C A P A χ+===; 136(400)1(200)(300)1101010P P P χχχ==-=-==--=. 故χ的分布列为13200300400350101010E χ=⨯+⨯+⨯=. 【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力. (18)【2015年安徽,理18,12分】设*n N ∈,n x 是曲线231n y x +=+在点(12),处的切线与x 轴交点的横坐标.(1)求数列{}n x 的通项公式;(2)记2221221n n T x x x -=,证明14n T n≥. 解:(1)2221(1)(22)n n y x n x ++''=+=+,曲线221n y x +=+在点(12),处的切线斜率为22n +,从而切线方程为2(22)(1)y n x -=+-,令0y =,解得切线与x 轴交点的横坐标1111n nx n n =-=++. (2)由题设和(1)中的计算结果知22222213211321...()()...()242n n n T x x x n--==, 当1n =时,114T =;当2n ≥时,因为2222212221(21)(21)1221()2(2)(2)2n n n n n n x n n n n n -------==>==; 所以211211()...2234n n T n n ->⨯⨯⨯⨯=,综上可得对任意的*n N ∈,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型. (19)【2015年安徽,理19,13分】如图所示,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F .(1)证明:11//EF B C ;(2)求二面角11E A D B --余弦值.解:(1)由正方形的性质可知11////A B AB DC ,且11A B AB DC ==,所以四边形11A B CD 为平行四边形,从而11//B C A D ,又1A D ⊂面1A DE ,1B C ⊄面1A DE ,于是1//B C 面1A DE , 又1B C ⊂面11B CD ,面1A DE面11B CD EF =,所以1//EF B C .(2)11,,AA AB AA AD AB AD ⊥⊥⊥,且1AA AB AD ==,以A 为原点,分别以1,,AB AD AA 为x 轴,y 轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,111(0,0,1),(1,0,1),(0,1,1)A B D ,而E 点为11B D 的中点,所以E 点的坐标为()0.5,0.5,1.设面1A DE 的法向量1111(,,)n r s t =,而该面上向量()10.5,0.5,0A E =,()10,1,1A D =-,由11n A E ⊥,11n A D ⊥得111,,r s t 应满足的方程组11110.50.500r s s t +=⎧⎨-=⎩,()1,1,1-为其一组解,所以可取()11,1,1n =-,设面11A B CD 的法向量2222(,,)n r s t =,而该面上向量()110.5,0.5,0A B =,()10,1,1A D =-,由此同理可得2(0,1,1)n =所以结合图形知二面角11E A D B --的余弦值为1212||26||||332n n n n ==⨯.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.(20)【2015年安徽,理20,13分】设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解:(1)由题设条件知,点M 的坐标为21(,)33a b ,又510OM k =,从而5210b a =,进而得225,2a b c a b b ==-=,、故255c e a ==.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为15x y bb +=,点N 的坐标为51(,)22b b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T的坐标为117,)244x b +-+,又点T 在直线AB 上,且1NS AB k k =-,从而有117441,71x b b b +-++=⎨+⎪=解得3b =,所以a =E 的方程为221459x y +=.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.(21)【2015年安徽,理21,13分】设函数2()f x x ax b =-+.(1)讨论函数(sin )f x 在22ππ(-,)内的单调性并判断有无极值,有极值时求出极值;(2)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在22ππ(-,)上的最大值D ;(3)在(2)中,取000a b ==,求24az b =-满足1D ≤时的最大值.解:(1)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<,[(sin )](2sin )cos ,22f x x a x x ππ'=--<<,因为22x ππ-<<,所以cos 0x >,22sin 2x -<<,①2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值; ②2,a b R ≥∈时,函数(sin )f x 单调递减,无极值;③对于22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =,02x x π-<≤时,函数(sin )f x 单调递减;02x x π≤<时,函数(sin )f x 单调递增.因此22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(2)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立.由此可知,0|(sin )(sin )|f x f x -在[,]22ππ-上的最大值为00||||D a a b b =-+-.(3)1D ≤即为||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a zb =-≤.取0,1a b ==,则||||1a b +≤,并且214a z b =-=,由此可知,24a zb =-满足条件1D ≤的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.。
2015年高考全国新课标1卷理科数学试题(含答案)
-共 13 页,当前页是第- 2 -页-
(7)设 D 为 ABC 所在平面内一点 =3 ,则
( A)
=
+
(B)
=
(C)
=
+
(D)
=
【解析】本题考查平面向量,画出图形,
1 1 1 4 AD AC CD AC BC AC ( AC AB) AB AC 3 3 3 3
(11)圆柱被一个平面截去一部分后与半球(半径为 r)组成一个几何体,该几何体三视图中的正视图和俯视 图如图所示。若该几何体的表面积为 16 + 20 ,则 r=
-共 13 页,当前页是第- 4 -页-
(A)1(B)2(C)4(D)8 【解析】本题考查三视图, 由正视图和俯视图知, 该几何体是半球与半个圆柱的组合体, 圆柱的半径与球的半径都为 r, 圆柱的高为 2r, 其表面积为
cos (AE, CF) AE CF 3 = 3 |AE||CF |
所以直线 AE 与直线 CF 所成角的余弦值是
3 . 3
(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x(单位:千元)对年 销售量 y(单位:t)和年利润 z(单位:千元)的影响,对近 8 年的年宣传费 x1 和年销售量 y1(i=1,2, · · · ,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
所以 0 x 4 ,而 AB
因此可得 AB 的范围是 ( 6 2, 6 2) .
-共 13 页,当前页是第- 6 -页-
三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17) (本小题满分 12 分) Sn 为数列{an}的前 n 项和.已知 an>0, (Ⅰ)求{an}的通项公式: (Ⅱ)设
2015年高考真题——理科数学(四川卷)
2015年高考真题——理科数学(四川卷)设集合,集合,则()【答案解析】A选A【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.设i是虚数单位,则复数= ( )(A)-i (B)-3i (C)i. (D)3i【答案解析】C,故选C【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.执行如图所示的程序框图,输出S的值是( )(A)(B)(C)(D)【答案解析】D这是一个循环结构,每次循环的结果依次为:大于4,所以输出的,选D【考点定位】程序框图.【名师点睛】程序框图也是高考的热点,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来.下列函数中,最小正周期为π且图象关于原点对称的函数是()(A) (B)(C) (D)【答案解析】A对于选项A,因为,且图像关于原点对称,故选A【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C、D选项中的函数既不是奇函数也不是偶函数,而B选项中的函数是偶函数,故均可排除,所以选A.过双曲线的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则=()(A) (B) (C)6 (D)【答案解析】D双曲线的右焦点为,过P与x轴垂直的直线为x=2,渐近线方程为,将代入得:,,选D。
【考点定位】双曲线.【名师点睛】双曲线的渐近线方程为,将直线代入这个渐近线方程,便可得交点A、B的纵坐标,从而快速得出的值.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()(A)144个(B)120个(C)96个(D)72个【答案解析】B据题意,万位上只能排4.5,若万位上排4,则有个;若万位上排5,则有3个,所以共有个,故选B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.设四边形ABCD为平行四边形,,.若点M,N满足,,则()(A)20 (B)15 (C)9 (D)6【答案解析】C所以选C【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于,故可选作为基底.设a,b都是不等于1的正数,则“”是“”的()(A)充要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件【答案解析】B若,则,从而有,故为充分条件。
专题15 立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编
十年(2014-2023)年高考真题分项汇编立体几何填空、多选目录题型一:立体几何结构特征 (1)题型二:立体几何三视图 (2)题型三:立体几何的表面积与体积 (3)题型四:立体几何中的球的问题 (9)题型五:立体几何线面位置关系 (9)题型六:立体几何中的角度与距离 (10)题型一:立体几何结构特征1.(2023年全国甲卷理科·第15题)在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有____________个公共点.2.(2020年高考课标Ⅲ卷理科·第15题)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.3.(2019·全国Ⅱ·理·第16长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(本题第一空2分,第二空3分).4.(2017年高考数学上海(文理科)·第11题)如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为________.5.(2015高考数学江苏文理·第9题)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_______.二、多选题1.(2023年新课标全国Ⅰ卷·第12题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体2.(2021年新高考Ⅰ卷·第12题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 题型二:立体几何三视图1.(2021年高考全国乙卷理科·第16题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).2.(2019·北京·理·第11题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.3.(2017年高考数学上海(文理科)·第8题)已知球的体积为36π,则该球主视图的面积等于________.4.(2017年高考数学山东理科·第13题)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为__________.则该棱台的体积为________.2.(2023年新课标全国Ⅱ卷·第14题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.3.(2020年新高考全国Ⅰ卷(山东)·第15题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.4.(2020年新高考全国卷Ⅱ数学(海南)·第13题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________5.(2020天津高考·第15题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅ 的最小值为_________.6.(2020江苏高考·第9题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5cm,则此六角螺帽毛坯的体积是____cm.7.(2019·天津·理·第11题)个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.8.(2019·全国Ⅲ·理·第16题)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .9.(2019·江苏·第9题)如图,长方体1111ABCD A B C D -的体积是120,E 是1CC 的中点,则三棱椎-E BCD 的体积是______.10.(2018年高考数学江苏卷·第10题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(2018年高考数学天津(理)·第11题)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.12.(2018年高考数学课标Ⅱ卷(理)·第16题)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.13.如图,在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为.1A 1B 1C AB C14.(2014高考数学天津理科·第10题)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m.15.(2014高考数学山东理科·第13题)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =.16.(2014高考数学江苏·第8题)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12V V 的值是.17.(2015高考数学天津理科·第10题)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m.18.(2015高考数学上海理科·第4题)若正三棱柱的所有棱长均为a ,且其体积为,则a =.19.(2017年高考数学江苏文理科·第6题)如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_______.20.(2016高考数学浙江理科·第14题)如图,在ABC ∆中,2,120AB BC ABC ==∠= .若平面ABC 外的点P 和线段AC 上的点D ,满足,PD DA PB BA ==,则四面体PBCD 的体积的最大值是.21.(2016高考数学浙江理科·第11题)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是2cm ,体积是3cm .OO 1O 2(第6题)⋅⋅⋅22.(2016高考数学天津理科·第11题)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_____________3m .23.(2016高考数学四川理科·第13题)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则三棱锥的体积为_______.二、多选题1.(2022新高考全国II 卷·第11题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =题型四:立体几何中的球的问题1.(2020年新高考全国Ⅰ卷(山东)·第16题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.2.(2017年高考数学天津理科·第10题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝2.(2019·北京·理·第12题)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l m ⊥;②m ∥α;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【3.(2016高考数学课标Ⅱ卷理科·第14题),αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果m n ⊥,m α⊥,//n β,那么αβ⊥.(2)如果m α⊥,//n α,那么m n ⊥.(3)如果//αβ,m α⊂,那么//m β.(4)如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)二、多选题1.(2021年新高考全国Ⅱ卷·第10题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A .B .C .D ._____________.(结果用反三角函数值表示)2.(2015高考数学浙江理科·第13题)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.3.(2015高考数学四川理科·第14题)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面相互垂直,动点M 在线段PQ 上,,E F 分别为AB ,BC 中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________4.(2015高考数学上海理科·第6题)若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为.5.(2017年高考数学课标Ⅲ卷理科·第16题),a b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角;②当直线AB 与a 成60︒角时,AB 与b 成60︒角;③直线AB 与a 所成角的最小值为45︒;④直线AB 与a 所成角的最大值为60︒.其中正确的是.(填写所有正确结论的编号)6.(2016高考数学上海理科·第6题)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.二、多选题1.(2023年新课标全国Ⅱ卷·第9题)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC △2.(2022新高考全国I 卷·第9题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒。
2015年高考湖北理科数学试题及答案(word解析版)
2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年湖北,理1,5分】i 为虚数单位,607i 的共轭复数....为( ) (A )i (B )i - (C )1 (D )1- 【答案】A【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.(2)【2015年湖北,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) (A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米内夹谷约为281534169254⨯=石,故选B .【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.(3)【2015年湖北,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) (A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用 以及计算能力.(4)【2015年湖北,理4,5分】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )(A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.(5)【2015年湖北,理5,5分】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( ) (A )p 是q 的充分条件,但不是q 的必要条件 (B )p 是q 的必要条件,但不是q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当时,成立;②当时,根据柯西不等式,等式成立,则,所以成等比数列,所以p 是q 的充分条件,但不是q 的必要 0=n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++0≠n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++nn a a a a a a 13221-=⋅⋅⋅==12,,,n a a a条件.故选A .(6)【2015年湖北,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年湖北,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年湖北,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e <(C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,22211a b b e a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a m ++++⎛⎫==+ ⎪+⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.(9)【2015年湖北,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【答案】C【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .【点评】本题以新定义为载体,主要考查了几何的基本定义及运算,解题中需要取得重复的元素.(10)【2015年湖北,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年湖北,理11,5分】已知向量OA AB ⊥,||3OA =,则OA OB ⋅= . 【答案】9 【解析】因为OA AB ⊥,3OA =,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===.【点评】本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.(12)【2015年湖北,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【解析】因为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点,所以函数()f x 由2个零点.【点评】本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.(13)【2015年湖北,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD BC ︒==,所以1006CD =m . 【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.(14)【2015年湖北,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NBMB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =,且E 为AB 中点,∴()0,21A -,()0,21B +,M ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.)(15)【2015年湖北,理15,5分】(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______.【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆的割线,由切割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. 【点评】本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.(16)【2015年湖北,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =.【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t 得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得2232x y ⎧=⎪⎪⎨⎪=⎪⎩或2232x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,A ⎛⎫ ⎪ ⎪⎝⎭,232,B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年湖北,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期(1...........(2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.解:(1)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律的应用,属于基本知识的考查.(18)【2015年湖北,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n na nb -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++ ① 2345113579212222222n n n T -=+++++ ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.(19)【2015年湖北,理19,12分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:解法一:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BD DPF PD λ=∠==+=, 解得2λ=.所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =,于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =,所以PB DEF ⊥平面. 因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑, 四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+, 解得2λ=. 所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年湖北,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.(2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.【点评】本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.(21)【2015年湖北,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y +=(2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为21d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQ P Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.(22)【2015年湖北,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(1)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(2)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212n n b b b a a a 的公式,并给出证明;(3)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.解:(1)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增;当()0f x '<,即0x >时,()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞.当0x >时,()(0)0f x f <=,即1e xx +<. 令1x n=,得111e n n +<,即1(1)e n n +<. ①(2)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n n nb b b n a a a =+ ② 下面用数学归纳法证明②.①当1n =时,左边=右边2=,②成立.②假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++.所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(3)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++ 1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n =++++++12e e e n a a a <+++=e n S . 即e n n T S <.【点评】本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
2015年高考陕西省理科数学真题含答案解析(超完美版)
2015年高考陕西省理科数学真题一、选择题1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .933.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( ) A .5B .6C .8D .104.二项式(1)()nx n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .75.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+ 6. “sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要 7.对任意向量,a b ,下列关系式中不恒成立的是( ) A .|?|||||a b a b ≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22(a b)(a b)a b +-=-8.根据下边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .29.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>10.某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B .1142π- C .112π- D .112π+ 12.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值D .点(2,8)在曲线()y f x =上二、填空题13.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p=15.设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为三、解答题17.C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c . 向量(),3m a b =与()cos ,sin n =A B 平行.()I 求A ; ()II 若7a =,2b =求C ∆AB 的面积.18.如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.()I 证明:CD⊥平面1CA O;()II若平面1A BE⊥平面CDB E,求平面1CA B与平面1CDA夹角的余弦值.19.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:()I求T的分布列与数学期望ET;()II刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.已知椭圆:E22221x ya b+=(0a b>>)的半焦距为c,原点O到经过两点(),0c,()0,b的直线的距离为12c.()I求椭圆E的离心率;()II如图,AB是圆:M()()225212x y++-=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.21.设()nf x是等比数列1,x,2x,⋅⋅⋅,n x的各项和,其中0x>,n∈N,2n≥.()I证明:函数()()F2n nx f x=-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为nx),且11122nn nx x+=+;()II设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()ng x,比较()nf x与()ng x的大小,并加以证明.22.如图,AB切O于点B,直线DA交O于D,E两点,C DB⊥E,垂足为C.()I证明:C D D∠B=∠BA;()II若D3DCA=,C2B=,求O的直径.23.在直角坐标系x yO中,直线l的参数方程为13232x ty t⎧=+⎪⎪⎨⎪=⎪⎩(t为参数).以原点为极点,x轴正半轴为极轴C ()I 写出C 的直角坐标方程;()II P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.2015年高考陕西省理科数学真题答案一、选择题 1.答案:A 解析过程: 由==⇒=2{x }{0,1},M xx M=≤⇒=<≤N {x lg 0}N {x 0x 1}x所以0,1MN ⎡⎤=⎣⎦,选A2.答案:B解析过程:由图可知该校女教师的人数为,选B3.答案:C 解析过程:试题分析:由图像得, 当时,求得, 当时,,选C4.答案:B 解析过程:二项式(1)nx +的展开式的通项是1r rr n T C x +=,令2r =得2x 的系数是2n C ,因为2x 的系数为15,所以215n C =,即2300n n --=,解得:6n =或5n =-,11070%150(160%)7760137⨯+⨯-=+=sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=因为n N +∈,所以6n =,选C 5.答案:D 解析过程:试题分析:由几何体的三视图可知该几何体为圆柱的截去一半, 所以该几何体的表面积为,选 6. 答案:A 解析过程:ααα=⇒-=22cos 20cos sin 0αααα⇒-+=(cos sin )(cos sin )0所以sin cos 或sin =-cos αααα=,选A 7.答案:B 解析过程:因为cos ,a b a b a b a b ⋅=<>≤,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误; 向量的平方等于向量的模的平方,所以选项C 正确;22(a b)(a b)a b +-=-所以选项D 正确,选B8.答案:C 解析过程:初始条件:;第1次运行:;第2次运行:; 第3次运行:;;第1003次运行:; 第1004次运行:.不满足条件,停止运行, 所以输出的,故选 B .9.答案:B 解析过程:()ln p f ab ab ==,()ln22a b a bq f ++==, 11(()())ln ln 22r f a f b ab ab =+==函数()ln f x x =在()0,+∞上单调递增,21121222342πππ⨯⨯+⨯⨯⨯+⨯=+D 2006x =2004x =2002x =2000x =⋅⋅⋅⋅⋅⋅0x =2x =-0?x ≥23110y =+=因为2a b ab +>,所以()()2a bf f ab +>, 所以q p r >=,故选C10.答案:D 解析过程:设该企业每天生产甲、乙两种产品分别为、吨,则利润由题意可列,其表示如图阴影部分区域:当直线过点时,取得最大值, 所以,故选D 11.答案:D解析过程:如图可求得,,阴影面积等于 若,则的概率是,故选B . 12.答案:A 解析过程:假设选项A 错误,则选项B 、C 、D 正确,()2f x ax b '=+, 因为1是()f x 的极值点,3是()f x 的极值,所以(1)0(1)3f f '=⎧⎨=⎩,203a b a b c +=⎧⎨++=⎩,解得23b ac a=-⎧⎨=+⎩,因为点(2,8)在曲线()y f x =上,所以428a b c ++=, 解得:5a =,所以10b =-,8c =, 所以2()5108f x x x =-+x y 34z x y =+32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩340x y z +-=(2,3)A z max 324318z =⨯+⨯=2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤(1,1)A (1,0)B 21111114242ππ⨯-⨯⨯=-||1z ≤y x ≥211142142πππ-=-⨯因为()215(1)10(1)8230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以假设成立,选A 二、填空题 13.答案:5 解析过程:设数列的首项为,则, 所以,故该数列的首项为 14.答案:解析过程:抛物线22(0)y px p =>的准线方程是2px =-, 双曲线221x y-=的一个焦点1(F , 因为抛物线22(0)y px p =>的准线 经过双曲线221x y -=的一个焦点, 所以2p-=p =15.答案:(1,1) 解析过程:因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则, 因为,所以, 所以曲线在点处的切线的斜率, 因为,所以,即,解得, 因为,所以,所以,即的坐标是1a 12015210102020a +=⨯=15a =5xy e =xy e '=xy e =()0,10101x k y e ='===P ()00,x y 00x >001y x =1y x =21y x'=-1y x=P 02201x x k y x ='==-121k k ⋅=-211x -=-201x =01x =±00x >01x =01y =P ()1,116.答案:1.2 解析过程:建立空间直角坐标系,如图所示:原始的最大流量是, 设抛物线的方程为(), 因为该抛物线过点,所以,解得,所以,即, 所以当前最大流量是,故原始的最大流量与当前最大流量的比值是三、解答题 17.答案:(I );(II ).解析过程:(I )因为,所以,由正弦定理,得 又,从而,由于,所以(II)解法一:由余弦定理,得而得,即因为,所以.故ABC 的面积为()11010222162⨯+-⨯⨯=22x py =0p >()5,22225p ⨯=254p =2252x y =2225y x =()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰161.2403=3π332//m n sin 3cos 0a B b A sinAsinB 3sinBcos A 0sin 0B ≠tan 3A 0A π<<3A π=2222cos a b c bc A 7b 2,a 3πA =2742c c 2230c c 0c3c ∆133bcsinA 22解法二:由正弦定理得72sin sin3Bπ=,从而21sin 7B =,又由a b >,知A B >,所以27cos 7B = 故sin sin()C A B =+sin()3B π=+sin coscos sin33B B ππ=+32114=所以ABC ∆的面积为133sin 22bc A = 18.答案:(I )证明见解析;(II )解析过程:(I )在图1中,因为AB=BC=1,AD=2,E 是AD 的中点,BAD=,所以BE AC 即在图2中,BE ,BE OC 从而BE 平面又CD BE ,所以CD 平面. (II)由已知,平面平面BCDE , 又由(1)知,BE ,BE OC所以为二面角的平面角,所以.如图,以O 为原点,建立空间直角坐标系,因为, 所以 63∠2π⊥⊥1OA ⊥⊥1A OC ⊥1A OC 1A BE ⊥⊥1OA ⊥1A OC ∠1--C A BE 1OC 2A π∠=11B=E=BC=ED=1A A BC ED 12222(,0,0),E(,0,0),A (0,0,),C(0,,0),2222B得 ,.设平面的法向量, 平面的法向量,平面与平面夹角为,则,得,取,,得,取, 从而, 即平面与平面夹角的余弦值为 19.答案:()I T 的分布列为:ET=32(分钟)()II解析过程:从而 (分钟) (II)设分别表示往、返所需时间,的取值相互独立,且与T 的分布列相同.22BC(,,0),22122A C(0,)22CD BE (2,0,0)1BC A 1111(,,)n x y z 1CD A 2222(,,)n x y z 1BC A 1CD A θ11100n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩111100x y yz -+=⎧⎨-=⎩1(1,1,1)n 2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩22200xy z =⎧⎨-=⎩2(0,1,1)n =12cos |cos ,|3n n θ=〈〉==1BC A 1CD A 30.910.4400.132⨯+⨯=12,T T 12,T T设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟, 所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:.解法二:故.20.答案:()I 2()II 22x y +=1123解析过程:(I )过点(c,0),(0,b)的直线方程为,则原点O 到直线的距离,由, 得,解得离心率. (II)解法一:由(I )知,椭圆E 的方程为. (1) 依题意,圆心M(-2,1)是线段AB 的中点,且.易知,AB 不与x 轴垂直, 设其直线方程为,代入(1)得设 则 由,得解得. 从而.121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=121212(A)P(70)P(35,40)P(40,35)P T T T T T T 12P(40,40)T T 0.40.10.10.40.10.10.09=⨯+⨯+⨯=(A)1P(A)0.91P 0bx cy bc bcd a ==12d c 2222ab ac 32c a22244x y b |AB |10(2)1yk x 2222(14)8(21)4(21)40k x k k x k b 1122(,y ),B(,y ),A x x 221212228(21)4(21)4,.1414k k k b x x x x k k 124x x 28(21)4,14k k k 12k21282x x b于是. 由,得,解得.故椭圆E 的方程为.解法二:由(I )知,椭圆E 的方程为. (2) 依题意,点A ,B 关于圆心M(-2,1)对称,且.设 则,,两式相减并结合得.易知,AB 不与x 轴垂直,则, 所以AB 的斜率 因此AB 直线方程为, 代入(2)得 所以,.于是. 由,得,解得.故椭圆E 的方程为.21.答案:(I )证明见解析;(II )当时, ,12|AB ||x x =-==|AB |1022)1023b 221123x y 22244x y b |AB |101122(,y ),B(,y ),A x x 2221144x y b 2222244x y b 12124,y 2,x x y 1212-4()80x x y y 12x x ≠12121k .2AB y y x x 1(2)12yx 224820.xx b 124x x 21282x x b 12|AB ||x x =-==|AB |1022)1023b 221123x y 1x ()()n n f x g x当时,,证明见解析.解析过程: (I )则所以在内至少存在一个零点. 又,故在内单调递增,所以在内有且仅有一个零点. 因为是的零点,所以,即,故.(II)解法一:由题设,设当时,当时,若,1x ≠()()n n f x g x 2()()212,n n n F x f x x x x (1)10,n F n 1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-()n F x 1,12⎛⎫⎪⎝⎭n x 1()120n n F x x nx -'=++>1,12⎛⎫⎪⎝⎭()n F x 1,12⎛⎫⎪⎝⎭n x n x ()n F x ()=0n n F x 11201n n nx x 111=+22n n n x x 11().2nn n x g x 211()()()1,0.2nnn n n x h x f x g x x x x x 1x ()()n n f x g x 1x ≠()111()12.2n n n n x h x x nx--+'=++-01x ()11111()22n n n n n n h x x x nx x ----+'>++-11110.22nnn n n n x x若,所以在上递增,在上递减, 所以,即.综上所述,当时, ;当时解法二 由题设,当时,当时, 用数学归纳法可以证明.当时, 所以成立.假设时,不等式成立,即.那么,当时,.又令,则所以当,,在上递减;当,,在上递增. 1x ()11111()22n n n n n n h x xx nx x ----+'<++-11110.22nnn n n n x x ()h x (0,1)(1,)+∞()(1)0h x h ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x 211()1,(),0.2nn n n n x f x x x x g x x 1x ()()n n f x g x 1x ≠()()n n f x g x 2n2221()()(1)0,2f xg x x 22()()f x g x (2)n k k =≥()()k k f x g x +1nk 111k+1k 11()()()2kk kk k k x f x f x x g x x x 12112kk x k x k 11k+121111()22kk kk x k x k kx k x g x 1()11(x 0)kk k h x kx k x ()()11()(k 1)11(x 1)kk k k h x k x k k x k k x --'=+-+=+-01x ()0k h x '<()k h x (0,1)1x ()0kh x '>()k h x (1,)+∞所以,从而故.即,不等式也成立.所以,对于一切的整数,都有.解法三:由已知,记等差数列为,等比数列为,则,,所以, 令当时, ,所以.当时, 而,所以,.若, ,,当,,, 从而在上递减,在上递增.所以,所以当又,,故综上所述,当时, ;当时22.答案:()I 见解析()II 直径为3 解析过程:(Ⅰ)因为是的直径,则,又,所以, 又切于点,得,所以;(Ⅱ)由(Ⅰ)知平分,则, ()(1)0k k h x h 1k+1211()2kk x k x k g x 11()()k k f x g x +1n k 2n ≥()()n n f x g x k a k b k 1,2,, 1.n 111a b 11n n na b x ()11+1(2n)n k x a k k n-=-⋅≤≤1(2),k k b x k n -=≤≤()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤1x =k k a b ()()n n f x g x 1x ≠()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--2k n ≤≤10k 11n k -+≥01x 11nk x ()0k m x '<1x 11nk x()0km x '>()k m x (0,1)()k m x (1,)+∞()(1)0k k m x m 01(2),k k x x a b k n >≠>≤≤且时,11a b 11n n a b ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x DE O 90BED EDB ∠+∠=︒BC DE ⊥90CBD EDB ∠+∠=︒AB O B DBA BED ∠=∠CBD DBA ∠=∠BD CBA ∠3BA ADBC CD==又,从而,由,解得,所以,由切割线定理得,解得, 故,即的直径为3.23.答案:()I 22(-3x y +=()II (3,0)解析过程:(1)由,得,从而有,所以(2)设,又, 则24.已知关于x 的不等式x a b +<的解集为{}24x x <<.()I 求实数a ,b 的值;()II答案:()I a=-3,b=1()II 4 解析过程:(Ⅰ)由,得,由题意得,解得;,时等号成立, 故BC=AB =222AB BC AC =+4AC =3AD =2AB AD AE =⋅6AE =3DE AE AD =-=O ρθ=2sin ρθ=22x y +=(223x y +-=132P t ⎛⎫+⎪⎝⎭C PC ==x a b +<b a x b a --<<-24b a b a --=⎧⎨-=⎩3,1a b =-==+≤4===1t =min4=。
2015年高考全国卷2理科数学试题及答案
否
a>b
输出 a
a=a-b
b=b-a
结束
执行该程序框图,若输入的 a,b 分别为 14,18,则输出的 a =
A.0
B.2
C.4
D.14
9.已知 A,B 是球 O 的球面上两点,∠AOB = 90°,C 为该球面上的动点。若三棱锥 O—
ABC 体积的最大值为 36,则球 O 的表面积为
D
P
C
A.36π C.144π
2015 年高考全国卷 2 理科数学试题
1.已知集合 A {2, 1, 0,1, 2} , B {x | (x 1)(x 2) 0} ,则 A B
A.{1, 0}
B. {0,1}
C.{1, 0,1}
D.{0,1, 2}
2.若 a 为实数,且 (2 ai)(a 2i) 4i ,则 a =
A.-1
B.0
C.1
D.2
3.根据下面给出的 2004 年至 2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以
下结论不正确的是
2700 2600 2500 2400 2300 2200 2100 2000 1900
2004 年 2005 年 2006 年 2007 年 2008 年 2009 年 2010 年 2011 年 2012 年 2013 年
A.逐年比较,2008 年减少二氧化硫排放量的效果最显著
B.2007 年我国治理二氧化硫排放显现成效
C.2006 年以来我国二氧化硫年排放量呈减少趋势
D.2006 年以来我国二氧化硫年排放量与年份正相关
4.已知等比数列 {an} 满足 a1 = 3,a1 + a3 + a5 = 21,则 a3 + a5 + a7 =
2015年高考湖北理科数学试题与答案(word解析版)
2015年普通高等学校招生全国统一考试(卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【年,理1,5分】i 为虚数单位,607i的共轭复数....为( )(A )i (B )i - (C )1 (D )1- 【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查. (2)【2015年,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米夹谷,抽样取米一把,数得254粒夹谷28粒,则这批米夹谷约为( )(A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米夹谷约为281534169254⨯=石,故选B .(3)【2015年,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式)(A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .以及计算能力.(4)【2015年,理4,5分】设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密 (A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键(5)【2015年,理5,5分】设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L ,则( )(A q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件【答案】A【解析】对命题12:,,,n p a a a L 成等比数列,则公比()13nn a q n a -=≥且0n a ≠; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列,所以p 是q 的充分条件,但不是q 的必要 (6)【2015年,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =-【答案】【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e < (C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】【解析】依题意,22211a b b e a a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a ma m ++++⎛⎫==+ ⎪++⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .(9)【2015年,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) (A )77 【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .复的元素.(10)【2015年,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题) (11)【2015年,理11,5分】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r .【答案】9【解析】因为OA AB ⊥u u u r u u u r ,3OA =u u u r ,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .(12)【2015年,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点, 所以函数()f x 由2个零点.(13)【2015年,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处D 在西偏北30o 的方向上,行驶600m 后到达B 处,测得此山顶 在西偏北75o 的方向上,仰角为30o ,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD CDBC ︒==,所以1006CD =m .(14)【2015年,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准..方程为 ;)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NB MB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =Q ,且E 为AB 中点,∴()0,21A -,()0,21B +,M Q ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+, ()222121222222NB MA NAMB+=+=++-=-+,【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) (15)【PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______. 【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. (16)【2015年,理16,5分】(选修4-4O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得22322x y ⎧=⎪⎪⎨⎪=⎪⎩或22322x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,22A ⎛⎫ ⎪ ⎪⎝⎭,232,22B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 础的计算题.三、解答题:共6题,共75(17)【2015年,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ3 5π6sin()A x ωϕ+55-(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 解:(1)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+ 0 π2π3π2 2πxπ12 π3 7π125π613π12 sin()A x ωϕ+0 5 05-且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律(18)【2015年,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是2341357921122222n n n T --=+++++L L ① 2345113579212222222n n n T -=+++++L L ②由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-L L ,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题. (19)【2015年,理19,12分】《九章算术》中,将底面为长方形且有如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =I ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =I ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =I ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC ,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P =I ,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BDDPF PD λ=∠==+=, 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ, (,1,1)PB λ=-u u u r ,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =u u u r ,于是0PB DE ⋅=u u u r u u u r,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =I ,所以PB DEF ⊥平面. 因(0,1,1)PC =-u u u r , 0DE PC ⋅=u u u r u u u r, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =u u u r是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--u u u r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+u u u r u u u r u u ur u u u r , 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.W 12 15 18 P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个(1)求Z 的分布列和均值;解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.故最大获利Z 的分布列为Z8160 10200 10800 P0.3 0.5 0.2 因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.问题解决问题的能力.(21)【2015年,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆杆MN 通过N 处铰链与ON 连接,MN D 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 作往复运动时,带动..N 绕O 转动一周(D 不动时,N记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (1的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值; 解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且2200220()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y += (2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点, 所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m mQ k k -++. 由原点O 到直线PQ 的距离为2||1m d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题的关键.综合性较强,运算量较大.(22)【2015年,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(((解:(1①(2②(3运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科数学2015年高三2015江苏卷理科数学理科数学填空题(本大题共13小题,每小题____分,共____分。
)1.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为____.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为____.3.设复数z满足z2=3+4i(i是虚数单位),则z的模为____.4.根据如图所示的伪代码,可知输出的结果S为____.5.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为____.6.已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n 的值为____.7.不等式2<4的解集为____.8.已知tanα=﹣2,tan(α+β)=,则tanβ的值为____.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为____.10.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为____.11.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为____.13.已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为____.14.设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为____.简答题(综合题)(本大题共10小题,每小题____分,共____分。
)12.在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为____.在△ABC中,已知AB=2,AC=3,A=60°.17.求BC的长;18.求sin2C的值.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:19.DE∥平面AA1C1C;20.BC1⊥AB1.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.21.求a,b的值;22.设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.23.求椭圆的标准方程;24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.已知函数f(x)=x3+ax2+b(a,b∈R).25.试讨论f(x)的单调性;26.若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.27.证明:2,2,2,2依次构成等比数列;28.是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;29.是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.选做题。
本题包括四题,请选定其中两小题作答,若多做,则按作答的前两小题评分,【选修4-1:几何证明选讲】(请回答30题)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.【选修4-2:矩阵与变换】(请回答31题)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量【选修4-4:坐标系与参数方程】(请回答32题)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,[选修4-5:不等式选讲】(请回答33题)解不等式x+|2x+3|≥2.30.求证:△ABD∽△AEB.31.求矩阵A以及它的另一个特征值.32.求圆C的半径.33.解不等式x+|2x+3|≥2.如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.34.求平面PAB与平面PCD所成二面角的余弦值;35.点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.36.写出f(6)的值;37.当n≥6时,写出f(n)的表达式,并用数学归纳法证明.答案填空题1.52.63.4.75.6.﹣37.(﹣1,2)8.39.10.(x﹣1)2+y2=211.12.413.简答题14.15.16.17.(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;18.(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.19.20.t=10时,公路l的长度最短,最短长度为15千米21.+y2=1;22.y=x﹣1或y=﹣x+1.23.函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;24.c=125.证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;26.不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.27.不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列28.证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.29.130.r=.31.{x|x≥,或x≤﹣5}.32.33.34.1335.(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2+ +,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2+ +,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.解析填空题1.集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:52.本题考查了众数、中位数、平均数,容易在计算中出错.数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.3.复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.4.模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10 不满足条件I<8,退出循环,输出S的值为7.故答案为:7.5.根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.6.向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣37.;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2,故答案为:(﹣1,2)8.:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.9.由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:10.圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.11.∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.12.由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.13.=+=++++=++=++,∴(a k•a k+1)=++++++ +…+++++++…+=+0+0=.故答案为:9.简答题14.由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c 恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.15.(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.16.由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.17.(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;18.间答案19.(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,20.)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米21.(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;22.(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.23.(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;24.(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.25.(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;26.(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.27.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列28.证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.29.由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.30.圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.31.x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.32.以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;33.(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.34.(1)f(6)=6+2++=13;35.见答案。