2013年高考考试说明(课程标准实验版)——数学(理)
2013年高考新课标理综考试说明

五、试卷结构
第 1 页 共 36 页
2013年普通高等学校招生全国统一考试大纲新课标
理综考试说明
(新课标:湖北,河南,黑龙江,吉林,陕西,宁夏,海南)
2013年高考考试说明(课程标准实验版)——理科综合 Ⅰ.考试性质
普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。高等学校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。因此,高考应有较高的信度、效度、必要的区分度和适ቤተ መጻሕፍቲ ባይዱ的难度。
Ⅱ.考试形式与试卷结构
一、答卷方式
闭卷、笔试。
二、考试时间
考试时间150分钟,试卷满分300分。
三、科目分值
物理110分、化学100分、生物90分。各学科试题只涉及本学科内容,不跨学科综合。
四、题型
试卷包括选择题和非选择题,非选择题一般包括填空、实验、作图、计算、简答等题型。
2013年新课标高考考纲文数

2013年高考考试说明(课程标准实验版)——数学(文)Ⅰ.命题指导思想1.普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.3.命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性.既要考查考生的共同基础,又要满足不同考生的选择需求.合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.4.试卷应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.二、试卷结构全卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分.1.试题类型试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.Ⅲ.考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考试自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生独立思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间.Ⅳ、考试范围与要求(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.2.函数概念与基本初等函数Ⅰ(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用(函数分段不超过三段).④理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.⑤会运用基本初等函数的图像分析函数的性质.(2)指数函数①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.④体会指数函数是一类重要的函数模型.(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.②理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.③体会对数函数是一类重要的函数模型;④了解指数函数与对(a的图像,了解它们的变化情况.(5)函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(6)函数模型及其应用①了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.3.立体几何初步(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想.②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.(2)基本算法语句理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6.统计(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.②理解样本数据标准差的意义和作用,会计算数据标准差(不要求记忆公式).③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.8.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制①了解任意角的概念.②了解弧度制概念,能进行弧度与角度的互化.(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出,π±的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性.③理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大和最小值以及与轴交点等).理解正切函数在区间()④理解同角三角函数的基本关系式:的物理意义;能画出的对函10.三角恒等变换(1)两角和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②会用两角差的余弦公式导出两角差的正弦、正切公式.③会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).11.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.13.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. (3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:(1)导数概念及其几何意义①了解导数概念的实际背景.②通过函数图像直观理解导数的几何意义.③能根据导数定义,求函数y=C(C为常数),的导(C, n∈N+;;; ;;;.(a>0,且a≠1)常用的导数运算法则:法则1 .法则2 .法则3 .⑤了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).⑥了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).⑦会利用导数解决实际问题.17.统计案例①通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.②通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.18.合情推理与演绎推理①了解合情推理的含义,能利用简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.②了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单推理.③了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点.④了解反证法的思考过程和特点.19.数系的扩充与复数的引入①理解复数的基本概念,理解复数相等的充要条件.②了解复数的代数表示法及其几何意义.③能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.20.框图①通过具体实例进一步认识程序框图.②通过实例了解工序流程图.③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用.④通过实例了解结构图.⑤会运用结构图梳理已学过的知识、整理收集到的资料信息.(二)选考内容与要求1.几何证明选讲(1)理解相似三角形的定义与性质,了解平行截割定理.(2)会证明和应用以下定理:①直角三角形射影定理;②圆周角定理;③圆的切线判定定理与性质定理;④相交弦定理;⑤圆内接四边形的性质定理与判定定理;⑥切割线定理.2.坐标系与参数方程(1)坐标系①了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.②了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标。
2013年全国统一高考数学试卷(理科)(大纲版)

高考注意事项1.进入考场时携带的物品。
考生进入考场,只准携带准考证、二代居民身份证以及2B铅笔、0.5毫米黑色墨水签字笔、直尺、圆规、三角板、无封套橡皮、小刀、空白垫纸板、透明笔袋等文具。
严禁携带手机、无线发射和接收设备、电子存储记忆录放设备、手表、涂改液、修正带、助听器、文具盒和其他非考试用品。
考场内不得自行传递文具等物品。
由于标准化考点使用金属探测仪等辅助考务设备,所以提醒考生应考时尽量不要佩戴金属饰品,以免影响入场时间。
2.准确填写、填涂和核对个人信息。
考生在领到答题卡和试卷后,在规定时间内、规定位置处填写姓名、准考证号。
填写错误责任自负;漏填、错填或字迹不清的答题卡为无效卡;故意错填涉嫌违规的,查实后按照有关规定严肃处理。
监考员贴好条形码后,考生必须核对所贴条形码与自己的姓名、准考证号是否一致,如发现不一致,立即报告监考员要求更正。
3.考场面向考生正前方的墙壁上方悬挂时钟,为考生提供时间参考。
考场时钟的时间指示不作为考试时间信号,考试时间一律以考点统一发出的铃声信号为准。
2013年全国统一高考数学试卷(理科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.62.(5分)=()A.﹣8 B.8 C.﹣8i D.8i3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣14.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5 B.8 C.12 D.188.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.212.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD 都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.2013年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.6【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.2.(5分)=()A.﹣8 B.8 C.﹣8i D.8i【分析】复数分子、分母同乘﹣8,利用1的立方虚根的性质(),化简即可.【解答】解:故选:A.【点评】复数代数形式的运算,是基础题.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1)B.C.(﹣1,0)D.【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x+1<0,解得﹣1<x<﹣.∴则函数f(2x+1)的定义域为.故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是()A.5 B.8 C.12 D.18【分析】由题意知利用二项展开式的通项公式写出展开式的通项,令x的指数为2,写出出展开式中x2的系数,第二个因式y2的系数,即可得到结果.【解答】解:(x+1)3的展开式的通项为T r=C3r x r+1令r=2得到展开式中x2的系数是C32=3,=C4r y r(1+y)4的展开式的通项为T r+1令r=2得到展开式中y2的系数是C42=6,(1+x)3(1+y)4的展开式中x2y2的系数是:3×6=18,故选:D.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,本题解题的关键是写出二项式的展开式,所有的这类问题都是利用通项来解决的.8.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A.B.C. D.【分析】由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P (x0,y0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选:B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a≥﹣2x在(,+∞)上恒成立,构造函数求出﹣2x在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a≥﹣2x在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.10.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,﹣2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=﹣16,又=0,∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.12.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是()A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数【分析】根据函数图象关于某点中心对称或关于某条直线对称的公式,对A、B两项加以验证,可得它们都正确.根据二倍角的正弦公式和同角三角函数的关系化简,得f(x)=2sinx(1﹣sin2x),再换元:令t=sinx,得到关于t的三次函数,利用导数研究此函数的单调性可得f(x)的最大值为,故C不正确;根据函数周期性和奇偶性的定义加以验证,可得D项正确.由此可得本题的答案.【解答】解:对于A,因为f(π+x)=cos(π+x)sin(2π+2x)=﹣cosxsin2x,f(π﹣x)=cos(π﹣x)sin(2π﹣2x)=cosxsin2x,所以f(π+x)+f(π﹣x)=0,可得y=f(x)的图象关于(π,0)中心对称,故A正确;对于B,因为f(+x)=cos(+x)sin(π+2x)=﹣sinx(﹣sin2x)=sinxsin2x,f(﹣x)=cos(﹣x)sin(π﹣2x)=sinxsin2x,所以f(+x)=f(﹣x),可得y=f(x)的图象关于直线x=对称,故B正确;对于C,化简得f(x)=cosxsin2x=2cos2xsinx=2sinx(1﹣sin2x),令t=sinx,f(x)=g(t)=2t(1﹣t2),﹣1≤t≤1,∵g(t)=2t(1﹣t2)的导数g'(t)=2﹣6t2=2(1+t)(1﹣t)∴当t∈(﹣1,﹣)时或t∈(,1)时g'(t)<0,函数g(t)为减函数;当t∈(﹣,)时g'(t)>0,函数g(t)为增函数.因此函数g(t)的最大值为t=﹣1时或t=时的函数值,结合g(﹣1)=0<g()=,可得g(t)的最大值为.由此可得f(x)的最大值为而不是,故C不正确;对于D,因为f(﹣x)=cos(﹣x)sin(﹣2x)=﹣cosxsin2x=﹣f(x),所以f(x)是奇函数.因为f(2π+x)=cos(2π+x)sin(4π+2x)=cosxsin2x=f(x),所以2π为函数的一个周期,得f(x)为周期函数.可得f(x)既是奇函数,又是周期函数,得D正确.综上所述,只有C项不正确.故选:C.【点评】本题给出三角函数式,研究函数的奇偶性、单调性和周期性.着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=﹣,则cotα=2.【分析】根据α是第三象限的角,得到cosα小于0,然后由sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出cotα的值.【解答】解:由α是第三象限的角,得到cosα<0,又sinα=﹣,所以cosα=﹣=﹣则cotα==2故答案为:2【点评】此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有480种.(用数字作答)【分析】排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可.【解答】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有中方法,然后把甲、乙两人插入4个人的5个空位,有种方法,所以共有:=480.故答案为:480.【点评】本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是[,4] .【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n}的前n项和为S n.已知S3=a22,且S1,S2,S4成等比数列,求{a n}的通项式.【分析】由,结合等差数列的求和公式可求a2,然后由,结合等差数列的求和公式进而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得,3∴a2=0或a2=3由题意可得,∴若a2=0,则可得d2=﹣2d2即d=0不符合题意若a2=3,则可得(6﹣d)2=(3﹣d)(12+2d)解可得d=0或d=2∴a n=3或a n=2n﹣1【点评】本题主要考查了等差数列的通项公式及求和公式的应用,等比数列的性质的简单应用,属于基础试题18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A﹣C),变形后将cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函数值求出A﹣C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac,∴a2+c2﹣b2=﹣ac,∴cosB==﹣,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A﹣C=30°或A﹣C=﹣30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD 都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A﹣PD﹣C的大小.【分析】(I)取BC的中点E,连接DE,过点P作PO⊥平面ABCD于O,连接OA、OB、OD、OE.可证出四边形ABED是正方形,且O为正方形ABED的中心.因此OE⊥OB,结合三垂线定理,证出OE⊥PB,而OE是△BCD的中位线,可得OE∥CD,因此PB ⊥CD;(II)由(I)的结论,证出CD⊥平面PBD,从而得到CD⊥PD.取PD的中点F,PC的中点G,连接FG,可得FG∥CD,所以FG⊥PD.连接AF,可得AF⊥PD,因此∠AFG为二面角A﹣PD﹣C的平面角,连接AG、EG,则EG∥PB,可得EG⊥OE.设AB=2,可求出AE、EG、AG、AF和FG的长,最后在△AFG中利用余弦定理,算出∠AFG=π﹣arccos,即得二面角A﹣PD﹣C的平面角大小.【解答】解:(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABCD,得直线OB是直线PB在内的射影,∴OE⊥PB∵△BCD中,E、O分别为BC、BD的中点,∴OE∥CD,可得PB⊥CD;(II)由(I)知CD⊥PO,CD⊥PB∵PO、PB是平面PBD内的相交直线,∴CD⊥平面PBD∵PD⊂平面PBD,∴CD⊥PD取PD的中点F,PC的中点G,连接FG,则FG为△PCD有中位线,∴FG∥CD,可得FG⊥PD连接AF,由△PAD是等边三角形可得AF⊥PD,∴∠AFG为二面角A﹣PD﹣C的平面角连接AG、EG,则EG∥PB∵PB⊥OE,∴EG⊥OE,设AB=2,则AE=2,EG=PB=1,故AG==3在△AFG中,FG=CD=,AF=,AG=3∴cos∠AFG==﹣,得∠AFG=π﹣arccos,即二面角A﹣PD﹣C的平面角大小是π﹣arccos.【点评】本题给出特殊的四棱锥,求证直线与直线垂直并求二面角平面角的大小,着重考查了线面垂直的判定与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X的所有可能值为0,1,2.分别求出X取每一个值的概率,列出分布列后求出期望值即可.【解答】解:(I)令A1表示第2局结果为甲获胜.A2表示第3局甲参加比赛时,结果为甲负.A表示第4局甲当裁判.则A=A1•A2,P(A)=P(A1•A2)=P(A1)P(A2)=;(Ⅱ)X的所有可能值为0,1,2.令A3表示第3局乙和丙比赛时,结果为乙胜.B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B1B2)=P(B1)P(B2)P()=.P(X=2)=P(B3)=P()P(B3)=.P(X=1)=1﹣P(X=0)﹣P(X=2)=.从而EX=0×+1×+2×=.【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2﹣y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F1(﹣3,0),F2(3,0),C的方程为8x2﹣y2=8 ①由题意,可设l的方程为y=k(x﹣3),|k|<2代入①并化简得(k2﹣8)x2﹣6k2x+9k2+8=0设A(x1,y1),B(x2,y2),则x1≤﹣1,x2≥1,x1+x2=,,于是|AF1|==﹣(3x1+1),|BF1|==3x2+1,|AF1|=|BF1|得﹣(3x1+1)=3x2+1,即故=,解得,从而=﹣由于|AF2|==1﹣3x1,|BF2|==3x2﹣1,故|AB|=|AF2|﹣|BF2|=2﹣3(x1+x2)=4,|AF2||BF2|=3(x1+x2)﹣9x1x2﹣1=16因而|AF2||BF2|=|AB|2,所以|AF2|、|AB|、|BF2|成等比数列【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n}的通项a n=1+.【分析】(I)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值;(II)根据(I)的证明,可取λ=,由于x>0时,f(x)<0得出,考察发现,若取x=,则可得出,以此为依据,利用放缩法,即可得到结论【解答】解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为(II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n﹣a n+=++…++====>=ln2n﹣lnn=ln2所以【点评】本题考查了数列中证明不等式的方法及导数求最值的普通方法,解题的关键是充分利用已有的结论再结合放缩法,本题考查了推理判断的能力及转化化归的思想,有一定的难度。
2013高考考试大纲及考试说明解析 2

2013高考考试大纲及考试说明解析:(理科数学)2013年全国新课标版高考《考试大纲》数学学科与2012年考试大纲相比,没有任何变化。
今年数学高考试题的命制将按照“考查基础知识的同时,注重考查能力”的原则,将知识、能力和素质融为一体,全面检测考生的数学素养。
在能力要求上,着重对考生的五种能力和两种意识进行考查。
五种能力空间想象能力:立体几何中有关三视图的问题注重考查学生对空间形式的观察、分析、抽象的能力。
从这几年高考试题来看,三视图问题几乎年年出现,并且难度上也有逐年递增的趋势。
抽象概括能力:抽象是要舍弃事物的非本质属性,揭示其本质属性;概括是把仅仅属于某一类对象的共同属性区分出来的思维过程。
很多高考试题,特别是考生觉得比较困难的问题,往往是因为没有把题目中所给出的文字语言进行抽象概括转化为相应的数学问题,所以对考生的思维造成一定困难。
推理论证能力:对于圆锥曲线和导数的压轴大题、证明定点定值或者求取值范围的问题,如果能够提高推理和论证的能力,可能会猜出结果,从而为证明问题提供准确的方向。
运算求解能力:这里的运算能力不仅指根据公式法则进行正确运算,还要求考生掌握一定的运算技巧。
例如,解析几何中如果能利用好韦达定理,强调整体运用的意识,往往能简化运算。
在实际解决问题过程中如果遇到障碍应该学会及时调整。
例如,在导数解答题中对代数式合理变型会收到很好的效果。
数据处理能力:这种能力主要体现在统计案例中,近几年高考试题中对统计概率问题的考查比较注重联系实际,考生要学会收集、整理、分析数据,从中抽取对研究问题有用的信息。
两种意识应用意识:考生应学会从实际生活中抽象出数学问题,通过解决数学问题来解决实际问题。
创新意识:从2012年高考数学试题来看,试题比较灵活,这种灵活,很大程度上是源于创新,很多题目所考的知识点考生生都很清楚,可是形式上一旦新颖了,考生做题的难度就加大了。
考生备考时面对一些新信息问题应好好研究。
2013年高考理科数学考试大纲解读

2013年高考理科数学考试大纲解读
教育部考试中心公布的《考试大纲》和《考试说明》既是高考命题的依据,也是考生复习的依据。
据了解,今年数学《考试说明》和去年相比,文理科数学在题型、内容、要求上基本没变化,这与国家大纲要求相一致,只是在(5)函数与方程中少了了解用二分法求相应方程的近似解。
理科:不能忽视例题作用
回归课本,注重基本方法、基本规律的教学,主要以课本为依据,适当调整次序,按章节复习知识点,要全面、到位。
构建知识体系,配合经典例题,将主干知识、重点知识纵横引导和扩展。
高三数学复习是在“归纳、检测、练习、讲评、纠错、拓展”中进行的,试题讲评是复习过程中不可缺少的一个重要的教学活动。
好试题,对于纠正学生解题中的错误,开阔学生解题思路、归纳解题方法,培养学生的解题能力和技巧,会起到事半功倍的效果。
学生二轮复习课讲评时,更要着力审题,思路探求和解题后的思考。
四川省高考考试说明理科数学

2013年普通高等学校招生全国统一考试(四川卷)考试说明数学(理科)《2013年普通高等学校招生全国统一考试(四川卷)考试说明》的数学(理科)部分(以下简称《考试说明》)以既有利于数学新课程的改革、又要发挥数学作为基础学科的作用,既重视考查考生对中学数学知识的掌握程度、又注意考查考生进入高等学校继续学习的潜能,既符合四川省普通高等学校招生统一考试工作整体方案和普通高中课程改革的实际情况、又利用高考命题的导向功能推动新课程的课堂教学改革为基本原则,依据教育部颁布的《普通高中课程方案(实验)》、《普通高中数学课程标准(实验)》(以下简称《课程标准》)、教育部考试中心颁布的《普通高等学校招生全国统一考试大纲(理科·课程标准实验)》、《四川省普通高考改革方案》、《四川省普通高中课程设置方案》、《四川省普通高中课程数学学科教学指导意见》,并结合我省普通高中数学教学实际制定.Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。
因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.命题指导思想2013年普通高等学校招生全国统一考试数学科(四川卷)的命题,将遵循“考查基础知识的同时,注重考查能力”的原则,确立以能力立意的命题指导思想,将知识、能力和素质融为一体,坚持正确导向,注重能力考查,力求平稳推进,确保命题质量,全面检测考生的数学素养和考生进入高等学校继续学习的潜能,有利于高校选拔新生和中学实施素质教育.数学科考试将充分发挥数学作为主要基础学科的作用,考查考生数学的基础知识、基本技能和数学思想方法,考查考生的数学基本能力、应用意识和创新意识,考查考生对数学本质的理解,体现《课程标准》中对知识与技能、过程与方法、情感态度与价值观等目标的要求.数学科命题将在试卷结构、难度控制及试题设计等方面保持相对稳定,适度创新,既体现新课程理念,又继承四川省历年高考数学命题的成果.Ⅲ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.考试时间为120分钟.考试时不允许使用计算器.二、考试范围考试内容如下:数学1(必修):集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数).数学2(必修):立体几何初步、平面解析几何初步.数学3(必修):算法初步、统计、概率.数学4(必修):基本初等函数Ⅱ(三角函数)、平面上的向量、三角恒等变换.数学5(必修):解三角形、数列、不等式.选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何.选修2-2:导数及其应用(不含“导数及其应用”中“(4)生活中的优化问题举例”、“(5)定积分与微积分基本定理”及“(6)数学文化”)、数系的扩充与复数的引入.选修2-3:计数原理、统计与概率(不含“统计与概率”(1)“概率”中“④通过实例,理解取有限值的离散型随机变量方差的概念,能计算简单离散型随机变量的方差,并能解决一些实际问题”、“⑤通过实际问题,借助直观,认识正态分布曲线的特点及曲线所表示的意义”及(2)“统计案例”)三、试卷结构1.试题类型全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分为150分.试卷结构如下:2试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题为难题.试卷由三种难度的试题组成,并以中等难度题为主.命题时根据有关要求和教学实际合理控制三种难度试题的分值比例(大致控制在3:5:2)及全卷总体难度.Ⅳ.考试内容及要求一、考核目标与要求数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及分析问题和解决问题的能力。
2013年全国高考理科综合【新课标】考试说明

2013年全国高考考试大纲理科综合【新课标】二化学I逸普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
高等学校根据考生成绩按已确定的招生计划德、智、体全面衡量择优录取。
因此咼考应具有较咼的信度、效度必要的区分度和适当的难度。
n 根据普通高等学校对新生文化素质的要求2003年颁布的《普通高中课程方案通高中化学课程标准实验》确定高考理工类招生化学科考核目标与要求。
一、考核目标与要求化学科考试为了有利于选拔具有学习潜能和创新精神的考生以能力测试为主导将在测试考生进一步学习所必需的知识、技能和方法的基础上全面检测考生的化学科学素养。
化学科命题注重测量自主学习的能力注与化学有关的科学技术、社会经济和生态环境的协调发展以促进学生在知识和技能、过程和方法、情感、态度和价值观等方面的全面发展(一)对化学学习能力的要求1 接受、吸收、整合化学信息的能力(1) 知识融会贯通有正确复述、再现、辨认的能力。
(2) 验现象、实物、模型、图形、图表的观察以及对自然界、社会、生产、生活中的化学现象的观察获取有关的感性知识和印象并进行初步加工、吸收、有序存储的能力。
⑶地提取实质性内容并经与已有知识块整合重组为新知识块的能力。
2能力⑴相关知识采用分析、综合的方法解决简单化学问题的能力。
⑵用正确的化学术语及文字、图表、模型、图形等表达并做出解释的能力。
3⑴般过程掌握化学实验的基本方法和技能。
⑵用科学的方法初步了解化学变化规律并对化学现象提出科学合理的解释。
(二)为了便于考查分知识内容要求的程度由低到高分为了解、理解掌握、综合应用三个层次高层次的要求包含低层次的要求。
其含义分别为了解y能够正确复述、再现、辨认或直接使用。
理解的含义及其适用条件和说明有关化学现象和问题即不仅"知其然”"知其所以然”。
综合应用在理解所学各部分化学知识的本质区别与内在联系的基础上运用所掌握的知识进行必要的分析、类推或计算解释、论证一些具体化学问题。
2013年普通高等学校招生数学高考考纲解读

4.考查要求 数学学科的系统性和严密性决定了数学知识之 间内在联系的深刻性,包括各部分知识的纵向 联系和横向联系,要善于从本质上抓住这些联 系,进而通过分类、梳理、综合,构建数学试 卷的框架结构. (1)对数学基础知识的考查,既要全面又要突 出重点,对于支撑学科知识体系的重点内容, 要占有较大的比例,构成数学试卷的主体。考 查应注重学科的内在联系和知识的综合性,不 刻意追求知识的覆盖面.从学科的整体高度设 计问题,在知识网络交汇点设计试题,使对数 学基础知识的考查达到必要的深度.
Ⅲ.考核内容
一、考核目标和要求
数学科高考注重考查中学数学的基础知识、 基本技能、基本思想方法,考查空间想象能 力、抽象概括能力、推理论证能力、运算求 解能力、数据处理能力以及应用意识、创新 意识.具体考试内容根据教育部颁布的《课程 标准》、教育部考试中心颁布的《普通高等 学校招生全国统一考试大纲(理科.课程标准 实验)》确定。
(2)对数学思想方法的考查,是对数学知识 在更高层次上的抽象和概括的考查,考查时 必然要与数学知识相结合,通过对数学知识 的考查,反映考生对数学思想方法的掌握程 度.考查时,应从学科整体意义和思想含义 上立意,注重通性通法,淡化特殊技巧。
数学思想方法主要包括:函数与方程、数 形结合、分类与整合、化归与转化、特殊与 一般、有限与无限、或然与必然. 【提示】这七大数学思想方法与以前完全一 样.
3.个性品质要求 个性品质是指考生个体的情感、态度和价值观. 要求考生具有一定的数学视野,认识数学的科学价 值和人文价值,崇尚数学的理性精神,形成审慎的 思维习惯,体会数学的美学意义. 就考试而言,要求考生克服紧张情绪,以平和 的心态参加考试,合理支配考试时间,以实事求是 的科学态度解答试题,树立战胜困难的信心,体现 锲而不舍的精神. 这一点与2010年是一样,只多了“就考试而 言”几个字. 【提示】就考试而言,就是一个综合的考核, 即:“知识、能力、身体、心理”的全面考查.所 以,我们在教学中要不断地培养他们的良好心理素 质,科学地、智慧地参考!又特别是我们的数学学 科更为需要!
2013年新课标全国卷高考数学文理大纲和考试说明解读

2013年新课标全国卷高考数学文理大纲和考试说明解读1..2013年全国新课标数学学科《考试大纲》和《考试说明》文理科和2012年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量等几个方面都没有发生变化。
2.新课标考试说明与去年的考试说明比较,可以看出:(1)试题的设计理念体现“大稳定、小创新、重运算、考思维”的稳健。
(2)坚持对五个能力:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力,两个意识:应用意识和创新意识的考查,注重对数学思想与方法的考查。
(3)体现数学的基础、应用和工具性的学科特色,多视角、多维度、多层次地考查数学思维品质和思维能力,考查考生对数学本质的理解,考查考生的数学素养和学习潜能。
3.2013年高考数学客观题考试特点:理科必考知识点(即近三年高考每年都考的知识点,主要针对客观题):复数、常用逻辑用语、程序框图、三视图、球的组合体、概率、函数与导数、圆锥曲线、三角函数等。
理科常考知识点(即近三年高考考了1—2年的知识点,主要针对客观题):集合、线性规划、数列、平面向量、二项式、排列组合、解三角形、定积分、直线与圆等。
文科必考知识点(即近三年高考每年都考的知识点,主要针对客观题):集合、复数、线性规划、平面向量、程序框图、三视图、球的组合体、概率、函数与导数、圆锥曲线、三角函数等。
文科常考知识点(即近三年高考考了1—2年的知识点,主要针对客观题):数列、解三角形、直线与圆等。
4.备考建议(1). 复习目标四化:知识理解“深化”、考试题型“类化”、通性通法“强化”、解题思维“优化”。
(2). 复习内容四查:查考纲把握方向、查考题明辨重点、查课本回归基础、查学情对症下药。
(3). 复习要求四通:对学生点,心有灵犀一点通;让学生悟,融会贯通;让学生做,触类旁通;让学生考,无师自通。
2013年江苏省高考数学 考试说明 解读

数学强化不变不忘创新淮安市教学研究室冯建国一、强化不变2013年考试说明与2012年考试说明比较,总体没有变化,不变也是一种强化,从这个角度去重新认识考试说明,或许会有更好的收获。
1.指导思想不变。
命题依据中华人民共和国教育部颁布的《普通课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程标准实验板)》,结合江苏省普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查高等学校学习所需要的基本能力。
2.考查方向不变。
突出对数学基础知识、基本技能、基本思想方法的考查;既重视对空间想象、抽象概括、推理论证、运算求解、数据处理五大数学基本能力的考查,也重视对分析问题与解决问题能力的数学综合能力的考查;注重数学应用意识和创新意识的考查。
3.内容基本不变。
必做题部分共考查27个A级考点(减少了2个)、36个B级考点、8个C级考点;附加题部分共考查11个A级考点和36个B级考点。
重视C级考点无可厚非,但绝不可轻视B级考点,更不能忽视A级考点。
4.试题结构不变。
数学试题仍由必做题与加试题两部分组成。
选测历史的考生仅需对试题中的必做题部分作答;选测物理的考生需对试题中的必做题和附加题这两部分作答。
必做题由14到填空题和6道解答题组成,附加题由4道选做解答题(四中选二)和2到必做解答题组成。
5.试题难易不变。
必做题部分的容易题、中等题和难题之比大概为4:4:2;附加题的容易题、中等题和难题之比大概为5:4:1。
必做题的容易题集中在1-8题和15,16题,难题集中在14题和19,20题,附加题的容易题集中在21题,难题集中在23题。
二、微调解读1.内容的微调。
和2012年考试内容相比,必做题中删去了“变量的相关性”和“空间直角坐标系”两个A级考点,对2013年的高考应当不会有任何影响。
因为变量的相关性由于计算繁琐,空间直角坐标系由于过于简单,在必做题部分江苏一次也没有考过,在附加题中将空间直角坐标系纳入空间向量与立体几何中进行考查更加自然。
2013年高考数学考试大纲(新课标)

一、高考考试大纲的变化
考试内容、考试要求、考试形式、试卷结构等. 课标版 《考试大纲》,以新课标的教学大纲为基础,根据高等学 校对新生的墓本要求,修订考试内容,确定各知识点的要 求层次;优化试卷结构.删减了一些过时和容易引起争议 的题型;重新确定内容比例和题型比例;调整题型示例中 的例题.
知识的要求由“了解、理解和掌握、灵活和综合运 用”⟹“了解、理解、掌握”,并界定了各层次所涉及 的主要行为动词.
2013年 高考数学考试大纲(新课标)
考纲解读
2013.3
自2004年开始进行高中新课标教学实验,2007年开始 有了新课标高考,至今已经第八个年头.2013年全国已有 29省参加新课标高考,至少17套试卷(不含上海)
2011年河南进入新课标高考,2013年已是第三年。使 用全国考试中心的试卷的省份有:海南、宁夏(2007年); 黑龙江、吉林(2010年);河南、新疆(2011年);山西、河 北(2012年);甘肃、青海、云南、内蒙古、西藏、贵州 (2013年);
点Q在曲线y=ln(2x)上,则PQ最小值为
(A) 1ln2 (B) 2 1 ln 2 (C)1+ln2 (D) 2 1 ln 2
这道题讨论的反函数.许多中学教师认为是超标了,也有人 认为不算超标,打的是‘擦边球’.介乎超标和不超标之间.严格说, 它讨论的是:对数函数和线性函数的复合函数,超出了课程标 准的要求.不管大家的看法是否一致,打‘擦边球’的做法就很不 可取.为什么我们不用高中数学的基本内容来考查学生,一定要 采用‘擦边球’的做法呢?这种做法的后果,就是使得教师认为, 如果给学生补充反函数的知识,他们的考分就能提高.不是让 学生关注高中数学最基本的内容,注重提高学生的能力,而是靠 增加内容来取胜.这种做法极不可取.
2013年全国高考考试大纲(理科)-数学(新课标卷)考试说明

1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用韦恩图(Venn )表达集合的关系及运算。
2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。
⑤会运用函数图像理解和研究函数的性质。
(2)指数函数①了解指数函数模型的实际背景。
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点。
(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点。
③了解指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。
(4)幂函数①了解幂函数的概念。
②结合函数21321x y xy x y x y x y =====,,,,的图象,了解它们的变化情况。
(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。
②根据具体函数的图像,能够用二分法求相应方程的近似解。
(6)函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
2013年湖南省高考考试说明解析及理数考试大纲

2013年湖南省高考考试说明解析及理数考试
大纲
2013年湖南省高考考试说明解析及理数考试大纲2月26日,湖南省教育考试院发布了2013年湖南高考语数外科目考试说明。
【理科数学】“优选法”不考了
“在考试内容和要求方面,选修4-7(优选法)已经不列入考试范围。
”湖南师大附中高三理科数学备课组长吴锦坤介绍,《优选法与试验设计初步》是普通高中课程标准实验教科书,作为选修内容,去年都列入了考试大纲,“教完这本书需要18个课时,删除后等于为学生减负了。
”。
2013年江苏省高考说明-数学科-推荐下载

一、命题指导思想
根据普通高等学校对新生文化素质的要求,2013 年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据
中华人民共和国教育部颁发的《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程标准
实验版)》,结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的
基本能力.
1.突出数学基础知识、基本技能、基本思想方法的考查
对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中
学数学中所蕴涵的数学思想方法的考查.
2.重视数学基本能力和综合能力的考查
数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.
(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,
运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.
(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运
算途径;能够根据要求对数据进行估计或近似计算.
(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.
√
空间直角坐标系(删除)
√
17.圆锥曲线 与方程
中心在坐标原点的椭圆的标准方程与几何性质 √ 中心在坐标原点的双曲线的标准方程与几何性质 √ 顶点在坐标原点的抛物线的标准方程与几何性质 √
2
2.附加题部分
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
重庆市2013年高考《数学考试说明(理工类)》解读

重庆市2013年高考《数学测试说明(理工类)》解读曾国荣(重庆市万州高级中学404020)Ⅰ.试卷结构全卷包括第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题.全卷共22题,分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不要求写出计算过程或证明过程;解答题包括计算题、证明题、使用题等,要求写出文字说明、演算步骤或证明过程.三种题型的题目个数分别为10、5、6;分值分别为50、题型题量(题)题号必做题/选做题分值(分/题)总分选做题10 1-10 必做题 5 50填空题 6 11-13 必做题 5 15 14-16 选做题(3选2) 5 10解答题 6 17-19 必做题1375 20-22 必做题12合计22 150试卷由容易题、中等题和难题组成,并以中等题为主,总体难度适当.易:中:难=3:6:1Ⅱ.测试内容及要求考核目标和要求数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及分析问题和解决问题的能力.根据普通高等学校对新生文化素质的要求,依据教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》,以及《重庆市普通高中新课程数学学科教学指导意见和模块学习要求(试行)》,确定必修课程、选修课程系列2和系列4中的4-1、4-4、4-5的内容为理工类高考数学科的测试内容.关于测试内容的知识要求和能力要求的说明如下:1.知识要求对知识的要求由低到高分为了解、理解、掌握、灵活和综合运用四个层次,且高一级的层次要求包含低一级的层次要求.了解、理解、掌握是对知识的基本要求(详见测试范围和要求层次),灵活和综合运用不对应具体的测试内容.(1)了解(A):对所列知识内容有初步的认识,会在有关的问题中进行识别和直接使用.(2)理解(B):对所列知识内容有理性的认识,能够解释、举例或变形、推断,并能利用所列的知识解决简单问题.(3)掌握(C):对所列知识内容有深刻的理性认识,形成技能,并能利用所列知识解决有关问题.(4)灵活和综合运用(D):系统地把握知识的内在联系,并能运用相关知识分析、解决比较综合的问题.2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及分析问题和解决问题的能力.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合和变形.(2)抽象概括能力:能在对具体的实例抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其使用于解决问题或作出新的判断.(3)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题正确性.(4)运算求解能力:会根据概念、公式、法则正确对数、式、方程、几何量等进行变形和运算;能分析条件,寻求和设计合理、简捷的运算途径...............;能根据要求对数据进行估计,并能近似计算.(5)数据处理能力:会依据统计中的方法对数据进行整理、分析,并解决给定的实际问题.(6)分析和解决问题的能力:能阅读、理解对问题进行陈述的材料;能综合使用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考和探究,创造性地解决问题.3.个性品质要求考生能以平和的心态参加测试,合理支配测试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,具有锲而不舍的精神.4.考查要求(1)对数学基础知识的考查,既全面又突出重点,注重学科的内在联系和知识的综合.(2)数学思想和方法是数学知识在更高层次上的抽象和概括.对数学思想和方法的考查和数学知识的考查结合进行,考查时,从学科整体意义和思想含义上立意,注重通性通法,淡化特殊技巧..............(3)对数学能力的考查,以抽象概括能力和推理论证能力为核心,全面考查各种能力.强调探究性、综合性、使用性.突出数学试题的能力立意,强化对素质教育的正确导向.(4)注重试题的基础性、综合性和层次性.合理调控综合程度,坚持多角度,多层次的考查.二、测试范围和要求层次测试内容要求层次A B C集合和常用逻辑用语集合集合的含义√集合的表示√集合间的基本关系√集合的基本运算√常用逻辑用语“若p q”形式的命题及其逆命题、否命题和逆否命题√四种命题的相互关系√充要条件√简单的逻辑联结词√全称量词和存在量词√主要考查:1.韦恩(venn)图2.含有一个量词的命题的否定测试内容要求层次A B C函数概念和指数函数、对数函数、幂函数函数函数的概念和表示√映射√单调性和最大(小)值√奇偶性√指数函数有理指数幂√实数指数幂√幂的运算√指数函数的概念、指数函数的图象及其性质√对数函数对数的概念及其运算性质√换底公式√对数函数的概念、对数函数的图象及其性质√指数函数xy a=和对数函数logay x=互为反函数(0a>且1a≠)√幂函数幂函数的概念√幂函数y x=,2y x=,3y x=,1yx=,12y x=的图象及其性质√函数的模型及其使用函数的零点√二分法√函数模型的使用√注意:幂函数和二分法原则上不考测试内容要求层次A B C三角函数、三角恒等变换、解三角形三角函数任意角的概念和弧度制√弧度和角度的互化√任意角的正弦、余弦、正切的定义√用单位圆中的三角函数线表示正弦、余弦和正切√诱导公式√同角三角函数的基本关系式√周期函数的定义、三角函数的周期性√函数siny x=,cosy x=,tany x=的图象和性质√函数sin()y A xωϕ=+的图象√用三角函数解决一些简单的实际问题√三角恒等两角和和差的正弦、余弦、正切公式√二倍角的正弦、余弦、正切公式√变换简单的恒等变换√解三角形正弦定理、余弦定理√解三角形√注意:重庆市《测试说明》上面有句话:(包括推导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)测试内容要求层次A B C数列数列的概念数列的概念和表示法√等差数列、等比数列等差数列的概念√等比数列的概念√等差数列的通项公式和前n项和公式√等比数列的通项公式和前n项和公式√测试内容要求层次A B C不等式一元二次不等式解一元二次不等式√简单的线性规划用二元一次不等式组表示平面区域√简单的线性规划问题√基本不等式:2a bab≥(,0a b≥)用基本不等式解决简单的最大(小)值问题√测试内容要求层次A B C推理和证明合情推理和演绎推理合情推理√归纳和类比√演绎推理√直接证明和间接证明综合法√分析法√反证法√数学归纳法数学归纳法√注意:重庆市肯定不考推理和证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考考试说明(课程标准实验版)——数学(理)根据教育部考试中心《2013年普通高等学校招生全国统一考试大纲(理科·课程标准试验版)》(以下简称《大纲》),结合基础教育的实际情况,制定了《2013年普通高等学校招生全国统一考试大纲的说明(理科·课程标准实验版)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革试验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
Ⅰ.命题指导思想1.普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.3.命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性.既要考查考生的共同基础,又要满足不同考生的选择需求.合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.4.试卷应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.二、试卷结构全卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分.1.试题类型试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.Ⅲ.考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求. 1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考试自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.创新意识和创造能力是理性思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生独立思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间. Ⅳ.考试范围与要求一、必考内容和要求(1)集合1.集合的含义与表示(1)了解集合的含义,体会元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn )图表达集合间的基本关系及集合的基本运算.(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5)会运用函数的图像分析函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4)体会指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.(3)体会对数函数是一类重要的函数模型;(4)了解指数函数 (0,1)x y a a a =>≠与对数函数 log (0,1)a y x a a =>≠互为反函数.4.幂函数(1)了解幂函数的概念.(2)结合函数12321,,,,y x y x y x y y xx=====的图像,了解它们的变化情况.5.函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.6.函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句了解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念.(2)能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出 ,2παπα±± 的正弦、余弦、正切的诱导公式,能画出 sin ,cos ,tan y x y x y x ===的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与 x 轴交点等).理解正切函数在区间(,)22ππ-内的单调性.(4)理解同角三角函数的基本关系式:22sin sin cos 1,tan cos xx x x x +==.(5)了解函数 sin()y A x ϖϕ=+的物理意义;能画出 sin()y A x ϖϕ=+的图像,了解参数 对函数图像变化的影响.(6)体会三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念和两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)会用两角差的余弦公式推导出两角差的正弦、正切公式.(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式: (0,0)2a bab a b +≥≥≥(1) 了解基本不等式的证明过程.(2) 会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语(1)理解命题的概念.(2)了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.(4)了解逻辑联结词“或”、“且”、“非”的含义.(5)理解全称量词与存在量词的意义.(6)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、定点、离心率).(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、定点、离心率、渐近线).(4)了解曲线与方程的对应关系(5)理解数形结合的思想(6)了解圆锥曲线的简单应用.(十六)空间向量与立体几何(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间。