1.2.2组合与组合数公式(二)

合集下载

122组合二组合数的两个性质

122组合二组合数的两个性质
1.2.2 组合(二)
一、复习回顾
1、组合数与排列数的区别?
2、组合数 C
m n
与排列数
Anm
的关系?
3、组合数公式
C
m n
?
n(n ? 1)(n ? 2)? m!
(n ? m ? 1)
C
m n
?
n! m!(n ?
m)!
组合数性质:Leabharlann 性质1:C
m n
?
C n?m n
(规定:C
0 n
?
1
)
性质 2:
:C
n0+C
1n+1+C
2n+2+…+C
m-1 n+m-1
=C
n+m
m-1
(2)求证:
Cmm
?
Cm m?1
?
Cm m?2
?
?
?
Cm n?3
?
Cm n?2
?
Cm n?1
?
Cm?1 n
例3:(1)若
C x2? x 16
?
C5x?5 16
,求x.
先考虑条件,相当于先考虑函数的定义域。
(2)解不等式:
C
20n-5+C
20n-4<C
21n-2<C
20n-1+C
n-2 20
解:由C
n
m+C
m-1 n
=C
m n+1
∴原不等式化为C
n-4 21
<C
n-2 21
<C
n-1 21
∴原不等式化为:
21! (n-4)!(21-n+4)!

高中数学排列组合-平均分组分配问题

高中数学排列组合-平均分组分配问题
解:(2)先拿3个指标分给二班1个,三班2个, 然后,问题转化为7个优秀指标分给三个班,
每班至少一个.由(1)可知共有C62 15种分法
注:第一小题也可以先给每个班一个指标,
然后,将剩余的4个指标按分给一个班、两个
班、三个班、四个班进行分类,共有

分C法61 . 3C62 3C63 C64 126
C61C52C33
2 注意:非均分问题无分配对象只要按比例分完再用乘法原 理作积 ○ 例5 6本不同的书按1∶2∶3分成三堆有多少种 ○ 不同的分法?
六、非均分组分配对象确定问题
C61C52 C33
例6 六本不同的书按 1∶2∶3分给甲、乙、丙三个 人有多少种不同的分法?
七、非均分组分配对象不固定问题
A33
C61C52C33
○ 例7 六本不同的书分给3 人,1人1本,1人2本,1 人3本有多少种分法
○ 注意:非均分组有分配 对象要把组数当作元素 个数再作排列。
五、当堂训练
01
练习1
C132
C
39 C 36
C
3 3
02
A 12本不同的4书平均分成四组有多少 种不同分法? 4
练习2
按2∶2∶2∶4分成四 堆有多少种不同的分
(1)
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
二、分类组合,隔板处理
例4.有10个运动员名额,再分给7个班,每班至少一个, 有多少种分配方案?

组合与组合数公式

组合与组合数公式
组合与组合数公式
漯河实验高中高三数学组朱联朋
第一章 1.2.2 组 合
学习目标
XUE XI MU BIAO
1.理解组合的定义,正确认识组合与排列的区别与联系. 2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数
公式进行计算. 3.会解决一些简单的组合问题.

知识梳理

题型探究

随堂演练
②选出2名男教师或2名女教师参加会议,有__2_1__种不同的选法;
解析 可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C26种方法; 第 2 类,选出的 2 名是女教师有 C24种方法. 根据分类加法计数原理,共有 C26+C24=15+6=21(种)不同选法.
③现要从中选出男、女教师各2名去参加会议,有_9_0__种不同的选法.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.若 A3m=6C4m,则 m 等于
A.9
B.8
√C.7
D.6
解析 A3m=6C4m,∴m≥4 且 m∈N*, ∴m(m-1)(m-2)=6·mm-4×13m×-22×1m-3, 即m-4 3=1,∴m=7.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和
乙型电视机各1台,则不同的取法种数为
A.84
√B.70
C.60
D.48
解析 根据结果分类:第一类,两台甲型机,有 C24·C15=30(种); 第二类,两台乙型机,有 C14·C25=40(种). 根据分类加法计数原理,共有 C24·C15+C14·C25=70(种)不同的取法.

组合与组合数公式(二)

组合与组合数公式(二)

abc , abd , acd , bcd .
abc
abd
acd
bcd
C 4
3 4
d
c
b
a
C 4
1 4
abc
abd
acd
bcd
2 3
C 4
3 4
含元素a 的组合数: 不含元素a 的组合数:
C 3
C 1
3 3

C C C
3 4 2 3
3 3
定理 2 :
C
m n
m n 1
C C .
排列与组合
组合与组合数公式 (二)
播放时间:6月3日9:50-10:30
复习
一、组合的定义 二、组合数公式
n ( n 1)( n 2) ( n m 1) P C m m! Pm
m n m n
n! C m !( n m ) !
m n
组合数的两个性质
定 理1 :
C C
3 8 3 8 2 8 2 8 3 8
例2 求证:
C C ; m 1 m 1 m m 1 ( 2 ) C n C n 2C n C n 2 .
(1) C
m n 1 m 1 n m n 1 m 1 n 1
C
证明: (2) (1)
C C (C C C C C
例5 在产品检验时,常从产品中抽出一 部分进行检查.现在从100件产品中任意 抽出3件: (1)一共有多少种不同的抽法?
(2)如果100件产品中有2件次品,抽出的3 件中恰好有1件是次品的抽法有多少种? (3)如果100件产品中有2件次品,抽出的3 件中至少有1件是次品的抽法有多少种?
作业:

组合与排列的计算方法

组合与排列的计算方法

组合与排列的计算方法组合与排列是数学中常见的计算方法,用于解决不同的问题。

在实际生活中,我们经常需要计算某些元素的组合方式或排列方式。

本文将详细介绍组合与排列的计算方法,包括定义、公式及应用范围等。

一、组合的计算方法1.1 定义组合是从给定的元素集合中,选取若干个元素按照一定的规则组成子集的方式。

在组合中,元素的顺序不重要,即组合只关注元素的选择,而不关注元素的排列顺序。

1.2 组合的计算公式对于含有n个元素的集合,从中选取m个元素进行组合,计算方法如下:C(n, m) = n! / (m! * (n-m)!)其中,C(n, m)表示从n个元素中选取m个元素的组合数量,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

1.3 组合的应用范围组合的计算方法在概率统计、排列组合等领域有广泛的应用。

例如,在抽奖活动中,求解中奖组合、在竞赛中求解选手比赛成绩排名等都需要用到组合的计算方法。

二、排列的计算方法2.1 定义排列是从给定的元素集合中,选取若干个元素按照一定的规则排列的方式。

与组合不同,排列中元素的顺序是重要的,即排列依赖元素的排列顺序。

2.2 排列的计算公式对于含有n个元素的集合,从中选取m个元素进行排列,计算方法如下:P(n, m) = n! / (n-m)!其中,P(n, m)表示从n个元素中选取m个元素的排列数量。

2.3 排列的应用范围排列的计算方法在密码学、统计分析、问题求解等领域有广泛的应用。

例如,在密码学中,求解密码的破译方式、在统计学中分析数据的排列情况等都需要用到排列的计算方法。

三、组合与排列的比较3.1 区别组合与排列的最主要区别在于元素选择的顺序是否重要。

组合只关注元素的选择,顺序不重要;而排列则依赖于元素的排列顺序。

3.2 应用场景组合适用于计算元素的选择方式,常用于抽奖、竞赛成绩排名等场景;排列适用于计算元素的排列方式,常用于密码破译、统计分析等场景。

高中数学第一章计数原理1.2.2组合与组合数公式课件新人教A版选修 (2)

高中数学第一章计数原理1.2.2组合与组合数公式课件新人教A版选修 (2)

C62
×
C24
=
65 21
×
43 21
=90(种),
解答简单的组合问题的思路是什么?
((1)弄清楚做的这件事是什么; (2)分析这件事是否需分类或分步完成; (3)结合两计数原理利用组合数公式求出结果)
变式训练 3 1:某车间有 11 名工人,其中有 5 名钳工,4 名车工, 另外 2 名既能当车工又能当钳工,现要在这 11 名工人中选派 4 名钳工,4 名车工修理一台机床,有多少种选派方法? 解:称既能当车工又能当钳工的 2 人为“多面手”. 第 1 类:选派的 4 名钳工中无“多面手”, 此时有选派方法 C54 · C64 =75(种); 第 2 类:选派的 4 名钳工中有 1 名“多面手”.此时有选派方法 C12 · C35 · C54 =100(种); 第 3 类:选派的 4 名钳工中有 2 名“多面手”,此时有选派方法 C22 · C52 · C44 =10(种); 由分类加法计数原理,不同的选派方法共有 75+100+10=185(种).
解:(1)因为集合 A 的任一含 3 个元素的子集与元素顺序无 关,故它是组合问题. (2)因为一种火车票与起点、终点顺序有关.如:甲→乙和 乙→甲的车票不同,故它是排列问题. (3)从 7 本不同的书中,取出 5 本给某个同学,在每种取法 中取出的 5 本并不考虑书的顺序,故它是组合问题. (4)因为一种分工方法就是从 5 种不同的工作中,每次取出 3 种,按一定顺序分给 3 人去干,故它是排列问题. (5)因为 3 本书是相同的,把 3 本书无论分给哪三人不需考 虑顺序,故它是组合问题. 所以组合问题有(1),(3),(5).排列问题有(2),(4).
计数原理
1.2.2 组合与组合数公式

高中数学选修2-3优质三段式学案1:1.2.2 组合(2)

高中数学选修2-3优质三段式学案1:1.2.2 组合(2)

高中数学选修2-3学案1.2.2组合(2)一、学习目标:1.掌握带有较复杂限制条件的组合问题的处理方法;2.掌握分组分配问题的处理方法.学习重点:带有较复杂限制条件的组合问题的处理方法;分组分配问题的处理方法.二、基本知识:1、组合的定义:2、组合数公式:3、组合与排列的区别:4、组合数的两个计算性质:三、典型例题例1、在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加;(5)甲、乙、丙三人至少1人参加.例2、(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?四、课堂练习1.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.2.从正方体ABCD-A′B′C′D′的8个顶点中选取4个作为四面体的顶点,可得到的不同的四面体的个数为________.3.(2013·课标全国卷)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.学习笔记高中数学选修2-3学案学习笔记4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有________.5.“抗震救灾,众志成城”,在我国“四川5·12”抗震救灾中,某医院从10名医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?——★参考答案★——例1.解:(1)512C =792(种)不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有29C =36(种)不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有59C =126(种)不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有13C =3(种)选法,再从另外的9人中选4人有49C 种选法,共有1439C C =378(种)不同的选法. (5)方法一 (直接法)可分为三类:第一类:甲、乙、丙中有1人参加,共有1439C C 种; 第二类:甲、乙、丙中有2人参加,共有2339C C 种; 第三类:甲、乙、丙3人均参加,共有3239C C 种. 共有1439C C +2339C C +3239C C =666(种)不同的选法. 方法二 (间接法)12人中任意选5人共有512C 种,甲、乙、丙三人不能参加的有59C 种,所以,共有512C -59C =666(种)不同的选法.例2.解 (1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有C 210=10×91×2=45(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有A 210=10×9=90(条). 课堂练习1.[[解析]] 法一 分两类, ①一男一女,共有4×2=8种; ②两女,只有1种,共有8+1=9种.法二 间接法C 26-C 24=15-6=9种.[[答案]] 92.[[解析]] 从8个顶点中任取4个有C 48种方法,从中去掉6个面和6个对角面,所以有C 48-12=58个不同的四面体.[[答案]] 583.[[解析]] 由题意知n >4,取出的两数之和等于5的有两种情况:1,4和2,3,所以P =2C 2n =114,即n 2-n -56=0,解得n =-7(舍去)或n =8.[[答案]]84.[[解析]]先从12名同学选4个上第一个路口,再从剩下的8名同学选4个上第二个路口,那么剩下的4名同学上第三个路口,则不同的分配方案共有C412C48C44=34 650种.[[答案]]34 6505.解(1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90(种)抽调方法.(2)“至少”的含义是不低于,有两种解答方法.方法一(直接法)按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法;根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185(种)抽调方法.方法二(间接法)不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185(种)抽调方法.(3)“至多2名”包括“没有”、“有1名”、“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115(种)抽调方法.。

高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第2课时)教案 新人教A版选修2-

高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第2课时)教案 新人教A版选修2-

1.2.2 组合第二课时教学目标知识与技能了解组合数的性质,会利用组合数的性质简化组合数的运算;能把一些计数问题抽象为组合问题解决,会利用组合数公式及其性质求解计数问题.过程与方法通过具体实例,经历把具体事例抽象为组合问题,利用组合数公式求解的过程.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合数的性质、利用组合数公式和性质求解相关计数问题.教学难点:利用组合数公式和性质求解相关计数问题.教学过程引入新课提出问题1:判断以下问题哪个是排列问题,哪个是组合问题,并回顾排列和组合的区别和联系.(1)从A、B、C、D四个景点选出2个进行游览;(2)从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.活动设计:教师提问.活动成果:(1)是组合问题,(2)是排列问题.1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合与排列的区别和联系:(1)区别:①排列有顺序,组合无顺序.②相同的组合只需选出的元素相同,相同的排列那么需选出的元素相同,并且选出元素的顺序相同.(2)联系:①都是从n个不同的元素中选出m(m≤n)个元素;②排列可以看成先组合再全排列.设计意图:复习组合的概念,检查学生的掌握情况.提出问题2:利用上节课所学组合数公式,完成以下两个练习: 练习1:求证:C m n =n m C m -1n -1.(本式也可变形为:mC m n =nC m -1n -1)练习2:计算:①C 310和C 710;②C 37-C 26与C 36;③C 411+C 511. 活动设计:学生板演.活动成果:练习2答案:①120,120 ②20,20 ③792.1.组合数的概念:从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C mn 表示.2.组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).设计意图:复习组合数公式,为得到组合数的性质打下基础.探索新知提出问题1:由问题2练习中所求的几个组合数,你有没有发现一些规律,能不能总结并证明一下?活动设计:小组交流后请不同的同学总结补充. 活动成果:1.性质:(1)C mn =C n -mn ;(2)C mn +1=C mn +C m -1n .2.证明:(1)∵C n -mn =n !(n -m)![n -(n -m)]!=n !m !(n -m)!,又C mn =n !m !(n -m)!,∴C m n =C n -mn .(2)C m n +C m -1n =n !m !(n -m)!+n !(m -1)![n -(m -1)]!=n !(n -m +1)+n !m m !(n -m +1)!=(n -m +1+m)n !m !(n -m +1)!=(n +1)!m !(n -m +1)!=C mn +1,∴C mn +1=C mn +C m -1n .设计意图:引导学生自己推导出组合数的两个性质.运用新知类型一:组合数的性质 1(1)计算:C 37+C 47+C 58+C 69; (2)求证:C nm +2=C nm +2C n -1m +C n -2m .(1)解:原式=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210;(2)证明:右边=(C nm +C n -1m )+(C n -1m +C n -2m )=C nm +1+C n -1m +1=C nm +2=左边. [巩固练习]求证:C 1n +2C 2n +3C 3n +…+nC nn =n2n -1.证明:左边=C 1n +2C 2n +3C 3n +…+nC nn =C 11C 1n +C 12C 2n +C 13C 3n +…+C 1n C nn ,其中C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数.设某班有n 个同学,选出假设干人(至少1人)组成兴趣小组,并指定一人为组长.把这种选法按取到的人数i 分类(i =1,2,…,n),那么选法总数即为原式左边.现换一种选法,先选组长,有n 种选法,再决定剩下的n -1人是否参加,每人都有两种可能,所以组员的选法有2n -1种,所以选法总数为n2n -1种.显然,两种选法是一致的,故左边=右边,等式成立.[变练演编]求证:C 1n +22C 2n +32C 3n +…+n 2C nn =n(n +1)2n -2.证明:由于i 2C in =C 1i C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选两个(可重复)的组合数,所以原式左端可看成在上题中指定一人为组长的基础上,再指定一人为副组长(可兼职)的组合数.对原式右端我们可分为组长和副组长是否是同一个人两种情况.假设组长和副组长是同一个人,那么有n2n -1种选法;假设组长和副组长不是同一个人,那么有n(n-1)2n -2种选法.∴共有n2n -1+n(n -1)2n -2=n(n +1)2n -2种选法.显然,两种选法是一致的,故左边=右边,等式成立.类型二:有约束条件的组合问题2在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. (1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 C 3100=100×99×981×2×3=161 700种.(2)从2件次品中抽出1件次品的抽法有C 12种,从98件合格品中抽出2件合格品的抽法有C 298种,因此抽出的3件中恰好有1件次品的抽法有C 12×C 298=9 506种.(3)解法1 从100件产品抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有C 12×C 298种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有C 12×C 298+C 22×C 198=9 604种.解法2抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即C 3100-C 398=161 700-152 096=9 604种.点评:“至少〞“至多〞的问题,通常用分类法或间接法求解. [巩固练习]1.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有C 34,C 24×C 16,C 14×C 26种方法,所以,一共有C 34+C 24×C 16+C 14×C 26=100种方法. 解法二:(间接法)C 310-C 36=100.2.按以下条件,从12人中选出5人,有多少种不同选法? (1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选; (3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选; (5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人当选;解:(1)C 33C 29=36;(2)C 03C 59=126;(3)C 11C 49=126;(4)C 13C 49=378; (5)方法一:(直接法)C 03C 59+C 13C 49+C 23C 39=756, 方法二:(间接法)C 512-C 33C 29=756;(6)方法一:(直接法)C 13C 49+C 23C 39+C 33C 29=666, 方法二:(间接法)C 512-C 03C 59=666. [变练演编]有翻译人员11名,其中5名精通英语、4名精通法语,还有2名英、法语皆通.现欲从中选出8名,其中4名译英语,另外4名译法语,一共可列多少X 不同的?解:分三类:第一类:2名英、法语皆通的均不选,有C 45C 44=5种;第二类:2名英、法语皆通的选一名,有C 12C 35C 44+C 12C 45C 34=60种; 第三类:2名英、法语皆通的均选,有A 22C 35C 34+C 25C 44+C 45C 24=120种. 根据分类加法计数原理,共有5+60+120=185种不同的. [达标检测]1.计算:(1)C 399+C 299;(2)2C 38-C 39+C 28.2.从6位同学中选出4位参加一个座谈会,要求X 、王两人中至多有一个人参加,那么有不同的选法种数为________.3.从7人中选出3人参加活动,那么甲、乙两人不都入选的不同选法共有______种. 答案:课堂小结1.知识收获:组合数的性质,用组合数公式解决简单的计数问题. 2.方法收获:化归的思想方法. 3.思维收获:化归的思想方法.补充练习[基础练习]1.求证:(1)C mn +1=C m -1n +C mn -1+C m -1n -1;(2)C m +1n +C m -1n +2C mn =C m +1n +2.2.某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有______.3.100件产品中有合格品90件,次品10件,现从中抽取4件检查.(1)都不是次品的取法有多少种?(2)至少有1件次品的取法有多少种?(3)不都是次品的取法有多少种?4.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,那么一共有多少种不同的取法?38=56;3.解:(1)C490=2 555 190;(2)C4100-C490=C110C390+C210C290+C310C190+C410=1 366 035;(3)C4100-C410=C190C310+C290C210+C390C110+C490=3 921 015.4.解:分为三类:1奇4偶有C16C45;3奇2偶有C36C25;5奇有C56,所以一共有C16C45+C36C25+C56=236种不同的取法.[拓展练习]现有8名青年,其中有5名能胜任英语翻译工作;有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,那么有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有C24C23;②让两项工作都能担任的青年从事德语翻译工作,有C34C13;③让两项工作都能担任的青年不从事任何工作,有C34C23.所以一共有C24C23+C34C13+C34C23=42种方法.设计说明本节课是组合的第二课时,本节课的主要目标有两个,一个是学生在教师的问题驱动下自主探究组合数的性质,并在老师的带领下,体会组合数公式的应用;另一个是体会把具体计数问题化归为组合问题的过程.本节课的设计特点是:教师的问题是主线,学生的探究活动是主体,师生合作,共同完成知识和方法的总结.备课资料相同元素分组分配问题解决方法:档板法.(1)参加联赛的10个名额要分配到高三年级的8个班级中,那么每个班级至少一个名额的分配方法有______种;(2)10个相同的小球全部放入编号为1、2、3的盒子中,那么使每个盒子中球的个数不小于盒子的编号数的方法有______种.解析:利用档板法.(1)相当于在排成一排的10个“1〞所形成的9个空隙中,选出7个插入7块档板的方法,每一种插板方法对应一种名额分配方法,有C79种方法;(2)可以首先在2、3号盒子中先分别放入1、2个球,然后在剩余的7个球排成一排形成的6个空隙中选出2个空隙各插入一块板,有C26种方法.注:档板法的使用比较灵活,且对数学思想方法要求较高,现利用档板法证明一个不定方程的自然数解的组数的结论:方程x1+x2+…+x m=n(m,n∈N,m,n≥2)的自然数解有C m-1n+m-1组.简证:转化为正整数解的组数,利用档板模型有:作代换y i=x i+1(i=1,2,…,m),那么方程x1+x2+…+x m=n的自然数解的组数,即y1+y2+…+y m=n+m的正整数解的组数,相当于把n+m个球分成m份,每份至少1个的方法数,即在n+m-1个球的间隙中放置m-1个档板的方法种数,即C m-1n+m-1.。

1.2.2 组合12

1.2.2 组合12

其中至少有2名男医生和至少有2名女医生,则不同的选法种数
为( C )
A.(C83 C72 )(C73 C82 )
B.(C83 C72 ) (C73 C82 )
C.C83C72 C73C82
D.C83C72C111
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,
则甲、乙两人不都入选的不同选法种数共有( D)
n!
n!
m!(n m)! (m 1)![n (m 1)]!
n!(n m 1) n!m (n m 1 m)n!
m!(n m 1)!
m!(n 1 m)!
C (n 1)! m![(n 1) m]!
m n1
c c c m m m1
从已知的3 个不同元素 中每次取出2 个元素,按照 一定的顺序 排成一列.





问题2
从已知的3 个不同元素 中每次取出 2个元素,并 成一组


顺 序

概念讲解
组合定义:
一般地,从n个不同元素中 取出m(m≤n)个元素合成一组, 叫做从n个不同元素中取出m 个 元素的一个组合.
排列与组合的 概念有什么共同 点与不同点?
生和护士. (C13 C62) (C12 C24) 1 540
四、分类组合,隔板处理
例6、 从6个学校中选出30名学生参加数学竞赛,每 校至少有1人,这样有几种选法?
分析:问题相当于把个30相同球放入6个不同盒子(盒 子不能空的)有几种放法?这类问可用“隔板法”处理.
解:采用“隔板法” 得: C259 4095
m!
m、n N,* 且 m n ,这个公式叫组合数公式.

1.2.2组合第一课时组合的概念及组合数公式

1.2.2组合第一课时组合的概念及组合数公式

有多少种取法?
栏目 导引
题型二 有关组合数的计算与证明
第一章 计数原理
例2 计算下列各式的值.
(1)3C38-2C25;
【解】(1) 3C83-2C25=3×83× ×72× ×61-2×25××14=148.
((23))CC193708+0+CC47+129090C; 58+C((2369;))C原19式080+=CC124890+90=CC58+2100C+69=C12C0095=+1C02069×=×1C99610+=2C04100==5211500. .
栏目 导引
第一章 计数原理
【名师点评】 区分排列与组合问题,关键是 利用排列与组合的定义,组合是“只选不排、 并成一组,与顺序无关”.只要两个组合中的 元素完全相同,则不论元素的顺序如何,都是相 同的组合.只有当两个组合中的元素不完全相 同时,才是不同的组合.
栏目 导下列问题是排列问题,还是组合问题.
(5)5个人相互各写一封信,共写了多少封信?
栏目 导引
第一章 计数原理
解:(1)当取出3个数字后,如果改变三个数字的 顺(3)序2名,会学得生到完不成同的的是三同位一数件,此工问作题,没不有但顺与序取,出是 元组素合问有题关.,而且与元素的安排顺序有关,是排列 问(4)题甲.与乙通一次电话,也就是乙与甲通一次电 (2)取出3个数字之后,无论怎样改变这三个数 字话之,无间顺的序顺区序别,其,为和组均合不问变题,此. 问题只与取出元 素(5)有发关信,人而与收元信素人的是安有排区顺别序的无,关是,排是列组问合题问.题 .
栏目 导引
第一章 计数原理
答案:D 做一做
1.有下列实际问题:①三人互相握手的次数;②
三人抬水,每两人抬一次的不同抬法;③三点

1.2.2组合与组合数公式(二)

1.2.2组合与组合数公式(二)
答案 ①C125.C74.C33 ④C124.C84.C44 ② C125.C74.C33 ⑤ C124.C84.C44 A33 ③ C125.C74.C33.A33
⑥C12
2. C10
5.C 5 5 A22
例2:求不同的排法种数。 ①6男2女排成一排,2女相邻; ② 6男2女排成一排,2女不能相邻; ③4男4女排成一排,同性者相邻; ④4男4女排成一排,同性者不能相邻。
排列组合应用题与实际是紧密相连的,但思 考起来又比较抽象。“具体排”是抽象转化为 具体的桥梁,是解题的重要思考方法之一。 “具体排”可以帮助思考,可以找出重复,遗 漏的原因。有同学总结解排列组合应用题的方 法是“ 想透,排够不重不漏” 是很有道理的。
解排列组合应用题最重要的是,通过分析构想设计合理的 解题方案,在这里抽象与具体,直接法与间接法,全面分类 与合理分步等思维方法和解题策略得到广泛运用。
(三)排列组合混合问题:
例3:从6名男同学和4名女同学中,选出3名男同学和2 名女同学分别承担A,B,C,D,E 5项工作。一共有 多少种分配方案。
解1:分三步完成,1.选3名男同学有C63种,2.选 2名女同学有C42种,3.对选出的5人分配5种不同的 工作有A55种,根据乘法原理C63.C42.A55=14400(种).
例3:从6名男同学和4名女同学中,选出3名男同 学和2名女同学分别承担A,B,C,D,E5项工作。 一共有多少种分配方案。 解2:把工作当作元素,同学看作位置,1.从5种 工作中任选3种(组合问题)分给6个男同学中的3人 (排列问题)有C53.A63种,第二步,将余下的2个工作分给 4个女同学中的2人有A42种.根据乘法原理共有C53.A63. A42=14400(种). 亦可先分配给女同学工作,再给男同学分配工作,分配 方案有C52 . A42.A63=14400(种).

组合和组合数公式2

组合和组合数公式2

c c c 7 97 29836
99
9 12
c c 98 2 100 994950
100 100 12
c c (2)当m=n时, 有
n 0 1
nn
所以规定
c0 1 n
性质2
1、(课本101例4)一个口袋内装有大小相同的 7个白球和1个黑球.
⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球, 有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有 多少种取法?
证:明 Cm n m( ! nn ! m) !,
n m m 1C m n 1n m m 1(m 1 )(n !n !m 1 )!
m1
n!
(m1)!(nm)n (m1)!

n! m!(nm)!
Cmn .
写出从 a , b , c , d 四个元素中 任取三个元素的所有组合。
例3 平面内有12个点,任何3点不在 同一直线上,以每3点为顶点画一个三 角形,一共可画多少个三角形?
C132121110220
321
答:一共可画220个三角形.
思考交流
1. 从9名学生中选出3人做值日,有多 少种不同的选法?
(C39

987 321
84)
2. 有5 本不同的书,某人要从中借2本,
c 这n个不同的元素中取出m个元素的组合数为 n ,
再由加法原理,得
c c c 性质2 m m m1 n1 n n
定 2 :理 C m n 1 C m n C m n 1 .
证:明 C m nC m n 1
n!
n!
m!(nm)! (m1)[!n(m1)]!

1.2.2组合(第2课时——组合数的性质)

1.2.2组合(第2课时——组合数的性质)

2 注重公式的顺用、逆用、变形用。顺用是将一个
组合数拆成两个;逆用则是“合二为一”;变形为
C m1 n

Cm n1
Cnm
使用,为某些项前后互相
抵消提供了方便。
性质应用:
1、计算:
C C ( 1 )
3 2;
99
99
C1300 100 99 98 161700
3 21
2C C C ( 2)
C7参加清扫校园劳动,
都有35种不同的选法
思考:为什么上面两个不同的组合数其结果相同? 这一结果的组合的意义是什么?
从7位同学中 选出3位同学 构成一个组合
对应
剩下的4位 同学构成一 个组合
从7位同学中 选出3位同学
的组合数 C73
即:C73 C74

3 18
120 66 816
2、已知:C225x C2x57,求x 6或7
3、已知:Ct14 Ct4,求C2t0 190
问题情境2:
一个口袋内装有大小相同的带有不同编号的7个白球和 1个黑球.
⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少 种取法?
计算
C nm n
.

n 2
时,通常将计算
Cnm 改为
C 例如: 2019 2020

C1 2020
2020
2、当n m时,Cnn Cn0 1.
3、Cnx Cny x y或x y n.
性质应用:
1、计算:
C C170
3 10
C C10 12

2 12
C C15 18

组合与组合数公式(二)

组合与组合数公式(二)
透过率仪 https:///product/LS183.html 透过率仪
写出从 a , b , c , d 四个元素中 任取三个元素的所有组合。
c
b
a
d
ቤተ መጻሕፍቲ ባይዱ
c
d
bc
d
abc , abd , acd , bcd .
abc abd acd bcd d cba
abc abd acd bcd 含元素a 的组合数: 不含元素a 的组合数:
例4 有13个队参加篮球赛,比赛时先 分成两组,第一组7个队,第二组6个队. 各组都进行单循环赛(即每队都要与 本组其它各队比赛一场),然后由各组 的前两名共4个队进行单循环赛决出 冠军、亚军,共需要比赛多少场?
例5 在产品检验时,常从产品中抽出一 部分进行检查.现在从100件产品中任意 抽出3件:
(1)一共有多少种不同的抽法?
(2)如果100件产品中有2件次品,抽出的3 件中恰好有1件是次品的抽法有多少种?
(3)如果100件产品中有2件次品,抽出的3 件中至少有1件是次品的抽法有多少种?
作业:
课本第243页练习5(3)(4)(5) , 6 , 7 题;习题三十第1 , 2 , 3 , 4 , 5 , 6 , 7, 8 题.
选做题:复习参考题九第1 , 2题.
排列与组合
组合与组合数公式 (二)
播放时间:6月3日9:50-10:30
复习
一、组合的定义 二、组合数公式
组合数的两个性质
色球拍模样的爪子……轻飘的墨黑色磨盘般的五条尾巴极为怪异,嫩黄色烤鸭模样的插头兽皮肚子有种野蛮的霸气。墨灰色细竹一样的脚趾甲更为绝奇。这个巨鬼喘息 时有种浅橙色草籽般的气味,乱叫时会发出鲜红色闪电样的声音。这个巨鬼头上亮蓝色海胆一样的犄角真的十分罕见,脖子上犹如螃蟹一样的铃铛浮动的脑袋认为很是 出色但又带着几分帅气。月光妹妹笑道:“就这点本事也想混过去!我让你们见识一下什么是雪峰!什么是女孩!什么是雪峰女孩!”月光妹妹一边说着一边和壮扭公 主组成了一个巨大的玻璃管蟹眼仙!这个巨大的玻璃管蟹眼仙,身长二百多米,体重八十多万吨。最奇的是这个怪物长着十分变态般的蟹眼!这巨仙有着淡黄色破钟样 的身躯和深黄色细小匕首造型的皮毛,头上是水绿色面具般的鬃毛,长着淡紫色南瓜样的鸟巢月影额头,前半身是土黄色小号样的怪鳞,后半身是圆圆的羽毛。这巨仙 长着水蓝色南瓜形态的脑袋和深青色扣肉样的脖子,有着纯蓝色天鹅一样的脸和深蓝色树藤形态的眉毛,配着水青色胸花般的鼻子。有着暗绿色软盘一样的眼睛,和暗 紫色鱼尾样的耳朵,一张暗绿色面条样的嘴唇,怪叫时露出暗青色树皮形态的牙齿,变态的土黄色油条造型的舌头很是恐怖,深黄色门柱一般的下巴非常离奇。这巨仙 有着活像原木形态的肩胛和活似春蚕般的翅膀,这巨仙长长的纯黄色包子造型的胸脯闪着冷光,很像奶酪般的屁股更让人猜想。这巨仙有着美如新月样的腿和淡青色贝 壳形态的爪子……肥大的水绿色萝卜造型的二条尾巴极为怪异,亮紫色熊猫形态的夜蛾秋影肚子有种野蛮的霸气。纯黄色玉笋般的脚趾甲更为绝奇。这个巨仙喘息时有 种水青色硬币造型的气味,乱叫时会发出淡蓝色剑鞘一样的声音。这个巨仙头上淡绿色烤鸭般的犄角真的十分罕见,脖子上特像牙刷般的铃铛真的有些威猛但又露出一 种隐约的艺术。这时那伙校精组成的巨大水草象背鬼忽然怪吼一声!只见水草象背鬼扭动花哨的耳朵,整个身体一边旋转一边像巨大的怪物一样膨胀起来……突然,整 个怪物像巨大的浅灰色种子一样裂开……二千九百七十五条紫红色小路模样的贪婪巨根急速从里面伸出然后很快钻进泥土中……接着,一棵乳白色履带模样的炽热巨大 怪芽疯速膨胀起来……一簇簇碳黑色面条模样的残暴巨大枝叶疯速向外扩张……突然!一朵浅灰色镊子模样的阴森巨蕾恐怖地钻了出来……随着深黑色菊花模样的凶恶 巨花狂速盛开,无数钢灰色折扇模样的奇寒花瓣和碳黑色花蕊飞一样伸向远方……突然,无数碳黑色布条模样的炽热果实从巨花中窜出,接着飞一样射向魔墙!只见每 个巨大果实上都

课件7: 1.2.2 第一课时 组合与组合数公式及组合数的两个性质

课件7: 1.2.2  第一课时 组合与组合数公式及组合数的两个性质
1.2 排列与组合 1.2.2 组 合
第一课时 组合与组合数公式及组合数的两个性质
知识点一 组合与组合数 从1,3,5,7中任取两个数相除或相乘.
问题1:所得商和积的个数相同吗? 答:不相同. 问题2:它们是排列吗? 答:从1,3,5,7中任取两个数相除是排列,而相乘不是排列.
新知自解 1.组合
[思路点拨] 要确定是组合还是排列问题,只需确定取出的元 素是否与顺序有关.
解: (1)是组合问题,因为每两个队比赛一次并不需要考虑谁先 谁后,没有顺序的区别.
(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、 乙队得冠军是不一样的,是有顺序区别的.
(3)是组合问题,因为3个代表之间没有顺序的区别. (4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序 区别的.
解:(1)从 10 名教师中选出 2 名去参加会议的选法数就是从 10 个不同的元素 中取出 2 个元素的组合数,即 C210=120××19=45 种. (2)从 6 名男教师中选 2 名,有 C26种选法,从 4 名女教师中选 2 名,有 C24种 选法.根据分步乘法计数原理可知,共有不同的选法 C26C24=90 种.
问题 3:你能得出计算 C24的公式吗? 答:能.因为 A24=C24A22,所以 C42=AA2422.
问题4:试用列举法求从1,3,5,7中任取两个元素的组合数. 答:1、3,1、5,1、7,3、5,3、7,5、7,共6种.
问题5:你能把问题3的结论推广到一般吗?
答:可以,从 n 个不同元素中取出 m 个元素的排列数可由以下两个步骤得到: 第一步,从这 n 个不同元素中取出 m 个元素,共有 Cmn 种不同的取法; 第二步,将取出的 m 个元素全排列,共有 Amm种不同的排法. 由分步乘法计数原理知,Amn =Cmn ·Amm,故 Cmn =AAmnmm.

1.2.2 组合的概念及组合数公式

1.2.2 组合的概念及组合数公式

判断下列问题是排列问题,还是组合 问题. (1)从1,2,3,…,9九个数字中任取3个,组成 一个三位数,这样的三位数共有多少个? (2)从1,2,3,…,9九个数字中任取3个,然后 把这三个数字相加得到一个和,这样的和共 有多少个?
例1
(3)从a,b,c,d四名学生中选2名去完成同 一件工作,有多少种不同的选法?
例3
计算下列各式的值.
2 (1)3C3 - 2C 8 5; 199 (2)C98 + C 100 200; 4 5 6 (3)C3 + C + C + C 7 7 8 9;
-n 3n (4)C38 + C 3n 21+n.
【思路点拨】 利用组合数公式和 组合数的性质解决.
【解】
8×7×6 3 2 (1)3C 8 - 2C 5 = 3× - 3×2×1
例2
【解】 所示:
(1)可按a→b→c→d顺序写出,如下
∴所有组合为ab,ac,ad,bc,bd,cd.
(2)可按AB→AC→AD→BC→BD→CD顺序 写出,如下所示:
∴所有的组合为ABC,ABD,ABE,ACD, ACE,ADE,BCD,BCE,BDE,CDE. 【思维总结】 组合要求n个元素是不同的 ,被取出的m个元素也是不同的,即从n个 不同的元素中进行m次不放回地抽取.组合 的特性是:元素的无序性,即取出的m个元 素不讲究顺序,亦即元素没有位置的要求.
2.能利用计数原理推导组合数公式,并会
应用公式求值.
3.了解组合数的两个性质并能用性质进行
求值、化简和证明有关问题.
课前自主学案
第一课时
课堂互动讲练
知能优化训练
课前自主学案
温故夯基
1.从 n 个不同元素中任取 m 个元素,按一

组合与组合数公式(二)

组合与组合数公式(二)
组合数表示从n个不同元素中取出m个 元素(0≤m≤n)的所有组合的个数, 记为C(n, m)或C_n^m。
组合数的定义公式为:C(n, m) = n! / (m!(n-m)!)
组合数的性质
组合数的性质一
C(n, m) = C(n, n-m),即从n个不同 元素中取出m个元素和取出n-m个元 素的组合数相等。
k)。
递推关系法
定义
递推关系法是通过组合数之间的递推关 系,逐步推导出所需的组合数值。
VS
举例
例如,已知C(n,k) = C(n-1,k-1) + C(n1,k),可以根据这个递推关系逐步计算出 C(n,k)的值。
PART 03
组合数公式的应用
REPORTING
WENKU DESIGN
在概率论中的应用
在统计学中的应用
样本组合统计
在统计学中,样本组合是一种常见的 统计方法,而组合数公式可以用于计
算样本组合的概率和期望值。
因子分解
在统计学中,因子分解是一种重要的 数据分析方法,而组合数公式可以用
于因子分解的计算。
多元分布计算
在多元统计分析中,组合数公式可以 用于计算多元分布的概率和期望值。
在计算机科学中的应用
PART 04
组合数公式的扩展
REPORTING
WENKU DESIGN
超几何分布
定义
超几何分布是描述从有限总体中抽取n个样本,其中k个 是成功样本的概率分布。
01
公式
$P(X=k) = frac{{C_{M}^{k} cdot C_{N-M}^{n-k}}}{{C_{N}^{n}}}$,其中 M是成功样本的数量,N是总体样本的 数量,n是抽取的样本数量。

1.2.2组合2

1.2.2组合2
3 C.C83C72 + C7 C82
1 D.C83C72C11
4,从7人中选出 人分别担任学习委员,宣传委员,体育委员, , 人中选出3人分别担任学习委员 人中选出 人分别担任学习委员,宣传委员,体育委员, 则甲,乙两人不都入选的不同选法种数共有( 则甲,乙两人不都入选的不同选法种数共有( D)
A.C A
件产品中有98件合格品 件次品. 例4:在100件产品中有 件合格品,2件次品.产品 : 件产品中有 件合格品, 件次品 检验时,从 件产品中任意抽出3件 检验时 从100件产品中任意抽出 件. 件产品中任意抽出 (1)一共有多少种不同的抽法 一共有多少种不同的抽法? 一共有多少种不同的抽法 (2)抽出的 件中恰好有 件是次品的抽法有多少种 抽出的3件中恰好有 件是次品的抽法有多少种? 抽出的 件中恰好有1件是次品的抽法有多少种 (3)抽出的 件中至少有 件是次品的抽法有多少种 抽出的3件中至少有 件是次品的抽法有多少种? 抽出的 件中至少有1件是次品的抽法有多少种
(4)抽出的 件中至多有一件是次品的抽法有多少种? 抽出的3件中至多有一件是次品的抽法有多少种 抽出的 件中至多有一件是次品的抽法有多少种?
说明: 至少""至多"的问题, 说明:"至少""至多"的问题,通常用分类 ""至多 法或间接法求解. 法或间接法求解.
变式练习
按下列条件, 人中选出5人 有多少种不同选法? 按下列条件,从12人中选出 人,有多少种不同选法? 人中选出 丙三人必须当选; 3 2 (1)甲,乙,丙三人必须当选; C3 C9 = 36 ) 0 5 丙三人不能当选; (2)甲,乙,丙三人不能当选; ) C3 C9 =126 丙不能当选; 1 4 (3)甲必须当选,乙,丙不能当选;C1C9 =126 )甲必须当选, 丙三人只有一人当选; (4)甲,乙,丙三人只有一人当选; C1C4 = 378 ) 3 9 丙三人至多2人当选 人当选; (5)甲,乙,丙三人至多 人当选; ) 丙三人至少1人当选 人当选; (6)甲,乙,丙三人至少 人当选; )

1.2.2排列组合二

1.2.2排列组合二

(4)三个女生两两都不相邻; 对于不相邻问题,常用 “插空法”
一、等分组与不等分组问题
(1)分给甲、乙、丙三人,每人两本;
例3、6本不同的书,按下列条件,各有多少种不同的分法:
(2)分成三份,每份两本;
(3)分成三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本;
C
n( n 1) ( n m 1) C n! m! m 0 0! 1 C n m!(n m )! C n 1 m m n m
m n
A
m n Cn Cn m
m C n1, n C n 1 Cm m
回目录
例1:用0到9这10个数字,可以组成多少个没有重复 数字的三位数?
三、混合问题,先“组”后“排”
例5 对某种产品的6件不同的正品和4件不同的次品, 一一进行测试,至区分出所有次品为止,若所有次 品恰好在第5次测试时全部发现,则这样的测试方法 有种可能? 解:由题意知前5次测试恰有4次测到次品,且第5 次测试是次品。故有: 3C 1 A4 576 种可能。 C
(5)分给甲、乙、丙3人,每人至少一本;
(6)分给5个人,每人至少一本;
(7)6本相同的书,分给甲乙丙三人,每人至少一本。
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1 件,另一份4件, 有多少种分法? (2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每 人二件有多少种分法?
A
3 9
A
3 9
2
9
A
2
9
根据加法原理
A 2A
2
9
648
例1:用0到9这10个数字,可以组成多少个没有重复 数字的三位数? 一、从位置出发‘特位法”,分步
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3:从6名男同学和4名女同学中,选出3名男同 学和2名女同学分别承担A,B,C,D,E5项工作。 一共有多少种分配方案。 解2:把工作当作元素,同学看作位置,1.从5种 工作中任选3种(组合问题)分给6个男同学中的3人 (排列问题)有C53.A63种,第二步,将余下的2个工作分给 4个女同学中的2人有A42种.根据乘法原理共有C53.A63. A42=14400(种). 亦可先分配给女同学工作,再给男同学分配工作,分配 方案有C52 . A42.A63=14400(种).
典型例题
1. 4名优等生被保送到3所学校,每所学校至少 得1名,则不同的保送方案总数为( A )。 2 3 (A) 36 (B) 24 (C) 12 (D) 6 C A
4 3
2.若把英语单词“error”中字母的拼写顺序写错了,则可能 出现的错误的种数是( B ) 3 2 (A) 20 (B) 19 (C) 10 (D) 69 C5 A2 1 3.小于50000且含有两个5,而其它数字不重复的五位数 有( B )个。 1 2 2 1 2 2 1 2 2 1 2 4 (A) A4 (B) (C) (D) A4 A8 C4C4 A8 C4C4 C8 C4C8 A4
显然: ①与③; ②与④在 搭配上是一样的。所以只有2 种方法,所以总的搭配方法 有2 C82.C72种。
练习:
1. 高二要从全级10名独唱选手中选出6名在歌咏会上表演,
出场安排甲,乙两人都不唱中间两位的安排方法有多少种?
A C A A A A (种)
6 8 1 2 1 4 5 8 2 4 4 8
例8、10双互不相同的鞋子混装在一只口袋中,从中任 意取出4只,试求满足如下条件各有多少种情况: (1)4只鞋子恰有两双; (2) 4只鞋子没有成双的; (3) 4只鞋子只有一双。
分析:
2 C (1)因为4只鞋来自2双鞋, 所以有 10 45
(2)因为4只鞋来自4双不同的鞋, 而从10双鞋中取4双有 4 C 种 10 方法, 每双鞋中可取左边一只也可取右边一只, 各 4 1 1 1 1 1 有 C2 种取法,所以一共有 C10C2C2C2C2 3360 种取法.
练 习
3. 15 人按照下列要求分配,求不同的分法种数。
5 5 5 3 C C C / A (1)分为三组,每组5人,共有______________ 15 10 5 3
种不同的分法。 (2)分为甲、乙、丙三组,一组7人,另两组各 7 4 4 3 2 4人,共有___________________ C15C8 C4 A3 / A2 种不同的分法。 (3)分为甲、乙、丙三组,一组6人,一组5人,一组 6 5 4 3 4人,共有___________________ C15C9 C4 A3 种不同的分法。 4. 8名同学选出4名站成一排照相,其中甲、乙两人都 4 4 1 3 1 3 2 2 2 C A C C A A C 不站中间两位的排法有______________________ 6 4 2 7 2 3 6 A2 A2 种。 5. 某班有27名男生13女生,要各选3人组成 班委会和团支部每队3人,3人中2男1女,共有 4 2 2 1 2 C C C _____________________ 种不同的选法。 27 13 4 C2 A2
例3:某乒乓球队有8男7女共15名队员,现进行混合 双打训练,两边都必须要1男1女,共有多少种不同的搭 配方法。
分析:每一种搭配都需要2男2女,所以先要选出2男2女,有 C82.C72种;
然后考虑2男2女搭配,有多少种方法? 男女----------男女
① Aa-------------Bb ② Ab-------------Ba ③ Bb-------------Aa ④ Ba-------------Ab 先组后排
3 (3)因为4只鞋来自3双鞋,而从10双鞋中取3双有 C10 种 1 取法,3双鞋中取出1双有 C3 种方法,另2双鞋中各取1只 1 1 3 1 1 1 C 有 2C2种方法故共有 C10 C3 C2C2 1440 种取法.
C C C C 1440
1 10 2 9 1 2 1 2
C (C 9) 1440
优先法
解: ② 先从b,c,d三个选其中两个 排在首末两位,有A32种,然后把剩下的一个与a,e 排在中间三个位置有A33种,由乘法原理: 共有A32. A33=36种排列.
间接法: A55- 4A44+2A33(种)排法。
(二)有条件限制的组合问题:
例2:已知集合A={1,2,3,4,5,6,7,8,9},
例1:12 人按照下列要求分配,求不同的分法种数。 ①分为三组,一组5人,一组4人,一组3人; ②分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人; ③分为甲、乙、丙三组,一组5人,一组4人,一组3人;
④分为甲、乙、丙三组,每组4人;
⑤分为三组,每组4人。 ⑥分成三组,其中一入:前面我们已经学习和掌握了排列组合问题 的求解方法,下面我们要在复习、巩固已掌握的方 法的基础上,学习和讨论排列、组合的综合问题。 和应用问题。 问题:解决排列组合问题一般有哪些方法?应注 意什么问题? 解排列组合问题时,当问题分成互斥各类时,根 据加法原理,可用分类法;当问题考虑先后次序时, 根据乘法原理,可用位置法;上述两种称“直接 法”,当问题的反面简单明了时,可通过求差排除法, 采用“间接法”;另外,排列中“相邻”问题可采 用捆绑法;“分离”问题可用插空法等。 解排列组合问题,一定要做到“不重”、“不漏”。
排列组合应用题与实际是紧密相连的,但思 考起来又比较抽象。“具体排”是抽象转化为 具体的桥梁,是解题的重要思考方法之一。 “具体排”可以帮助思考,可以找出重复,遗 漏的原因。有同学总结解排列组合应用题的方 法是“ 想透,排够不重不漏” 是很有道理的。
解排列组合应用题最重要的是,通过分析构想设计合理的 解题方案,在这里抽象与具体,直接法与间接法,全面分类 与合理分步等思维方法和解题策略得到广泛运用。
(三)排列组合混合问题:
例3:从6名男同学和4名女同学中,选出3名男同学和2 名女同学分别承担A,B,C,D,E 5项工作。一共有 多少种分配方案。
解1:分三步完成,1.选3名男同学有C63种,2.选 2名女同学有C42种,3.对选出的5人分配5种不同的 工作有A55种,根据乘法原理C63.C42.A55=14400(种).
二.排列组合应用问题
(一).有条件限制的排列问题 例1:5个不同的元素a,b,c,d, e每次取全排列。 ①a,e必须排在首位或末位,有多少种排法? ②a,e既不在首位也不在末位,有多少种排法? ③ a,e排在一起多少种排法? ④ a,e不相邻有多少种排法? ⑤ a在e的左边(可不相邻)有多少种排法? 解: ① (解题思路)分两步完成,把a,e排在首末两 端有A22种,再把其余3个元素排在中间3个位置有A33种。 由乘法共有A22. A33=12(种)排法。
答案 ①C125.C74.C33 ④C124.C84.C44 ② C125.C74.C33 ⑤ C124.C84.C44 A33 ③ C125.C74.C33.A33
⑥C12
2. C10
5.C 5 5 A22
例2:求不同的排法种数。 ①6男2女排成一排,2女相邻; ② 6男2女排成一排,2女不能相邻; ③4男4女排成一排,同性者相邻; ④4男4女排成一排,同性者不能相邻。
求含有5个元素,且其中至少有两个是偶数的子集的个 数。
解法1:5个元素中至少有两个是偶数可分成三类: ①2个偶数,3个奇数;②3个偶数,2个奇数;③4个偶数, 1个奇数。所以共有子集个数为 C42.C53+C43.C52+C44.C51=105
解法2:从反面考虑,全部子集个数为P95,而不符合条件 的有两类: ①5 个都是奇数;②4个奇数,1个偶数。所以 共有子集个数为C95-C55-C54.C41=105
例4.九张卡片分别写着数字0,1,2,…,8,从中取出三 张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数?
1 1 1 解:可以分为两类情况:① 若取出6,则有2(A2 + C 8 2 C7C7 ) 种方法; 1 2 ②若不取6,则有 C7 A 7 种方法,
1 2 2 1 1 1 2(A + C C C ) 根据分类计数原理,一共有 8 2 7 7 + C7 A 7 =602 种方法
相关文档
最新文档