上海市青浦区2017届高三一模数学试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市青浦区2017届高三一模数学试卷

2016.12

一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)

1. 已知复数2z i =+(i 为虚数单位),则2z =

2. 已知集合1{|216}2

x A x =≤<,22{|log (9)}B x y x ==-,则A

B =

3. 在二项式62()x x

+的展开式中,常数项是

4. 等轴双曲线222x y a -=与抛物线216y x =的准线交于A 、B 两

点,且

||AB =

则该双曲线的实轴长等于 5. 若由矩阵2222a x a a y a +⎛⎫⎛⎫⎛⎫

=

⎪⎪ ⎪⎝⎭⎝⎭⎝⎭

表示x 、y 的二元一次方程组无解,则实数a = 6. 执行如图所示的程序框图,若输入1n =, 则输出S =

7. 若圆锥侧面积为20π,且母线与底面所成 角为4arccos 5

,则该圆锥的体积为

8. 已知数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递

增数列,则实数b 的取 值范围是

9. 将边长为10的正三角形ABC ,按“斜二测”画法在水平

放置的平面上画出为△A B C ''',

则△A B C '''中最短边的边长为 (精确到0.01) 10. 已知点A 是圆22:4O x y +=上的一个定点,点B 是圆O 上的

一个动点,若满足

||||AO BO AO BO +=-,则AO AB ⋅=

11. 若定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:

对任意x D ∈,点(,())x g x

与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的

“对称函数”,已知

()g x =()2f x x b =+,()h x 是()g x 关于()f x 的“对称函数”,

且()()h x g x ≥

恒成立,则实数b 的取值范围是

12. 已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其

中k 为不等于0与1

的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件

的1a 所有可能值 的和为

二. 选择题(本大题共4题,每题5分,共20分) 13. 已知()sin 3

f x x π=,{1,2,3,4,5,6,7,8}A =,现从集合A 中任取两

个不同元素s 、t ,

则使得()()0f s f t ⋅=的可能情况为( )

A. 12种

B. 13种

C. 14种

D. 15种

14. 已知空间两条直线m 、n ,两个平面α、β,给出下面四

个命题:

①m ∥n ,m n αα⊥⇒⊥;

②α∥β,m α,n β⇒m ∥n ;

③m ∥n ,m ∥α

n ⇒∥α;

④α∥β,m ∥n ,m α⊥n β⇒⊥; 其中正确的序号是( )

A. ①④

B. ②③

C. ①②④

D. ①③④ 15. 如图,有一直角坡角,两边的长度足够长,若P 处有一

棵树与两坡的距离分别是4m 和

am (012a <<),不考虑树的粗细,现用

16m 长的篱笆,借助

坡角围成一个矩形花圃

ABCD ,

设此矩形花圃的最大面积为M ,若将这棵树围在矩形花圃内,则函数()M f a =

(单位2m )的图像大致是( )

A. B. C.

D.

16. 已知集合{(,)|()}M x y y f x ==,若对于任意实数对11(,)x y M ∈,

存在22(,)x y M ∈,

使12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列

四个集合:

①2

1

{(,)|}M x y y x ==

; ②2

{(,)|l o g }M x y

y

x ==;

③{(,)|22}x M x y y ==-; ④{(,)

|s i n M x y y

x ==+;

其中是“垂直对点集”的序号是( )

A. ①②③

B. ①②④

C. ①③④

D. ②③④

三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图所示,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周 上不与A 、B 重合的一个点;

(1)若圆柱的轴截面是正方形,当点C 是弧AB 的中点时,求异面直线1A C 与AB 的所成

角的大小(结果用反三角函数值表示);

(2)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比;

18. 已知函数

221()cos ()4

2

f x x x π

+=

+--

(x R ∈); (1)求函数()f x 在区间[0,]2

π上的最大值;

(2)在ABC ∆中,若A B <,且1

()()2f A f B ==

,求BC AB

的值; 19.

如图,1F 、2F 分别是椭圆22

22:1x y C a b

+=(0a b >>)的左、右

焦点,且焦距为

动弦AB 平行于x 轴,且11||||4F A F B +=; (1)求椭圆C 的方程;

(2)若点P 是椭圆C 上异于点A 、B 的任意一点,且直线PA 、

PB 分别与y 轴交于点M 、

N ,若2MF 、2NF 的斜率分别为1k 、2k ,求证:12k k ⋅是定值;

相关文档
最新文档