最新河南省郑州市2017-2018学年高一下学期期末考试数学试题word版有答案
河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案](https://img.taocdn.com/s3/m/e3c5a1f14028915f814dc237.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( ) A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( ) A .34 B .537C.253737 D .537378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin 3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()24cos (32)()a a b bb b θ-⋅===-+-⨯- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EFEC CF ,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ,所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DFmDC (0)m ,则(1)CF m DC ,1122AEABBC ABAD , (1)(1)BF CF BC m DC BC m AB AD ,又0AB AD ⋅=,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m ABAD 9(1)82m , 解得13m,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案](https://img.taocdn.com/s3/m/7442573ba6c30c2259019e9f.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3.的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=-+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案](https://img.taocdn.com/s3/m/3edb205dddccda38366baf30.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( )A .2 B .2- C .- 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .5378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)c o s2(21)s i n4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()23)(2)4cos 5a ab bb b θ-⋅+-⨯===-- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-.(2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈,所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下期末考试数学试题有答案
![河南省郑州市2017-2018学年高一下期末考试数学试题有答案](https://img.taocdn.com/s3/m/21d78a3d08a1284ac85043ff.png)
2017-2018学年下期期末考试高一数学试题卷 第I 卷(共60分)、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1. sin 585°的值为( )乙6 9 1 0 1 S 55 7 9 1 1 1 J3 4 62 1 D2 3 1 0I 4 aA. 19,13 B .13, 19 C.19 ,18 D.18, 5.从装有大小材质完全相冋的3个红球和3个黑球的不透明口袋中,的概率是()2211A.—BCD.—352 34.某赛季,甲、乙两名篮球运动员都参加了11场比赛,示,则运动员甲得分的中位数, 乙得分的平均数分别为()19A.2-.32.322.已知向量 a =( —3,5), b =(5,3),贝U a 与 b A.垂直.不垂直也不平行 .平行且同向D .平行且反向3.下列各式中,值为 3—的是()2A. 2sin15 0 cos1502, L°B .cos 15-si n 21502 0 2 0 2 0C . 2sin 15 -1D .sin 15 cos 15随机摸出两个小球,则两个小球同色他们所有比赛得分的情况用如下图所示的茎叶图表6.函数y = cos x_ . 4 sinx 4-cos.COS-sin xI 4丿」-—在一个周期内的图像是(A.A. e,,e2的夹角为60°,则向量C.37 25 37375而377.设单位向量3q - 4色与向量e1的夹角的余弦值是()量 OC=・OAR),且(2 ■ -1)2COS 2 : 2(2」T) sinA 3B3 C.3 3 A. —D24578.如果下面程序框图运行的结果s = 1320,那么判断框中应填入(A. k ::10?.k 10? C.k :: 11? D . k 11?9.甲、乙两人各自在 400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是10.已知函数 JIA.-211 C.15 3664f (x ) =sin (2x •「)的图像关于直线 JI*x 对称,则':可能取值是()6 12C.C 是圆O 上的三点,线段 OC 与线段AB 交于圈内一点P ,若C.12.已知平面上的两个向量 OA 和OB 满足 OA 二 cos : , OB =sin :, :[0,2],加 3^0,若向丄,贝U OC 的最大值是(4第n卷(共90 分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知 tan : =4 , tan(…)=3,则 tan (、;一、『■). 14. 已知样本7, 8, 9, x , y 的平均数是8,标准差是 2,则xy 二. —i | 15. 已知.:ABC 的三边长AC =4 , BC =3, AB=5, P 为AB 边上的任意一点,则 CP[(BC _ BA)的最 小值为. JT 仃 16•将函数f(x) =2sin(2x )的图像向左平移 个单位,再向下平移 2个单位,得到g(x)的图像,若6 12 g(xJg(X 2)=16,且 x , X 2 [-2二,2 二],则 2% -x ?的最大值为. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知向量 a =(1,2), b=( 3,4). (I )求向量a -b 与向量b 夹角的余弦值 (II )若a _(a -,b),求实数■的值. 18.某同学用“五点法”画函数 f(x)=Asin (•,x •• B(「.0, •:::孑)在某一个周期内的图像时,列表并填入了部分数据,如下表: f(x)的解析式 (I )请将上表数据补充完整,并直接写出函数 (II )将f (x)的图像上所有点向左平行移动 '个单位长度,得到 y =g(x)的图像,求y = g(x)的图像离 6y 轴最近的对称中心. 19.某商场经营某种商品,在某周内获纯利 表: y (元)与该周每天销售这种商品数 x 之间的一组数据关系如 (I )画出散点图; (II )求纯利y 与每天销售件数 x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少?附注:2 — 2 2' x =280, '、(X i -x) =27 ,、x i y^3076 ,、y i =34992,i 4i 1i 1i 1nn' (X i -x)(y i -y) ' X i y i -nxyi 1 i 4 ~"n丁,寸 2' 人 一 nx20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设 EF — "AB -〔"AD ,求’LP 的值; (II )若 AB =3,BC =4,当 AEjBE=2 时,求 DF 的长. 21. 某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分 100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示(I )若该所中学共有 3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于 70分的学生中随机抽取 6人,再从中抽取3人,试求恰好抽中1名优秀生的概率•QQ3O00101QO W ■ E ■ ■ d0005 匸° « » w w m to I®~22.已知函数f (x )=si n 2⑷x — J3s in ^xcos^x + ;(⑷> 0), y=f (x )的图象与直线 y = 2相交,且两 相邻交点之间的距离为 x . (I )求函数f (X )的解析式;a = y -bx .n_、(X i -X )2(II )已知x. ,求函数f(x)的值域;一2(III )求函数f(x)的单调区间并判断其单调性试卷答案一、选择题1-5: BABCB6-10:BDADC 11、12: CB二、填空题1 13.14.601315. -16 16.55 ■12三、解答题 ,17.解:(1) a -b = 4, -2,设a -b 与a 的夹角为二a -b b _ 4 (-3) (-2) 4 _M J 〒⑵ b 二 1 3 ,2 -4 鳥 _ a -所以cos^ =4 (-3) (-2) 42、5 5••• a a - b =0. 1 1 3 2 2-4,=0,解得,=1心n1 8 .解:(1 )根据表中已知数据,解得A =5 ,⑷=2 , ® = -—.数据补全如下表:6 •..k ::- -因为y = sinx 的对称中心为(k 二,2) , k Z ,令2x+ =k 「: , k Z ,解得x=, k Z ,• ••••• • •• • • • •^2 1^2kx JT J[即y = g (x )图象的对称中心为( ----- ,2), "Z ,其中离y 轴最近的对称中心为(— — ,2).2 2 12且函数表达式为国x+ ®31兀3n~22兀JI 317n 5nP13JTx12312"6"12Asi n( co x + 申)+ B27 2-32因此 g(x)=5sin 2 x -- _ 6 6+2=5sin 2x +2.6f(x)=5sin ! 2x 一 舌 +2 .(2)由⑴知 f(x)=5sin兀19.解:⑴01 2345 0789(2)八3 4 5 67 89 "7J56 59 63 71 79 80任卫3076 -7 6 70 136 4.9280 - 7 3628a J _bX =70 -136 6 : 40.928回归方程为:y =4.9x 40.9(3)当 x -12时 y =4.9 12 40.9 = 99.7所以估计当每天销售的简述为 12件时,周内获得的纯利润为 99.7元.-1 -1 _20.解:(1)EF = EC +CF ,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以11 11 AB AD ,即,,则.2428T —I T T 〔T T 〔TCF =(m-1)DC ,AE = AB+—BC = AB+—AD , 2 2(m-1)DC+BC =(m- 1)AB + AD ,21 ^^2所以 AE BF =(AB 才 AD)[(m —1)AB AD] =(m-1)AB +? AD =9(m- 1) + 8= 2, 1解得m =—,所以DF 的长为1.321.解:(1)由直方图可知,样本中数据落在 80,100 1的频率为0.2 • 0.1 =0.3,则估计全校这次考试中优秀生人数为3000 0.3 =900 .—1 EF I —1二 EC CF 所以, 1EF - 4(2)设 DF =mlT BF :T —* =CF +BC = 7__送 xy - nxy「 2寸 2_' X -nxi1 1= ^BC 4CD ,在矩形 ABCD 中,BC = AD,CD = - AB , DC (m>0),则又 AB AD = 0, 1---- +2(2)由分层抽样知识可知,成绩在1-70,80,'80,90,90,1001间分别抽取了3人,2人,1人.记成绩在1.70,80的3人为a,b,c,成绩在80,90的2人为d,e,成绩在(90,100】的1人为f,则从这 6 人中抽取3 人的所有可能结果有(a,b, c),(a,b, d),(a,b,e),(a,b, f),(a, c, d),(a, c, e),(a,c, f),(a,d,e),(a,d, f),(a, e, f),(b,c,d),(b,c,e),(b,c, f),(b,d,e),(b,d,f),(b,e, f),(c,d, f),(c,e, f),(d,e, f)共20 种,其中恰好抽中 1 名优秀生的结果有(a,b, d) , (b,c,d) , (c,a,d) , (a, b,e), (b,c,e) (c,a,e), (a,b, f), (b,c, f) , (c, a, f)共 9 种,9 所以恰好抽中1名优秀生的概率为 P = — . 201 1-cos2sx 、、3 . c 1 sin2 x —2 2 2 2 .f x 的值域是[;,2]人 TE JI JI 31H (3)令 2kx 2x 2kx (k Z),则 kx x < kx (k Z), 2 62 3 6 所以函数f (x 的单调减区间为 半n fZ+ft k ^Z )二 二 3 二 二2 令 2kx 2x 2kx (k Z),则 kx x _ kx (k Z), 2 6 2 63 所以函数f (x 的单调增区间为 」k n n,k n 2 Z ) - 6 322.解:(1) f(x)=sin%x -巧sinxco 岡x直线y =2的图象的两相邻交点之间的距离为 二,则 T - ”:,所以.=1/ I + IT ⑵” x [厂】2x 6 7 13■:[6, 6 n1 ].sin(2x ) [-1] 62 n 二 1 - sin(2 ■ x )与 6。
郑州市2017—2018学年下学期期末考试高一数学(高清扫描版含答案)
![郑州市2017—2018学年下学期期末考试高一数学(高清扫描版含答案)](https://img.taocdn.com/s3/m/12c937403b3567ec102d8aa5.png)
……8 分
uuur uuur 又 AB × AD = 0 ,
所以
uuur AE
×
uuur BF
=
uuur ( AB
+
1 2
uuur
uuur
AD)[(m-1) AB
+
uuur AD]
=
(m
-
uuur 1) AB
2
+
1 2
uuur AD
2
=
9(m
- 1)
+8
=
2
,
解得
m
=
1 3
,所以
DF
的长为
1.
……12 分
av - bv
r ×b
av - bv
r b
=
4 ´ (-3) + (-2) ´ 4
(4)2 + (-2)2 ´ (-3)2
+ 42
=
-
2
5 5
,……5 分
( ) (2) av - lbv = (1+ 3l, 2 - 4l ) ∵ av ^ av - lbv ,
( ) ∴ av × av - lbv = 0 \1´ (1+ 3l ) + 2´ (2 - 4l ) = 0 ,解得 l = 1 .……10 分
1
2
3
4
2017—2018 学年下学期期末考试 高一数学 参考答案
一、 选择题
BABCB BDADC CB
二、 填空题
13.
1 13
14.60
15. -16
16.
55p 12
三、解答题
17. 解:(1) av - bv = (4, -2) ,设 av - bv 与 av 的夹角为q ,
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案](https://img.taocdn.com/s3/m/22b5ddd181c758f5f61f6799.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
2017—2018学年郑州高一年级下期期末考试数学试卷(电子版)及参考答案
![2017—2018学年郑州高一年级下期期末考试数学试卷(电子版)及参考答案](https://img.taocdn.com/s3/m/34f7704df01dc281e53af04e.png)
2017-2018学年下期期末考试高一数学试题卷注意事项:本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡 第I 卷(选择题,共60一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有是符合题目要求的 1.sin585°的值为( ) A .12 2 B .-12 2 C .-12 3 D .12 32.已知向量a=(-3,5),b=(5,3),则a 与b ( )A.垂直B.不垂直也不平行C.平行且同向D.平行且反向 3.下列各式中,值为的是( ) A.2sin15°cos15° B.cos 215°-sin 215° C.2sin 215°-1 D. sin 215 +cos 2154.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( ) A .19,13; B.13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个 球,则两个小球同色的概率是( )A .23B .25C .12D .136.函数y=[cos(x+π4)+ sin(x+π4)][cos(x+π4)-sin(x+π4)]在一个周期内的图象是( )7.设单位向量e 1,e 2的夹角为60°,则向量3e 1+4e 2与向量e 1的夹角的余弦值( ) A .34 B .537 C .25 37 37 D .5 37 378如果右面程序框图运行的结果s=1320,那么判断框应填入( ) A .k<10? B.k>10? C.k<11? D.k>11?9甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C .14 D .156410.已知函数∫(x)=sin(2x+φ)的图象关于直线x=π6对称,则φ可能取值是( )A .π2B .-112 πC .π6D .-π611.如图所示,点A,B,C 是圆O 上的三点,线段OC 与线段AB 于圆内一点P,若=m+3m,,则λ=( )A .56B .45C .34D .2512.已知平面上的两个向量和满足||=cosa,||=sina,a ∈[0, π2],·=0,若向量=λ+μ(λ, μ∈R),且(2λ-1)2cos 2a+(2μ-1)2sin 2a=4,则||的最大值是( )A .32B .34C .35D .37第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分把答案填在题中的横线上) 13. 已知tan α=4,tan(π-β)则tan(α+β)=14.已知样本7,8,9,x,y 的平均数是8,标准差是 2 ,则xy= 15.已知△ABC 的三边长AC=4,BC=3,AB=5,P 为AB 边上的任意一点,的最小值为16.将函数f(x)=2sin(2x+π6)的图像向左平移112 π个单位,再向下平移2个单位,得到g(x)的图像,若g(x 1)g(x 2)=16,且x 1,x 2∈[-2π,2π],则2x 1-x 2的最大值为三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分) 已知向量a=(1,2),b=(-3,4)(I)求向量a-b 与向量b 夹角的余弦 (Ⅱ)若a ⊥(a-λb),求实数λ的。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案](https://img.taocdn.com/s3/m/2edafbd60975f46527d3e18f.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
(精编)河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案
![(精编)河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案](https://img.taocdn.com/s3/m/3e2cc6eaad51f01dc281f17b.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A .2 B .2- C .2- D .22.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+ 4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537 C.37.378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-.(I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式;(II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB二、填空题13.113 14.60 15.16- 16.5512π三、解答题 17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()223)(2)44cos a a b bb b θ-⋅+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫-⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-.. 19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=,解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
(精编)河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案
![(精编)河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案](https://img.taocdn.com/s3/m/75fd8c04ee06eff9aef8076b.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A ..-2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .5378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-.(I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=-+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域;(III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB二、填空题13.113 14.60 15.16- 16.5512π三、解答题 17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()23)(2)44cos 5a ab bb b θ-⋅+-⨯===-- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫-⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-.. 19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下期末考试数学试题含答案
![河南省郑州市2017-2018学年高一下期末考试数学试题含答案](https://img.taocdn.com/s3/m/24bccde665ce050877321312.png)
2017-2018学年下期期末考试高一数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值为( )0sin 585A B . C . 2.已知向量(),(),则与( )a =3,5-b =5,3a b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向3.的是( ) A . B . C .002sin15cos152020cos 15sin 15-202sin 151-D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,19 5.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( )A .B . C. D . 232512136.函数在一个周期内的图像cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦是( )A .B . C.D .7.设单位向量,的夹角为60°,则向量与向量的夹角的余弦值是( )1e 2e 1234e e +1eA .B .345378.如果下面程序框图运行的结果,那么判断框中应填入( )1320s =A .B . C. D .10?k <10?k >11?k <11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( )A .B . C. D . 18113614156410.已知函数的图像关于直线对称,则可能取值是( ) ()sin(2)f x x ϕ=+6x π=ϕA . B . C. D . 2π12π-6π6π-11.如图所示,点,,是圆上的三点,线段与线段交于圈内一点,若A B C O OC AB P ,,则( )3OC mOA mOB =+ AP AB λ= λ=A .B . C. D . 5645342512.已知平面上的两个向量和满足,,,OA OB cos OA α= sin OB α= [0,2πα∈,若向量,且0OA OB ⋅= (,)OC OA OB R λμλμ=+∈ ,则的最大值是( ) 22221(21)cos 2(21)sin 4λαμα-+-=OC A . B . C. D . 32343537第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,,则 .tan 4α=tan()3πβ-=tan()αβ+14.已知样本7,8,9,,的平均数是8,则 .x y xy =15.已知的三边长,,,为边上的任意一点,则ABC ∆4AC =3BC =5AB =P AB 的最小值为 .()CP BC BA - A 16.将函数的图像向左平移个单位,再向下平移2个单位,得到()2sin(2)6f x x π=+12π()g x 的图像,若,且,,则的最大值为 .12()()16g x g x =1x 2[2,2]x ππ∈-122x x -三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量,.(1,2)a =(3,4)b =-(I )求向量与向量夹角的余弦值 a b -b (II )若,求实数的值.()a a b λ⊥-λ18.某同学用“五点法”画函数在某一个周期内的图()sin()(0,)2f x A x B πωϕωϕ=++><像时,列表并填入了部分数据,如下表:。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案](https://img.taocdn.com/s3/m/b9220426c281e53a5802ffaa.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=-+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题word版有答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题word版有答案](https://img.taocdn.com/s3/m/8796a47f102de2bd97058832.png)
高一下期期末考试数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( ) A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+ 4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( ) A .34 B .53725375378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+u u u r u u u r u u u r ,AP AB λ=u u u r u u u r,则λ=( )A .56B .45 C.34 D .2512.已知平面上的两个向量OA u u u r 和OB uuu r 满足cos OA α=u u u r ,sin OB α=u u u r ,[0,]2πα∈,0OA OB ⋅=u u u r u u u r ,若向量(,)OC OA OB R λμλμ=+∈u u u r u u u r u u u r ,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC u u u r 的最大值是( )A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -u u u r u u u r u u u rg的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nni i i i x x y y x y nx yb x x x nx====---==--∑∑∑∑,$ay bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+u u u r u u u r u u u r,求λμg 的值;(II )若3AB =,4BC =,当2AE BE =u u u r u u u rg 时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin 3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-vv ,设a b -vv 与a v的夹角为θ,所以()cos 5a a bbbb θ-⋅===--vv r r vv , (2)()13,24a b λλλ-=+-vv ()a a b λ⊥-v v Q v ,∴()0a a b λ⋅-=v v v()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)$712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx ybxnxay bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑$$∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EF EC CF =+u u u r u u u r u u u r,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+u u u r u u u r u u u r u u u r u u u r ,在矩形ABCD 中,,BC AD CD AB ==-u u u r u u u r u u u r u u u r ,所以,1142EF AB AD =-+u u u r u u u r u u u r ,即14λ=-,12μ=,则18λμ⋅=-.(2)设DF mDC =u u u r u u u r(0)m >,则(1)CF m DC =-u u u r u u u r ,1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,又0AB AD ⋅=u u u r u u u r,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+u u u r u u u r u u u r u u u r u u u r u u u r 221(1)2m AB AD =-+u u u r u u u r 9(1)82m =-+=,解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x sin x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-Q ()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案](https://img.taocdn.com/s3/m/1d8dd523227916888486d78a.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A .2 B .2- C .2- D .22.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3.下列各式中,值为2的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .5378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式;(II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x sin x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案](https://img.taocdn.com/s3/m/4d721bb85ef7ba0d4b733b3d.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A .2 B .2- C .2- D .22.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .5378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos 5a ab bb b θ-⋅⨯-+-⨯===-- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=-+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案
![河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案](https://img.taocdn.com/s3/m/a09475782e3f5727a5e962d3.png)
2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin 585的值为( )A ..-2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .5378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-.(I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=-+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域;(III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB二、填空题13.113 14.60 15.16- 16.5512π三、解答题 17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()23)(2)44cos 5a ab bb b θ-⋅+-⨯===-- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫-⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫-⎪⎝⎭,.因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-.. 19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一下期期末考试数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( ) A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+ 4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( ) A .34 B .53725375378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+u u u r u u u r u u u r ,AP AB λ=u u u r u u u r,则λ=( )A .56B .45 C.34 D .2512.已知平面上的两个向量OA u u u r 和OB uuu r 满足cos OA α=u u u r ,sin OB α=u u u r ,[0,]2πα∈,0OA OB ⋅=u u u r u u u r ,若向量(,)OC OA OB R λμλμ=+∈u u u r u u u r u u u r ,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC u u u r 的最大值是( )A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -u u u r u u u r u u u rg的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nni i i i x x y y x y nx yb x x x nx====---==--∑∑∑∑,$ay bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+u u u r u u u r u u u r,求λμg 的值;(II )若3AB =,4BC =,当2AE BE =u u u r u u u rg 时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin 3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-vv ,设a b -vv 与a v的夹角为θ,所以()cos 5a a bbbb θ-⋅===--vv r r vv , (2)()13,24a b λλλ-=+-vv ()a a b λ⊥-v v Q v ,∴()0a a b λ⋅-=v v v()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)$712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx ybxnxay bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑$$∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EF EC CF =+u u u r u u u r u u u r,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+u u u r u u u r u u u r u u u r u u u r ,在矩形ABCD 中,,BC AD CD AB ==-u u u r u u u r u u u r u u u r ,所以,1142EF AB AD =-+u u u r u u u r u u u r ,即14λ=-,12μ=,则18λμ⋅=-.(2)设DF mDC =u u u r u u u r(0)m >,则(1)CF m DC =-u u u r u u u r ,1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,又0AB AD ⋅=u u u r u u u r,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+u u u r u u u r u u u r u u u r u u u r u u u r 221(1)2m AB AD =-+u u u r u u u r 9(1)82m =-+=,解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x sin x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-Q ()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。