气动技术基本知识
气动技术培训资料
气动技术培训资料气动技术培训资料(一)气动技术是一种利用压缩气体进行工程控制和传动的技术领域。
它在各个行业中广泛应用,包括生产制造、工程建设、能源管理等等。
通过学习气动技术,我们可以了解气动元件的工作原理、气动回路的设计与搭建以及气动系统的操作和维护等内容。
下面将为大家介绍一些气动技术培训资料,以帮助大家更好地理解和应用气动技术。
一、气动元件的工作原理气动元件是气动系统中重要的组成部分,它们能够实现压缩空气的输送、转换和控制。
在气动技术培训中,我们首先需要了解气动元件的工作原理。
1.1 阀门类气动元件阀门类气动元件包括单向阀、调节阀、电磁阀等,它们通过控制压缩空气的通断和流量来实现气动系统的控制。
其中,单向阀的作用是只允许空气单向流动,而调节阀则可以根据需要调整空气的流量和压力。
电磁阀通过电磁原理实现气体的通断和控制。
1.2 执行元件类气动元件执行元件类气动元件主要包括气缸和气动马达等。
气缸是将气压能转变为机械能的装置,常用于推动、拉动和升降物体。
气动马达则将气压能转化为机械能,在工程设备中常用于驱动旋转运动。
以上是气动元件的一些基本工作原理,深入学习气动元件的工作原理可以帮助我们更好地理解和应用气动技术。
二、气动回路的设计与搭建气动回路是指由气动元件组成的传动系统,用于完成特定的工作任务。
在气动技术培训中,学习气动回路的设计与搭建是必不可少的。
2.1 回路的设计气动回路的设计是根据工作任务的要求和气动元件的性能特点来确定的。
在设计气动回路时,我们需要考虑以下几个方面:首先,需要明确工作任务的要求,包括工作轨迹、推力大小等参数。
其次,根据工作任务的要求,选择适当的气动元件进行组合,包括阀门类和执行元件类。
最后,根据设计要求确定气路布置、管线布局和阀门的控制方式等。
2.2 回路的搭建回路的搭建需要根据设计图纸进行操作,包括将气动元件按照一定的布局连接好,保证气体能够在回路中正常流动。
在搭建回路时,需要注意以下几个方面:首先,确保气动元件的连接口没有漏气现象,可以使用密封圈等密封材料增加密封性能。
《气动基础知识》课件
《气动基础知识》课件一、教学内容本节课主要围绕《气动基础知识》教材的第一章“气动系统概述”进行展开。
详细内容包括气动系统的基本组成、工作原理、气动元件的功能及分类等。
具体章节为1.1节“气动系统简介”,1.2节“气动系统的基本组成”及1.3节“气动元件的分类及功能”。
二、教学目标1. 了解气动系统的基本组成,掌握气动系统的工作原理。
2. 掌握气动元件的分类及功能,能够正确区分和应用各种气动元件。
3. 能够分析并解决简单的气动系统故障。
三、教学难点与重点教学难点:气动元件的分类及功能,气动系统的故障分析。
教学重点:气动系统的基本组成,气动系统的工作原理。
四、教具与学具准备1. 教具:气动系统演示模型、PPT课件、视频资料。
2. 学具:气动元件实物、气动系统图解、练习题。
五、教学过程1. 实践情景引入:通过展示气动系统演示模型,让学生直观地了解气动系统的实际应用,激发学习兴趣。
2. 理论讲解:1) 介绍气动系统的基本组成,解释工作原理。
2) 讲解气动元件的分类及功能,结合实物进行展示。
3. 例题讲解:分析一个简单的气动系统故障,引导学生运用所学知识解决问题。
4. 随堂练习:分发练习题,让学生现场解答,巩固所学知识。
六、板书设计1. 气动系统的基本组成2. 气动系统的工作原理3. 气动元件的分类及功能4. 气动系统故障分析及解决方法七、作业设计1. 作业题目:1) 列出气动系统的基本组成,并简述其工作原理。
2) 画出气动元件的分类图,并说明各类型元件的功能。
2. 答案:1) 气动系统的基本组成为:气源装置、执行元件、控制元件、辅助元件。
2) 气动元件分类图略。
3) 故障分析及解决方法略。
八、课后反思及拓展延伸1. 反思:本节课学生对气动系统的基本概念和组成有了较为清晰的认识,但对气动元件的分类及功能掌握不够扎实,需要在下节课进行巩固。
2. 拓展延伸:引导学生了解气动系统在现代工业中的应用,探索气动技术的前沿发展。
气动技术相关知识讲解(最全的气动知识讲解159页)
26
压缩空气中的灰尘和油雾
• 大气中的尘埃 压缩机自带的过滤器很难除去大气中2~5μm以下的尘
埃杂质。 随着空气的压缩,空气的体积减小,同一体积的空气
内,尘埃密度增加。
• 压缩机中的润滑油 随着压缩机的运转,其运动部分的润滑油进入到压缩空
气中,同时随着压缩温度的增高,油雾会碳化。
个/l以下
29
厂房配管
AF
带后冷却器的空压机
10bar AT
气罐
排水沟道
自动排水器
30
环状管道配置供气可靠 性高,压力损失小,且 压力较稳定但投资高;
每条支路及两支路间都 设置截至阀,支管末端 安装排水器
31
配管须知
• 管道须保持倾斜度,以便使凝聚的水分能被收集和有排水器 排出系统外。 • 分支管路必须由主管路顶部分分出,以免水分进入分支管路。 • 要适当的配置过滤器,以去除管内的铁锈和油雾。 • 管道须清洁后方可安装。 • 缠绕密封带至管螺纹时,要露出最后2个螺纹,以免密封带 碎片落入管道内。 • 采用环状配管的方式。
从空压机输出的压缩空气中,含有大量的水分、 油分和粉尘等杂质,必须适当清除这些杂质, 以避免他们对气动系统的正常工作造成危害。
•杂质的来源
由系统外部通过空压机等吸入的杂质 由系统内部产生的杂质 系统安装和维修时产生的杂质
20
压缩机
•作用
将电能转化成压缩空气的压力能,供气 动机械使用
•分类
活塞式
往复式
气源处理及辅件
FRL 组合元件
按钮式人力控制
FRL 简化符号 压力表 压力继电器 消声器 气压源
手柄式人力控制 踏板式人力控制 挺杆式机械控制 弹簧控制 滚轮式机械控制
气动技术第一讲气动基础知识 ppt课件
记忆回路,双气控二位五通阀
• 由于双气控二位五通阀的 记忆特性,作为发讯元件
的按钮阀,其产生的气信
号可以是短信号或脉冲信
号。一旦驱动按钮阀( 1S1)动作,在双气控二 位五通阀的控制口(14 )上就有气信号,结果使
双气控二位五通阀换向, 气缸(1A1)活塞杆伸出 。
启动按钮时的气动回路见
图。
16
比较驱动按钮阀的顺序 。
18
记忆回路,双气控二位五通阀
• 可调单向节流阀可对气 缸活塞杆伸出或回缩的 速度进行调节,通常采 用排气节流方式。只有 在控制口(14)上有气 信号(该信号由按钮阀 (1S1)产生),气缸活 塞杆才伸出。此时,压 缩空气进入无杆腔,双 气控二位五通阀保持当 前位置,不换向。 讨论同时驱动按钮阀1S1 和1S2动作时,气动回路 的动作情况。
4、辅助元件:保证系统正常工作所需要的辅助装 置,包括气管、管接头、储气罐、过滤器等。
4
气动系统示意图
5
气动系统示意图
气 缸
6
直接控制,已驱动
• 在该回路中,因 只有一个执行元 件—气缸,所以 ,气缸被标识为 1A1。使气缸活 塞杆伸出的控制 元件被标识为 1S1。
7
间接控制,未驱动
• 按下按钮时, 气缸(大缸径 ,单作用)活 塞杆将伸出。 按钮阀可安装 在距气缸较远 的位置上。一 旦松开按钮, 气缸活塞杆将 回缩。
24
气动技术的发展趋势
• 〈2〉、小型化、轻量化:由于气动技术在 电子行业、工业自动化等领域的应用,气 动元件必须小型化和轻量化。各种新技术、 新材料的应用,使气动元件实现了小型化 和轻量化。
19
气动顺序回路
• 气动顺序回路通常具有 下列特征:驱动按钮阀 动作时,气缸(1A1) 活塞杆伸出,需确认动 作顺序中的每一工步。 该气动回路的动作顺序 为A+B+A-B-。
气动基础知识
第二章 气动基础知识2.1 气动技术常用单位换算各换算关系入表2.1所示:表2-1 单位换算表一、长度(Length )cm m in ft 1 0.01 0.39370.0328 100 1 39.3713.2809 2.54 0.0254 1 0.0833 30.48 0.3048 12 1 二、质量(Mass)kg lb1 2.20.4536 1三、面积(Area ) cm 2 m 2 in 2 ft 2 1 0.01 0.15500.001076 四、重量或力(Force) Kgf(千克力) Kp (千克力) N(Newton) lbf (磅-力)1 1 9.812.2 五、压力(Pressure) kg /cm 2atm lb/in 2(psi) bar MPa(N/m 2) l 0.9678 14.2230.9807 0.09807六 、流量(Flow) m 3/hr Ft 3/hr l /Min 1 35.317 16.6667七、体积(Volume)m 3 dm 3或l ft 3 1 1000 35.317 0.0283228.315l2.2 气动技术常用公式:一、基本单位:长度l:m ,质量m :kg ,时间t :S ,体积:m 3或l 一、基本公式:(一) 力(Force): a m F ⋅= (2s m kg N ⋅=); 牛顿定律 (二) 重量(weight):g m G ⋅= (2smkg N ⋅=);(三) 压力:A F P =(2mN Pa =); 1Pa=10-5bar 上式为巴斯卡原理(Pascal ’s theory)(四) 波义尔定律:见图2.1(说明压力与体积成反比)2211V P V P =(五) 查理定律(charle ’s Law ):图2.1波义尔定律222111T V P T V P = 说明压力与体积的变 化与温度成正比。
(六) 流量公式:V A Q ⋅= (smm s m ⋅=23)说明了流量为管路截面积与流速之乘积,见图2.2。
2024年气动基础知识培训课件
2024年气动基础知识培训课件一、教学内容本次教学内容选自《气动技术基础》教材第1章至第3章,主要涉及气动元件的基础理论、气动系统的基本构成及工作原理。
详细内容包括:气动元件的分类及功能、气动系统的设计原则、气动控制阀的类型及选用、气缸的结构及性能参数、气动马达的应用、气动系统故障诊断与维护。
二、教学目标1. 掌握气动元件的分类、功能及选型原则,能够根据实际需求设计气动系统;2. 了解气动系统的基本构成和工作原理,能够分析气动系统故障并进行简单维护;3. 培养学生的动手实践能力和团队协作精神,提高解决实际问题的能力。
三、教学难点与重点教学难点:气动系统的设计原则、气动控制阀的类型及选用、气动系统故障诊断与维护。
教学重点:气动元件的分类及功能、气动系统的基本构成及工作原理、气缸的结构及性能参数。
四、教具与学具准备教具:气动元件实物、气动系统模型、PPT课件、黑板、粉笔。
学具:教材、笔记本、计算器、画图工具。
五、教学过程1. 导入:通过展示气动系统在实际应用中的图片和视频,引起学生的兴趣,引导学生进入学习状态。
2. 理论讲解:(1)讲解气动元件的分类、功能及选型原则;(2)介绍气动系统的基本构成和工作原理;(3)分析气动控制阀的类型及选用;(4)阐述气缸的结构及性能参数;(5)介绍气动马达的应用;(6)讲解气动系统故障诊断与维护。
3. 实践操作:(1)分组讨论,设计一个简单的气动系统,并选用合适的气动元件;(2)利用气动元件实物,搭建气动系统模型,观察并分析系统的工作状态;(3)进行气动系统故障诊断与维护的实践操作。
4. 例题讲解:结合教材,讲解气动系统设计的相关例题。
5. 随堂练习:布置一些气动系统设计的练习题,让学生巩固所学知识。
六、板书设计1. 气动元件的分类及功能;2. 气动系统的基本构成及工作原理;3. 气动控制阀的类型及选用;4. 气缸的结构及性能参数;5. 气动系统故障诊断与维护。
七、作业设计1. 作业题目:(1)简述气动元件的分类及功能;(2)阐述气动系统的基本构成和工作原理;(3)分析一个气动系统的故障原因,并提出解决方法。
《气动技术概述》PPT课件
h
13
第8章 气动技术概述
2)
小型化气动元件,如气缸及阀类正应用于许多工业领 域。微型气动元件不但用于精密机械加工及电子制造业,而 且用于制药业、医疗技术、包装技术等。在这些领域中,已 经出现活塞直径小于2.5 mm的气缸、 宽度为10 mm的气阀 及相关的辅助元件,并正在向微型化和系列化方向发展。
第8章 气动技术概述
第8章
8.1 气动系统 8.2 气动技术的应用 8.3 气动技术的特点和应用准则 8.4 气动技术的发展趋势
h
1
第8章 气动技术概述
8.1 气动系统
气动(气压传动)系统是一种能量转换系统,其工作 原理是将原动机输出的机械能转变为空气的压力能, 利用管路、各种控制阀及辅助元件将压力能传送到执 行元件,再转换成机械能,从而完成直线运动或回转 运动,并对外做功。气动系统的基本构成如图8-1所示。
h
3
第8章 气动技术概述
8.2 气动技术的应用
气动技术用于简单的机械操作中已有相当长的时间了, 最近几年随着气动自动化技术的发展,气动技术起到了重 要的作用。
气动自动化控制技术是利用压缩空气作为传递动力或 信号的工作介质,配合气动控制系统的主要气动元件,与 机械、液压、电气、电子(包括PLC控制器和微机)等部 分或全部综合构成的控制回路,使气动元件按工艺要求的 工作状况,自动按设定的顺序或条件动作的一种自动化技 术。用气动自动化控制技术实现生产过程自动化,是工业 自动化的一种重要技术手段, 也是一种低成本自动化技术。
h
5
第8章 气动技术概述
图8-2 货物自动装卸
h
6
第8章 气动技术概述
图8-3 气动机械手
h
7
气动技术基本知识
气动技术基本知识气动技术是通过空气流动来实现力或运动控制的一种技术。
它利用气体的压缩和膨胀特性,通过控制空气流动的方向、速度和压力,实现对机械设备的控制和驱动。
气动技术的基本原理是利用压缩空气作为介质传递能量。
通过压缩空气产生的压力和流量,可以驱动气缸、旋转马达等执行器,实现对机械设备的运动控制。
在气动系统中,一般会使用压缩空气作为动力源,通过压缩机将大气中的空气压缩至一定的压力水平,然后通过管道将压缩空气传输至需要的位置。
气动系统由压缩机、制气装置、管道、执行器和控制装置等组成。
其中,压缩机负责将大气中的空气压缩,并将压缩空气输送至制气装置。
制气装置的主要作用是除去压缩空气中的杂质和水分,确保其纯净度和干燥度,防止对系统和执行器的损坏。
管道用于将压缩空气从制气装置传输至执行器的位置,通常需要考虑管道的直径、长度和材质等参数。
执行器接受压缩空气的驱动,将其能量转化为机械运动,完成相应的任务。
控制装置用于对气动系统进行控制和调节,通常包括各种传感器、阀门、计时器、压力表等。
气动技术具有很多优点。
首先,气动系统的动作速度快,响应时间短,能够满足高速运动的需求。
其次,气动系统具有较高的功率密度,可以在较小的空间内提供较大的动力输出。
此外,气动元件结构简单、可靠性高,维修和更换方便,成本较低。
另外,气动系统还具有防腐、不易受污染等特点,适用于恶劣的工作环境。
然而,气动技术也存在一些缺点。
由于气体的可压缩性,气动系统在传递动力和运动过程中会有一定的能量损失。
此外,气动系统所使用的压缩空气需要经过制气装置处理,增加了系统的复杂性和成本。
此外,在一些对静音要求较高的环境下,气动系统可能产生噪音。
总的来说,气动技术是一种常用的力和运动控制技术,被广泛应用于机械制造、自动化生产线、工业机器人等领域。
了解气动技术的基本原理和构成,可以帮助人们更好地应用和维护气动系统,提高生产效率和产品质量。
气动技术在工业领域中得到了广泛应用,并成为实现力和运动控制的重要手段。
气动技术第一讲气动基础知识
记忆回路,双气控二位五通阀
• 由于双气控二位五通阀的 记忆特性,作为发讯元件
的按钮阀,其产生的气信
号可以是短信号或脉冲信
号。一旦驱动按钮阀( 1S1)动作,在双气控二 位五通阀的控制口(14 )上就有气信号,结果使
双气控二位五通阀换向, 气缸(1A1)活塞杆伸出 。
启动按钮时的气动回路见
图。
16
8
间接控制,已驱动
• 只要按下按钮,
控制口(12)就
有气信号,这是
一个按钮阀控制
单作用气缸的举
例。若松开按钮
,则在弹簧作用
下,按钮阀复位
,控制口(12)
上的气信号消失
。
9
“与”逻辑(双压阀)
• 将双压阀输入与按 钮阀和滚轮杠杆阀 的输出相连接,当 按钮阀(1S1)动 作时,双压阀只有 左边输入口(1) 有气信号,由于双 压阀阻断了这个气 信号,所以,其输 出口(2)上没有 气信号输出。
10
“与”逻辑(双压阀)
• 若滚轮杠杆阀( 1S2)也动作, 则双压阀输出口 (2)上就有气信 号输出,从而驱 动换向阀(1V1 )换向,使气缸 活塞杆伸出。
11
“或”逻辑(梭阀)
• 当要求二个按钮阀中任 何一个动作,气缸活塞
杆都伸出时,无经验设
计者也许会将两个按钮 阀(1S1和1S2)的工 作口连接起来。在这种
化 5、气动系统在恶劣工作环境中,安全可靠性优于液压等系
统 6、气动系统可实现过载保护,可压缩性气体便于贮存能量 7、气动设备可以自动降温,长期运行也不会发生过热现象 8、空气取之不尽,节省购买、贮存、运输的费用
21
气压传动
气压传动的缺点: 1、工作压力较低,输出功率较小 2、气信号传递的速度慢,不宜用于高速传递
气动技术第一讲气动基础知识
执行元件的运动速度 较快
慢
慢
速度稳定性
较差
良好
很好
控制精度
较差
高
一般
防爆性
好 用非可燃油才能防火 好
气动技术的发展趋势
• 〈1〉、电气一体化:微电子技术与气动元 件相结合组成了PC机—接口—小型阀—气 缸的电气一体化的气动系统。同时,与电 子技术相结合的自适应控制气动元件已经 问世,如压力比例阀、流量比例阀等,使 气动技术从以往的开关控制进入到高精度 的反馈控制,使定位精度提高到±0.1~ 0.01. 电气一体化已渗透到工厂本身的加工、 装配、检测等生产领域。
气动与其它传动方式比较
1、气动技术的优缺点
气压传动与其它传动方式的比较:
项目
气压传动 液压传动 机械传动
系统结构
简单
复杂
稍复杂
安装自由度
大
大
小
使用维护
简单 比气动系统复杂 简单
清洁度
清洁
油污染
较清洁
技术要求
较低
较高
较低
寿命
长
较长
长
价格
便宜
较贵
一般
传动效率
<30%
<70% 90%左右
驱动力
小~中
中~极大 小~大
气动技术的发展趋势
• 〈2〉、小型化、轻量化:由于气动技术在 电子行业、工业自动化等领域的应用,气 动元件必须小型化和轻量化。各种新技术、 新材料的应用,使气动元件实现了小型化 和轻量化。
• 〈3〉、复合集成化:为节省空间、减少配 管、减化装配、提高效率,多功能复合化 和集成化的元件相继出现,如:将所需数 目的阀配置在集成板上,带阀气缸等。
粘度发生变化时,流量也会跟着改变, 造成速度不稳定。
气动技术基本知识
气动技术基本知识目录1. 气动技术概述 (3)1.1 气动技术的定义与应用 (4)1.2 气动技术的历史与发展 (5)2. 气动力学基础 (7)2.1 流体力学原理 (7)2.2 伯努利原理 (9)2.3 压差与流体动力 (10)3. 气动系统设计 (11)3.1 空口设计 (12)3.2 管道与管件设计 (13)3.3 阀门与调节器选择 (15)4. 气动元件 (16)4.1 气缸与活塞 (17)4.2 电磁阀与继电器 (18)4.3 空气压缩机与真空发生器 (19)5. 气动控制 (20)5.1 原理与方法 (22)5.2 逻辑控制器 (23)5.3 通讯协议与接口 (25)6. 气动应用 (26)6.1 工业自动化 (27)6.2 移动机器与机器人 (29)6.3 医疗设备 (30)7. 气动系统维护与保养 (31)7.1 日常维护 (32)7.2 故障诊断与排除 (33)7.3 更新与升级 (34)8. 安全与法规遵从 (36)8.1 气体类型与分类 (37)8.2 安全标准与规范 (38)8.3 应急措施与培训 (40)9. 节能减排 (41)9.1 气动系统的能效 (43)9.2 气动改造与效能提升 (44)9.3 环境影响与对策 (46)10. 气动技术发展趋势 (47)10.1 智能化与自动化 (48)10.2 信息化与数据管理 (50)10.3 绿色节能技术 (52)1. 气动技术概述又称航空力学,是一门研究气体流动与其周围物体的相互作用的科学,核心在于理解介于固体和流体之间的能量和力转化过程。
它涵盖了气流的本性、流动规律、力和机遇的预测以及如何应用这些原理来设计、优化和控制各种飞行器、机械设备和工程系统。
流体力学:研究流体静力学和流体力学的基本原理,包括压力、流速、粘滞性和伯努利定律等。
气流场分析:通过数值方法和实验方法,分析流体在不同形状结构周围运动的特性。
气动外形设计:根据气动原理,设计出具有良好阻力系数、升力和操控性的飞机、火箭、汽车等外形。
第一篇 气动技术基本知识
气动技术基本知识空气的基本性质气体状态参数密度ρ:单位体积内所含气体的质量称为密度。
单位为kg/m³。
压力p:压力可用绝对压力、表压力和真空度来衡量。
绝对压力:以绝对真空作为起点的压力值。
一般在表示绝对压力的符号的右下脚标注“ABS”,即PABS表压力:高出当地大气压的压力值。
由压力表测得的压力值即为表压力。
在工程计算中,常将当地大气压力用标准大气压力代替,即令Pa=101325Pa真空度:低于当地大气压的压力值。
真空压力:绝对压力与大气压之差。
真空压力在数值上与真空度相同,但应在其数值前加负号。
温度T :在工程计算中常用热力学温度T,其单位名称为开[尔文],单位符号为K,和我们生活中的摄氏温度(℃)换算关系为:T=t+T0,T0=273.15K。
气体状态参数气体状态方程空气的物理性质波义尔法则(等温)一定质量的气体,若其状态变化是在温度不变的条件下进行的,则称为等温过程。
P1V1=P2V2例如,大气罐中的气体长时间的经小孔向外放气,气罐中气体的状态变化过程可看作是等温过程。
查理法则(等容)一定质量的气体,若其状态变化是在体积不变的条件下进行的,则称为等容过程。
P1/T1=P2/T2密闭气罐中的气体,由于外界环境温度的变化,使罐内气体状态发生变化的过程也可看作等容过程。
盖-吕莎克法则(等压)一定质量的气体,若其状态变化是在压力不变的条件下进行的,则称为等压过程。
V1/V2=T1/T2负载一定的密闭气罐,被加热或放热时,缸内气体便在等压过程中改变气缸的容积。
流体力学的基本知识伯努利方程式有效截面积S值理想气体流过最小截面积为S的收缩喷管,当流动处于壅塞流态(指压缩空气通过收缩管或拉瓦尔管,在最小截面处达到声速时,若上游总压力和总温度保持一定,无论怎样降低管道下游的压力,通过管道的质量流量都不会增大的现象,只是在声速流和超声速流状态才存在),元件的有效截面积S值大小几乎不受元件上游总压和总温的影响。
气动技术基本知识
⽓动技术基本知识⼀、⽓动技术基本知识1. ⽓动技术中常⽤的单位1个⼤⽓压=760mmHg =1.013bar =101kpa 压⼒单位换算1N/㎡=bar 105-=1002.17-?kgf/m ㎡=1002.15-?kgf/c ㎡ 1kgf/c ㎡=0.1Mpa 2. ⽓动控制装置的特点⑴空⽓廉价且不污染环境,⽤过的⽓体可直接排⼊⼤⽓⑵速度调整容易⑶元件结构紧凑,可靠性⾼⑷受湿度等环境影响⼩⑸使⽤安全便于实现过载保护⑹⽓动系统的稳定性差⑺⼯作压⼒低,功率重量⽐⼩⑻元件在⾏程中途停⽌精度低3. ⽓动系统的组成⽓动系统基本由下列装置和元件组成(1)⽓源装置——⽓动系统的动⼒源提供压缩空⽓ (2)空⽓处理装置——调节压缩空⽓的洁净度及压⼒ (3)控制元件⽅向控制元件——切换空⽓的流向流量控制元件——调节空⽓的流量 (4)逻辑元件——与或⾮(5)执⾏元件——将压⼒能转换为机械功(6)辅助元件——保证⽓动装置正常⼯作的⼀些元件压缩机 a )⽓源装置储⽓罐后冷却器过滤器油雾分离器减压阀 b )空⽓调节油雾器处理装置空⽓净化单元⼲燥器其它电磁阀⽓缸⽓压控制阀带终端开关⽓缸⽅向控制阀机械操作阀带制动器⽓缸⼿动阀⽓缸带锁⽓缸其它带电磁阀⽓缸其它速度控制阀C )控制元件速度控制阀 d )执⾏元件节流阀摆动缸回转执⾏件逻辑阀空⽓马达管⼦接头消⾳器 e )辅助元件压⼒计其它⼆、空⽓处理元件压缩空⽓中含有各种污染物质。
由于这些污染物质降低了⽓动元件的使⽤寿命。
并且会经常造成元件的误动作和故障。
表1列出了各种空⽓处理元件对污染物的清除能⼒。
1.空⽓滤清器空⽓滤清器⼜称为过滤器、分⽔滤清器或油⽔分离器。
它的作⽤在于分离压缩空⽓中的⽔分、油分等杂质,使压缩空⽓得到初步净化。
2.油雾分离器油雾分离器⼜称除油滤清器。
它与空⽓滤清器不同之处仅在于所⽤过滤元件不同。
空⽓滤清器不能分离油泥之类的油雾,原因是当油粒直径⼩于2~3цm 时呈⼲态,很难附着在物体上,分离这些微粒油雾需⽤凝聚式过滤元件,过滤元件的材料有:1)活性炭2)⽤与油有良好亲和能⼒的玻璃纤维、纤维素等制成的多孔滤芯 3.空⽓⼲燥器为了获得⼲燥的空⽓只⽤空⽓滤清器是不够的,空⽓中的湿度还是⼏乎达100%。
气动技术知识总结
1、气动技术是以压缩空气为介质,以空气压缩机为动力源,实现能量传递或信号传递与控制的工程技术。
2、气动是气动技术或气压传动与控制的简称。
它是流体传动与控制的重要组成技术之一,也是实现工业自动化和机电一体化的重要途径。
3、一个较完善的机电一体化系统包括动力部分、执行部分、机械部分、检测传感部分、控制部分、信息处理部分,各部分之间通过接口相联系。
通过控制系统发送控制信号,由执行部分产生力和运动的输出。
4、气动技术的优点:简单、方便:气动装置结构简单、轻便、安装维护方便。
输出速度大:气缸动作速度一般为50~500mm/s,比液压和电气方式的速度快。
有良好的缓冲性:对冲击负载和负载过载具有较强的适应能力。
可靠性高、使用寿命长:电器元件的有效动作次数约为数百万次,而电磁阀(如SMC公司生产的电磁阀)的寿命大于3000万次,小型阀超过1亿次。
无污染:工作介质是空气,无污染。
安全性:气动压力等级低,具有防火、防爆、耐潮的能力,与液压方式相比可在高温条件下使用,同时,对于振动、腐蚀具有较强的耐受力,因而,具有很高的安全性。
在很多特殊场合具有不可比拟的优越性。
成本低:在自动化系统中,与单纯分别采用机械、电气、液压的传动与控制方式相比,气动方式成本低,经济性好。
5、气动技术的缺点:能量利用率低:电气传动的效率在90%以上,液压传动的的效率为70~80%,气压传动的的效率为30~40%。
实施精确控制的难度较大:气体的压缩性大。
6、气动元件的制造过程:精密压铸、挤压成型、精密加工、表面处理、装配、性能测试7、气源设备气源设备:空气压缩机:产生压缩空气的动力源气源处理设备:过滤器:清除压缩空气中的水分、油污和灰尘;干燥器:进一步清除压缩空气中的水分;自动排水器:自动排除冷凝水8、气动元件的类型及其功能气动执行元件:气缸:推动工件作直线运动。
摆动气缸:推动工件在一定角度范围内作摆动气马达:驱动工件作连续旋转运动。
气爪:抓取工件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速度控制阀
C)控制元件速度控制阀d)执行元件
节流阀
摆动缸
回转执行件
逻辑阀
空气马达
管子接头
消音器
e)辅助元件压力计
其它
污染物质的去除能力
污染物质
过滤器
油雾分离器
干燥器
水蒸气
微小水雾
微小油雾
水滴
固体杂质
×
×
×
○
○
×
○
○
○
○
○
○
×
○
×
表1
二、空气处理元件
压缩空气中含有各种污染物质。由于这些污染物质降低了气动元件的使用寿命。并且会经常造成元件的误动作和故障。表1列出了各种空气处理元件对污染物的清除能力。
6.油雾器
气动系统中有很多装置都有滑动部分如:气缸体与活塞,阀体与阀芯等。为了保证滑动部分的正常工作需要润滑,油雾器是提供润滑油的装置
三、控制元件
一、方向控制阀
方向控制阀是气动控制回路中用来控制气体流动方向和气流通断,从而使气路中的执行元件能按要求方向进行动作的元件。在各类元件中,方向控制阀的种类最多。主要有换向阀和单向阀两大类。前者包括电磁阀,气控阀等,后者主要有单向阀,梭阀等,应用都很广泛。
流量控制阀分为节流阀,速度控制阀和排气节流阀数种等。
1.节流阀
可调式节流阀依靠改变的流通面积来调节气流。
2.速度控制阀
速度控制阀由节流阀和单向阀组合而成。故而又叫单向节流阀,通过调节流量达到控制执行元件速度的目的。
三、压力控制阀
压力控制阀是利用阀芯上的气压作用力和弹簧力保持平衡来进行工作的,平衡状态的任何破坏都会使阀芯位置产生变化,其结果不是改变阀口开度的大小(例如溢流阀、减压阀),就是改变阀口的通断(例如安全阀,顺序阀)。
二位阀有自复位和自保持两种。三位阀的阀芯除了可以停在阀体的两端外,还可有一个中间位置。
气动阀通过气压信号切换阀芯,分成直接作动式和间接作动式两种,气动阀犹如去掉了电磁线圈后的电磁阀。由于采用气压信号控制,所以动作慢,不能指望像电磁阀那样高速动作,但寿命一般都较长。气动控制阀与电磁阀的区别是不用电磁铁,因而控制信号不是电信号而是气压信号,常用于防爆场合或不用电的简易生产线上。
与图6相比,这个回路只是用带自保持功能的双电磁铁电磁阀代替了弹簧复位的单电磁铁电磁阀。这种电磁阀在一侧线圈通电切换后,它可以在遇到紧急情况(例如电源断电)时立即停止不动。
这种回路普遍用于卡紧物体或抓持重物的气动路中。
d)双气源供气回路
这是将气源分别连接到二位五通阀的R1、R2接口上使用的回路。P口为公共排气口,气缸与电磁阀之间的连接与通常的连接相反。图11示出了其回路图。
在入口节流方式中,气缸出口一侧排气较快,因而容易受到所供气压变动的影响。对于所加负载为变动负载的情况,速度稳定性差,因而除了特殊回路(例如防止失控回路等),一般都采用下面将要介绍的出口节流式。
c)出口节流式
这种方式通过调节气缸的排气流量来控制气缸速度。图8示出了这种方式的回路图。注意,速度控制阀的方向与入口节流式相反。来自换向阀的空气流过速度控制阀时,单向阀打开,于是成为自由流,气流在不受控制的情况下流向气缸。而来自气缸一侧的空气使单向阀关闭,由节流阀调节流量,从而控制气缸活塞的速度。
1)活性炭
2)用与油有良好亲和能力的玻璃纤维、纤维素等制成的多孔滤芯
3.空气干燥器
为了获得干燥的空气只用空气滤清器是不够的,空气中的湿度还是几乎达100%。当湿度降时,空气中的水蒸气就会变成水滴。为了防止水滴的产生,在很多情况下还需要使用干燥器。干燥器大致可分为冷冻式和吸附式两类。
4.空气处理装置
空气滤清器、调压阀和油雾器等组合在一起,即称为空气处理装置。
1.换向阀
换向阀主要有转阀和滑阀两大类本公司主要使用滑阀结构的换向阀。
滑阀依靠其中的滑柱式阀芯处在不同位置上来接通或切断气路的。一般地讲,阀芯的切换位置主要有二个或三个,即有二位阀和三位阀之分。
表中□代表了阀的一个切换位置,故而有几个长方形表示该阀是几位的。长方形中的箭头表示在该位置上气流流动的方向,┻则表示在这一位置上气流被切断。
e)中途位置停止回路(中位封闭式)
图12示出了使用中位封闭式三位五通换向阀使气缸在中途任意位置停止的回路。
如果让线圈①,②交替通电,断电,那么,同使用二位五通阀时一样,气缸活塞将作往复运动。在活塞运动过程中,如果两个线圈都断电,则电磁阀靠弹簧作用返回中位,接口全部被封闭。气缸靠推力差(包括负载的气缸盖一侧同气缸杆一侧的推力差)少许移动一段后停止。当无负载时,气缸杆一侧活塞的受压面积较小,所以气缸活塞往气缸杆一侧移动。停止后,如果气缸、配管、电磁阀没有泄漏,活塞将保持在停止位置上,当线圈①或②再次通电时,活塞重新做前进或后退。这样,虽然可以让活塞在中途停止,但由于空气有压缩性,所以不能期望有较高的停止精度。此外,有的电磁阀(滑阀)允许有一定的泄漏,所以在长时间停止于中位时,活塞会缓慢的漂移运动。在回路中添加锁紧回路(由双个气控单向阀构成)可避免这种现象。
⑸使用安全便于实现过载保护
⑹气动系统的稳定性差
⑺工作压力低,功率重量比小
⑻元件在行程中途停止精度低
3.气动系统的组成
气动系统基本由下列装置和元件组成
(1)气源装置——气动系统的动力源提供压缩空气
(2)空气处理装置——调节压缩空气的洁净度及压力
(3)控制元件
方向控制元件——切换空气的流向
流量控制元件——调节空气的流量
a)空气处理三联件(FRL装置)
空气处理三联件俗称气动三大件。它是由滤清器、调压阀和油雾器三件组成的,
b)空气处理双联件
这是由组合式过滤器减压阀与油雾器组成的空气处理装置。
c)空气处理四联件
它是由滤清器、油雾分离器、调压阀和油雾器四件组成,用于需要优质压缩空气的地方。
5.调压阀(减压阀)
调压阀是输出压力低于输入压力,并保持输出压力稳定的压力控制元件。由于大多是与滤清器和油雾器连成一体使用,所以把它分在空气处理元件一类中。
(4)逻辑元件——与或非
(5)执行元件——将压力能转换为机械功
(6)辅助元Βιβλιοθήκη ——保证气动装置正常工作的一些元件
压缩机
a)气源装置储气罐
后冷却器
过滤器
油雾分离器
减压阀
b)空气调节油雾器
处理装置空气净化单元
干燥器
其它
电磁阀气缸
气压控制阀带终端开关气缸
方向控制阀机械操作阀带制动器气缸
手动阀气缸带锁气缸
其它带电磁阀气缸
2.单向阀
如图1单向阀只允许气流沿一个方向流动而不能反向流动。单向阀用在气路中需要防止空气逆流的场合,还可用在气源停止供气时需要保持压力的地方。梭阀相当于两个单向阀合成,有两个进气口,一个出气口,因而无论哪个进气口进气,出口总有输出,且出口总和压力高的进气口相联。双压阀则是“与”的功能,只有两口均有气流时才会使出口有输出。
在气缸的两个口都按出口节流式连接速度控制阀时,活塞靠两侧的压差(由排气一侧的速度控制阀调整)动作。因此,在负载变动的情况下,它比入口节流方式有更好的速度稳定性。出口节流是应用得最普通的方式。
d)排气节流式
这种方式是将节流阀连接在换向阀的排气口上,调节排气的流量来控制气缸的速度。因为气缸的进气气流不经过节流阀,所以不需要单向阀。在调节排气流量来实现速度控制这一点上,它同出口节流式完全相同,不过,如果气缸与换向阀之间的管路较长,这一部分就成了气罐,使回路的响应变差,负载变动时,速度就会不稳定。
2.气缸的速度控制回路
基于不同的目的和条件,可使用各种回路对气缸进行速度控制。下面介绍通常使用的基本回路。
b)入口节流式
这种方式通过调节供给气缸的流量,对气缸的速度加以控制。图7示出了这种方式的路图。来自换向阀的空气流过速度控制阀时,单向阀关闭,气流只有通过节流阀流向气缸,因为节流阀是可调的,所以通过调整节流阀便可设定气缸活塞的速度。气流反向流动时,即从气缸一侧流向阀一侧时,单向阀打开,空气流量不受控制(自由流)。
主要气缸主要类型和特点见附表2。
五、气动回路
(一)回路设计基础
1)路的构成(图4)
2)控制方式
(二)驱动回路
1.驱动气缸的基本回路
在通常使用的气缸中有单作用气缸和双作用气缸。以下介绍驱动这些气缸的基本回路。
1)单作用气缸只在一个方向上的运动靠压缩空气驱动,靠弹簧力的作用回程。
图5为使用单作用气缸作往复运动的气路图。换向阀(电磁阀)使用二位三通阀。换向阀的P口与气源净化装置相连接,A口与气缸相连接。速度控制阀接在换向阀与气缸之间。速度控制阀有方向性,连接时不可接反。
一、气动技术基本知识
1.气动技术中常用的单位
1个大气压=760mmHg
=1.013bar
=101kpa
压力单位换算
1N/㎡= = kgf/m㎡= kgf/c㎡
1kgf/c㎡=0.1Mpa
2.气动控制装置的特点
⑴空气廉价且不污染环境,用过的气体可直接排入大气
⑵速度调整容易
⑶元件结构紧凑,可靠性高
⑷受湿度等环境影响小
在诸如用气缸升降重物等场合,当气缸伸出、缩回时,负载会有较大的不平衡。这时可采用这种双气源供气回路。一般只对一个供气口(气缸上无负载作用的一侧)的压力进行减压,以取得压力(包括负载)平衡.由于一般调压阀空气不能反向流动,所以调压阀应接在电磁阀之前.此外,并不是所有种类的电磁阀都允许从R口供气,使用时要注意选择可从R口供气的电磁阀.
1.溢流阀
溢流阀由进口(P)处的气压压力控制阀芯动作,当进口处压力达到预设值时阀芯克服弹簧力动作使得进、出口导通,从而实现溢流作用。如图3(a)所示。
(a) (b)
2.减压阀
减压阀则是由出口处压力驱动阀芯,当出口处压力达到预设值时阀芯克服弹簧力动作使得进、出口截断,从而实现减压作用。如图3(b)所示。