第5次课 第三章 精密磨削加工(1)

第5次课 第三章  精密磨削加工(1)
第5次课 第三章  精密磨削加工(1)

教案

精密与特种加工技术课后答案

《精密与特种加工技术》课后答案 第一章 1.精密与特种加工技术在机械制造领域的作用与地位如何 答:目前,精密和特种加工技术已经成为机械制造领域不可缺少的重要手段,在难切削材料、复杂型面、精细零件、低刚度零件、模具加工、快速原形制造以及大规模集成电路等领域发挥着越来越重要的作用,尤其在国防工业、尖端技术、微电子工业方面作用尤为明显。由于精密与特种加工技术的特点以及逐渐被广泛应用,已引起了机械制造领域内的许多变革,已经成为先进制造技术的重要组成部分,是在国际竞争中取得成功的关键技术。精密与特种加工技术水平是一个国家制造工业水平的重要标志之一。 2.精密与特种加工技术的逐渐广泛应用引起的机械制造领域的那些变革 答:⑴提高了材料的可加工性。 ⑵改变了零件的典型工艺路线。 ⑶大大缩短新产品试制周期。 ⑷对产品零件的结构设计产生很大的影响。 ⑸对传统的结构工艺性好与坏的衡量标准产生重要影响。 3.特种加工工艺与常规加工工艺之间有何关系应该改如何正确处理特种加工与常规加工之 间的关系 答:常规工艺是在切削、磨削、研磨等技术进步中形成和发展起来的行之有效的实用工艺,而且今后也始终是主流工艺。但是随着难加工的新材料、复杂表面和有特殊要求的零件越来越多,常规传统工艺必然难以适应。所以可以认为特种加工工艺是常规加工工艺的补充和发展,特种加工工艺可以在特定的条件下取代一部分常规加工工艺,但不可能取代和排斥主流的常规加工工艺。 4.特种加工对材料的可加工性以及产品的结构工艺性有何影响举例说明. 答:工件材料的可加工性不再与其硬度,强度,韧性,脆性,等有直接的关系,对于电火花,线切割等加工技术而言,淬火钢比未淬火钢更容易加工。 对传统的结构工艺性好与坏的衡量标准产生重要影响,以往普遍认为方孔,小孔,弯孔,窄缝等是工艺性差的典型,但对于电火花穿孔加工,电火花线切割加工来说,加工方孔和加工圆孔的难以程度是一样的,相反现在有时为了避免淬火产生开裂,变形等缺陷,故意把钻孔开槽,等工艺安排在淬火处理之后,使工艺路线安排更为灵活。 第二章 1.简述超精密加工的方法,难点和实现条件 答:超微量去除技术是实现超精密加工的关键,其难度比常规的大尺寸去除加工技术大的多,因为:工具和工件表面微观的弹性变形和塑性变形是随即的。精度难以控制,工艺系统的刚度和热变形对加工精度有很大的影响,去除层越薄,被加工便面所受的切应力越大,材料就

精密与特种加工

精密与超精密加工 1 什么是精密与超精密加工? 目前在工业发达国家中, 一般工厂能稳定掌握的加工精度是 1 微米。 与此相应, 通常将加工 精度 在 0.1~1微米、加工表面粗糙度 Ra 在 0.02~0.1 微米之间的加工方法称为精密加工;而 将加工精度 高于 0.1微米、加工表面粗糙度 Ra 小于 0.01 微米的加工方法称为超精密加工。 2 积屑瘤对切削力的影响规律;能够画出积屑瘤的模型;会解释积屑瘤产生规律的原因 规律: 积屑 瘤高时切削力大,积屑瘤小时切削力也小,和普通切削钢时的规律正好相反。普 通切削切钢时, 积 屑瘤可增加刀具的前角, 故积屑瘤增大可使切削力下降, 但是超精密切削 时积屑瘤增大反而使切削 力增大; 模型如图; 产生原因: 1)积屑瘤前端 R 大约 2~3μm ,实际切削力由积屑瘤刃口半径 R 起作用,切削 力明 显增加 。 2)积屑瘤与切削层和已加工表面间的摩擦力增大,切削力增大。 3)实际 切削厚度超过名义值,切削厚度增加 ,切削力增加。 3 会画金刚石晶体三个面的原子分布图、面网距、面网密度的计算。 4 理解掌握我国采用哪个晶面作为前后刀面;为什么? 应考虑因素:刀具耐磨性好;刀刃微观强度 高,不易产生微观崩刃;刀具和被加工材料间摩 擦系数低,使切削变形小,加工表面质量高;制造研 磨容易。 110 晶面 面积= D 2 面积= 2D 2 原子数 4x1/4+1=2 原子数 4x1/4+2x1/2+2=4 原子数 3x1/6+3x1/2=2 面网密度 2/D 2 面网密度 4/ 2D 2 面网密度 2/( 3D 2 /2) 4/ 3D 2

精密和超精密砂带磨削时磨削机理的研究现状及发展趋势

精密和超精密砂带磨削时磨削机理的研究现状及发展趋势 机电工程系 20124329049 齐伟 摘要:介绍了砂带磨削的特点、应用及关键技术,论述了砂带磨削技术的发展趋势。砂带磨削作为一种新的加工技术,在国外已得到广泛应用,发展非常迅速。砂带磨削是一种高效率、低成本、多用途的磨削加工新方法,它对于各种材料及形状零件加工的适应性和灵活性远超过常规砂轮磨削工艺。 关键词:砂带;磨削;砂带磨削 目录 一、砂带磨削的机理和特点 (1)

二、国内外砂带磨削技术的研究及应用现状 (3) 三、砂带磨削趋势 (6) 引言: 随着汽车、建材、航空及轻工业的进步和发展, 对金属材料和非金属材料特别是难加工材料如不锈钢、钛合金、半导体材料、陶瓷材料等的表面加工质量、

精度、完整性等提出了更高要求, 若采用传统的车削、铣削等工艺方法难以满足这些要求。而砂带磨削作为一种磨削和抛光的新工艺, 是一种优质、高效、低耗的加工方法, 已成为精密、超精密加工的有效方法之一, 在各行各业发挥着越来越大的作用, 现已成为国内外材料和机械交叉学科中引人注目的领域, 具有很大的发展潜力。 一、砂带磨削的机理和特点 1.砂带的结构特点: 砂带是特殊形态的多刀、多刃的切削工具,其切削功能主要是由粘附在基底上的磨粒来完成。 如上图所示,砂带由基材、磨料和粘结剂三要素组成。基材可以是布或纸;粘接剂为胶或人造树脂;磨料可为刚玉、碳化硅或者玻璃砂等。基材在运动的过程中采用高压静电植砂的办法粘结上磨粒,因此砂带上的磨粒几乎都是垂直于基底,锐端向外,定向排列,分布均匀,多刃也基本上是等高排列的。 2.砂带磨削的切削原理: 砂带磨削是根据工件的形状与大小,以相应的方式,使高速运转的砂带与工件表面接触进行磨削或抛光的一种新工艺。 砂带机一般由电机、砂带、接触轮、张紧轮、张紧弹簧与支架、吸尘器及其它辅助部件等组成: 接触轮通常多采用橡胶轮,具有弹性接触的性能,并能在磨削的过程中起一定

精密与特种加工

精密与超精密加工 1什么是精密与超精密加工? 目前在工业发达国家中,一般工厂能稳定掌握的加工精度是1微米。与此相应,通常将加工精度在0.1~1微米、加工表面粗糙度Ra 在0.02~0.1微米之间的加工方法称为精密加工;而将加工精度高于0.1微米、加工表面粗糙度Ra 小于0.01微米的加工方法称为超精密加工。 2积屑瘤对切削力的影响规律;能够画出积屑瘤的模型;会解释积屑瘤产生规律的原因 规律:积屑瘤高时切削力大,积屑瘤小时切削力也小,和普通切削钢时的规律正好相反。普通切削切钢时,积屑瘤可增加刀具的前角,故积屑瘤增大可使切削力下降,但是超精密切削时积屑瘤增大反而使切削力增大; 模型如图; 产生原因:1)积屑瘤前端R 大约2~3μm ,实际切削力由积屑瘤刃口半径R 起作用,切削力明显增加 。 2)积屑瘤与切削层和已加工表面间的摩擦力增大,切削力增大。3)实际切削厚度超过名义值,切削厚度增加 ,切削力增加。 3会画金刚石晶体三个面的原子分布图、面网距、面网密度的计算。 100晶面 110晶面 111晶面 面积= 面积= 面积= 原子数4x1/4+1=2 原子数 4x1/4+2x1/2+2=4 原子数3x1/6+3x1/2=2 面网密度 面网密度 面网密度 面网距 面网距 面网距 22D 2D 2 /32D 2/2D 22/4D 2 23/4)2/3/(2D D

4理解掌握我国采用哪个晶面作为前后刀面;为什么? 应考虑因素:刀具耐磨性好;刀刃微观强度高,不易产生微观崩刃;刀具和被加工材料间摩擦系数低,使切削变形小,加工表面质量高;制造研磨容易。 选用(100)晶面的原因: (111)不适合作前后面。推荐采用(100)晶面作金刚石刀具的前后面,理由如下: 1)(100)晶面的耐磨性高于(110)晶面; 2 )(100)晶面的微观破损强度高于(110)晶面,(100)晶面受载荷时的破损机率比(110)晶面低很多; 3 ) (100)晶面和有色金属之间的摩擦系数要低于(110)晶面的摩擦系数。 5理解晶体的解理现象;金刚石哪个晶面容易产生解理现象,为什么? 解理现象:是某些晶体特有的现象,晶体受到定向的机械力作用时,沿平行于某个平面平整的劈开的现象; 原因:(111)面的宽的面间距(0.154nm)是金刚石晶体中所有晶面间距中的最大的一个,并且其中的连接共价键数最少,只需击破一个价键就可使其劈开,故劈开比较容易。金刚石内部的解理劈开,在绝大多数情况下是与(111)面网平行,在两个相邻的加强(111)面网之间。在解理劈开时,可以得到很平的劈开平面。 6精密磨削加工机理;精密磨削砂轮如何选择? 精密磨削主要是靠砂轮的精细修整,使磨粒具有微刃性和等高性,磨削后被加工表面留下大量极微细的磨削痕迹,残留高度极小,加上无火花磨削阶段的作用,获得高精度和小表面粗糙度表面,因此精密磨削机理可以归纳为以下几点:a微刃的微切削作用;b微刃的等高切削作用;c微刃的滑挤、摩擦、抛光作用。 精密磨削使所用砂轮的选择以易产生和保持微刃及其等高性为原则。包括砂轮的粒度选择,砂轮结合剂的选择。 7超精密磨削加工机理(会画图解释单颗粒的磨削过程) (1)超微量切除精密和超精密磨削是一种极薄切削,切屑厚度极小,磨削深度可能小于晶粒的大小,磨削就在晶粒内进行,因此磨削力一定要超过晶体内部非常大的原子、分子结合力,从而磨粒上所承受的切应力就急速地增加并变得非常大,可能接近被磨削材料的剪切强度的极限。同时,磨粒切削刃处受到高温和高压作用,要求磨粒材料有很高的高温强度和高温硬度。对于普通磨,在这种高温、高压和高剪切力的作用下,磨粒将会很快磨损或崩裂,以随机方式不断形成新切削刃,虽然使连续磨损成为可能,但得不到高精度、低表面粗糙度值的磨削质量。因此,在超精密磨削时般多采用人造金刚石、立方氮化硼等超硬磨料砂轮。 (2)单颗粒磨削加工过程砂轮中的磨粒分布是随机的,磨削时磨粒与工件的接触也是无规律的,为研究方便起见,对单颗粒的磨削加工过程进行分析。 1)磨粒是一颗具有弹性支承(结合剂)的和大负前角切削刃的弹性体。 2)磨粒切削刃的切入深度是从零开始逐渐增加,到达最大值再逐渐减少,最后到零。 3)磨粒磨削时在工件中,开始是弹性区,继而塑性区、切削区、塑性区,最后是弹性区。4)超精密磨削时有微切削作用、塑性流动和弹性破坏作用,同时还有滑擦作用。 磨削加工是无数磨粒的连续磨削。加工的实质是工件被磨削的表层,在无数磨粒瞬间的挤压,摩擦作用下产生变形,而后转为磨屑,并形成光洁表面的过程。

精密与超精密磨削技术

精密与超精密磨削技术 一、精密与超精密磨削技术 国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削研究,以获得亚微米级尺寸精度。微细磨料磨削,用于超精密镜面磨削树脂结合剂砂轮金刚石磨粒平均直径可小至4μm。日本用激光研磨过人造单晶金刚石上切出大量等高性一致微小切刃,对硬脆材料进行精密磨削加工,效果很好。超硬材料微粉砂轮超精密磨削主要用于磨削难加工材料,精度可达0.025μm。日本开发了电解线修整(ELID)超精密镜面磨削技术,使得用超细微(或超微粉)超硬磨料制造砂轮成为可能,可实现硬脆材料高精度、高效率超精密磨削。作平面研磨运动双端面精密磨削技术,其加工精度、切除率都比研磨高得多,且可获得很高平面度,工具模具制造,磨削保证产品精度质量最后一道工序。技术关键除磨床本身外、磨削工艺也起决定性作用。磨削脆性材料时,由于材料本身物理特性,切屑形成多为脆性断裂,磨剂后表面比较粗糙。某些应用场合如光学元件,这样粗糙表面必须进行抛光,它虽能改善工件表面粗糙度,但由于很难控制形状精度,抛光后经常会降低。为了解决这一矛盾,80年代末日本欧美众多公司研究机构相继推回了两种新磨削工艺:塑性磨削(Ductile Grinding)镜面磨削(Mirror Grinding)。 1.塑性磨削它主要针对脆性材料而言,其命名来源出自该种工艺切屑形成机理,即磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切形式被磨粒从基体上切除下来。所以这种磨削方式有时也被称为剪切磨削(Shere Mode Grindins)。由此磨削后表面没有微裂级形成,也没有脆必剥落时元规则凹凸不平,表面呈有规则纹理。 塑性磨削机理至今不十分清楚切屑形成由脆断向逆性剪切转变为塑断,这一切削深度被称为临界切削深度,它与工件材料特性磨粒几何形状有关。一般来说,临界切削深度100μm以下,因而这种磨削方法也被称为纳米磨削(Nanogrinding)。根据这一理论,有些人提出了一种观点,即塑性磨削要靠特殊磨床来实现。这种特殊磨床必须满足如下要求:(1)极高定位精度运动精度。以免因磨粒切削深度超过100μm时,导致转变为脆性磨削。 (2)极高刚性。因为塑性磨削切削力远超过脆性磨削水平,机床刚性太低,会因切削力引起变形而破坏塑性切屑形成条件。 2.镜面磨削顾名思义,它关心不切屑形成机理而磨削后工件表面特性。当磨削后工件表面反射光能力达到一定程度时,该磨削过程被称为镜面磨削。镜面磨削工件材料不局限于脆性材料,它也包括金属材料如钢、铝钼等。为了能实现镜面磨削,日本东京大学理化研究所NakagawaOhmori教授发明了电解线修整磨削法ELID(Electrolytic In-Process Dressing)。 镜面磨削基本出发点:要达到境面,必须使用尽可能小磨粒粒度,比如说粒度2μm乃至0.2μm。ELID发明之前,微粒度砂轮工业上应用很少,原因微粒度砂轮极易堵塞,砂轮必须经常进行修整,修整砂轮辅助时间往往超过了磨削工作时间。ELID首次解决了仅用微

精密与特种加工技术课后习题解答

精密与特种加工技术复习资料 第一章 1.精密与特种加工技术在机械制造领域的作用与地位如何答:目前,精密和特种加工技术已经成为机械制造领域不可缺少的重要手段,在难切削材料、复杂型面、精细零件、低刚度零件、模具加工、快速原形制造以及大规模集成电路等领域发挥着越来越重要的作用,尤其在国防工业、尖端技术、微电子工业方面作用尤为明显。由于精密与特种加工技术的特点以及逐渐被广泛应用,已引起了机械制造领域内的许多变革,已经成为先进制造技术的重要组成部分,是在国际竞争中取得成功的关键技术。精密与特种加工技术水平是一个国家制造工业水平的重要标志之一。 2.精密与特种加工技术的逐渐广泛应用引起的机械制造领域的那些变革 答:⑴提高了材料的可加工性。 ⑵改变了零件的典型工艺路线。 ⑶大大缩短新产品试制周期。 ⑷对产品零件的结构设计产生很大的影响。 ⑸对传统的结构工艺性好与坏的衡量标准产生重要影响。 3.特种加工工艺与常规加工工艺之间有何关系应该改如何正

确处理特种加工与常规加工之间的关系 答:常规工艺是在切削、磨削、研磨等技术进步中形成和发展起来的行之有效的实用工艺,而且今后也始终是主流工艺。但是随着难加工的新材料、复杂表面和有特殊要求的零件越来越多,常规传统工艺必然难以适应。所以可以认为特种加工工艺是常规加工工艺的补充和发展,特种加工工艺可以在特定的条件下取代一部分常规加工工艺,但不可能取代和排斥主流的常规加工工艺。 4.特种加工对材料的可加工性以及产品的结构工艺性有何影响举例说明. 工件材料的可加工性不再与其硬度,强度,韧性,脆性,等有直接的关系,对于电火花,线切割等加工技术而言,淬火钢比未淬火钢更容易加工。 对传统的结构工艺性好与坏的衡量标准产生重要影响,以往普遍认为方孔,小孔,弯孔,窄缝等是工艺性差的典型,但对于电火花穿孔加工,电火花线切割加工来说,加工方孔和加工圆孔的难以程度是一样的,相反现在有时为了避免淬火产生开裂,变形等缺陷,故意把钻孔开槽,等工艺安排在淬火处理之后,使工艺路线安排更为灵活。 第二章

精密和超精密加工

1、精密和超精密加工的三大领域:超精密切削、精密和超精密磨削研磨、精密特种加工。 2、金刚石刀具进行超精密切削时,适合加工铝合金、无氧铜、黄铜、非电解镍等有色金属 和某些非金属材料。 3、最硬的刀具是天然单晶金刚石刀具。金刚石刀具的的寿命用切削路程的长度计算。 4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性 能状态、切削时的环境条件等直接相关。 5、影响超精密切削极限最小切削厚度最大的参数是切削刃钝圆半径r n。 6、金刚石晶体有3个主要晶面,即(100)、(110)、(111),(100)晶面的摩擦因数曲线有 4个波峰和波谷,(110)晶面有2个波峰和波谷,(111)晶面有3个波峰和波谷。 以摩擦因数低的波谷比较,(100)晶面的摩擦因数最低,(111)晶面次之,(110)晶面最高。 比较同一晶面的摩擦因数值变化,(100)晶面的摩擦因数差别最大,(110)次之,(111)晶面最小。 7、实际金刚石晶体的(111)晶面的硬度和耐磨性最高。 推荐金刚石刀具的前面应选(100)晶面。 8、(110)晶面的磨削率最高,最容易磨;(100)晶面的磨削率次之,(111)晶面磨削率最 低,最不容易磨。 9、金刚石的3个主要晶面磨削(研磨)方向不同时,磨削率相差很大。现在习惯上把高磨 削率方向称为“好磨方向”,把低磨削率方向称为“难磨方向”。 10、金刚石磨损本质是微观解离的积累;破损主要产生于(111)晶面的解离。 11、金刚石晶体定向方法:人工目测定向、X射线晶体定向、激光晶体定向。其中激光晶体 定向最常用。 12、金刚石的固定方法有:机械夹固、用粉末冶金法固定、使用粘结或钎焊固定。 13、精密磨削机理包括:微刃的微切削作用,微刃的等高切削作用,微刃的滑挤、摩擦、 抛光作用。 14、超硬磨料砂轮修整的方法有:车削法、磨削法、滚压挤轧法、喷射法、电加工法、超 声波振动修整法。电解在线修锐法(ELID—electrolytic in—process dressing),原理是利用电化学腐蚀作用蚀出金属结合剂。. 15、砂带磨削的方式包括闭式砂带磨削和开式砂带磨削,又称为“弹性”磨削、“冷态”磨 削、“高效”磨削、“廉价”磨削、“万能”磨削。 16、超精密机床主轴的驱动方式主要有:电动机通过带传动驱动机床主轴、电动机通过柔 性联轴器驱动机床主轴、采用内装式同轴电动机驱动机床主轴。 17、今年生产的中小超精密机床多采用T形机床总体布局。 18、保证零件加工精度的途径: ○1靠所用的机床来保证,即机床的精度要高于工件所要求的精度,这是“蜕化”原则,也称之为“母性”原则。 ○2在精度比工件要求较低的机床上,利用误差补偿技术,提高加工精度,使加工精度比机床原有精度高,这是“进化”原则,也称之为“创造性”原则。 19、提高现有设备加工精度的途径:误差的隔离和消除和误差的补偿。 20、加工精度的检测分为:离线检测、在位检测和在线检测。 21、误差补偿的形式或方法包括:误差的修正、校正、抵消、均匀化、钝化、分离等。 22、误差补偿系统的组成:误差信号的检测、误差信号的处理、误差信号的建模、补偿控 制和补偿执行机构。

精密加工技术期末复习资料

1.精密加工研究包括哪些主要内容? 精密加工机床,金刚石刀具,精密切削机理,稳定的加工环境,误差补偿,精密测量技术二.实现精密与超精密加工应具备哪些条件?试结合金刚石刀具精密切削简述切削用量对加工质量的影响及主要控制技术? ①精密加工机床-精密机床主轴轴承要求具有很高的回转精度,转动平稳,无振动,其关键在于主轴轴承 ②金刚石刀具-金刚石刀具的刀口半径只能达到0.1-0.3/um。当刃口半径小于0.01um时,必须解决测量上的难题。金刚石晶体的晶面选择。金刚石刀具刃口的锋利性 ③精密切削机理-掌握其变化规律 ④稳定的加工环境-包括恒温防振和空气净化 ⑤误差补偿-通过消除或抵消误差本身的影响,达到提高加工精度的目的 ⑥精密测量技术-精密加工要求测量精度比加工精度高一个数量级 3.试述常用几种主轴轴承的特点,并说明为什么目前大部分精密和超精密机床采用空气轴承? ①液体静压轴承-特点:转动平稳无振动,达到较高的刚度 空气轴承-特点:刚度低,承受载荷小 ②空气轴承造成的热变形小,刚度低,只能承受较小的载荷,超精密切削时切削力小,空气轴承能满足要求 4.试述在线检测和误差补偿技术在精密加工中的作用 精密和超精密加工的精度是依靠检测精度来保证的,而为了消除误差进一步提高加工精度,必须使用误差补偿技术 5.常用微量进给装置有哪些种类与作用? ①机械传动或液压传动式②弹性变形式③热变形式④流体膜变形式⑤磁致伸缩式⑥电致伸缩式作用:为了实现精密与超精密加工 6.金刚石刀具破损形式 ①裂纹:结构缺陷可产生裂纹,另外当切屑经过刀具表面时,金刚石收到循环应力的作用也可产生裂纹②碎裂:由于金刚石材料较脆,在切削过程中收到冲击和振动都会使金刚石刀刃产生细微的解理形成碎裂③解理:金刚石晶面方面选择不当,切削力容易引起金刚石的解理,刀具寿命下降 7.金刚石刀具磨损形式 ①机械磨损②破损③碳化磨损 8.微量进给机构的作用及类型 ①电致伸缩微量进给装置,作用:用于误差在线补偿②机械结构弹性变形微量进给装置,作用:用于手动操作③压电或电致伸缩微量进给装置,作用:用于实现自动微量进给 9.导轨类型 ①滚动导轨②液体静压导轨③气浮导轨和空气静压导轨 10.为什么精密切削加工会产生碾压作用? 在刃口圆弧处,不同的切削深度,刀具的实际前角是变化的,实际前角为较大的负前角,在刀具刃口圆弧处将产生很大的挤压摩擦作用,被加工表面将产生残余压应力 1.精密磨削加工按磨料加工大致分为哪几类?试述其特点及适用场合 ①磨料加工,固结磨料加工:磨削,砂轮磨削,砂带磨削研磨等 游离磨料加工:抛光,研磨:干式研磨,湿式研磨,磁式研磨。滚磨:回转式,振动式,离心式,主轴式,涡流式,衍密等②特点磨削除可以加工铸铁、碳钢。合金钢等一些一般结构材料外,还能加工一般刀具难以切削的高硬度材料如淬火钢,但不宜精加工塑性

精密磨削

浅谈磨削加工对模具寿命的影响 分析了磨削加工工艺对模具寿命的影响,提出减少磨削缺陷的有效措施,从而保证和提高模具使用寿命。 关键词:磨削加工措施模具寿命 模具制造是模具设计的延续,是验证设计正确性的过程。在现代模具生产中采用了先进、高效、高精密机床和自动化生产技术。磨削加工工作量将占模具总的制造工时的25%~45%。我国模具工业发展到今天取得了巨大的进步,但仍然与国外先进水平有较大的差距,在模具寿命上的比较见附表。模具制造的成品质量与模具制造精度密切相关,特别是与模具型腔面的精度和表面粗糙度有着密切关系。 实际生产中,影响模具失效的因素有:①模具结构;②模具材料;③冷热加工的制造工艺(锻造、热处理、切削加工、磨削加工、电加工等);④模具工作条件。要提高模具寿命,必须对导致模具损伤的原因及各种影响因素进行认真分析,制定克服的办法和措施。 目前,在国际上有两种模具制造工艺路线:一是以提高机械加工与电加工的精度与质量,使手工精加工的工作量降到最低,如高精密机床和高速成型铣床及其加工工艺的发展,为这条工艺路线的发展奠定基础。二是侧重精加工中的抛光和研磨工艺,其

加工工时,与机械加工、电火花加工时间几乎相等。一副模具是由众多的零件组配而成,零件的质量直接影响着模具的质量,而零件的最终质量又是由精加工来保证的。在国内大多数的模具制造企业,精加工阶段采用的方法一般是磨削、电加工及钳工处理。 磨削加工对模具寿命的影响未引起人们的充分重视,由于不正确的磨削工艺,造成工件表面烧伤、磨削裂纹、磨削痕及产生磨削应力,致使后续工序及模具在服役期间的机械疲劳、冷热疲劳产生裂纹的萌生源,严重影响模具的使用寿命。 研究和探讨如何提高磨削加工质量,提高模具使用寿命、延长服役时间,促进采用模具新技术,正是本文的目的。 1 模具的磨削加工 磨削过程的实质是工件被磨削了金属表层,在无数磨粒瞬间的挤压、磨擦作用下产生变形,而后转为磨屑,并形成光洁表面的过程。磨削的全过程表现为力和热的作用。 ①在磨削过程中,加工表面在切削热作用下产生热膨胀,此时基体金属温度较低,因此,表面产生热压应力。当磨削结束时,工件表面温度降低,由于表面已产生热态塑性变形并受到基体的限制,故而表面产生残余拉应力,里层产生残余压应力。 ②磨削时,砂轮与工件为弧面接触,砂轮切削时工件产生塑性变形及砂轮与工件间剧烈的摩擦阻力,从而在砂轮与工件间形成大小相等,方向相反的磨削力,同时由于表层材料塑性变形时使工件材料内部金属分子之间产生相对位移,形成内摩擦而发热,砂

磨削加工

磨削加工 一、磨削特点 磨削是在磨床上用砂轮作为切削刀具对工件进行切削加工的方法。该方法的特点是: 1.由于砂轮磨粒本身具有很高的硬度和耐热性,因此磨削能加工硬度很高的材料,如淬硬的钢、硬质合金等。 2.砂轮和磨床特性决定了磨削工艺系统能作均匀的微量切削,一般 ap=0.001~0.005mm;磨削速度很高,一般可达v=30~50m/s;磨床刚度好;采用液压传动,因此磨削能经济地获得高的加工精度(IT6~IT5)和小的表面粗糙度(Ra=0.8~0.2μm)。磨削是零件精加工的主要方法之一。 3.由于剧烈的磨擦,而使磨削区温度很高。这会造成工件产生应力和变形,甚至造成工件表面烧伤。因此磨削时必须注入大量冷却液,以降低磨削温度。冷却液还可起排屑和润滑作用。 4.磨削时的径向力很大。这会造成机床—砂轮—工件系统的弹性退让,使实际切深小于名义切深。因此磨削将要完成时,应不进刀进行光磨,以消除误差。 5.磨粒磨钝后,磨削力也随之增大、致使磨粒破碎或脱落,重新露出锋利的刃口,此特性称为“自锐性”。自锐性使磨削在一定时间内能正常进行,但超过一定工作时间后,应进行人工修整,以免磨削力增大引起振动、噪声及损伤工件表面质量。二、砂轮 砂轮是磨削的切削工具,它由许多细小而坚硬的磨粒和结合剂粘而成的多孔物体。磨粒直接担负着切削工作,必须锋利并具有高的硬度,耐热性和一定的韧性。常用的磨料有氧化铝(又称刚玉)和碳化硅两种。氧化铝类磨料硬度高、韧性好,适合磨削钢料。碳化硅类磨料硬度更高、更锋利、导热性好,但较脆,适合磨削铸铁和硬质合金。

同样磨料的砂轮,由于其粗细不同,工件加工后的表面粗糙度和加工效率就不相同,磨粒粗大的用于粗磨,磨粒细小的适合精磨、磨料愈粗,粒度号愈小。 结合剂起粘结磨料的作用。常用的是陶瓷结合剂,其次是树脂结合剂。结合剂选料不同,影响砂轮的耐蚀性、强度、耐热性和韧性等。 磨粒粘结愈牢,就愈不容易从砂轮上掉下来,就称砂轮的硬度,即砂轮的硬度是指砂轮表面的磨粒在外力作用下脱落的难易程度。容易脱落称为软,反之称为硬。砂轮的硬度与磨料的硬度是两个不同的概念。被磨削工件的表面较软,磨粒的刃口(棱角)就不易磨损,这样磨粒使用的时间可以长些,也就是说可选粘接牢固些的砂轮(硬度较高的砂轮)。反之,硬度低的砂轮适合磨削硬度高的工件。 砂轮在高速条件下工作,为了保证安全,在安装前应进行检查,不应有裂纹等缺陷;为了使砂轮工作平稳,使用前应进行动平衡试验。 砂轮工作一定时间后,其表面空隙会被磨屑堵塞,磨料的锐角会磨钝,原有的几何形状会失真。因此必须修整以恢复切削能力和正确的几何形状。砂轮需用金刚石笔进行修整。 三、平面磨床的结构与磨削运动 磨床的种类很多,主要有平面磨床、外圆磨床、内圆磨床、万能外圆磨床(也可磨内孔)、齿轮磨床、螺纹磨床,导轨磨床、无心磨床(磨外圆)和工具磨床(磨刀具)等。这里介绍平面磨床及其运动。 1.平面磨床的结构(以M7120A为例,其中:M——磨床类机床;71——卧轴矩台式平面磨床;20——工作台面宽度为200mm;A——第一次重大改进。) 1)砂轮架——安装砂轮并带动砂轮作高速旋转,砂轮架可沿滑座的燕尾导轨作手动或液动的横向间隙运动。 2)滑座——安装砂轮架并带动砂轮架沿立柱导轨作上下运动。 3)立柱——支承滑座及砂轮架。

磨削技术及精密、超精密加工

郑州工业安全职业学院 毕业论文 题目:磨削技术及精密、超精密加工 姓名:赵会海 系别:机电工程系 专业:机电一体化 年级:08 机电二班 指导教师: 年月日

毕业论文成绩评定表 学生姓名赵会海学生所在系机电工程系 专业 班级 机电技术二班 毕业论文 课题名称 磨削技术及精密超精密加工 指导教师评语: 成绩: 指导教师签名: 年月日系学术委员会意见: 签名: 年月日

目录 前言 (1) 第一章磨削理论的研究 (2) 第一节磨削机理 (2) 第二节表面完整性 (2) 第二章砂带磨削技术 (5) 第一节沙袋磨削简介 (5) 第二节磨削工艺的进展 (5) 第三节精密及超精密磨削 (6) 第四节砂带磨削趋势 (7) 第三章精密与超精密磨削技术 (9) 第一节塑性磨削 (9) 第二节镜面磨削 (10) 第四章结论及展望 (14) 参考文献 ............................................. 错误!未定义书签。致谢 (16)

内容摘要 摘要:磨削在现代制造业中占有重要地位,技术发展迅速,国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削的研究,以获得亚微米级的尺寸精度。当前磨削除向超精密、高效率和超硬磨料方向发展外,自动化也是磨削技术发展的重要方向之一。本文就精密和超精密磨削,砂带磨削,磨削自动化进行了研究与论述。 关键词:磨削技术, 砂带磨削, 磨削自动化 Abstract:The grinding holds the important status in the modern manufacturing industry, the technological development is rapid, domestic and foreign all uses the ultra microfinishing, the precise conditioning, the tiny grinding compound grinding tool carries on the submicron level to undercut the deep grinding the research, obtains the submicron level the size precision.Outside the current grinding except to ultra precise, the high efficiency and the ultra hard grinding compound direction develops, the automation also is one of grinding technological development important directions.This article on precise and the ultra microfinishing, the belt grinding, the grinding automation has conducted the research and the elaboration. Key word:ELID grinding technology, belt grinding, grinding automation.

精密磨削技术的历史与发展

精密磨削技术的历史与发展 随着科学技术水平不断的提高,磨削加工已广泛应用于金属及其他材料的粗、精加工,是非常重要的切削加工方式。目前,磨削加工已经成为现代机械制造领域中实现精密与超精密加工最有效、应用最广泛的基本工艺技术,为人们提供高精度、高质量、高度自动化的技术装备的开发和研制。 精密磨削中超硬磨料砂轮 精密磨削技术 磨削是指用磨料或磨具去除材料的加工工艺方法,一般来讲,按照砂轮线速度的高低可将其进行分类,把砂轮速度低于45 m/s的磨削称为普通磨削,把砂轮速度高于45 m/s的磨削称为高速磨削,把砂轮速度高于150m/s的磨削称为超高速磨削。 按磨削效率将磨削分为普通磨削、高效磨削(高速磨削、超高速磨削、缓进给磨削、高效深切磨削、砂带磨削、快速短行程磨削和高速重负荷磨削)。 磨削加工能达到的磨削精度在生产发展的不同时期有不同的精度范围,当前,按磨削精度将磨削分为普通磨削(加工精度>1μm、表面粗糙度R a0.16~1.25μm)、精密磨削(加工精度1~0.5μm、表面粗糙度R a0.04~1.25μm)、超精密磨削(加工精度≤0.01μm、表面粗糙度R a≤0.01μm)。 精密加工是指在一定发展时期中,加工精度和表面质量达到较高程度的加工工艺,当前是指被加工零件的加工精度为l~0.1μm,表面粗糙度值Ra0.2~0.01μm的加工技术。 精密磨削是目前对钢铁等黑色金属和半导体等脆硬材料进行精密加工的主要方法之一,在现代化的机械和电子设备制造技术中占有十分重要的地位。 精密磨削一般使用金刚石和立方氮化硼等高硬度磨料砂轮,主要靠对砂轮的精细修整,使用金刚石修整工具以极小而又均匀的微进给(10~15mm /min)。获得众多的等高微刃,加工表面磨削痕迹微细,最后采用无火花光磨。 由于微切削、滑移和摩擦等综合作用,达到低表面粗糙度值和高精度要求。高精密磨削的

《精密与超精密加工技术》知识点总结

《精密与超精密加工技术》知识点总结 1.加工的定义:改变原材料、毛坯或半成品的形状、尺寸及表面状态,使之符合规定要求的各种工作的统称。规定要求:加工精度和表面质量。 2.加工精度:是指零件在加工以后的几何参数(尺寸、形状、位置)与图纸规定的理想零件的几何参数相符合的程度。符合程度越高,加工精度则越高。 3.表面质量:指已加工表面粗糙度、残余应力及加工硬化。 4.精密加工定义:是指在一定时期,加工精度和表面质量达到较高程度的加工技术(工艺)。 5.超精密加工:是指在一定时期,加工精度和表面质量达到最高程度的加工技术(工艺)。 6.加工的划分普通加工(一般加工)、精密加工和超精密加工。普通加工:加工精度在1μm 以上(粗加工IT13~IT9、半精加工IT8~IT7、精加工IT6~IT5),粗糙度Ra0.1-0.8μm。加工方法:车、铣、刨、磨等。适用于:普通机械(汽车、拖拉机、机床)制造等。 精密加工:加工精度在1~0.1μm ,粗糙度Ra0.1μm 以下(一般Ra0.1~0.01μm )的加工方法。加工方法:车削、磨削、研磨及特种加工。适用于:精密机床、精密测量仪器等中的关键零件的制造。 超精密加工:加工精度在0.1~0.01μm ,粗糙度小于Ra0.01μm(Ra0.01~Ra0.001μm)的加工方法。 加工方法:金刚石刀具超精密切削、超精密磨削、超精密特种加工。适用于:精密元件的制造、计量标准元件、集成电路等的制造。 7.精密加工影响因素 8.切削、磨削加工:精密切削和磨削、超精密切削与磨削。 9.特种加工:是指一些利用热、声、光、电、磁、原子、化学等能源的物理的,化学的非传统加工方法。 10.精密加工和超精密加工的发展趋势:向高精度方向发展、向大型化,微型化方向发展、向加工检测一体化发展、研究新型超精密加工方法的机理、新材料的研究。 11.精密加工和超精密加工的特点:形成了系统工程它是一门多学科的综合高级技术;它与特种加工关系密切传统加工方法与非传统加工方法相结合;加工检测一体化在线检测并进行实时控制、误差补偿;与自动化技术联系密切依靠自动化技术来保证;与产品需求联系紧密加工质量要求高、技术难度大、投资大、必须与具体产品需求相结合。 12.金刚石刀具是超精密切削中的重要关键。金刚石刀具有两个比较重要的问题:一是晶面的选择,因为金刚石晶体各向异性;二是研磨质量,也就是刃口半径,因为影响变形和最小切削厚度。 13.检测技术是超精密切削中一个极为重要的问题。超精密加工要求测量精度比加工精度高一个数量级。 14.超精密加工必须在超稳定的加工环境条件下进行:恒温条件、防振条件。恒温:20℃±(1~0.02)℃恒湿:35﹪~45﹪空气净化、防振等。 15.金刚石分类:天然金刚石和人造金刚石两大类(碳的同素异形体)。 16.金刚石晶体的三种晶面晶体——原子具有规则排列的物体。晶体中各种方位上的原子面 叫晶面。晶体中各种方位上的原子列叫晶向。金刚石晶格中有三种重要晶面,(100),(110),(111)。 17.金刚石晶体具有强烈的各向异性不同晶面,不同方向性能有明显差别;金刚石刀具的晶面选择直接影响切削变形和加工表面质量;金刚石晶体和铝合金、紫铜间的摩擦系数在0.06~0.13之间,而

超精密加工技术的发展与展望

精密与特种加工技术 结课论文 题目:超精密加工技术的发展与展望指导教师:沈浩 学院:机电工程学院 专业:机械工程 姓名:司皇腾 学号:152085201020

超精密加工技术的发展与展望 摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保也是机械制造业发展的必然趋势。 关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工 【引言】 精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。 通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。 超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。 1、超精密加工技术的发展历史 精密超精密加工技术的起源从一定意义上可以上溯到原始社会:当原始人类学会了制作具有一定形状且锋利的石器工具时,可以认为出现了最原始的手工研

精密加工与特种加工

第一阶段测试卷 考试科目:《精密加工与特种加工》第一章至第三章(总分100分) 时间:90分钟 __________学习中心(教学点)批次:层次: 专业:学号:号: :得分: 一、填空题(每空1分,共10分) 1、超精密加工对机床的基本要:、高刚度、、高自动化。 2、微量切削加工中,由于材料晶粒的机械性能不同产生的的影响,使得材料纯度越高加工质量越好。 3、精密切削时被挤压的材料在刀具移过之后,工件加工表面形成隆起,称之为。 4、精密加工对环境条件的要求主要有、、空气洁净。 5、超硬磨料砂轮的修整包括和两个过程。 6、金刚石晶体主要的晶面指数有(100)晶面、、。 二、判断题(正确的打√,错误的打×,每小题1分,共10分) 1、金刚石刀具尖刃安装方便,磨损后需要立即重磨。() 2、超硬磨料砂轮可以磨削瓷但不能磨削铁类黑色金属。() 3、金刚石刀具常用来加工瓷、玻璃等硬脆材料。() 4、金刚石刀具方向选择不当,在切削力作用下,刀具可能产生解理劈开。() 5、金刚石刀具切削加工进给量对表面质量的影响很大程度上取决于刀具的几何形状。() 6、一般常用金刚石刀具加工硬质合金、铸铁等材料。() 7、金刚石刀具精密切削时,为获得高质量表面,一定要采用高的加工速度。() 8、多面镜可以用金刚石刀具进行车削。() 9、微量切削时,由于晶界段差的影响,晶粒越细工件表面质量越好。() 10、切削深度的分辨率是指切削厚度的稳定性。() 三、单项选择题(从以下选项中选出1个正确答案,每小题1分,共15分) 1、下列哪种方法不是金刚石晶体的定向方法。 A、人工目测 B、激光定向 C、X射线定向 D、离心法

精密和超精密加工机床的现状及发展对策

精密和超精密加工机床的现状及发展对策 摘要:精密和超精密加工技术的发展直接影响尖端技术和国防工业的发展。精密和超精密加工机床是精密和超精密加工技术的基础,本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并通过对比说明提出了我国应重视超精密加工机床的研究、加大投入的观点,对精密超精密加工机床的发展对策给出了几条建议。 关键词:精密;超精密;机床;发展 正文:1精密和超精密加工机床发展的意义 精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,因此,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平而、曲而和复杂形状的加工需求日益迫切。目前,国外己开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。 制造业是一个国家或地区国民经济的重要支柱.其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。随着高技术的蓬勃发展和应用,发达国家提出了“先进制造技术”(AMT)新概念。所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合应用于产品的计划、设计、制造、检测、管理、供销和售后服务全过程的综合集成生产技术。先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。 从先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域,前者追求加工上的精度和表而质量极限.后者包括了产品设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是保证产品质量的有效举措。两者有密切关系,许多精密和超精密加工要依靠自动化技术得以达到预期指标,而不少制造自动化有赖于精密加工才能准确可靠地实现。两者具有全局的、决定性的作用,是先进制造技术的支柱。 最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方而取得不小进展,但仍和国外有较大差距。我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。 由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,因此,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。 2我国精密和超精密加工机床的现状及发展趋势 超精密加工目前尚没有统一的定义,在不同的历史时期、不同的科学技术发展水平情况下,有不同的理解。目前,工业发达国家的一般工厂己能稳定掌握3um的加工精度(我国为5um )。因此,通常称低于此值的加工为普通精度加工,而高于此值的加工则称之为高精度加工。在高精度加工的范畴内,根据精度水平的不同。分为3个档次:

相关文档
最新文档