人教版七年级数学下册8.2解二元一次方程组练习题(无答案)

合集下载

人教版七年级数学第8章 二元一次方程组应用题期末复习(无答案)

人教版七年级数学第8章 二元一次方程组应用题期末复习(无答案)

二元一次方程组期末复习一、“和、差、倍、分”问题1.若甲、乙两库共存粮95吨,现从甲库运出存粮的32,从乙库运出存粮的40%,那么乙库所余粮食是甲库的2倍,问甲、乙两库原各在多少吨粮食?2.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?3.据统计,记忆两种作物的单位面积产量的比是1:2,现要把一块长200m ,宽100米的长方形土地,分为两块小长方形土地,分别种植两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?4.为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?二、“几何图形”问题1.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?2.如图所示,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),则图中阴影部分的面积是多少?3.小明在拼图时发现,用8个一样大的长方形恰好可以拼成一个大的长方形,如图(1)所示,小红看见了,说:“我来试一试!”结果小红七拼八凑,拼成了一个如图(2)所示的正方形,但中间留下了一个洞,恰好是边长为3cm 的小正方形。

则每个小正方形的长与宽分别是多少?↑↓60cm三、“配套”问题m木料可以做方桌的桌面50个或做桌腿300条,现有53m木料,1.一张方桌由1个桌面,4条桌腿组成,如果13那么用多少立方米做桌面,多少立方米木料做桌腿,做出的桌面和桌腿,恰好能配成方桌?能配成多少张方桌?2.某工厂接受了20天内生产1200台GH型电子产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成,工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置。

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (87)

人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (87)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩ 【答案】1812m n =⎧⎨=⎩【解析】试题分析:首先将方程进行变形,然后利用加减消元法得出方程组的解.试题解析:将方程组变形可得:3278?4336?m n m n +=⎧⎨-=⎩①②,①×3+②×2得:9m+8m=306,解得:m=18, 将m=18代入①可得:3×18+2n=78,解得:n=12,∴原方程组的解为:1812m n =⎧⎨=⎩.52.解方程组:(1)326{2317x y x y -=+=;(2)414{3314312x y x y +=---=【答案】(1)43x y =⎧⎨=⎩ ;(2)3114x y =⎧⎪⎨=⎪⎩ .【解析】 【分析】(1)利用加减消法即可得解;(2)先对第二个方程进行整理和变形,然后再利用加减消元法即可. 【详解】解:(1)326 2317x yx y-=⎧⎨+=⎩①②,①×2,得:6x﹣4y=12 ①,①×3,得:6x+9y=51 ①,则①﹣①得:13y=39,解得:y=3,将y=3代入①,得:3x﹣2×3=6,解得:x=4.故原方程组的解为:43xy=⎧⎨=⎩.(2)4143314312x yx y+=⎧⎪⎨---=⎪⎩①②,方程①两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,化简,得:3x﹣4y=﹣2 ①,①+①,得:4x=12,解得:x=3.将x=3代入①,得:3+4y=14,解得:y=114.故原方程组的解为:3114xy=⎧⎪⎨=⎪⎩.53.已知232x y ax y a+=⎧⎨-=⎩,求xy的值.【答案】7【解析】【试题分析】先解关于x、y的二元一次方程组,再代入求值即可. 【试题解析】232x y a x y a +=⎧⎨-=⎩75715x a x y y a⎧=⎪⎪⇒⇒=⎨⎪=⎪⎩. 【方法点睛】本题目先将x 、y 用a 的代数式表示出来,再代入即可.54.甲乙两人同时解方程组832ax by cx y +=⎧⎨-=-⎩ ,甲正确解得11x y =⎧⎨=-⎩ ;乙因为抄错c 的值,解得26x y =⎧⎨=-⎩.求a ,b ,c 的值.【答案】1025a b c =⎧⎪=⎨⎪=-⎩【解析】试题分析:把11x y =⎧⎨=-⎩代入方程组,把26x y =⎧⎨=-⎩代入方程组中的第一个方程,即可得到一个关于a 、b 、c 的方程组,解方程组即可求解.试题解析:根据题意得:832268a b c a b -⎧⎪+-⎨⎪-⎩===,解得:1025a b c =⎧⎪=⎨⎪=-⎩.55.用合适的方法解下列方程组:(1)402? 3222? y x x y ①②=-⎧⎨+=⎩ (2)235? 421? x y x y +=⎧⎨-=⎩①② (3)6515?33? x y x y +=⎧⎨-=-⎩①②【答案】(1)5876x y =⎧⎨=-⎩;(2)131698x y ⎧=⎪⎪⎨⎪=⎪⎩;(3)03x y =⎧⎨=⎩【解析】【试题分析】(1)代入法;(2)加减法;(3)代入法或加减法都可以.【试题解析】(1)将①代入①得,32(402)22,x x+-=得:x=58,将x=58代入①,得:y=-76.故原方程组的解为:5876 xy=⎧⎨=-⎩(2)①×2得,4x+6y=10①,①-①得:8y=9,y=98,将y=98代入①,得:1316x=,故原方程组的解为:131698 xy⎧=⎪⎪⎨⎪=⎪⎩(3)①×5得:15x-5y=-15①,①+①得:21x=0,解得:x=0,将x=0代入①得:y=3.故原方程组的解为:3 xy=⎧⎨=⎩.56.用加减法解下列方程组:(1)3827x yx y+=⎧⎨-=⎩(2)379475m nm n+=⎧⎨-=⎩(3)92153410x yx y+=⎧⎨+=⎩(4)2343211x yx y+=⎧⎨-=⎩(5)()()()()31445135x yy x⎧-=-⎪⎨-=+⎪⎩(6)15357525x x yy x+-⎧=⎪⎨⎪=+⎩【答案】(1)31 xy=⎧⎨=-⎩;(2)237mn=⎧⎪⎨=⎪⎩;(3)4332xy⎧=⎪⎪⎨⎪=⎪⎩;(4)41131013xy⎧=⎪⎪⎨⎪=-⎪⎩;(5)57xy=⎧⎨=⎩(6)25 xy=⎧⎨=⎩【解析】【试题分析】利用加减消元法解二元一次方程组即可. 【试题解析】(1)3827x y x y +=⎧⎨-=⎩①+②得:5x=15,x=3,将x=3代入①得,y=-1, 故原方程组的解为:31x y =⎧⎨=-⎩. (2)379475m n m n +=⎧⎨-=⎩①+②得:7m=14,m=2,将m=2代入①得,37n =, 故原方程组的解为:237m n =⎧⎪⎨=⎪⎩; (3)92153410x y x y +=⎧⎨+=⎩①2⨯得,18x+4y=30 ③,③-②得,41520,3x x ==,将43x =代入①得,32y =, 故原方程组的解为:4332x y ⎧=⎪⎪⎨⎪=⎪⎩; (4)2343211x y x y +=⎧⎨-=⎩①2⨯得4x+6y=8,②3⨯得9x-6y=33,两式相加得:4113x = ,将4113x =代入①,得:1013y =-故原方程组的解为:41131013x y ⎧=⎪⎪⎨⎪=-⎪⎩(5)()()()()31445135x y y x ⎧-=-⎪⎨-=+⎪⎩方程组变形为:3413535207x y x x y y -=-=⎧⎧⇒⎨⎨-=-=⎩⎩故原方程组的解为:57x y =⎧⎨=⎩(6)15357525x x yy x +-⎧=⎪⎨⎪=+⎩ 10351035257251014505x y x y x x y x y y -=-==⎧⎧⎧⇒⇒⎨⎨⎨-=--=-=⎩⎩⎩ 故原方程组的解为:25x y =⎧⎨=⎩. 57.小明和小刚同时解方程组266ax by cx y +=⎧⎨+=⎩根据小明和小刚的对话,试求a ,b ,c 的值.【答案】a =5,b =-3,c =2.【解析】试题分析:根据小明的正确解,得出c的值,然后把两组解代入第一个方程ax+by=26,可求出a、b的值.试题解析:把4100xy=⎧⎨=-⎩、73xy=⎧⎨=⎩代入方程组的第1个方程中得42267326a ba b-=⎧⎨+=⎩,解得1100ab=⎧⎨=⎩,再把42xy=⎧⎨=-⎩代入方程cx+y=6中,得4c+(-2)=6,所以c=2.故a=5,b=-3,c=2.58.解方程组:230230x yx y-=⎧⎨+-=⎩.【答案】9767xx⎧=⎪⎪⎨⎪=⎪⎩.【解析】分析:用①﹣①×2消去x,得到关于y的一元一次方程,解这个方程求出y 的值,再把求得的y的值代入到①中求出x的值即可.详解:,①﹣②×2得:﹣7y=﹣6,即y=,将y=代入①,得x=,则原方程组的解为.点睛:本题考查了二元一次方程组的解法,其基本思路是消元,转化为一元一次方程求解,消元的方法有加减消元法和代入消元法两种,根据方程组的特点选择合适的方法是解答本题的关键.59.已知关于x ,y 的方程组51542ax y x by +=⎧⎨-=-⎩①②甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙由于看错了方程②中的b ,得到方程组的解54x y =⎧⎨=⎩.若按正确的a ,b 计算,则原方程组的解x 与y 的差x -y 的值是多少?【答案】8.2 【解析】试题分析:把31x y =-⎧⎨=-⎩代入到42x by -=-,可得10b =,把54x y =⎧⎨=⎩代入515ax y +=,可得: 1a =-,把110a b =-⎧⎨=⎩代入51542ax y x by +=⎧⎨-=-⎩可得:5154102x y x y -+=⎧⎨-=-⎩,解方程组可得:145.8x y =⎧⎨=⎩,最后代入x -y 计算即可.试题解析: 因为甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩,把31x y =-⎧⎨=-⎩代入②可得10b =, 乙由于看错了方程②中的b ,得到方程组的解54x y =⎧⎨=⎩,把54x y =⎧⎨=⎩代入①可得: 1a =-,把110a b =-⎧⎨=⎩代入51542ax y x by +=⎧⎨-=-⎩可得:515 4102x y x y -+=⎧⎨-=-⎩,解方程组可得:145.8x y =⎧⎨=⎩,则x -y=14-5.8=8.2.60.解下列方程组:(1)35231x y x y =⎧⎨-=⎩ (2)2232328x yx y ⎧+=⎪⎨⎪+=⎩(3)()()()1523254345x y x y ⎧+=+⎪⎨--+=⎪⎩ (4)()()23352121132x y x y ⎧+=--⎪⎨++-=⎪⎩【答案】(1)53x y =⎧⎨=⎩(2)412x y =-⎧⎨=⎩(3)41x y =⎧⎨=-⎩(4)720x y ⎧=⎪⎨⎪=⎩ 【解析】试题分析:(1)先由①可变形得:53x y =,把53x y =代入到②可得:10313y -=,解得:3y =,把3y =代入到①可得:5x =,(2)先由4⨯①可得:4283y x +=③,再由-③②可得:5203y =,解得12y =, 将12y =代入③可得:4x =-, (3)由①可得:59x y =+③,把③代入②可得:()()3101854345y y +--+=,1818,y =-解得:1y =-,把1y =-代入③可得:4x =,(4) 先由①可得:263510x y +=-+,可得257x y +=③, 由6⨯②可得:22636x y +--=,即267x y -=④, 由-③④可得:0y =,把0y =代入③可得72x =, 试题解析:(1)35231x y x y =⎧⎨-=⎩①②,由①可得:53x y =,把53x y =代入到②可得:10313y -=,解得:1y =-,把1y =-代入到①可得:5x =,所以方程组的解是51x y =⎧⎨=-⎩,(2)2232328x yx y ⎧+=⎪⎨⎪+=⎩①②,由4⨯①可得:4283yx +=③, 由-③②可得:5203y=,解得12y =, 将12y =代入③可得:4x =-,所以方程组的解是412x y =-⎧⎨=⎩.(3)()()()1523254345x y x y ⎧+=+⎪⎨--+=⎪⎩①②,由①可得:59x y =+③,把③代入②可得:()()3101854345y y +--+=,1818,y =-解得:1y =-,把1y =-代入③可得:4x =,所以方程组的解是41x y =⎧⎨=-⎩.(4)()()23352121132x y x y ⎧+=--⎪⎨++-=⎪⎩①②,由①可得:263510x y +=-+,可得257x y +=③, 由6⨯②可得:22636x y +--=,即267x y -=④, 由-③④可得:0y =,把0y =代入③可得72x =, 所以方程组的解是720x y ⎧=⎪⎨⎪=⎩.。

2022年人教版初中数学七年级下册第八章二元一次方程组专项测试练习题(无超纲)

2022年人教版初中数学七年级下册第八章二元一次方程组专项测试练习题(无超纲)

初中数学七年级下册第八章二元一次方程组专项测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某污水处理厂库池里现有待处理的污水m 吨.另有从城区流入库池的待处理污水(新流入污水按每小时n 吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A .6台B .7台C .8台D .9台2、用加减法解方程组336x y x y +=-⎧⎨+=⎩①②由②-①消去未知数y ,所得到的一元一次方程是( ) A .29x = B .23x = C .49=x D .43x =3、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )A .330千米B .170千米C .160千米D .150千米4、己知33x k y k =⎧⎨=-⎩是关于x ,y 的二元一次方程227x y -=的解,则k 的值是( ) A .3 B .3- C .2 D .2-5、下列各式中是二元一次方程的是( )A .2327x y -=B .25x y +=C .123y x += D .234x y -=6、已知12x y =⎧⎨=⎩是二元一次方程组92mx ny nx my +=⎧⎨-=⎩的解,则m +n 的值为( ) A .294 B .5 C .254 D .527、由方程组250x m x y m +=⎧⎨+-=⎩可以得出关于x 和y 的关系式是( ) A .5x y += B .25x y += C .35x y += D .30x y +=8、已知||(1)23a a x y -+=是二元一次方程,则a 的值为( )A .±1B .1C .1-D .29、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x ,一位数是y ,则可列方程组为( )A .3927x y xy yx +=⎧⎨-=⎩B .391027100x y x y y x +=⎧⎨++=+⎩C .39102710x y x y y x +=⎧⎨+-=+⎩D .3910(100)27x y x y y x +=⎧⎨+-+=⎩10、若x ,y 为实数,且70x y +,则y x -的立方根是( )A .2B .2-C .D 二、填空题(5小题,每小题4分,共计20分)1、某销售商十月份销售X 、Y 、C 三种糖果的数量之比2∶1∶1,X 、Y 、C 三种糖果的单价之比为1∶3∶4.十一月份该销售商为了迎接双“十一”加大了宣传力度.预计三种糖果的营业额都会增加.其中X 种糖果增加的营业额占总增加的营业额的715,此时,X 种糖果的营业额与十一月份三种糖果总营业颁之比为3∶8,为使十一月份Y 、C 两种糖果的营业额之比为2∶3,则十一月份C 种糖果增加的营业额与十一月份总营业额之比为____.2、已知3211203n m x y -+-=是关于x ,y 的二元一次方程,则n m +=______. 3、关于x 的方程350x +=与331x k +=的解相同,则k 的值为____.4、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x 文钱,乙原有y 文钱,可列方程组为____________.5、已知关于x 、y 的二元一次方程组21x y a x y +=⎧⎨-=⎩的解为3x y b =⎧⎨=⎩,则a +b 的值为 ___. 三、解答题(5小题,每小题10分,共计50分)1、如果知道了两个数的和与差,你一定能求出这两个数吗?说说你的理由.2、解方程组:(1)3155214x y x y +=⎧⎨-=⎩ (2)231021124x y x y y +=⎧⎪⎨++-=⎪⎩ 3、(1)21(2)--(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ 4、定义.对于一个四位自然数n ,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n 为“加油数”,并将该“加油数”的各个数位数字之和记为()F n .例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且314,145+=+=,所以543是“加油数”,则()5413541313F =+++=;9734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而437+=,但37109+=≠,所以9734不是“加油数”.(1)判断8624和3752是不是“加油数”并说明理由:(2)若x ,y 均为“加油数”,其中x 的个位数字为1,y 的十位数字为2,且()()30F x F y +=,求所有满足条件的“加油数”x .5、解方程组:3214,3.x y x y +=⎧⎨=+⎩①②---------参考答案-----------一、单选题1、B【解析】【分析】设同时开动x 台机组,每台机组每小时处理a 吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m ,n 的二元一次方程组,解之即可得出m ,n 的值(用含a 的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x 的一元一次方程,解之可得出结论.【详解】解:设同时开动x 台机组,每台机组每小时处理a 吨污水,依题意,得2303031515a m n a m n⨯=+⎧⎨⨯=+⎩, 解得:30m a n a=⎧⎨=⎩, ∵5ax =30a +5a ,∴x =7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.2、A【解析】【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组336x yx y+=-⎧⎨+=⎩①②,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.3、C【解析】【分析】设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.【详解】解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,依题意得:()152********y x x y ⎧=+⎪⎨⎪++=⎩, 解得:330170x y =⎧⎨=⎩ , 330170160-= ,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、A【解析】【分析】将33x k y k=⎧⎨=-⎩代入关于x ,y 的二元一次方程2x -y =27得到关于k 的方程,解这个方程即可得到k 的值. 【详解】解:将33x k y k=⎧⎨=-⎩代入关于x ,y 的二元一次方程2x -y =27得: 2×3k -(-3k )=27.∴k =3.故选:A .【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.5、B【解析】【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】2327x y -=中x 的次数为2,故A 不符合题意;25x y +=是二元一次方程,故B 符合题意;123y x +=中1x不是整式,故C 不符合题意; 234x y -=中y 的次数为2,故D 不符合题意;故选B .【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.6、B【解析】【分析】根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m 、n 的方程组即可解决问题.【详解】解:∵12x y =⎧⎨=⎩是二元一次方程组92mx ny nx my +=⎧⎨-=⎩的解, ∴2922m n n m +⎧⎨-⎩==,解得14m n ⎧⎨⎩==, ∴m +n =5.故选:B .【点睛】本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.7、C【解析】【分析】分别用x ,y 表示m ,即可得到结果;【详解】由25x m +=,得到52m x =-,由0x y m +-=,得到m x y =+,∴52x x y -=+,∴35x y +=;故选C .【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.8、C【解析】【分析】根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.解:∵||(1)23a a x y -+=是二元一次方程, ∴1=a ,且10a -≠ ,解得:1a =- .故选:C【点睛】本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.9、D【解析】【分析】若设两位数是x ,一位数是y ,则两位数放在一位数的前面,得到的三位数为10x +y ,将一位数放在两位数的前面得到的三位数为100y +x ,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.【详解】解:设两位数是x ,一位数是y ,则两位数放在一位数的前面,得到的三位数为10x +y ,将一位数放在两位数的前面得到的三位数为100y +x ,依题意得:3910(100)27x y x y y x +=⎧⎨+-+=⎩, 故选D .【点睛】此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.10、A【分析】根据非负性列出二元一次方程组求出x,y,再求出其立方根.【详解】依题意可得7060 x yx y+=⎧⎨+-=⎩解得17 xy=-⎧⎨=⎩∴y x-=8故y x-的立方根是2故选A.【点睛】此题主要考查二次根式的非负性、二元一次方程组的求解、立方根的性质,解题的关键是熟知其运算法则.二、填空题1、5:24【分析】根据三种糖果的数量比、单价比,可以按照比例设未知数,即10月份X、Y、C三种糖果的销售的数量和单价分别为2x、x、x;y、3y、4y,则10月份X、Y、C三种糖果的销售额比为2:3:4.因问题中涉及到X的10月销售数量,因此可以设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;再根据X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,建立等式,求出x.可以根据十一月份Y、C两种糖果的营业额之比为2:3算出十一月份C种糖果增加的营业额即可求解.【详解】解:设10月份X、Y、C三种糖果的销售的数量分别为2x、x、x;单价分别为y、3y、4y,∴10月份X、Y、C三种糖果的销售额分别为2xy,3xy,4xy;∵X种糖果增加的营业额占总增加的营业额的715,∴设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;又X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,∴(7x+2xy):(15x+9xy)=3:8,解得x=xy,∴十一月份X种糖果的营业额为9xy,三种糖果总营业额为24xy,∴Y,C两种糖果的营业额之和为15xy,若十一月份Y、C两种糖果的营业额之比为2:3,则Y、C两种糖果的营业额分别为6xy,9xy;∴C种糖果增加的营业额为9xy-4xy=5xy,∴十一月份C种糖果增加的营业额与十一月份总营业额之比为5xy:24xy=5:24.【点睛】本题考查了三元一次方程组的应用,掌握用代数式表示每个参数,并用整体法解题是关键.2、4【分析】根据二元一次方程的定义,可得方程组31211nm-=⎧⎨+=⎩,解得m、n的值,代入代数式即可.【详解】解:由题意得,31 211nm-=⎧⎨+=⎩,解得:4nm=⎧⎨=⎩,∴n m+=4,故填:4.【点睛】本题考查二元一次方程的定义,属于基础题型.3、2由题意根据同解方程解方程的方法联立方程可得35331x x k +=+-,进而即可得出答案.【详解】解:因为350x +=与331x k +=的解相同,且3310x k +-=,所以35331x x k +=+-,可得315k -=,解得:2k =.故答案为:2.【点睛】本题考查同解方程解方程,解答本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4、4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩【分析】设甲原有x 文钱,乙原有y 文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的2348=文钱,据此列方程组可得. 【详解】解:设甲原有x 文钱,乙原有y 文钱, 根据题意,得:4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.5、10将3x =代入1x y -=中,求出y 的值,然后将,x y 的值代入2x y a +=求出a 的值,计算即可.【详解】解:∵关于x 、y 的二元一次方程组21x y a x y +=⎧⎨-=⎩的解为3x y b =⎧⎨=⎩, ∴将3x =代入1x y -=中得:31y -=,解得:2y =,即2b =,将3x =、2y =代入2x y a +=中得:2328⨯+=,∴8a =,∴8210a b +=+=,故答案为:10.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解是能使方程组成立的未知数的值.三、解答题1、能,答案不唯一,理由见解析【分析】不妨设10,5x y x y +=-=,利用加减消元法进行求解.【详解】解:(本题答案不唯一)假设这两个数分别为x 和y ,不妨设10,5x y x y +=-=,联立:155x y x y +=⎧⎨-=⎩①②,①+②得:220x =,解得:10x =,将10x =代入①中,得1015y +=,解得:5y =,10,5x y ∴==.【点睛】本题考查了求解二元一次方程组,解题的关键是掌握加减消元法.2、(1)43x y =⎧⎨=⎩;(2)123x y ⎧=⎪⎨⎪=⎩. 【分析】(1)应用加减消元法,求出方程组的解即可;(2)先把方程组化简,再应用加减消元法,求出方程组的解即可.【详解】解:(1)3155214x y x y +=⎧⎨-=⎩①②, ①×2得,6x +2y =30③,②+③得,11x =44,解得x =4,把x =4代入①得,y =3,所以方程组的解是43x y =⎧⎨=⎩;(2)231021124x y x y y +=⎧⎪⎨++-=⎪⎩, 整理得231045x y x y +=⎧⎨+=⎩①②, ①×2得,4x +6y =20③,③-②得,5y =15,解得y =3,把y =3代入①得,x =12, 所以方程组的解是123x y ⎧=⎪⎨⎪=⎩. 【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.3、(1)13;(2)312x y =⎧⎪⎨=⎪⎩【分析】(1)先计算乘方、立方根、算术平方根,然后计算加减乘除运算即可;(2)先把方程进行整理,然后利用加减消元法解方程组,即可得到答案.【详解】解:(1)原式1410=-++13=;(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩①②, 由①得:328x y -=③由②+③得:618x =,解得:3x =;把3x =代入②,解得:12y =, 所以原方程组的解为:312x y =⎧⎪⎨=⎪⎩; 【点睛】本题考查了解二元一次方程组,乘方、立方根、算术平方根,解题的关键是掌握运算法则,正确的进行计算.4、(1)8624是“加油数”;3752不是“加油数”;(2)3211或9541.【分析】(1)根据“加油数”的定义分别计算判断即可;(2)设x 的十位数为a ,y 的个位数为b ,根据“加油数”的定义分别表示出x ,y 其他位上的数,然后根据()()30F x F y +=列出方程求解即可.【详解】解:(1)∵8624的个位数字是4,十位数字是2,百位数字是6,千位数字是8,∵246,268+=+=,∴8624是“加油数”;∵3752的个位数字是2,十位数字是5,百位数字是7,千位数字是3,∵257+=,但573+≠,∴3752不是“加油数”;(2)设x 的十位数为a ,y 的个位数为b ,∴x 的百位数为a +1,千位数为2a +1,y 的百位数为b +2,千位数为4+b ,∴()211143F x a a a a =+++++=+,()42238F y b b b b =+++++=+,∵()()30F x F y +=,∴433830a b +++= ,∴4319a b +=,09,09a b ≤≤≤≤,且a 和b 为整数,∴1,5a b ==或4,1a b ==,∴满足条件的“加油数”x 为3211或9541.【点睛】本题以新定义考查了列代数式,二元一次方程的正整数解,解题的关键是根据新定义列出代数式,建立方程.5、4,1.x y =⎧⎨=⎩ 【分析】利用代入法解方程组.【详解】解:将②代入①,得()33214y y ++=,39214y y ++=,55y =,1y =.将1y =代入②,得4x =.所以原方程组的解是4,1.xy=⎧⎨=⎩.【点睛】此题考查二元一次方程组的解法:代入消元法、加减消元法,掌握解法并能根据每个方程组的特点选用恰当的解法是解题的关键.。

2018-2019学年人教版七年级下册数学课时同步练习卷:8.2二元一次方程组的解法

2018-2019学年人教版七年级下册数学课时同步练习卷:8.2二元一次方程组的解法

8.2二元一次方程组的解法一、填空题1.已知方程2x+3y-8=0,用含x 的式子表示y 为 y=-23x+83 ,用含y 的式子表示x 为 x=-32y+4 .2.方程组{x +y =10,2x +y =16的解是 {x =6y =4 3.若方程组{x +4=y,2x -y =2a中的x 是y 的2倍,则a= -6 . 4.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是 25. 已知{x =2,y =1是关于x ,y 的二元一次方程组{ax +by =7,ax -by =1的一组解,则a+b= 5 . 6. 若a-3b=2,3a-b=6,则b-a 的值为 -2 .7. 已知x ,y 满足方程组{x -2y =5,x +2y =−3,则x 2-4y 2的值为 -15 . 8.以关于x ,y 的方程2x+5y=-9和5x-6y=33的解为坐标的点P (x ,y )在第 四 象限.9.如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足a ≠b 10.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,则该组男生有 18 人,女生有 12 人.二、选择题11.二元一次方程组的解是( B )A. B. C. D.12.已知2x+3y=6,用含有y 的式子表示x ,得(A)A .x=3-32yB .y=2-23xC .x=3-3yD .y=2-2x 13.用加减消元法解二元一次方程组时,下列步骤可以消去未知数x 的是(D )A.①×4+②×3B.①×2+②×5C.①×5+②×2D.①×5-②×214.用代入法解二元一次方程组{4x +5y =3,3x -y =7时,比较简便的变形是(D) A .x=3−5y 4B .y=3−4x 5C .x=y+73D .y=3x-715.方程组消去y 后所得的方程是( A )A.3x -4x +10=8B.3x -4x +5=8C.3x -4x -5=8D.3x -4x -10=816.在解方程组{3x +2y =2 ①,2x +2y =−1 ②中,①-②所得的方程是(C) A .x=1B .5x=-1C .x=3D .5x=3 17.由方程组可得出x 与y 的关系是( A )A. B. C. D.18.二元一次方程x+3y=4有一组解互为相反数,则此时y 的值是(D)A.1B.-1C.0D.219. 如果方程组{x +y =1,ax +by =c有唯一的一组解,那么a ,b ,c 的值应当满足(B) A.a=1,c=1 B.a ≠bC.a=b=1,c ≠1D.a=1,c ≠120.若方程组{3x +y =1+3a,x +3y =1−a的解满足x-y=-2,则a 的值为(A) A .-1B .1C .-2D .不能确定 三、解答题21.用代入法解方程组:(1){x -3y =2,y =x.解:方程组的解为{x =−1,y =−1.(2){4x +3y =5,x -2y =4.解:方程组的解为{x =2,y =−1.22.如果{x =3,y =−2是方程组{ax +by =1,ax -by =5的解,求a 2019-2b 2018的值. 解:方程组ax+by=1, ①ax-by=5,② ①+②,得2ax=6,①-②,得2by=-4,把x=3,y=-2分别代入,得a=1,b=1.当a=1,b=1时,a 2019-2b 2018=12019-2×12018=-1.23.利用加减消元法解方程组{3x +4y =16 ①,5x -6y =14 ②,答案略24.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.解:设甲种车每辆一次运土x 立方米,乙种车每辆一次运土y 立方米.由题意得{5x +2y =64,3x +y =36,解得{x =8,y =12. 答:甲种车每辆一次运土8立方米,乙种车每辆一次运土12立方米.25.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,问中、小型汽车各有多少辆?解:设中型汽车有x 辆,小型汽车有y 辆.根据题意,得{x +y =50,12x +8y =480,解得{x =20,y =30. 答:中型汽车有20辆,小型汽车有30辆.26.先阅读材料,然后解方程组.材料:解方程组{x -y =1,①4(x -y)-y =5,②把①代入②,得4×1-y=5,解得y=-1.把y=-1代入①,得x=0.所以方程组的解为{x =0,y =−1.这种方法被称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{x -3y -8=0,2x -6y+57+2y =9. 解:方程组的解为{x =17,y =3.27.对于任意的有理数a ,b ,c ,d ,我们规定:|a b c d|=ad-bc ,根据这一规定,解答下列问题:若x ,y 同时满足|x (-y)(-6)5|=13,|34(-y)x |=4,求|x (-y)3-2|的值. 解:根据题意,得{5x -6y =13,3x +4y =4,解得x=2,y=-12.∴|x (-y)3-2|=|2123-2|=-2×2-3×12=-112. 28.已知方程组{x -y =5,ax +3y =b -1.分别求:(1)有无数多个解时a ,b 的值;(2)有唯一解时a ,b 的值;(3)无解时a ,b 的值.解:x-y=5, ①ax+3y=b-1, ②由①得x=y+5.③ 将③代入②,得a (y+5)+3y=b-1,即(a+3)y=-5a+b-1.(1)当{a +3=0,-5a +b -1=0,即{a =−3,b =−14时,原方程组转化为{x -y =5,x -y =5,那么满足x-y=5的x ,y 的值有无数对,即当a=-3,b=-14时,原方程组有无数多个解.(2)当a ≠-3时,y 有唯一解y=-5a+b -1a+3,即当a ≠-3,b 为任意实数时,原方程组有唯一解.(3)当{a +3=0,-5a +b -1≠0即{a =−3,b ≠−14时,原方程组转化为{x -y =5,x -y ≠5,因为这两个方程互相矛盾,所以方程组无解,即当a=-3,b ≠-14时,原方程组无解.。

人教版七年级下数学8.2解二元一次方程组基础练习题(无答案)

人教版七年级下数学8.2解二元一次方程组基础练习题(无答案)

(1) ⎨ ⎧7x +5y = 3(2) ⎨= y (3) ⎨ 2 3解二元一次方程组基础练习肖老师知识点一:代入消元法解方程组:⎧ y = 2x - 3 ⎩3x + 2y =1⎩2x - y = -4⎧ x ⎪⎪⎩3x + 4y =18⎧ x + 5y = 6(4) ⎨⎩3x - 6y - 4 = 0知识点二:用加减法解方程组:⎧x - y = 3(1) ⎨⎩x + y =1⎧ 4x -3y = 0(2) ⎨⎩12x +3y = 8⎧ 4x -3y = 5(3) ⎨⎩4x + 6y =14 ⎧4x + y = 5(4) ⎨⎩3x - 2y =1(5) ⎨ ⎧ 3x - 2y = 7(6) ⎨⎧ x y (2)(化简后整体法) ⎨ ⎪2 + 3 = 2(4)(先化简) ⎨ ⎧ y +1 x + 2(5)(化简后整体法) ⎨ 4⎩ ⎩⎧5x + 4y = 6 ⎩2x +3y =1⎩2x +3y =17拓展训练:解下列方程:⎧ 3(y - 2) = x +1 (1)(先化简) ⎨⎩2(x -1) = 5y -8⎧4x -15y -17= 0 (3)(整体法) ⎨⎩6x - 25y - 23= 0⎪ = 3⎪ 2x -3y =1⎪ =2 3 ⎪3x + 4y =18⎧x y 13x y 3 ⎪ - = ⎩ 3 4 2⎧21x + 23y = 243 (6)(整体法) ⎨⎩23x + 21y = 241⎪5+4=2(7)先化简)6+7=1(8)可化简或整体法)((⎩y=1是方程2x+a y=5的解,则a=⎧2x-13y-23x+13y+2⎪-=0⎩54⎧3x-2y2x+3y⎪3x-2y2x+3y⎪-=5⎩67(9)(你懂的)(10)(先化简)(11)先化简)(12)整体法)综合训练:一.填空题1.在方程y=-3x-2中,若x=2,则y=_____.若y=2,则x=______;2.若方程2x-y=3写成用含x的式子表示y的形式:_________________;写成用含y的式子表示x的形式:___________________________;⎧x=23.已知⎨.⎧x=14.二元一次方程3x-my=4和mx+ny=3有一个公共解⎨,则⎩y=-11. 对于方程组 (1) ⎨ ,( 2) ⎨ ,( 3) ⎨1 ,( 4) ⎨ xy = -10 x + y = -2 x - y = 1 y 5B. 3.方程组 ⎨ 1 1 1 的解为()⎩B. ⎨ 3⎪⎩ 2⎪⎪ 2 ⎩ 4.已知 a , b 满足方程组 ⎨,则 a - b 的值为( )2a + b = 7 ⎩ ax + by = c⎧m=______,n=_____;5.已知 | a - b + 2 | + (b - 3)2 = 0 ,那么 ab = ______6.方程 3x+y=7 的正整数解为_____________二、选择题⎧ x + y = 3 ⎧ x = 2 ⎪ ⎧ x = 2 y ⎩ ⎩ ⎪ ⎩⎧ x + y = 5⎩, 是二元一次方程组的为()A.(1)和(2)B.(3)和(4)C.(1)和(3)D.(2)和(4)⎧ x = 22.若 ⎨是方程 kx - 2 y = 2 的一个解,则 k 等于( )⎩ y = 5A. 85 3 C .6D. -83⎧3x = 4 y ⎪⎪ 2 x - 3 y = 8⎧ x = 4 A. ⎨⎩ y = 3⎧ x = 2 ⎪ y = ⎧ 1 x = C . ⎨⎪ y = 3 ⎪ 8⎧ 1⎪ x = D. ⎨ 4⎪⎩ y = 0⎧a + 2b = 8⎩A.-1B.0C.1D.2 ⎧ x + y = 15.如果方程组 ⎨有唯一的一组解,那么 a ,b ,c 的值应当满足( ) A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠16.已知 x ,y 满足方程组 ⎨ x + m = 4⎩ y - 5 = m,则无论 m 取何值,x ,y 恒有关系式是( )A .x+y=1B .x+y=-1C .x+y=9D .x+y=9⎩y=2m-2,是方程组4x-3y=10的一组解,求m的值。

人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

人教版七年级数学下册 第八章  二元一次方程组  8.2.2  用加减法解二元一次方程组  同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。

精品解析2021-2022学年人教版初中数学七年级下册第八章二元一次方程组专题训练试题(含详细解析)

精品解析2021-2022学年人教版初中数学七年级下册第八章二元一次方程组专题训练试题(含详细解析)

初中数学七年级下册第八章二元一次方程组专题训练(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣1y=0 D.2x﹣3y=xy2、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是().A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=+⎩C.90152x yx y+=⎧⎨=-⎩D.90215x yx y+=⎧⎨=-⎩3、已知方程组242x yx y k+=⎧⎨+=⎩的解满足1x y+=,则k的值为()A.7 B.7-C.1 D.1-4、用加减法将方程组4311455x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=165、下列方程组中,不是二元一次方程组的是( ).A .23031x y y x -=⎧⎨=+⎩ B .112x y z +=⎧⎨-=⎩C .22236x x x y x y ⎧+=-⎨+=⎩D .2536y x x =+⎧⎨=-⎩6、若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .16 B .-1 C .-16 D .17、解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( )A .由①得743nm +=再代入② B .由②得25109nm +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①8、已知方程370x y --=,231x y +=,9y kx =-有公共解,则k 的值为( ).A .3 B .4C .0D .-19、小明解方程组27x y x y +=⎧⎨-=⎩■的解为5x y =⎧⎨=⎩★,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( ) A .■=8和★=3B .■=8和★=5C .■=5和★=3D .■=3和★=810、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个x 元,包子每个y 元,依题意可列方程组为( )A .5317211533.30.9x y x y +=+⎧⎨+=⨯⎩B .5317211533.30.9x y x y +=+⎧⎨+=÷⎩C .5317211533.30.9x y x y +=-⎧⎨+=⨯⎩D .5317211533.30.9x y x y +=-⎧⎨+=÷⎩二、填空题(5小题,每小题4分,共计20分)1、一元二次方程x ﹣3y =8写成用含y 的代数式表示x 的形式为______.2、已知3211203n m xy -+-=是关于x ,y 的二元一次方程,则n m +=______. 3、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab 的值为_____.4、已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程135x y x by -=⎧⎨-=⎩的解,则=a ______,b =______.5、若x ,y 满足方程组327233x y x y +=⎧⎨+=⎩,则化数式2())(x y x y -+-的值为 _____.三、解答题(5小题,每小题10分,共计50分)1、小明和小丽两人同时到一家水果店买水果.小明买了1kg 苹果和2kg 梨,共花了26元;小丽买了2kg 苹果和1kg 梨,共花了28元.苹果和梨的价格各为多少?根据题意,小明列出方程组:226,228.x y x y +=⎧⎨+=⎩而小丽列出的是:226,228.x y x y +=⎧⎨+=⎩交流后,他们发现两个方程组不同,于是展开了争论,都说自己是正确的,而对方是错误的.他们列的方程组正确吗?你认为他们产生分歧的原因是什么? 2、解下列方程组:(1)2431y x x y =-⎧⎨+=⎩;(2)2316413x yx y+=⎧⎨+=⎩.3、解方程(组):(1)2121 24x x--+=;(2)3142 4210x yx y⎧+=⎪⎨⎪-=⎩.4、解方程组:(1)2102x yy x+=⎧⎨=⎩;(2)3()2()107422x y x yx y x y++-=⎧⎪⎨+-+=⎪⎩.5、用代入消元法解下列方程组:(1)32x yy x-=⎧⎨=⎩(2)528x yx y+=⎧⎨+=⎩(3)43524x yx y+=⎧⎨-=⎩(4)222312nmm n⎧-=⎪⎨⎪+=⎩---------参考答案-----------一、单选题1、B【解析】【分析】根据二元一次方程的定义逐项判断即可得.【详解】A 、362x x -=是一元一次方程,此项不符合题意;B 、32x y =是二元一次方程,此项符合题意;C 、10x y-=是分式方程,此项不符合题意; D 、23x y xy -=是二元二次方程,此项不符合题意; 故选:B . 【点睛】本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的. 2、A 【解析】 【分析】此题中的等量关系有:90ABD DBC ∠+∠=︒,215ABC DBC ∠=∠-︒ ,根据等量关系列出方程即可. 【详解】设∠ABD 和∠DBC 的度数分别为x °,y °,则有90215x y x y y +=⎧⎨+=-⎩整理得:9015x y x y +=⎧⎨=-⎩,故选:A . 【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组. 3、D 【解析】①+②得出x +y 的值,代入x +y =1中即可求出k 的值. 【详解】解:242x y x y k +=⎧⎨+=⎩①②①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=, ∴413k +=, ∴43k +=, 解得:1k =-, 故选:D 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 4、D 【解析】 【分析】根据二元一次方程组的加减消元法可直接进行求解. 【详解】解:用加减法将方程组4311455x y x y -=⎧⎨+=-⎩①②中的未知数x 消去,则有①-②得:﹣8y =16;故选D .本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.5、B【解析】【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组22236x x x yx y⎧+=-⎨+=⎩中,2223x x x y+=-可以整理为23x y=-所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把21xy=-⎧⎨=⎩代入方程组得2127a bb a-+=⎧⎨-+=⎩,两式相加得8a b+=-;两式相差得:2a b -=, ∴()()16a b a b +-=-, 故选C . 【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 7、C 【解析】 【分析】观察两方程中m 系数关系,即可得到最好的解法. 【详解】解:解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是由①得347m n =+,再代入②.故选:C . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 8、B 【解析】 【分析】联立370x y --=,231x y +=,可得:2x =,1y =-,将其代入9y kx =-,得k 值. 【详解】370231x y x y --=⎧⎨+=⎩ ,解得21x y =⎧⎨=-⎩,把21x y =⎧⎨=-⎩代入9y kx =-中得:129k -=-,解得:4k =. 故选:B . 【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键. 9、A 【解析】 【分析】把5x =代入27x y -=求出3y =;再把53x y =⎧⎨=⎩代入x y +=■求出数■即可.【详解】解:把5x =代入27x y -=得,107y -=,解得,3y =;把53x y =⎧⎨=⎩代入x y +=■得,53+=■,解得,■=8; 故选A 【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算. 10、B 【解析】 【分析】设馒头每个x 元,包子每个y 元,根据李大爷买5个馒头、3个包子的钱数等于()172+元,张大妈买11个馒头、5个包子的钱数等于()33.30.9÷元列出二元一次方程组即可 【详解】解:设馒头每个x 元,包子每个y 元,根据题意得5317211533.30.9x y x y +=+⎧⎨+=÷⎩ 故选B 【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于()33.30.9÷元是解题的关键. 二、填空题 1、3y +8y 【分析】移项,利用等式的性质变形即可. 【详解】 解: x ﹣3y =8x =3y +8故答案为:3y +8 【点睛】本题属于二元一次方程变形的问题,依据等式的性质变形即可.本题比较简单. 2、4 【分析】根据二元一次方程的定义,可得方程组31211n m -=⎧⎨+=⎩,解得m 、n 的值,代入代数式即可. 【详解】解:由题意得,31211n m -=⎧⎨+=⎩, 解得:40n m =⎧⎨=⎩, ∴n m +=4,故填:4.【点睛】本题考查二元一次方程的定义,属于基础题型.3、16【分析】根据图1和图2分析可得10a b +=,510a =,即可,a b 的值,进而可得ab 的值【详解】由图1可得长方形的长为b ,宽为a ,根据图2可知大长方形的宽可以表示为5,a a b +510,10a a b ∴=+=解得2,8a b ==16ab ∴=故答案为:16【点睛】本题考查了二元一次方程组,根据图中信息求得,a b 的值是解题的关键.4、3 1【分析】联立不含a 与b 的方程组成方程组求出x 与y 的值,代入剩下的方程求出a 与b 的值即可.【详解】解:联立得:351x y x y -=⎧⎨-=⎩, 解得:21x y =⎧⎨=⎩, 代入剩下的两方程得:65224b a -=⎧⎨-=⎩, 解得:13b a =⎧⎨=⎩, 故答案为:3,1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 5、0【分析】二元一次方程组两式相加得x +y =2,两式相减得x -y =4,将结果代入2())(x y x y -+-=0.【详解】∵327233x y x y +=⎧⎨+=⎩①②令+①②有5510x y +=∴2x y +=令①-②有4x y -=∴4x y -=将2x y +=,4x y -=代入2())(x y x y -+-得224440=--=.故答案为:0.【点睛】本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.三、解答题1、他们列的方程组都正确,见解析【分析】根据所列方程可知小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,由此进行判断即可得到答案.【详解】解:两个人所列的方程都是正确的,理由如下:由题意得:小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,因此他们所列方程组中,同一个x 的意义不同,当然所列方程组也就不相同了.【点睛】本题主要考查了从实际问题抽象出二元一次方程组,解题的关键在于能够正确理解两人所列方程的含义.2、(1)12x y =⎧⎨=-⎩;(2)52x y =⎧⎨=⎩ 【分析】(1)根据代入消元法计算即可;(2)根据加减消元法计算即可;【详解】解:(1)2431y x x y =-⎧⎨+=⎩①②, 把①代入②中,得到3241x x +-=,解得:1x =,把1x =代入①中,得:2y =-,∴方程组的解集为12x y =⎧⎨=-⎩; (2)2316413x y x y +=⎧⎨+=⎩①②, 2⨯-②①得:510y =,解得:2y =,把2y =代入②中,得:5x =,∴方程组的解为52x y =⎧⎨=⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.3、(1)x=85;(2)21xy=⎧⎨=-⎩【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)2121 24x x--+=,去分母,得2(2x﹣1)+(x﹣2)=4,去括号,得4x-2+x﹣2=4,移项,得4x+x=4+2+2,合并同类项,得5x=8,系数化为1,得x=85;(2)3142 4210x yx y⎧+=⎪⎨⎪-=⎩①②,①×2+②,得11112x=,解得x=2,把x=2代入②,得8﹣2y=10,解得x=﹣1,故方程组的解为21xy=⎧⎨=-⎩.【点睛】此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.4、(1)24x y =⎧⎨=⎩;(2)35x y =⎧⎨=-⎩ 【分析】(1)利用代入消元法解二元一次方程组即可;(2)先整理原方程得()()3()2()10214x y x y x y x y ++-=⎧⎨++-=⎩然后把()x y +和()x y -当做一个整体利用加减消元法求出2x y +=-③,8x y -=④,然后利用加减消元法求解即可.【详解】解:(1)2102x y y x +=⎧⎨=⎩①②, 把②代入①中得:410x x +=,解得2x =,把2x =代入②中得,4y =,∴方程组的解集为24x y =⎧⎨=⎩; (2)3()2()107422x y x y x y x y ++-=⎧⎪⎨+-+=⎪⎩ 整理得:()()3()2()10214x y x y x y x y ++-=⎧⎪⎨++-=⎪⎩①②, 用①-②得:()24x y +=-,解得2x y +=-③,把③代入①得:()6210x y -+-=,解得8x y -=④,用③+④得:26x =,解得3x =,把3x=代入③得5y=-,∴方程组的解为35xy=⎧⎨=-⎩.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.5、(1)11xy=-⎧⎨=-⎩(2)32xy=⎧⎨=⎩(3)21xy=⎧⎨=-⎩(4)32mn=⎧⎨=⎩【分析】方程组利用代入消元法求出解即可.【详解】解:(1)32x yy x-=⎧⎨=⎩①②,把②代入①得:-3=2x x,解得:x=-1,把x=-1代入②得:y=-1,则原方程组的解为:11xy=-⎧⎨=-⎩;(2)528x yx y+=⎧⎨+=⎩①②,由①得:y=5-x③把③代入②中得:2x +5-x =8,解得:x =3,把x =3代入③中得:y =5-3=2,则原方程组的解为:32x y =⎧⎨=⎩; (3)43524x y x y +=⎧⎨-=⎩①②, 由②得:x =4+2y ③,将③代入①得:4×(4+2y )+3y =5,解得:y =-1,将y =-1代入③中得:x =4+2×(-1)=2,则原方程组的解为:21x y =⎧⎨=-⎩; (4)222312n m m n ⎧-=⎪⎨⎪+=⎩①②, 由①得:m =2n +2③,将③代入②得: 2×(2n +2)+3n =12,解得:n =2,将n=2代入③中得:m=22+2=3,则原方程组的解为:32mn=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

七年级数学下册第八章二元一次方程组经典中考习题

七年级数学下册第八章二元一次方程组经典中考习题

二元一次方程组一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解. 4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元",主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法. (2)加减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法. 5、方程关于解的个数1.一元一次方程ax b =的解由a b 、的值决定: ⑴若0a ≠,则方程ax b =有唯一解b x a=;⑵若0a b ==,方程变形为00x ⋅=,则方程ax b =有无数多个解; ⑶若0,0a b =≠,方程变为0x b ⋅=,则方程无解.2。

关于x y 、的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的讨论可以按以下规律进行:⑴若1122ab ab ≠,则方程组有唯一解;⑵若111222ab c a b c ==,则方程组有无数多个解; ⑶若111222ab c ab c ≠=,则方程组无解。

经典实例例1、解下列方程组:⑴41216x y x y -=-⎧⎨+=⎩⑵()()41312223x y y x y--=--⎧⎪⎨+=⎪⎩⑶2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩例2。

解下列方程组:⑴()()9185232032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩⑵7231x y x y ⎧+=⎪⎨-=-⎪⎩⑶199519975989199719955987x y x y +=⎧⎨+=⎩⑷323231112x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩⑸23427x y y z z xx y z +++⎧==⎪⎨⎪++=⎩例3。

人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)

人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)

8.1 二元一次方程组基础题知识点1 认识二元一次方程(组)1.下列方程中,是二元一次方程的是(D )A .3x -2y =4zB .6xy +9=0C .1x +4y =6D .4x =y -242.下列方程组中,是二元一次方程组的是(A )A .⎩⎪⎨⎪⎧x +y =42x +3y =7 B .⎩⎪⎨⎪⎧2a -3b =115b -4c =6C .⎩⎪⎨⎪⎧x 2=9y =2x D .⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.(龙口市期中)在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为(C )A .-2B .2或-2C .2D .以上答案都不对4.写出一个未知数为a ,b 的二元一次方程组:答案不唯一,如⎩⎪⎨⎪⎧2a +b =1,a -b =2等.5.已知方程x m -3+y2-n=6是二元一次方程,则m -n =3.6.已知xm +n y 2与xym -n的和是单项式,则可列得二元一次方程组⎩⎪⎨⎪⎧m +n =1m -n =2.知识点2 二元一次方程(组)的解7.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是(B )A .⎩⎪⎨⎪⎧x =0y =-12 B .⎩⎪⎨⎪⎧x =1y =1 C .⎩⎪⎨⎪⎧x =1y =0 D .⎩⎪⎨⎪⎧x =-1y =-1 8.(丹东中考)二元一次方程组⎩⎪⎨⎪⎧x +y =5,2x -y =4的解为(C )A .⎩⎪⎨⎪⎧x =1y =4B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =3y =2D .⎩⎪⎨⎪⎧x =4y =1 9.若⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程ax ―3y =1的解,则a 的值为(D )A .-5B .-1C .2D .7知识点3 建立方程组模型解实际问题10.(温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是(A )A .⎩⎪⎨⎪⎧x +y =7x =2y B .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x 11.(盘锦中考)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是(A )A .⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35B .⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5C .⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35D .⎩⎪⎨⎪⎧2x +3y =15.56x +5y =35 中档题12.(大名县期末)若方程x |a|-1+(a -2)y =3是二元一次方程,则a 的取值范围是(C ) A .a >2 B .a =2 C .a =-2 D .a <-213.(萧山区期中)方程y =1-x 与3x +2y =5的公共解是(B )A .⎩⎪⎨⎪⎧x =-3y =-2B .⎩⎪⎨⎪⎧x =3y =-2C .⎩⎪⎨⎪⎧x =-3y =4D .⎩⎪⎨⎪⎧x =3y =2 14.(内江中考)植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是(D )A .⎩⎪⎨⎪⎧x +y =523x +2y =20B .⎩⎪⎨⎪⎧x +y =522x +3y =20C .⎩⎪⎨⎪⎧x +y =202x +3y =52D .⎩⎪⎨⎪⎧x +y =203x +2y =52 15.(齐齐哈尔中考)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(B )A .1种B .2种C .3种D .4种16.(滨州模拟)若⎩⎪⎨⎪⎧x =a ,y =b 是方程2x +y =0的解,则6a +3b +2=2.17.已知两个二元一次方程:①3x -y =0,②7x -2y =2.(1)对于给出x 的值,在下表中分别写出对应的y 的值; x -2 -1 0 1 2 3 4 y ① -6 -3 0 3 6 9 12 y ②-8-4.5-12.569.513(2)请你写出方程组⎩⎪⎨⎪⎧3x -y =0,7x -2y =2的解.解:⎩⎪⎨⎪⎧x =2,y =6.18.已知甲种物品每个重4 kg ,乙种物品每个重7 kg ,现有甲种物品x 个,乙种物品y 个,共重76 kg .(1)列出关于x ,y 的二元一次方程; (2)若x =12,则y =4;(3)若乙种物品有8个,则甲种物品有5个; (4)写出满足条件的x ,y 的全部整数解. 解:(1)4x +7y =76.(4)由4x +7y =76,得x =76-7y4.又由题意得y 为正整数,当y =0时,x =19; 当y =1时,x =76-74=694,不合题意;当y =2时,x =76-2×74=312,不合题意;当y =3时,x =76-3×74=554,不合题意;当y =4时,x =76-4×74=12;当y =5时,x =76-5×74=414,不合题意;当y =6时,x =76-6×74=172,不合题意;当y =7时,x =76-7×74=274,不合题意;当y =8时,x =76-8×74=5;当y =9时,x =76-9×74=134,不合题意;当y =10时,x =76-10×74=32,不合题意;当y =11时,x =76-11×74<0,不合题意.∴满足x ,y 的全部整数解是⎩⎪⎨⎪⎧x =5,y =8,⎩⎪⎨⎪⎧x =12,y =4,⎩⎪⎨⎪⎧x =19,y =0.19.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得⎩⎪⎨⎪⎧x +y =13,0.8x +2y =20.(2)设有x 只鸡,y 个笼,根据题意得⎩⎪⎨⎪⎧4y +1=x ,5(y -1)=x.综合题20.甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 016+(-110b)2 017.解:把⎩⎪⎨⎪⎧x =-3,y =-1代入方程②中,得4×(-3)-b ×(-1)=-2,解得b =10.把⎩⎪⎨⎪⎧x =5,y =4代入方程①中,得5a+5×4=15,解得a=-1.∴a2 016+(-110b)2 017=(-1)2 016+(-110×10)2 017=1+(-1)=0. 不用注册,免费下载!【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

人教版七年级下册数学第八章-列二元一次方程组解应用题专项训练

人教版七年级下册数学第八章-列二元一次方程组解应用题专项训练
(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?
5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?
(1)设到政府规划小区建房的搬迁农户为x户,政府规划小区总面积为y平方米.
可得方程组解得
(2)在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;
在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元。
(3)设非搬迁户申请加入建房并被政府批准的有z户,政府将收取的土地使用费投入后,还需投资p万元.①用含z的代数式表示p;②当p不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房?
23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少?
24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车量情况下如下:
14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分。比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场?
15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少?

七年级数学下册 8.3 实际问题与二元一次方程组同步练习4(无答案)(新版)新人教版 试题

七年级数学下册 8.3 实际问题与二元一次方程组同步练习4(无答案)(新版)新人教版 试题

实际问题与二元一次方程组分类知能点1 销售和利润问题1.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚70元,•后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损110元,则该商场每件羊绒衫的进价为_____,标价为_______.2.某种彩电原价是1 998元,若价格上涨x%,那么彩电的新价格是______元;若价格下降y%,那么彩电的新价格是_______元.3.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为(). A.10 B.12 C.14 D.174.在我国股市交易中,每买一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,•该投资者的实际赢利为().A.2 000元 B.1 925元 C.1 835元 D.1 910元5.某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35•元,•利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、•乙两种商品各购进多少件?◆知能点2 利率、利税问题6.某公司存入银行甲、乙两种不同性质的存款共20万元,甲、•乙两种存款的年利率分别为1.4%和3.7%,该公司一年共得利息(不计利息税)6 250•元,•则甲种存款______,乙种存款______.7.某人以两种形式一共存入银行8 000元人民币,其中甲种储蓄的年利率为10%,乙种储蓄的年利率为8%,一年共得利息860元,若设甲种存入x元,乙种存入y元,根据题意列方程组,得_________.8.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,•甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少.•若设甲、乙两种贷款的数额分别为x万元和y万元,则(). A.x=15,y=20 B.x=12,y=23 C.x=20,y=15 D.x=23,y=12◆开放探索创新9.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,•请你研究一下商场的进货方案.◆中考真题实战10.(重庆)为了解决农民工子女入学难的问题,•我市建立了一套进城农民工子女就学的保障机制,其中一项是免交“借读费”.据统计,2004年秋季有5 000•名农民工子女进入主城区中小学学习,预测2005•年秋季进入主城区中小学学习的农民工子女将比2004年有所增加,其中小学增加20%,中学增加30%,这样2005•年秋季将新增1 160名农民工子女在主城区中小学学习.如果按小学生每年的“借读费”500•元,中学生每年的“借读费”1000元计算,求2005年新增的1 160名中小学生共免收多少“借读费”.11.(南通)张栋同学到百货大楼买了两种型号的信封共30个,其中买A•型号的信封用了1元5角,买B型号的信封用了1元2角,B型号的信封每个比A型号的信封便宜2分,则两种型号信封的单价各是多少元?知能点1 行程问题1.甲、乙两人相距45km,甲的速度是7km/h,乙的速度为3km/h,两人同时出发,(1)若同向而行,甲追上乙需_______h;(2)若相向而行,甲、乙需______h相遇;(3)若同向而行,乙先走1h,甲再追乙,经过______h甲可追上乙.2.两人在400m的圆形跑道上练习赛跑,方向相反时每32s相遇一次,•方向相同时每3min相遇一次,若设两人速度分别为x(m/s)和y(m/s)(x>y),•则由题意列出方程组为_________.3.A,B两地相距20km,甲从A地,乙从B地同时出发相向而行,经过2h相遇,相遇后,甲立即返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2km,则两人的速度分别为________.4.一只船在一条河上的顺流速度是逆流速度的3倍,则这只船在静水中的速度与水流速度之比为:_________.5.已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s ,求火车的速度和长度.知能点2 配套问题6.张阿姨要把若干个苹果分给小朋友们吃,若每人2个,则多1个;若每人3个,•则缺2个,苹果有_______个,小朋友有_______个.7.两台拖拉机共运水泥35t ,其中一台比另一台多运7t ,•则这两台拖拉机分别运送了水泥_______t 和_________t .8.如图所示,周长为34的长方形ABCD 被分成7个大小完全一样的小长方形,•则每个小长方形的面积为( ).A .30B .20C .10D .149.一个长方形周长为30,若它的长减少2,宽增加3,就变成了一个正方形,设该长方形长为x ,宽为y ,则可列方程组为( ). 2()30303015....23232323x y x y x y x y A B C D x y x y x y x y +=+=-=+=⎧⎧⎧⎧⎨⎨⎨⎨-=+-=++=-+=-⎩⎩⎩⎩10.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?◆规律方法应用11.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?12.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次租用这两种货车的情况如下表:第一次 第二次 甲货车辆数(单位:辆) 2 5 乙货车辆数(单位:辆)36 累计运货吨数(单位:吨) 15.535现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,•如果按每吨付运费30元计算,则货主应付运费多少元?◆开放探索创新13.小颖在拼图时发现8个一样大小的矩形,恰好可以拼成一个大的矩形,•如图(1)所示.小彬看见了,说:“我来试一试”.结果小彬七拼八凑,拼成如图(2)那样的正方形.中间还留下一个洞,恰好是边长为2mm 的小正方形. 你能帮他们解开其中的奥秘吗?◆中考真题实战14.(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?。

解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)

解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)

第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。

人教版七年级数学下册8.3 实际问题和二元一次方程组过关练习题 (无答案)

人教版七年级数学下册8.3 实际问题和二元一次方程组过关练习题 (无答案)

实际问题与二元一次方程组过关练习一、选择题1. 夏季来临,某超市试销A,B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A,B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( )A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩2. 某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩3. 甲、乙两人骑自行车同时从相距65km的两地相向而行,2h相遇,若甲比乙每小时多骑2.5km,则乙的速度是每小时A.12.5kmB. 15kmC.17.5kD. 20km4.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元若只买8支玫瑰,则她所带的钱还剩下( )A.31元B.30元C.25元D.19元5. 我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩二、填空题6.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.某队前16场比赛中负6场得26分,则该队胜场.7 一个两位数的各位数字之和为8,十位数字与个位数字互换后,所得新数比原数小18,则原来的两位数是.8. 某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.现计划用16天正好完成加工任务,则该公司应安排天精加工, 天粗加工.9. 某同学家离学校8千米,每天骑自行车上学和放学.有一天上学时顺风,从家到学校共用25分钟,放学时逆风,从学校回家共用时35分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意,列出方程组为.10. 根据图中给出的信息,求每件T恤衫和每瓶矿泉水的价格,设每件T恤衫和每瓶矿泉水的价格分别为x元和y元,列方程组为.三、解答题11. 某商店分别以标价的8折和9折卖了两件不同品牌的衬衫A和B,共收款364元,已知A,B两件衬衫的标价和是420元,则打折前购买2件A衬衫和1件B 衬衫共需多少元?12. 为奖励表现优秀的学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规若干.文具店给出两种优惠方案:方案一:购买一个文具袋送1个圆规方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折若学校购买圆规100个,则选择哪种方案更合算?请说明理由13. 为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆,学校向租车公司租赁A,B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.(1)求A,B两种车型各有多少个座位;(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B型车,怎样租车能使座位恰好坐满且租金最少,并求出最少租金.14小明在拼图时,发现8个大小一样的长方形,恰好拼成一个大的长方形,如图①所示.小红看见了,说:“我来试一试”.结果拼成如图②所示的正方形,中间还留有一个洞,恰好是边长2cm的小正方形,你能算出每个长方形的长与宽是多少吗?15某服装厂生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子,现在此种布料600米,请你帮助设计一下,该如何分配布料,才能使运动服成套而不至于浪费,能生产多少套运动服?16某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图②),再将它们制作甲、乙两种无盖的长方体小盒(如图①),现将300张长方形硬纸片和150张长方形硬纸片全部用于制作这两种小盒,可以做成甲、乙两种小盒多少个?(注:图①种向上的一面无盖)17茜茜受《乌鸦喝水》故事的启发,利用量筒、大球和小球进行了如下操作,请根据图中给出的信息,解答下列问题:(1)放入一个小球上面升高cm,放入一个大球水面升高cm.(2)如果要使水面上升到50cm,应放入大球,小球各各多少各?18某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元?19现有一段长为180米的河道整治任务,由AA,B两工程队先后接力完成,A工程队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:()()⎩⎨⎧=+=+yxyx812乙:()()⎪⎩⎪⎨⎧=+=+812yxyx根据甲、乙两名同学所列的方程组,请你分别指出未知量x,y表示的意义,人后在括号内不全甲、乙两名同学所列的方程组:甲:x表示:,y表示;乙:x表示:,y表示;(2)求A、B两个工程队分别整治河道多少米,(写出完整解答过程)20请根据图中信息回答下列问题(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯,若某人想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算?请说明理由.21据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把琵琶运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满琵琶一次可运货12吨,用3辆甲型车和4辆乙型车装满琵琶一次课运货17吨,现有21吨琵琶,计划同时租用甲型车m辆,乙型车n辆一次运完,且恰好每辆车都装满琵琶,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满琵琶一次可分别运货多少吨?(2)请你帮个体商贩张杰设计租车方案,共有多少种租车方案?22如图,A,B两地由公路和铁路相连,在这条路上有一家食品厂,它到B地的距离是A地的2倍,这家厂从A地购买原料,制成食品卖到B地,已知公路运价为1.5元(千米·吨),铁路运价为1元(千米·吨).这两次运输(第一次:A地→食品厂,第二次:食品厂→B地)共支出公路运费15600元,铁路运费20600元.问:(1)这家食品厂到A地的距离是多少千米?(2)这家食品长此次买进的原料每吨5000元,卖出的食品每吨1000元,这批食品销售完后工厂共获利多少元?。

人教版七年级数学下册 第八章 二元一次方程组解答题专项练习试题(无答案)

人教版七年级数学下册 第八章 二元一次方程组解答题专项练习试题(无答案)

人教版七年级数学下册二元一次方程组解答题专项练习 解答题 1.解方程组 (1)73100202x y y x+=⎧⎨=-⎩ (2)(3)6,33,2312;x y z x y x y z ++=⎧⎪-=⎨⎪+-=⎩2.如果关于x ,y 的方程组 的 解中,x 与y 互为相反数,求k 的值.3.是否存在m 值,使方程(|m |-2)x 2+(m +2)x +(m +1)y =m +5是关于x ,y 的二元一次方程?若存在,求出m 的值;若不存在,请说明理由.4.已知x ,y 满足方程组,(1)用x 的代数式表示y ;(2)若不论x 取何值,代数式(kx ﹣y )(y+ x )的值都为常数,求此时k 的值以及该代数式的值.5.若,求x+y+z 的值.6.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①② 由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩,乙看错了方程①中的b ,得到方程组的解为54x y =⎧⎨=⎩,试计算20182019(0.1)a b +-的值.7.甲乙两名学生解方程组⎩⎨⎧=-=+872y kx ny mx ,甲正确的解得⎩⎨⎧-==23y x ,乙因把k 写错了,解得⎩⎨⎧=-=22y x ,求m,n,k 的值。

8.NBA 季后赛正如火如荼地进行着,詹姆斯率领的骑士队在第三场季后赛中先落后 25 分的 情况下实现了大逆转.该场比赛中詹姆斯的技术统计数据如下表所示:(表中投篮次数和投中次数均不包括罚球,个人总得分来自 2 分球和 3 分球的得分以及罚球得分)根据以上信息,求出本场比赛中詹姆斯投中 2 分球和 3 分球的个数.9.先阅读,再解方程组.解方程组:⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2. 设a =x +y ,b =x -y , 则原方程组变为⎩⎪⎨⎪⎧a 2+b 3=6,4a -5b =2,变形为⎩⎨⎧3a +2b =36,4a -5b =2.解这个方程组,得⎩⎨⎧a =8,b =6,即⎩⎨⎧x +y =8,x -y =6.解得⎩⎨⎧x =7,y =1.请用这种方法解下面的方程组: ⎩⎨⎧5(x +y )-3(x -y )=16,3(x +y )-5(x -y )=0. 10.某山区有23名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a 元,一名小学生的学习费用需要b 元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好资助受捐助贫困中学生和小学生人数的部分情况如下表:(1)求a 、b 的值;(2)初三年级学生的捐款解决了其余贫困中、小学生学习的费用,请求出初三年级学生可捐助的贫困中、小学生人数各是多少?11.大学生小王积极相应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电,通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y (件)与销售单价x (元)之间满足等式y=ax+b ,其中a 、b 为常数.(1)根据图中提供的信息,求a 、b 的值;(2)求销售该款家电120件时所获利润是多少?(提示:利润=实际售价﹣进价)12.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算。

人教版七年级下册数学作业 二元一次方程组计算 应用 35道题 (无答案)

人教版七年级下册数学作业 二元一次方程组计算 应用 35道题 (无答案)

2020年2月24日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、解答题 1.解下列方程组:(1)4143314312x y x y +=⎧⎪--⎨-=⎪⎩ (2)0.10.213324(1)3(1)9x y y xx y --⎧-=⎪⎨⎪-++=⎩2.已知:方程组2325x y ax y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组.(1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.3.先化简,再求值:22222212a b a b a b ab ab ⎛⎫-+÷- ⎪+⎝⎭,其中a 、b 满足2542a b a b +=⎧⎨-=-⎩①②.4.解方程组:(1)62x y y x +=⎧⎨=⎩ (2)23738x y x y +=⎧⎨-=⎩(3)25214323x y x y -=-⎧⎨+=⎩ (4)1253()2()6x y x yx y x y -+⎧-=⎪⎨⎪-++=⎩5.解方程组4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩.6.解方程组:(1)104()5x yx y y--=⎧⎨--=⎩(2)3()4()6123x y x yx y x y++-=⎧⎪+-⎨+=⎪⎩7.(1)解方程组1135x yx y-=⎧⎨+=⎩(2)方程组()()22111315a ba b⎧+-=⎪⎨++=⎪⎩的解是______.8.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价m和市场价n分别是多少元?(2)小明家5月份交水费70元,则5月份他家用了多少吨水?(1)该比赛胜1场的积分为分,负1场的积分为分,列式表示积分与胜、负场数之间的数量关系,假设胜场数为m场,则这次比赛的积分是(直接写出结果)(2)某队的胜场总积分能等于它的负场总积分吗?10.某家具厂生产一种方桌,1立方米的木材可做20个桌面或400条桌腿,现有12立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,一共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)11.已知方程组2564x yax by+=-⎧⎨-=-⎩与方程组35168x ybx ax-=⎧⎨+=-⎩的解相同,求2015(2)a b+的值.12.三位老师周末到某家电专卖店购买冰箱和空调,正值该专卖店举行“迎新春、大优惠”活动,具体优惠情况如下表:(1)李老师所购物品的原价是6000元,李老师实际付元(2)已知张老师购买了两件物品(一个冰箱和一个空调)共付费4060元.请问这两件物品的原价总共是多少元;(3)碰巧同一天赵老师也在同一家专卖店购买了同样的两件物品.但赵老师上午去购买的冰箱,下午去购买的空调,如此一来赵老师两次付款总额比张老师多花费了140元.已知此冰箱的原价比空调的原价要贵,求这两件物品的原价分别为多少元. 12.某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?(1)小凯分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出217元,小凯第一次购买橙千克,第二次购买橙千克.(2)小坤分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克橙的单价不相同,共付出436元,请问小坤第一次,第二次分别购买橙多少千克?(列方程求解)15.为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)−=4,3+=16;(2)−=2,3+5=14.【分析】(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,即可求出y的值,则x的值也就迎刃而解了;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,即可求出x的值,则y的值也就可以求出了.【解答】解:(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,解得y=1.将y=1代入x=y+4中得x=5,故方程组的解为:=5=1;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,解得x=3.将x=3代入y=x﹣2,得y=1.故方程组的解为:=3=1.【点评】本题主要考查了二元一次方程组的解法,解题的关键是掌握代入法解方程.2.用代入法解下列方程组:(1)2−=33+2=8;(2)+=103−2=5.【分析】两方程组利用代入消元法求出解即可.【解答】解:(1)2−=3①3+2=8②,由①得:y=2x﹣3③,把③代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入③得:y=4﹣3=1,则方程组的解为=2=1;(2)+=10①3−2=5②,由①得:u=10﹣v③,把③代入②得:3(10﹣v)﹣2v=5,解得:v=5,把v=5代入①得:5+u=10,解得:u=5,则方程组的解为=5=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.用代入法解下列方程组:(1)3−=2,9+8=17;(2)3−4=10+3=12.【分析】(1)由①得出y =3x ﹣2③,把③代入②得出9x +8(3x ﹣2)=17,求出x ,再把x =1代入③求出y 即可;(2)由②得出x =12﹣3y ③,把③代入①得出3(12﹣3y )﹣4y =10,求出y ,再把y =2代入③求出x 即可.【解答】解:(1)3−=2①9+8=17②,由①,得y =3x ﹣2③,把③代入②,得9x +8(3x ﹣2)=17,解得:x =1,把x =1代入③,得y =3×1﹣2,即y =1,所以原方程组的解是=1=1;(2)3−4=10①+3=12②,由②,得x =12﹣3y ③,把③代入①,得3(12﹣3y )﹣4y =10,解得:y =2,把y =2代入③,得x =12﹣3×2,即x =6,所以原方程组的解是=6=2.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4.用代入法解下列方程组.(1)+2=4=2−3;(2)−=44+2=−2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)+2=4①=2−3②,把②代入①得:x +2(2x ﹣3)=4,解得:x =2,把x =2代入②得:y =4﹣3=1,则方程组的解为=2=1;(2)方程组整理得:−=4①2+=−1②,①+②得:3x =3,解得:x =1,把x =1代入①得:1﹣y =4,解得:y =﹣3,则方程组的解为=1=−3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用代入法解下列方程组:(1)5+4=−1.52−3=4(2)4−3−10=03−2=0【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)5+4=−1.5①2−3=4②,由②得:x =3r42③,把③代入①得:15r202+4y =﹣1.5,去分母得:15y +20+8y =﹣3,移项合并得:23y =﹣23,解得:y =﹣1,把y =﹣1代入③得:x =12,则方程组的解为=12=−1;(2)方程组整理得:4−3−10=0①=23t ,把②代入①得:83y ﹣3y ﹣10=0,去分母得:8y ﹣9y ﹣30=0,解得:y=﹣30,把y=﹣30代入②得:x=﹣20,则方程组的解为=−20=−30.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.用代入法解下列方程组:(1)−=42+=5;(2)3−=29+8=17;(3)3+2=−86−3=−9.【分析】各方程组利用代入消元法求出解即可.【解答】解:(1)−=4①2+=5②,由①得:x=y+4③,把③代入②得:2(y+4)+y=5,解得:y=﹣1,把y=﹣1代入③得:x=﹣1+4=3,则方程组的解为=3=−1;(2)3−=2①9+8=17②,由①得:y=3x﹣2③,把③代入②得:9x+8(3x﹣2)=17,解得:33x=33,解得:x=1,把x=1代入③得:y=3﹣2=1,则方程组的解为=1=1;(3)3+2=−8①2−=−3②,由②得:y=2x+3③,把③代入①得:3x+2(2x+3)=﹣8,解得:x=﹣2,把x=﹣2代入②得:﹣4﹣y=﹣3,解得:y=﹣1,则方程组的解为=−2=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.用代入法解下列方程组:(1)3+2=11,①=+3,②(2)4−3=36,①+5=7,②(3)2−3=1,①3+2=8,②【分析】(1)将方程②代入方程①进行求解;(2)将方程②变形为y=﹣5x+7,再代入方程①进行求解;(3)将方程①变形为y=2K13,再代入方程②进行求解.【解答】解:(1)将方程②代入方程①得,3(y+3)+2y=11,解得y=25,把y=25代入②得,x=175,∴该方程组的解为=175=25;(2)将方程②变形为y=﹣5x+7③,把③代入①得,4x﹣3(﹣5x+7)=36,解得x=3,将x=3代入③得,y=﹣5×3+7,解得y=﹣8,∴该方程组的解为=3=−8;(3)将方程①变形为y=2K13③,把③代入②得,3x+2×2K13=8,解得x=2,将x =2代入③得,y =2×2−13,解得y =1,∴该方程组的解为=2=1.【点评】此题考查了利用代入法解二元一次方程组的能力,关键是能直接或将某方程变式后进行代入消元求解.8.用代入法解下列方程组:(1)5+2=15①8+3=−1②;(2)3(−2)=−172(−1)=5−8.【分析】(1)用代入消元法解二元一次方程组即可;(2)用代入消元法解二元一次方程组即可.【解答】解:(1)5+2=15①8+3=−1②,由①得,y =15−52③,将③代入②得,8x +15−52×3=﹣1,解得,x =﹣47,将x =﹣47代入①得,y =125,∴方程组的解为=−47=125;(2)3(−2)=−172(−1)=5−8,整理得,3−=−11①2−5=−6②,由①得,x =3y +11③,将③代入②得,y =﹣28,将y =﹣28代入①得,x =﹣73,∴方程组的解为=−73=−28.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.9.用代入法解下列方程组:(1)=6−53−6=4(2)5+2=15+=6(3)3+4=22−=5(4)2+3=73−5=1【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)=6−5s3−6=4②,把①代入②得3(6﹣5y)﹣6y=4,解得y=23,∴x=6−5×23=83,所以方程组的解为=83=23;(2)5+2=15①+=6②,由②得x=6﹣y③,把③代入①,得y=5,∴x=6﹣5=1,所以原方程组的解为=1=5;(3)3+4=2①2−=5②,由②得y=2x﹣5③,把③代入①得,解得x=2,∴y=2×2﹣5=﹣1,所以原方程组的解为=2=−1;(4)2+3=7①3−5=1②,由①得x=7−32③,把③代入②得解得y=1,∴x=7−3×12=2,所以原方程组的解为=2=1.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.10.用代入法解下列方程组:(1)2+=3+2=−6;(2)+5=43−6=5;(3)2−=63+2=2;(4)5+2=113−=−9;【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)2+=3①+2=−6②,由①得y=3﹣2x,把y=3﹣2x代入②得x+2(3﹣2x)=﹣6,解得x=4,∴y=3﹣2×4=﹣5.∴方程组的解为=4=−5.(2)+5=4①3−6=5②,由①得x=4﹣5y,把x=4﹣5y代入②得3(4﹣5y)﹣6y=5,解得y=13,∴x=4﹣5×13=73.∴方程组的解为=73=13.(3)2−=6①3+2=2②,由①得y=2x﹣6,把y=2x﹣6代入②得3x+2(2x﹣6)=2,解得x=2,∴y=2x﹣6=2×2﹣6=﹣2.方程组的解为=2=−2.(4)5+2=11①3−=−9②,由②得x=3y+9,把x=3y+9代入①得5(3y+9)+2y=11,解得y=﹣2,∴x=3×(﹣2)+9=3.∴方程组的解为=3=−2.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.1.用加减法解下列方程组:(1)4−=143+=7(2−2=7−3=−8【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)4−=14①3+=7②,①+②得:7x=21,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为=3=−2;(2−2=7①−3=−8②,①﹣②得:y=15,把y=15代入①得:x=74,则方程组的解为=74=15.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.用加减法解下列方程组:(1)2+7=53+=−2(2)5=123=−2(37=127=13【分析】(1)由②得出n=﹣2﹣3m③,把③代入①得出2m+7(﹣2﹣3m)=5,求出m,把m=﹣1代入③求出n即可;(2)②﹣①×2得出13v=﹣26,求出v,把v=﹣2代入①求出u即可;(3)整理后①+②得出28x=35,求出x,②﹣①求出y即可.【解答】解:(1)2+7=5①3+=−2②由②得:n=﹣2﹣3m③,把③代入①得:2m+7(﹣2﹣3m)=5,解得:m=﹣1,把m=﹣1代入③得:n=1,所以原方程组的解是:=−1=1;(2)2−5=12①4+3=−2②②﹣①×2得:13v=﹣26,解得:v=﹣2,把v=﹣2代入①得:2u+10=12,解得:u=1,所以原方程组的解是:=1=−2;(3)整理得:14−6=21①14+6=14②,①+②得:28x=35,解得:x=54,②﹣①得:12y=﹣7,解得:y=−712,所以原方程组的解是:=54=−712.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.用加减法解下列方程组:(1)−=53+4=−1.2+=4;(2)−2=3【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)−=5①2+=4②,①+②得:3x =9,解得:x =3,把x =3代入①得:3﹣y =5,解得:y =﹣2,则方程组的解为=3=−2;(2)−2=3①3+4=−1②,①×2+②得:5x =5,解得:x =1,把x =1代入①得:1﹣2y =3,解得:y =﹣1,则方程组的解为=1=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.用加减法解下列方程组:(1)4−3=11,2+=13;(2)−=3,2+3(−p =11【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)4−3=11①2+=13②,①+②×3得:10x =50,解得:x =5,把x =5代入①得:20﹣3y =11,解得:y =3,所以方程组的解为=5=3;(2)方程组整理得:−=3①3−=11②,②﹣①得:2x =8,解得:x =4,把x=4代入①得:4﹣y=3,解得:y=1,所以方程组的解为=4=1.【点评】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用加减法解下列方程组:(1)3+2=76−2=11(2)2+=33+=4.【分析】各个方程组利用加减消元法求出解即可.【解答】解:(1)3+2=7①6−2=11②,①+②得:9μ=18,即μ=2,把μ=2代入①得:6+2t=7,解得:t=12,则方程组的解为=2=12;(2)2+=3①3+=4②,②﹣①得:a=1,把a=1代入①得:2+b=3,解得:b=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3−4=04+=8;(2+=3−32=−1.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3−4=0①4+=8②,①+②得:4y=8,解得:y=2,把y=2代入②得:4x+2=8,解得:x=32,则方程组的解为=32=2;(2)方程组整理得:2+=3①−3=−2②,①×3+②得:7x=7,解得:x=1,把x=1代入①得:2+y=3,解得:y=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法是代入消元法与加减消元法.7.(2022秋•陕西期末)用加减法解下列方程组:(1)−=33−8=14;(2+2=10=1+r13.【分析】(1)根据加减消元法解二元一次方程组即可求解;(2)将第二个方程去分母化简,然后根据加减消元法解二元一次方程组即可求解.【解答】解:(1)−=3①3−8=14②,①×3﹣②得:﹣3y+8y=9﹣14,解得:y=﹣1,将y=﹣1代入①得:x+1=3,解得:x=2,∴原方程组的解为:=2=−1;(2+2=10①=1+r13②,由②得3x=6+2(y+1),即3x﹣2y③,①﹣③得:4y=2,解得:=12,①+③得:6x=18,解得:x=3,∴原方程组的解为:=3=12.【点评】本题考查了加减消元法解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.8.用加减法解下列方程组:(1)+3=,2(+1)−=6;(2)+=2800,96%+64%=2800×92%.【分析】(1)先用第二个方程减去第一个方程即可得到x 的值,然后将x 的值代入任意一个方程,解方程即可得到y 的值;(2)先对方程组进行化简可得+=2800①3+2=8050②,易得两个方程中y 的系数存在2倍关系,故只需用方程②减去方程①乘2的积即可得到关于x 的方程,解方程即可.【解答】解:(1)+3=,①2(+1)−=6.②②﹣①,得x ﹣1=6,∴x =7,x =7代入①得y =10,所以原方程组的解为=7=10.(2)原方程化简得+=2800,①3+2=8050.②②﹣①×2,得﹣x =﹣2450,∴x =2450,将x =2450代入①得:y =350,∴原方程组的解为:=2450=350.【点评】本题考查二元一次方程组的解法,利用正确的方法求解是本题的关键.9.用加减法解下列方程组:(1)−=5,①2+=4;②(2)−2=1,①+3=6;②(3)2−=5,①−1=12(2−1).②【分析】(1)利用加减消元法解答即可;(2)利用加减消元法解答即可;(3)利用加减消元法解答即可.【解答】解:(1)−=5①2+=4②,①+②得:3x=9,解得:x=3,把x=3代入①得:3﹣y=5,解得:y=﹣2,所以方程组的解为:=3=−2;(2)−2=1①+3=6②,②﹣①得:5y=5,解得:y=1,把y=1代入①得:x﹣2=1,解得:x=3,所以方程组的解为:=3=1;(3)2−=5①−1=12(2−1)②,由②得:2x﹣2y=1③,①﹣③得:y=4,把y=4代入①得:2x﹣4=5,解得:x=92,所以方程组的解为:=92=4.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.用加减法解下列方程组:(1)+3=62−3=3(2)7+8=−57−=4(3)−1=3(−2)+4=2(+1)(4+4=1−3=−1.【分析】各方程组整理后,利用加减消元法求出解即可.【解答】解:(1)+3=6①2−3=3②,①+②得:3x=9,即x=3,把x=3代入①得:y=1,则方程组的解为=3=1;(2)7+8=−5①7−=4②,①﹣②得:9y=﹣9,即y=﹣1,把y=﹣1代入①得:x=37,则方程组的解为=37=−1;(3)方程组整理得:3−=5①2−=2②,①﹣②得:x=3,把x=3代入①得:y=4,则方程组的解为=3=4;(4)方程组整理得:4+3=12①3−2=−6②,①×2+②×3得:17x=6,即x=617,①×3﹣②×4得:17y=60,即y=6017,则方程组的解为=617=6017.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2−5=14①3+5=16②(加减法).=−t(代入法);(2)2+3=9①【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把②代入①得:2x+5x=14,解得:x=2,把x=2代入②,得:y=﹣2,则原方程组的解是=2=−2;(2)①×3得:6x+9y=27③,②×2得:6x+10y=32④,④﹣③得:y=5,把y=5代入①得:2x+15=9,解得:x=﹣3,则原方程组的解是=−3=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2022春•安岳县校级月考)解下列方程组:(1)3−=75+2=8(用代入法);(23=104=5(用加减法).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)3−=7①5+2=8②,由①得:y=3x﹣7③,把③代入②得:5x+2(3x﹣7)=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则方程组的解为=2=−1;(2)方程组整理得:3+4=120①4−3=60②,①×3+②×4得:25m=600,解得:m=24,把m=24代入①得:72+4n=120,解得:n=12,则方程组的解为=24=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2022春•大连期中)用指定的方法解下列方程组:(1)−3=42+=13(代入法);(2)5+2=4+4=−6(加减法).【分析】(1)利用代入法解方程组;(2)利用加减消元法解方程组.【解答】解:(1)−3=4①2+=13②,由①得x =3y +4③,把③代入②,得2(3y +4)+y =13,解得y =57,∴x =3×57+4=617,∴方程组的解为=617=57;(2)5+2=4①+4=−6②,①×2﹣②,得9x =14,解得x =149,把x =149代入②,得149+4y =﹣6,解得y =−179.∴方程组的解为=149=−179.【点评】本题考查了解二元一次方程组,做题的关键是掌握加减消元法,和代入消元法解二元一次方程组.4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5−=113+=7(代入消元法);(2)2−5=245+2=31(加减消元法).【分析】(1)由方程①,得b =5a ﹣11,再代入方程②求出未知数a ,进而得出未知数b ;(2)用方程①×2﹣②×5,可消去未知数y ,求出未知数x ,进而得出y 的值.【解答】解:(1)5−=11①3+=7②,由①,得b =5a ﹣11③,把③代入②,得3a +5a ﹣11=7,解得a =94,把a=94代入③,得b=14,故方程组的解为=94=14;(2)2−5=24①5+2=31②,①×2﹣②×5,得29x=203,解得x=7,把x=7代入①,得y=﹣2,故方程组的解为=7=−2.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2+3=11①=+3②(代入消元法);(2)3−2=2①4+=10②(加减消元法).【分析】(1)利用代入消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)2+3=11①=+3②,把②代入①得:2(y+3)+3y=11,解得y=1,把y=1代入②得:x=1+3=4,故原方程组的解是:=4=1;(2)3−2=2①4+=10②,②×2得:8x+2y=20③,①+③得:11x=22,解得x=2,把x=2代入②得:8+y=10,解得y=2,故原方程组的解是:=2=2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握.6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)−2=22+3=12(代入法);(2)6−5=36+=−15(加减法).【分析】(1)整理后由①得出n =2m ﹣4③,把③代入②得出2m +3(2m ﹣4)=12,求出m ,再把m =3代入③求出n 即可;(2)②﹣①得出6t =﹣18,求出t ,再把t =﹣3代入①求出s 即可.【解答】解:(1)整理得:2−=4①2+3=12②,由①,得n =2m ﹣4③,把③代入②,得2m +3(2m ﹣4)=12,解得:m =3,把m =3代入③,得n =2×3﹣4=6﹣4=2,所以原方程组的解是=3=2;(2)6−5=3①6+=−15②,②﹣①,得6t =﹣18,解得:t =﹣3,把t =﹣3代入①,得6s +15=3,解得:s =﹣2,所以原方程组的解是=−2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.7.(2022春•泰安期中)用指定的方法解下列方程组(1)3+4=19−=4(代入消元法);(2)2+3=−53−2=12(加减消元法);(3−9)=6(−2)r13=2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3+4=19①−=4②,由②得:x =y +4③,把③代入①得:3(y +4)+4y =19,解得:y=1,把y=1代入③得:x=1+4=5,则方程组的解为=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,则方程组的解为=2=−3;(3)方程组整理得:5−6=33①3−4=28②,①×2﹣②×3得:x=﹣18,把x=﹣18代入①得:﹣90﹣6y=33,解得:y=−412,则方程组的解为=−18=−412.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3+2=143+4=17.(加减法)=+3;(代入法)(2)2+3=12【分析】(1)用代入消元法解方程组即可;(2)用加减消元法解方程组即可.【解答】解:(1)3+2=14①=+3②,将②代入①,得3y+9+2y=14,解得y=1,将y=1代入②得x=4,∴方程组的解为=4=1;(2)2+3=12①3+4=17②,①×3得,6x+9y=36③,②×2得,6x+8y=34④,③﹣④,得y=2,将y=2代入①得,x=3,∴方程组的解为=3=2.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题的关键.9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)=2−33+2=8(代入法);(2)3+4=165−6=33(加减法).【分析】(1)把①代入②得出x的值,再把x的值代入①求出y的值,从而得出方程组的解;(2)①×3+②×2得出19x=114,求出x,把x=6代入①求出y即可.【解答】解:(1)=2−3①3+2=8②,把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则原方程组的解是:=2=1.(2)3+4=16①5−6=33②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=−12,所以方程组的解=6=−12.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.10.用指定的方法解下列方程组:(1)3+4=19−=4(代入法);(2)2+3=−53−2=12(加减法).【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y =1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【解答】解:(1)3+4=19①−=4②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解=2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.1.(2022•苏州模拟)用适当的方法解下列方程组.(1)+2=9−3=1;(2−34=1−p−(−4p=4.【分析】(1)利用加减消元法,方程组可化为:7y=28,解得:y=4,将y=4代入①得:x=1;(2)先将方程组化为:8−9=12①8−5=4②,利用加减消元法解得:y=﹣2,将y=﹣2代入①得:=−34.【解答】解:(1)+2=9①−3=1②①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,即方程的解为:=1=4;(2)原方程组可化为:8−9=12①8−5=4②,①﹣②得:﹣4y=8,解得:y=﹣2,将y=﹣2代入①得:=−34,即方程的解为:=−34=−2.【点评】本题主要考查的是二元一次方程组的解法,利用合适的方法解方程组即可.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)=2−14+3=7;(2)3+2=22+3=28,.【分析】(1)方程组利用代入消元法求解即可;(2)用方程①×3﹣②×2,可消去未知数y,求出未知数x,进而得出y的值.【解答】解:(1)=2−1①4+3=7②,把①代入②,得4(2y﹣1)+3y=7,解得y=1,把y=1代入①,得x=1,故原方程组的解为=1=1;(2)3+2=2①2+3=28②,①×3﹣②×2,得5x=﹣50,解得x=﹣10,把x=﹣10代入①,得y=16,故原方程组的解为=−10=16.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.3.用适当的方法解下列方程组:(1)+2=0,3+4=6;(2=21)−=11(3)+0.4=40,0.5+0.7=35;(4K4=−14,5(r1)12=2.【分析】(1)由x+2y=0可用y表示x,利用代入消元法求第一个方程组的解.同理解(2)(3)利用加减消元法求方程组的解.(4)对于关于m、n的方程,将其化为整系数方程时,给第一个方程两边同时乘12,给第二个方程两边同时乘12.利用加减消元法求方程组的解.【解答】解:(1)+2=0,①3+4=6;②由①,得x=﹣2y,③把③代入②,得﹣6y+4y=6,解得y=﹣3,把y=﹣3代入①,得x=6.∴原方程组的解为=6=−3;(2=2s1)−=11②由①,得x+1=6y,③把③代入②,得12y﹣y=11,解得y=1.把y=1代入③,得x+1=6,解得x=5.∴原方程组的解为=5=1;(3)+0.4=40,①0.5+0.7=35;②②×2,得x+1.4y=70,③③﹣①,得y=30.把y=30代入①,得x+0.4×30=40,解得x=28.∴原方程组的解为=28=30;(4K4=−14,5(r1)12=2,原方程组化为:+7=−3,①2−5=13,②,①×2﹣②,得19n=﹣19,解得n=﹣1.把n=﹣1代入①,得m﹣7=﹣3,解得m=4.∴原方程组的解为=4=−1.【点评】此题主要考查了解二元一次方程组的方法,灵活运用代入消元法和加减消元法是解题的关键.4.(2022•天津模拟)用适当的方法解下列方程组:(1)+=52−=4;(2=r24−K33=112.【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1)+=5①2−=4②,由①,可得:x=5﹣y③,③代入②,可得:2(5﹣y)﹣y=4,解得y=2,把y=2代入③,可得:x=5﹣2=3,∴原方程组的解是=3=2.(2=r24①−K33=112②,由①,可得:4x﹣3y=2③,由②,可得:3x﹣4y=﹣2④,③×4﹣④×3,可得7x=14,解得x=2,把x=2代入③,可得:4×2﹣3y=2,解得y=2,∴原方程组的解是=2=2.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2−3=7−3=7.(2)0.3+0.4=40.2+2=0.9.【分析】(1)利用加减法消元法解二元一次方程组即可;(2)先整理方程,再利用加减消元法解二元一次方程组即可.【解答】解:(1)2−3=7①−3=7②,①﹣②得x =0,把x =0代入②得0﹣3y =7,解得y =−73,∴方程组的解为=0=−73;(2)整理原方程组得3+4=40①2−9=−20②,①×2﹣②×3得35q =140,q =4,把q =4代入②得2p ﹣36=﹣20,解得p =8,∴方程组的解为=8=4.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)+=52+=8;(2)2+3=73−2=4.【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)+=5①2+=8②,由①,可得:x =5﹣y ③,③代入②,可得:2(5﹣y )+y =8,解得y =2,把y =2代入③,解得x =3,∴原方程组的解是=3=2.(2)2+3=7①3−2=4②,①×2+②×3,可得13x=26,解得x=2,把x=2代入①,解得y=1,∴原方程组的解是=2=1.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)+2=93−2=−1(2)2−=53+4=2【分析】(1)利用加减消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)+2=9①3−2=−1②,①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=72,故原方程组的解是:=2=72;(2)2−=5①3+4=2②,①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:=2=−1.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.8.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2+3=16①+4=13②;(2)2r3=3K28=3.【分析】(1)②×2﹣①得出5y=10,求出y,再把y=2代入②求出x即可;(2)整理后得出得2+=9①3−2=24②,①×2+②得出7s=42,求出s,再把s=6代入①求出t即可.【解答】解:(1)2+3=16①+4=13②,②×2﹣①,得5y=10,解得:y=2,把y=2代入②,得x+8=13,解得:x=5,所以方程组的解为=5=2;(2)整理方程组,得2+=9①3−2=24②,①×2+②,得7s=42,解得:s=6,把s=6代入①,得12+t=9,解得:t=﹣3,所以方程组的解为=6=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)=2−1+2=−7(2+3=7+2=8【分析】(1)用代入消元解二元一次方程组即可;(2)用加减消元解二元一次方程组即可;【解答】解:(1)=2−1①+2=−7②,把①代入②得,x+2(2x﹣1)=﹣7,解得x=﹣1,将x=﹣1代入①得y=﹣3,∴方程组的解为=−1=−3.(2)整理得3+4=84①2+3=48②,①×2﹣②×3得,﹣y=24,解得y=﹣24,将y=﹣24代入②得x=60,∴方程组的解为=60=−24.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.10.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3+2=9−=8;(2=r25=7.【分析】(1)由②可得x=8+y③,再把③代入①,可得y的值,然后把y的值代入③求出x的值即可;(2)方程组整理后可得+5=0①2−5=7②,利用①+②可得x的值,然后把x的值代入①求出y的值即可.【解答】解:(1)3+2=9①−=8②,由②得,x=8+y③,将③代入①得,3(8+y)+2y=9,解得,y=﹣3,把y=﹣3代入③得,x=5,则方程组的解为=5=−3;(2)方程组整理得:+5=0①2−5=7②,①+②得:3x=7,解得:x=73,把x=73代入①得:y=−715,则方程组的解为=73=−715.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.先阅读材料,然后解方程组:材料:解方程组+=4①3(+p+=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以=2=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组−−1=0①4(−p−=5②.【分析】根据阅读材料中的方法求出方程组的解即可.【解答】解:由①得:x﹣y=1③,把③代入②得:4﹣y=5,即y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为=0=−1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.(2021秋•乐平市期末)解方程组3−2=8⋯⋯⋯①3(3−2p+4=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得=2=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2−3=123(2−3p+5=26.【分析】利用整体代入法的求解方法进行解答即可.【解答】解:2−3=12①3(2−3p+5=26②,把①代入②得:3×12+5y=26,解得y=﹣2,把y=﹣2代入①得:2x+6=12,解得x =3,故原方程组的解是:=3=−2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握与运用.3.先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1.③,然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0=−1这种方法被称为“整体代入法”,请用这5=0=2+1.【分析】利用整体代入法解方程组即可.5=0①=2+1②,由①得,2x ﹣3y =﹣5,③,把③代入②得,10+37=2y +1,解得,y =37,把y =37代入③得,x =−137,则方程组的解为:=−137=37.【点评】本题考查的是二元一次方程组的解法,掌握整体代入法解方程组的一般步骤是解题的关键.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1,③然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0①=−1②这种方法被称为“整体代入法”,2=02=9.【分析】仿照所给的题例先把①变形,再代入②中求出y 的值,进一步求出方程组的解即可.2=0①+2=9②,由①得,2x﹣3y=2③,代入②得2+57+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为=7=4.【点评】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.5.先阅读,然后解方程组.解方程组−−1=0①4(−p−=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2−3−2=03(2−3p+=7.【分析】把2x﹣3y看作一个整体,代入第二个方程求出y的值,进而求出x的值即可.【解答】解:2−3−2=0①3(2−3p+=7②,把①变形得:2x﹣3y=2③,③代入②得:6+y=7,即y=1,把y=1代入③得:x=2.5,则方程组的解为=2.5=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.1.用换元法解下列方程组+2=12−1=34【分析】方程组利用换元法求出解即可.【解答】解:设1=a,1=b,方程组变形为2+2=12①5−=34②,①+②×2得:12a=2,解得:a=16,把a=16代入②得:b=112,则方程组的解为=16=112,即=6=12.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.用换元法解下列方程组:(1)3(p+2(−p=36(−4(−p=−16(2+r53=2−(+5p=5.【分析】(1)令x+y=m、x﹣y=n得关于m、n的方程组,解得m、n的值,从而可得关于x、y的方程组,求解可得;(2)令x﹣4y=a、x+5y=b得关于a、b的方程组,解该方程组可得a、b的值,从而可得关于x、y的方程组,求解可得.【解答】解:(1)令x+y=m,x﹣y=n,则原方程组可化为:3+2=36−4=−16,解得:=8=6,即+=8−=6,解得:=7=1;(2)令x﹣4y=a,x+5y=b,+3=2−=5,解得:=6=−3,即:−4=6+5=−3,解得:=2=−1.【点评】本题主要考查换元法解方程组的能力,熟练而准确地解方程组是基础,正确找到共同的整体加以换元是关键.3.(2022春•云阳县期中)阅读探索:解方程组(−1)+2(+2)=62(−1)+(+2)=6解:设a﹣1=x,b+2=y原方程组可以化为+2=62+=6,解得=2=2,即:−1=2+2=2∴=3=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(4−1)+2(5+2)=102(4−1)+(5+2)=11;(2)能力运用已知关于x,y的方程组1+1=12+2=2的解为=6=7,求关于m、n的方程组1(−2)+1(+3)=12(−2)+2(+3)=2的解.【分析】(1)仿照“阅读探索“的思路,利用换元法进行计算即可解答;(2)仿照“阅读探索“的思路,利用换元法进行计算即可解答.【解答】解:(1)设4−1=x,5+2=y,∴原方程组可变为:+2=102+=11,解这个方程组得:=4=3,−1=45+2=3,所以:=20=5;(2)设−2=+3=,可得:−2=6+3=7,解得:=8=4.【点评】本题考查了解二元一次方程组,二元一次方程组的解,理解并掌握例题的换元法是解题的关键.4.在学过了二元一次方程组的解法后,+K10=3①−K10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8+2=90③2+8=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即=13=−7小刚:设r6=m,K10=n,则+=3③−=−1④③+④得m=1,③﹣④得m=2,=1=2,所以+=6−=20,所以=13=−7.小芳:①+②得2(rp6=2,即x+y=6.③①﹣②得2(Kp10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y=﹣7,即=13=−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2r37=1−2r37=5.【分析】设3K26=m,2r37=n,方程组整理后求出m与n的值,即可确定出x与y 的值.【解答】解:设3K26=m,2r37=n,方程组整理得:+=1①−=5②,①+②得:2m=6,即m=3,①﹣②得:2n=﹣4,即n=﹣2,=32r3=−2,整理得:3−2=182+3=−14,解得:=2=−6.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(−1)+2(+2)=62(−1)+(+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为+2=62+=6,解这个方程组得=2=2,即−1=2+2=2,所以=3=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3−1)+2(5+2)=43(3−1)−(5+2)=5.(3)能力运用已知关于x,y的方程组1+1=12+2=2的解为=3=4,请直接写出关于m、n的方程组1(+2)−1=12(+2)−2=2的解是.【分析】(2)仿照(1)的思路,利用换元法进行计算即可解答;(3)仿照前两个题的思路,利用换元法进行计算即可解答.【解答】解:(2)设3−1=x,5+2=y,∴原方程组可变为:+2=43−=5,解这个方程组得:=2=1,−1=25+2=1,所以:=9=−5;(3)设+2=−=,可得:+2=3−=4,解得:=1=−4.。

人教版数学七年级下册 第8章 8.2---8.4基础练习含答案

人教版数学七年级下册 第8章  8.2---8.4基础练习含答案

8.2消元-解二元一次方程组一.选择题1.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限2.关于x,y的方程组的解也是二元一次方程25x+y=60﹣5m的解,则m的值是()A.﹣5B.3C.2D.﹣23.下列方程组,解为的是()A.B.C.D.4.方程组的解是()A.B.C.D.5.已知m为正整数,且使关于x,y的二元一次方程组有正整数解,则符合条件的m有()A.1个B.2个C.3个D.4个6.解方程组的最佳方法是()A.代入法消去y,由①得y=7﹣2xB.代入法消去x,由②得x=y+2C.加减法消去y,①+②得3x=9D.加减法消去x,①﹣②×2得3y=37.解方程组最简单的方法是()A.加减法B.代入法C.列表法D.特殊法8.已知是的解,则a2﹣b2的值是()A.﹣35B.35C.12D.﹣129.若方程组的解也是关于x,y的二元一次方程3x﹣6y+2a=0的解,那么a的值是()A.0B.3C.4.5D.﹣1110.解方程组时,①×2+②得()A.13x=26B.13x=﹣26C.7x=﹣26D.7x=﹣10二.填空题11.已知关于x、y的方程组的解满足x+y=2,则m=.12.已知等式y=kx+b,当x=2时,y=﹣1;当x=﹣2时,y=3,则当x=4时,y=.13.若关于x,y的方程组的解为,则方程组的解为.14.已知关于x、y的方程组的解满足x+y=2,则k的值为.15.若a、b满足二元一次方程组,则|2a﹣b|=.三.解答题16.解方程组(1)(2)17.已知方程组和方程组的解相同,求(2a+b)2020的值.18.解方程组(1);(2);(3).19.在平面直角坐标系中,已知点A(a,0),B(b,0),a、b满足方程组,C为y轴正半轴上一点,且S=6.△ABC(1)求A ,B ,C 三点的坐标;(2)是否存在点D (t ,﹣t )使S △ABD =S △ABC ?若存在,请求出D 点坐标;若不存在,请说明理由.(3)已知E (﹣2,﹣4),若坐标轴上存在一点P ,使S △POE =S △ABC ,请求出P 的坐标.参考答案与试题解析一.选择题1.【解答】解:,把②代入①,得x+x﹣1=2,解得x=.把x=代入②,得y=.∴原方程组的解为.∵x=>0,y=>0,∴点(,)在第一象限.故选:A.2.【解答】解:,②﹣①得:3x=3﹣3m,即x=1﹣m,把x=1﹣m代入①得:y=2m﹣1,代入25x+y=60﹣5m中得:25(1﹣m)+(2m﹣1)=60﹣5m,解得:m=﹣2.故选:D.3.【解答】解:∵1﹣(﹣2)=3,3×1﹣(﹣2)=5,∴是的解,A符合题意;∵1﹣(﹣2)=3,3≠1,∴不是的解,B不符合题意;∵1﹣(﹣2)=3,3≠1,∴不是的解,C不符合题意;∵3×1+(﹣2)=1,1≠﹣5,不是的解,D不符合题意.故选:A.4.【解答】解:,①+②×2得:11x=33,解得:x=3,把x=3代入②得:y=﹣1,则方程组的解为.故选:A.5.【解答】解:,②﹣①得:(3﹣m)x=3,即x=,把x=代入②得:y=,∵方程组有正整数解.∴m=2,故选:A.6.【解答】解:解方程组的最佳方法是加减法消去y,①+②得3x=9.故选:C.7.【解答】解:解方程组最简单的方法是代入法.故选:B.8.【解答】解:∵是的解,∴,则a2﹣b2=(a+b)(a﹣b)=35.故选:B.9.【解答】解:①×5﹣②×2得:43y=43,解得:y=1,故2x+7=11,解得:x=2,故原方程组的解为:,则3×2﹣6×1+2a=0,解得:a=0.故选:A.10.【解答】解:解方程组时,①×2+②得13x=﹣26.故选:B.二.填空题(共5小题)11.【解答】解:两式相减得:x+y=1﹣m,∵x+y=2.即1﹣m=2,解得:m=﹣1.故答案是:﹣1.12.【解答】解:把x=2,y=﹣1;x=﹣2,y=3分别代入y=kx+b得:,解得,∴y=﹣x+1,把x=4代入得:y=﹣4+1=﹣3.故答案为:﹣3.13.【解答】解:方程组变形得,∵关于x,y的方程组的解为,∴,解得,故答案为.14.【解答】解:,①+②得:5x+5y=3k+10,∵x+y=2,∴5x+5y=10,∴3k+10=10,∴k=0,故答案为:0.15.【解答】解:①×4﹣②,得a=0,解得a=0,把a=0代入②,得b=﹣1,则|2a﹣b|=|0+1|=1,故答案为1.三.解答题(共4小题)16.【解答】解:(1)由①,可得:y=2x﹣3③,③代入②,可得:﹣4x+(2x﹣3)=﹣1,解得x=﹣1,把x=﹣1代入③,解得y=﹣5,∴原方程组的解是.(2)由,可得:,①×2+②×3,可得17x=34,解得x=2,把x=2代入①,解得y=0,∴原方程组的解是.17.【解答】解:由题意得,方程组,解得,把代入得,,∴方程组的解为,∴(2a+b)2020=(2×﹣)2020=1.18.【解答】解:(1),把①代入②,得2x+3(3x﹣6)=15,解得x=3,把x=3代入①,得y=9﹣6=3,故方程组的解为;(2),②﹣①,得5y=﹣3,解得,把代入①,得,解得,故方程组的解为;(3)原方程组化简得,①+②×2,得5x=10,解得x=2,把x=2代入②,得4﹣y=1,解得y=3,故方程组的解为.19.【解答】解:(1)解方程组得,∴A (﹣3,0),B (1,0), ∴AB =4,∵S △ABC =ABOC =6, ∴OC =6解得OC =3, ∴C (0,3); (2)存在,∵S △ABC =6,S △ABD =S △ABC , ∴S △ABD =AB |t |=2, ∴|t |=1. ∴t =±1,∴D 点坐标为(1,﹣1)或(﹣1,1); (3)∵S △POE =S △ABC , ∴S △POE =6, 当P 在y 轴上时,∴PO |x E |=6,即PO 2=6, ∴PO =6,∴P (0,6)或(0,﹣6); 当P 在x 轴上时,∴PO |y E |=6,即PO 4=6, ∴PO =3,∴P (3,0)或(﹣3,0),综上,在坐标轴上存在一点P ,使S △POE =S △ABC ,P 点的坐标为P (3,0)或(﹣3,0)或(0,6)或(0,﹣6).8.3实际问题与二元一次方程组一.选择题1.学校八年级师生共468人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.2.如图,AB⊥BC,∠ABD的度数比∠DBC的度数多15°,设∠ABD和∠DBC的度数分别为x°,y°,根据题意,下列方程正确的是()A.B.C.D.3.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为()A.10B.9C.8D.74.已知∠A、∠B互补,∠A比∠B小30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.5.小亮的妈妈用30元钱买了甲、乙两种水果,甲种水果每千克3元,乙种水果每千克5元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.6.小林去超市帮妈妈买回一批规格一样的纸杯.如图,他把3个纸杯叠在一起高度是9cm,把8个纸杯叠在一起高度是14cm,若把50个纸杯叠在一起时,它的高度约是()cm.A.150cm B.56cm C.57cm D.81cm7.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为()A.B.C.D.8.小红在网上购买了一次性医用口罩和N95口罩共90个,其中一次性医用口罩比N95口罩数量的3倍多6个,设购买一次性医用口罩x个,N95口罩y个,根据题意可列方程组为()A.B.C.D.9.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是,类似地,图2所示的算筹图表示的方程组为()A.B.C.D.10.如图所示的方阵图中,处于同一横行、同一竖列、同一斜对角线上的3个数之和都相等,根据方阵图中提供的信息,得出x与y的值是()x7ab3x﹣y c4﹣1y+9 A.B.C.D.二.填空题11.某商店准备用每千克19元的A糖果和每千克10元的B糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A糖果x千克,B糖果y千克,根据题意可列二元一次方程组:.12.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y两,根据题意可列方程组为.13.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知B(﹣8,5),则点A的坐标是.14.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过小时刚好达到平时可容纳人数的60%.15.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(﹣2,6),则点B的坐标为.三.解答题16.某旅馆的客房有三人间和两人间两种.三人间每人每天80元,两人间每人每天100元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个房间正好住满,一天共花去住宿费4520元,两种客房各租住了多少间?17.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图2是显示部分代数式的“等和格”,可得a=.图3是显示部分代数式的“等和格”,可得a=.b=.18.中秋节来临之际,香港美心月饼公司推出了“美心七星伴月月饼”礼盒,由一个三黄白莲蓉的明月月饼和七个明星小月饼组成,明月月饼口味不可选择,但明星小月饼的口味可以自由搭配.(1)现有A、B两种礼盒的“美心七星伴月月饼”,八月份月饼上市,经经销商初步定价,买7个A礼盒的钱刚好可以购买6个B礼盒;购买3个A礼盒的花费比购买2个B礼盒多200元.求A、B两种礼盒的售价.(2)在第一问的基础上,九月份,该经销商将两种礼盒的月饼进行促销:A礼盒每盒售价打八折销售,B礼盒每盒售价直接降价m元,结果九月份售卖结束,A礼盒还剩余了,B礼盒全部售卖完,但卖出去的B礼盒的数量为A礼盒总数量的,经销商决定将剩余的A礼盒赠送给自己的员工作为福利;已知每盒A礼盒成本价为200元,每盒B礼盒的成本价为240,九月份销售结束,该经销商的利润率为20%,求m的值.19.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.参考答案与试题解析一.选择题1.【解答】解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.故选:B.2.【解答】解:设∠ABD与∠DBC的度数分别为x,y,根据题意得:.故选:D.3.【解答】解:设每个“△”的重量为x,每个“□”的重量为y,依题意,得:,解得:,∴2x+y=10.故选:A.4.【解答】解:设∠A,∠B的度数分别为x°,y°,由题意得.故选:A.5.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选:B.6.【解答】解:设1个纸杯的高度为xcm,每叠加1个纸杯高度增加ycm,依题意,得:,解得:,∴x+(50﹣1)y=56.故选:B.7.【解答】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故选:A.8.【解答】解:设购买一次性医用口罩x个,N95口罩y个,依题意,得:.故选:B.9.【解答】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组:;故选:B.10.【解答】解:依题意,得:,解得:.故选:D.二.填空题(共5小题)11.【解答】解:设需要每千克19元的糖果x千克,每千克10元糖果y千克,根据题意可得:,故答案为:.12.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故答案是:.13.【解答】解:设长方形纸片的长为x,宽为y,依题意,得:,解得:,∴x﹣y=3,x+2y=6,∴点A的坐标为(﹣3,6).故答案为:(﹣3,6).14.【解答】解:设每个入口每小时可进可容纳人数的x%,每个出口每小时可出可容纳人数的y%,依题意,得:,解得:,∴==.故答案为:.15.【解答】解:设小长方形的长为x,宽为y,依题意,得:,解得:,∴2x=,x+y=,∴点B的坐标为(﹣,).三.解答题(共4小题)16.【解答】解:设三人间租住了x间,两人间租住了y间,依题意,得:,解得:.答:三人间租住了8间,两人间租住了13间.17.【解答】解:(1)由题意得:﹣2a+3a=﹣2b+2a,则﹣a=﹣2b,故a=2b.故答案为:a=2b;(2)由题意得:﹣2a+2a=b﹣1+(﹣2b),解得b=﹣1,由(1)得a=2b,则a=﹣2.故答案为:﹣2,﹣1.18.【解答】解:(1)设A礼盒的售价为x元,B礼盒的售价为y元,依题意得:,解得:.答:A礼盒的售价为300元,B礼盒的售价为350元.(2)设共卖出a个B礼盒,则共有a个A礼盒,依题意得:300×0.8×a(1﹣)+(350﹣m)a﹣200×a﹣240a=(200×a ﹣240a)×20%,整理得:480+350﹣m=512+288,解得:m=30.答:m的值为30.19.【解答】解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.8.4三元一次方程组的解法一.选择题1.甲乙丙三人做一项工作,三人每天的工作效率分别为a、b、c,若甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,下列结论正确的是()A.甲的工作效率最高B.丙的工作效率最高C.c=3a D.b:c=3:22.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款()A.11元B.12元C.13元D.不能确定3.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道4.关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值是()A.﹣B.C.D.﹣5.已知方程组,那么代数式8x﹣y﹣z的值是()A.6B.7C.8D.96.方程组的解是()A.B.C.D.7.某班元旦晚会需要购买甲、乙、丙三种装饰品,若购买甲3件,乙5件,丙1件,共需62元,若购甲4件,乙7件,丙1件共需77元.现在购买甲、乙、丙各一件,共需()元.A.31B.32C.33D.348.已知y=ax2+bx+c当x=﹣2时,y=9;当x=0时,y=3;当x=2时,y=5,则a+b﹣c 的值是()A.5B.﹣3C.3D.59.有一个男孩的假期有11天在下雨,这11天如果上午下雨下午就不会下雨,下午下雨上午就不下,他的假期里9个上午和12个下午是晴天,他的假期共有几天?()A.12B.14C.16D.1810.解方程组,要使运算简便,应()A.先消去x B.先消去yC.先消去z D.先消去常数项二.填空题11.在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.则a+b+c=.12.已知方程组,则x:y:z=.13.香飘万粽,端阳传情.某知名食品品牌为迎合不同顾客的需求,在端节前夕推出了A、B、C三个系列的礼盒,这三个系列的礼盒均包含粽子、绿豆糕和咸鸭蛋三种食品,且同种食品的单价相同.礼盒中所有食品的总价即为该礼盒的售价.A礼盒包含10个粽子、10个绿豆糕和4个咸鸭蛋,B礼盒包含的食品个数总和比A礼盒少两个,C礼盒包含10个粽子、5个绿豆糕和10个咸鸭蛋.已知粽子的单价是绿豆糕的4倍,A礼盒的售价和C礼盒售价相等,B礼盒的售价不低于C礼盒售价的84.7%且不高于C礼盒售价的85%.则B礼盒中包含的粽子个数是个.14.某超市瑞午节促销活动,将凤梨、蜜桔、芒果三种水果采用三种不同方式搭配成礼盒,分别是心想事成礼盒、花好月圆礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中凤梨、蜜桔、芒果三种水果成本之和(盒子成本忽略不计),心想事成礼盒每盒分别装有凤梨、密桔、芒果三种水果8千克、4千克、2千克;花好月圆礼盒每盒分别装有凤梨、蜜桔、芒果三种水果3千克、8千克、5千克;心想事成礼盒每盒的总成本是每千克凤梨成本的16倍,销售利润率是50%,花好月圆礼盒每盒的总成本是每千克凤梨成本的22倍,每盒花好月圆水果的售价是成本的2倍.每盒吉祥如意在成本上提高60%标价后打八折出售,获利为每千克凤梨成本的3.36倍.当心想事成、花好月圆、吉祥如意三种礼盒的数量之比为5:2:3,则销售的总利润率为.15.课外活动中,80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,设5人一组的有x组,7人一组的有y组,8人一组的有z组,有下列结论:①;②x=z+2;③y=z+10;④5人一组的最多有5组.其中正确的有.17.解方程组(1);(2).18.下表给出了代数式ax2+bx+c与x的一些对应值:x…01234…ax2+bx+c…3m﹣10n…(1)利用表中所给数值求出a,b,c的值;(2)直接写出:m=,n=;(3)设y=ax2+bx+c,则当x取何值时,y<0.19.解方程或方程组:①2x+1=3;②5x﹣2=3(x+4);③﹣=1;④;⑤.参考答案与试题解析一.选择题1.【解答】解:∵甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,∴,解得:,∴b:c=3:2,故选:D.2.【解答】解:设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,依题意,得:,(①+②)÷5,得:x+y+z=12.故选:B.3.【解答】解:设容易题有a题,中档题有b题,难题有c题,依题意,得:,①×2﹣②,得:c﹣a=20,∴难题比容易题多20题.故选:B.4.【解答】解:解方程组得:,∵关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,∴代入得:14k﹣6k=6,解得:k=,故选:B.5.【解答】解:∵3x﹣y﹣2z=1,∴﹣y﹣z=1+z﹣3x,8x﹣y﹣z=1+z﹣3x+8x=5x+z+1,,①+②得:5x+z=6,即8x﹣y﹣z=6+1=7,故选:B.6.【解答】解:,③﹣①得:y=﹣5,把y=﹣5代入②得:z=﹣11,把z=﹣11代入①得:x=﹣7,则方程组的解为,故选:C.7.【解答】解:设甲种装饰品x元/件,乙种装饰品y元/件,丙种装饰品z元/件,依题意,得:,3×①﹣2×②,得:x+y+z=32.故选:B.8.【解答】解:把x=﹣2,y=9;x=0,y=3;x=2,y=5代入得:,解得:,则a+b﹣c=1﹣1﹣3=﹣3.故选:B.9.【解答】解:设上午下雨是x天,下午下雨是y天,假期z天,则晴天为:(z﹣x﹣y)天由题意可得:解得:故选:C.10.【解答】解:解方程组,要使运算简便,应先消去y,故选:B.二.填空题(共5小题)11.【解答】解:把x=﹣1,y=0;x=2,y=3;x=5,y=60代入得:,解得:,则a+b+c=3﹣2﹣5=﹣4.故答案为:﹣4.12.【解答】解:,①+②,得2x﹣4z=0,∴x=2z.①﹣②,得2y﹣6z=0,∴y=3z.∴x:y:z=2z:3z:z=2:3:1.故答案为:2:3:1.13.【解答】解:设B礼盒中包含的粽子有x个,绿豆糕有y个,咸鸭蛋有z个,绿豆糕的单价是a元/个,则粽子的单价为4a元/个,咸鸭蛋的单价为b元/个,根据题意得,x+y+z=10+10+4﹣2=22,即z=22﹣x﹣y…①,40a+10a+4b=40a+5a+10b,即b=a…②,…③,把②代入③化简得,,∵24x+6y+5z为整数,∴24x+6y+5z=272…④,把①代入④得,19x+y=162,∴x=,∵0≤x≤22,0≤y≤22,x、y均为整数,∴x=8,y=10,∴B礼盒中包含的粽子有8个,故答案为:8.14.【解答】解:设心想事成、花好月圆、吉祥如意三种礼盒的销售数量分别为5x盒,2x 盒,3x盒,每千克凤梨的成本为y元,礼盒吉祥如意每盒的成本为z元,则心想事成礼盒的每盒成本为16y元,花好月圆每盒的成本为22y元,根据题意得,z(1+60%)×0.8﹣z=3.36y,解得,z=12y,当心想事成、花好月圆、吉祥如意三种礼盒的数量之比为5:2:3,则销售的总利润率为:×100%=58.8%.15.【解答】解:依题意,得:,∴结论①正确;∵7(x+y+z)﹣(5x+7y+8z)=7×12﹣80,即2x﹣z=4,∴x=z+2,∴结论②正确;∵(5x+7y+8z)﹣5(x+y+z)=80﹣5×12,即2y+3z=20,∴y=﹣z+10,∴结论③正确;∵x=z+2,y=﹣z+10,且x,y,z均为正整数,∴z为2的倍数,∴当z=2时,x=3,y=7;当z=4时,x=4,y=4;当z=6时,x=5,y=1,∴5人一组的最多有5组,∴结论④正确.故答案为:①②③④.三.解答题(共4小题)16.【解答】解:∵3.75和7.1都不是0.45 0.8 1.5的整数倍,∴甲乙丙3人的用水正好在0﹣10,10﹣20,20以上这3段中,且甲>乙>丙.设丙户用水xt(0≤x≤10),乙户用水(10+y)t(0<y≤10).则有0.45x+3.75=0.8y+0.45×10,即9x﹣16y=15.∵3能够整除9和15,而不能整除16,∴3整除y.∴y=3或6或9.经检验,只有y=3符合题意,则x=7.同理,设甲户用水(20+z)t,则有0.8y+0.45×10+7.10=1.50z+0.45×10+0.8×10,解,得z=1.所以甲户交水费14元,乙户交水费6.9元,丙户交水费3.15元.17.【解答】解:(1),①+②得:6x=6,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2),②﹣①得:3x﹣y=11④,③﹣①得:15x+5y=35,即3x+y=7⑤,④+⑤得:6x=18,解得:x=3,④﹣⑤得:﹣2y=4,解得:y=﹣2,把x=3,y=﹣2代入①得:z=﹣5,则方程组的解为.18.【解答】解:(1)根据题意得,解得,∴a,b,c的值分别为1,﹣4,3.(2)当x=1时,x2﹣4x+3=1﹣4+3=0,当x=4时,x2﹣4x+3=16﹣16+3=3;∴m=0,n=3,故答案为0,3;(3)因为抛物线y=x2﹣4x+3的开口向上,当1<x<3时,y<0.19.【解答】解:①2x+1=3;2x=3﹣1,2x=2,解得x=1;②5x﹣2=3(x+4),5x﹣2=3x+12,5x﹣3x=12+2,2x=14,解得x=7;③﹣=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,解得x=﹣17;④整理得,②﹣①×2得,x=8,把x=8代入①得,y=0,所以,方程组是解为;⑤,把③代入①得,5y+z=12④,把③代入②得,6y+5z=22⑤,④⑤组成方程组,解得,把y=2代入③得x=8,所以,方程组的解为.。

人教版七年级数学下册 第八章二元一次方程组复习 专题2:整体思想换元法整数解 (无答案))

人教版七年级数学下册  第八章二元一次方程组复习  专题2:整体思想换元法整数解 (无答案))

整数解整体思想换元法1、请你写出方程25x y +=的一组正整数解:2、若62x -为自然数,则满足条件的x 值有( )个 A 、2 B 、3 C 、4 D 、53、13.已知关于x ,y 的方程组有正整数解,则整数a 的值为4、若⎩⎪⎨⎪⎧x =a ,y =b 是方程2x +y =0的解,则6a +3b +2= .5、(1)求11x+15y=7的整数解; (2) 求方程的正整数解:5x+7y=876、七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?7、a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数?8、m 取何整数值时,方程组⎩⎨⎧=+=+1442y x my x 的解x 和y 都是整数?9、解方程组(1)⎩⎨⎧=+=+531542153y x y x (2)⎩⎨⎧=+=+11541378y x y x(3)⎩⎨⎧+=++=--+yx y x y x y x 3153)(43)(3)(210、如果2x+3y+z=130,3x+5y+z=180,求z y x yx +++2的值.11、为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受粤东古城潮州的悠久历史,某中学组织八年级师生共420人前往潮州开展研学活动.学校向租车公司租赁A 、B 两种车型接送师生往返,若租用A 型车3辆,B 型车5辆,则空余15个座位;若租用A 型车5辆,B 型车3辆,则15人没座位.(1)求A 、B 两种车型各有多少个座位?(2)租车公司目前B 型车只有6辆,若A 型车租金为1800元/辆,B 型车租金为2100元/辆,请你为学校设计使座位恰好坐满师生且租金最少的租车方案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2解二元一次方程组练习
一、选择题
1.若关于x,y的方程组的解是,则|m﹣n|为()
A.1 B.3 C.5 D.2
2.已知是方程组的解,则a,b间的关系是()
A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1 3.关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()
A.﹣B.C.﹣D.
4.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=﹣1 C.x+y=9 D.x+y=﹣9 5.二元一次方程组的解满足2x﹣ky=10,则k的值等于()
A.4 B.﹣4 C.8 D.﹣8
6.由方程组可得出x与y的关系是()
A.x+y=1 B.x+y=﹣1 C.x+y=7 D.x+y=﹣7 7.已知是二元一次方程组的解,则2m﹣n的平方根为()
A.2 B.4 C.±D.±2
8.方程组的解为,则“△“代表的两个数分别为()
A.5,2 B.1,3 C.2,3 D.4,2
9.如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.
10.已知方程组和有相同的解,则a,b的值为()
A.B.C.D.
二、填空题
11.已知方程组的解为,则2a﹣3b的值为.
12.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=.
13.已知是二元一次方程组的解,则a﹣b=.
14.若方程组的解是,则方程组的解为.三、解答题
15.解方程组:
(1)
(2)
16.已知关于x、y的方程组的解为,求m、n的值.
17.已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a、b计算,求原方程组的解.
18.已知关于x、y的方程组的解是,求a+b的值.。

相关文档
最新文档