双曲线方程知识点及讲义
双曲线讲义(学生版)
双曲线专题讲义1.2.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫作等轴双曲线,标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 3.点P (x 0,y 0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)的关系(1)双曲线内(含焦点部分)⇔x 20a 2-y 20b 2>1;(2)双曲线上⇔x 20a 2-y 20b 2=1;(3)双曲线外(不含焦点部分)⇔x 20a 2-y 20b 2<1.求双曲线离心率、渐近线问题的一般方法(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =ca 转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)求渐近线时,利用c 2=a 2+b 2转化为关于a ,b 的方程或不等式.双曲线渐近线的斜率与离心率的关系k =±ba =±c 2-a 2a =±c 2a2-1=±e 2-1. 双曲线定义1. 已知P 是双曲线1366422=-y x 上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.2. 已知点F 1(0,-13)、F 2(0,13),动点P 到F 1与F 2的距离之差的绝对值为26,则动点P 的轨迹方程为( ) A .y =0 B .y =0(x ≤-13或x ≥13) C .x =0(|y |≥13) D .以上都不对3. 若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________. 参考答案:1. 33 2. C 3. 18 双曲线方程的认识1. (2013·福建)双曲线8kx 2-ky 2=8的一个焦点坐标为(0,3),则k 的值是 ( )A .1B .-1C .653D .-653 2. 若方程15222=---ky k x 表示双曲线,则实数k 的取值范围是( )A .52<<kB .5>kC .2<k 或5>kD .以上答案均不对3. 方程x 2k -1+y 2k -3=1表示焦点在x 轴上的双曲线,则k 的取值范围为________.4. 已知方程:22(1)(3)(1)(3)m x m y m m -+-=--表示焦距为8的双曲线,则m 的值等于( ) A .-30 B .10 C .-6或10 D .-30或3A .2322-=-y xB .()12322±¹-=-x y xC . 2322=-y x面积是9,则a +b 的值等于( )A .4B .5C .6D .73. 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点.若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为__________.参考答案:1.A 2.B 3. 2 3 双曲线性质离心率1. 设21,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点.若在双曲线上存在点P .使21PF PF ^,且°=Ð3021F PF ,则双曲线的离心率为___________.2. 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为 ( )A . 6B . 3C .2D .333. 设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若a PF PF 6||||21=+,且12PF F D 的最小内角为30°,则C 的离心率为( )A .2B .26C .23D .34. 如图,1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF D 为等边三角形,则双曲线的离心率为( )A .4B .7C .332 D .3 5. 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =uuu r uuu r,则双曲线的离心率是 ( )A B C D 6. 双曲线2214x y k+=的离心率(1,2)e Î,则k 的取值范围是( )A . (10,0)-B . (12,0)-C . (3,0)-.D . (60,12)-- 参考答案:1. 13+ 2-6 BDBCB渐近线1. 双曲线22149x y -=的渐近线方程是A .32y x =±B .23y x =±C .94y x =±D .49y x =±2. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x3. 已知0a b >>,椭圆1C 的方程为2222=1x y a b +,双曲线2C 的方程为22221y x a b -=,1C 与2C 的离心率之积为2,则2C 的渐近线方程为( ). 0A x ±= .0B y ±= .20C x y ±= .20D x y ±=4. 设21,F F 分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点.若在双曲线右支上存在点P ,满足||||212F F PF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .043=±y xB .034=±y xC .053=±y xD .045=±y x5. 1F 、2F 是双曲线12222=-by a x 0(>a ,)0>b 的左、右焦点,过1F 的直线l 与双曲线的左、右两个分支分别交于点A 、B ,若2ABF D 为等边三角形,则该双曲线的渐近线的斜率为( )(A )33±(B )2± (C )15± (D )6± 参考答案: ACBBD直线与双曲线位置关系 1. 若直线2y kx =+与双曲线的一个顶点.(1)求双曲线的方程;(2)经过的双曲线右焦点2F 作倾斜角为30°直线l ,直线l 与双曲线交于不同的B A ,两点,求AB 的长.【答案】(1)16322=-y x ;(2)5316.2. 已知双曲线)0,0(12222>>=-b a by a x 的离心率为2,焦点到渐近线的距离等于3,过右焦点2F 的直线l交双曲线于A 、B 两点,1F 为左焦点.(1) 求双曲线的方程;(2) 若AB F 1D 的面积等于62,求直线l 的方程.【答案】(1) 1322=-y x ;(2) )2(-±=x y .3. 双曲线22221(0,0)x y a b a b-=>>的两个焦点分别为1(2,0)F -,2(2,0)F ,点P 在双曲线上.(1)求双曲线的方程;(2)过(0,2)Q 的直线l 与双曲线交于不同的两点E 、F ,若OEF D 的面积为,O 为坐标原点,求直线l 的方程.【答案】(1)222x y -=;(220y -+=20y +-=. 中点弦1. 直线l 经过11P (,)与双曲线1222=-y x 交于A B 、两点,且P 平分是线段AB ,那么直线l 的方程为( ) A 、210x y --= B 、230x y +-= C 、210x y -+= D 、不存在2. 若双曲线的中心为原点,F (3,0)是双曲线的焦点,过F 的直线l 与双曲线相交于P ,Q 两点,且PQ 的中点为M (-12,-15),则双曲线的方程为( )A .16322=-y xB . 14522=-y xC 13622=-y xD . 15422=-y x3. 已知双曲线191622=-y x 及点)1,2(P ,是否存在过点P 的直线l ,使直线l 被双曲线截得的弦恰好被P 点平分?若存在,求出直线l 的方程;若不存在,请说明理由. 【答案】不存在.4. 已知直线l 交双曲线2212y x -=于A B 、不同两点,若点(1,2)M 是线段AB 的中点,求直线l 的方程及线段AB 的长度【答案】。
高中数学知识点精讲精析 双曲线及其标准方程
3.1双曲线及其标准方程1.双曲线的第一定义数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离之差的绝对值始终为一定值2a(2a 小于F1和F2之间的距离即2a<2c )时所成的轨迹叫做双曲线(Hyperbola)。
两个定点F1,F2叫做双曲线的左,右焦点(focus)。
两焦点的距离叫焦距,长度为2c 。
c^2=a^2+b^2 (a=半长轴,b=半短轴)2.双曲线的第二定义(1)文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。
定点是双曲线的焦点,定直线是双曲线的准线,常数e 是双曲线的离心率。
(2)集合语言定义:设 双曲线上有一动点M,定点F,点M 到定直线距离为d,这时称集合{M| |MF|/d=e,e>1}表示的点集是双曲线.注意:定点F 要在定直线外 且 比值大于1.(3)标准方程设 动点M(x,y),定点F(c,0),点M 到定直线l:x=a^2/c 的距离为d, 则由 |MF|/d=e>1.推导出的双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.这是中心在原点,焦点在x 轴上的双曲线标准方程.而中心在原点,焦点在y 轴上的双曲线标准方程为:1. 在ABC ∆中,2=BC ,且A B C sin 21sin sin =-,求点A 的轨迹. 分析:要求点A 的轨迹,需借助其轨迹方程,这就要涉及建立坐标系问题,如何建系呢?【解析】以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,则()01,-B ,()01,C .设()y x A ,,由A B C sin 21sin sin =-及正弦定理可得: 121==-BC AC AB ∵2=BC ∴点A 在以B 、C 为焦点的双曲线右支上设双曲线方程为:()0012222>>=-b a b y a x , ∴12=a ,22=c ∴21=a ,1=c ∴43222=-=a c b ∴所求双曲线方程为134422=-y x ∵01>=-AC AB ∴21>x ∴点A 的轨迹是双曲线的一支上挖去了顶点的部分2. 求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A (2)与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切. (3)与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切. 分析:这是圆与圆相切的问题,解题时要抓住关键点,即圆心与切点和关键线段,即半径与圆心距离.如果相切的⊙1C 、⊙2C 的半径为1r 、2r 且21r r >,则当它们外切时,2121r r O O +=;当它们内切时,2121r r O O -=.解题中要注意灵活运用双曲线的定义求出轨迹方程.【解析】设动圆M 的半径为r(1)∵⊙1C 与⊙M 内切,点A 在⊙C 外 ∴2-=r MC ,r MA =,2=-MC MA∴点M 的轨迹是以C 、A 为焦点的双曲线的左支,且有:22=a ,2=c ,27222=-=a c b ∴双曲线方程为()2172222-≤=-x y x (2)∵⊙M 与⊙1C 、⊙2C 都外切 ∴11+=r MC ,22+=r MC ,112=-MC MC∴点M 的轨迹是以2C 、1C 为焦点的双曲线的上支,且有:21=a ,1=c ,43222=-=a c b ∴所求的双曲线的方程为:⎪⎭⎫ ⎝⎛≥=-43134422y x y (3)∵⊙M 与⊙1C 外切,且与⊙2C 内切 ∴31+=r MC ,12-=r MC ,421=-MC MC∴点M 的轨迹是以1C 、2C 为焦点的双曲线的右支,且有:2=a ,3=c ,5222=-=a c b∴所求双曲线方程为:()215422≥=-x y x 说明:(1)“定义法”求动点轨迹是解析几何中解决点轨迹问题常用而重要的方法.(2)巧妙地应用“定义法”可使运算量大大减小,提高了解题的速度与质量.(3)通过以上题目的分析,我们体会到了,灵活准确地选择适当的方法解决问题是我们无休止的追求目标.3. 在周长为48的直角三角形MPN中,︒=∠90MPN ,43tan =∠PMN ,求以M 、N 为焦点,且过点P 的双曲线方程. 分析:首先应建立适当的坐标系.由于M 、N 为焦点,所以如图建立直角坐标系,可知双曲线方程为标准方程.由双曲线定义可知a PN PM 2=-,c MN 2=,所以利用条件确定MPN ∆的边长是关键.【解析】∵MPN ∆的周长为48,且43tan =∠PMN , ∴设k PN 3=,k PM 4=,则k MN 5=.由48543=++k k k ,得4=k . ∴12=PN ,16=PM ,20=MN .以MN 所在直线为x 轴,以∴MN 的中点为原点建立直角坐标系,设所求双曲线方程为12222=+by a x )0,0(>>b a . 由4=-PN PM ,得42=a ,2=a ,42=a . 由20=MN ,得202=c ,10=c .由96222=-=a c b ,得所求双曲线方程为196422=-y x . 说明:坐标系的选取不同,则又曲线的方程不同,但双曲线的形状不会变.解题中,注意合理选取坐标系,这样能使求曲线的方程更简捷.。
双曲线的基本知识点
双曲线的基本知识点双曲线的基本知识点有哪些双曲线的基本知识点如下:1.双曲线定义:在平面内,设$F_{1}、F_{2}$是双曲线$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$($a,b$是实数且$a>0,b>0$)的焦点,若$F_{1}F_{2}=2c$,则称$F_{1}F_{2}$为双曲线的焦距。
2.定义法证明:(1)设$P$点是双曲线$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$($a,b$是实数且$a>0,b>0$)的左支上的一点,$F_{1}$是双曲线的左焦点,若$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$ 双曲线的基本知识点整理双曲线的基本知识点整理如下:1.双曲线定义:平面内与两定点的距离之差的绝对值等于常数的点的轨迹叫做双曲线。
高中数学 双曲线及标准方程 讲义
授课内容 双曲线及标准方程知识梳理双曲线标准方程(焦点在x 轴))0,0(12222>>=-b a b y a x 标准方程(焦点在y 轴))0,0(12222>>=-b a b x a y 定义第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。
这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。
{}a MF MF M221=-()212F F a <范围 x a ≥,y R ∈y a ≥,x R ∈对称轴x 轴 ,y 轴;实轴长为2a ,虚轴长为2b对称中心 原点(0,0)O焦点坐标1(,0)F c - 2(,0)F c1(0,)F c - 2(0,)F c焦点在实轴上,22c a b =+;焦距:122F F c =顶点坐标(a -,0) (a ,0) (0, a -,) (0,a )离心率 e a ce (=>1)渐近线方程x a b y ±=x bay ±= 共渐近线的双曲线系方程k by a x =-2222(0k ≠) k bx a y =-2222(0k ≠) xyP1F 2FxyxyP1F 2F xy知识点一. 双曲线的定义1、 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上;2、当a MF MF 212=-时,则表示点M 在双曲线左支上;注意:1、定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。
2、 若2a =2c 时,即2121F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线;若2a >2c 时,动点轨迹不存在.知识点二.双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.【例题精讲】例1、双曲线x 210-y 22=1的焦距为( )A .32B .4 2C .3 3D .4 3例2.双曲线的两焦点坐标是F 1(3,0),F 2(-3,0),2b =4,则双曲线的标准方程是( )A.x 25-y 24=1B.y 25-x 24=1C.x 23-y 22=1D.x 29-y 216=1例3、双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A .x 24-y 24=1B .y 24-x 24=1 C .x 28-y 24=1 D .y 28-x 24=1【同步练习】1.已知双曲线的焦点在x轴上,且a+c=9,b=3,则它的标准方程是________.2.P是双曲线x2-y2=16的左支上一点,F1,F2分别是它的左,右焦点,则|PF1|-|PF2|=________.3、若动点P到F1(-5,0)与到F2(5,0)的距离的差为±8,则P点的轨迹方程是()A.x225+y216=1 B.x225-y216=1 C.x216+y29=1 D.x216-y29=14.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和a=5时,P点的轨迹为()A.双曲线和一条直线B.双曲线和一条射线C.双曲线的一支和一条射线D.双曲线的一支和一条直线5.已知椭圆C1的离心率为35,焦点在x轴上且长轴长为10,若曲线C2上的点到椭圆C1的两个焦点的差的绝对值等于4,则曲线C2的标准方程为()A.x24-y25=1 B.x25-y24=1 C.x252-y242=1 D.x242-y252=16、若双曲线x216-y29=1上的点P到点(5,0)的距离是15,则点P到点(-5,0)的距离是()A.7 B.23 C.5或25 D.7或237、已知双曲线的焦距为26,a2c=2513,则双曲线的标准方程是________.8、“ab <0”是“方程ax 2+by 2=c 表示双曲线”的________条件.专题精讲【例题精讲】例1.已知双曲线x 23-y 2m =1的离心率e =233,则实数m 的值是________.例2、设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22x D .y =±12x例3、双曲线的焦点在y 轴上,且它的一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,离心率e =53,则此双曲线的方程是( )A.x 236-y 264=1 B.x 264-y 236=1 C.x 236-y 264=-1 D.x 264-y 236=-1例4、若双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a 等于( )A .2 B. 3 C.32 D .1【同步练习】1、设双曲线x 2a 2-y 29=1(a>0)的渐近线方程为3x ±2y =0,则a 的值为( )A .4B .3C .2D .12、双曲线22149x y -=的渐近线方程是( ) (A )23y x =± (B )49y x =± (C )32y x =± (D )94y x =±3、双曲线12222=-ay b x 的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .234、已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )(A )112422=-y x (B )141222=-y x (C )161022=-y x (C )110622=-y x5、如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( )(A )3 (B )5 (C )25(D )31+6、已知双曲线22112x y n n-=-的离心率是3。
高中数学讲义:解析几何专题双曲线(解析版)
圆锥曲线第2讲 双曲线【知识要点】 一、双曲线的概念 1. 双曲线的第一概念:平面内到两个定点、的距离之差的绝对值等于定长()的点的轨迹叫双曲线,这两个定点叫做双曲线的核心,两个核心之间的距离叫做焦距。
注1:在双曲线的概念中,必需强调:到两个定点的距离之差的绝对值(记作),不但要小于这两个定点之间的距离(记作),而且还要大于零,不然点的轨迹就不是一个双曲线。
具体情形如下:(ⅰ)当时,点的轨迹是线段的垂直平分线; (ⅱ)当时,点的轨迹是两条射线; (ⅲ)当时,点的轨迹不存在; (ⅳ)当时,点的轨迹是双曲线。
专门地,假设去掉概念中的“绝对值”,那么点的轨迹仅表示双曲线的一支。
注2:假设用M 表示动点,那么双曲线轨迹的几何描述法为(,),即。
2. 双曲线的第二概念:平面内到某必然点的距离与它到定直线的距离之比等于常数()的点的轨迹叫做双曲线。
二、双曲线的标准方程 1. 双曲线的标准方程(1)核心在轴、中心在座标原点的双曲线的标准方程是(,); (2)核心在轴、中心在座标原点的双曲线的标准方程是(,).注:假设题目已给出双曲线的标准方程,那其核心究竟是在轴仍是在轴,要紧看实半轴跟谁走。
假设实半轴跟走,那么双曲线的核心在轴;假设实半轴跟走,那么双曲线的核心在轴。
2. 等轴双曲线当双曲线的实轴与虚轴等长时(即),咱们把如此的双曲线称为等轴双曲线,其标准方程为()注:假设题目已明确指出所要求的双曲线为等轴双曲线,那么咱们可设该等轴双曲线的方程为(),再结合其它条件,求出的值,即可求出该等轴双曲线的方程。
进一步讲,假设求得的,那么该等轴双曲线的核心在轴、中心在座标原点;假设求得的,那么该等轴双曲线的核心在轴、中心在座标原点。
三、双曲线的性质以标准方程(,)为例,其他形式的方程可用一样的方式取得相关结论。
(1)范围:,即或;1F 2F a 22120F F a <<a 221F F c 202=a 21F F c a 22=c a 22>c a 220<<a MF MF 221=-ca 220<<c F F 221=2121F F MF MF <-e 1>e x 12222=-b y a x 0>a 0>b y 12222=-b x a y 0>a 0>b x yx x y yb a 22=λ=-22y x 0≠λλ=-22y x 0≠λλ0>λx 0<λy 12222=-b y a x 0>a 0>b ax ≥a x ≥a x -≤(2)对称性:关于轴、轴轴对称,关于坐标原点中心对称;(3)极点:左、右极点别离为、; (4)核心:左、右核心别离为、; (5)实轴长为,虚轴长为,焦距为;(6)实半轴、虚半轴、半焦距之间的关系为;(7)准线:; (8)焦准距:;(9)离心率:且. 越小,双曲线的开口越小;越大,双曲线的开口越大;(10)渐近线:; (11)焦半径:假设为双曲线右支上一点,那么由双曲线的第二概念,有,;(12)通径长:.注1:双曲线(,)的准线方程为,渐近线方程为。
双曲线与方程_知识点总结_例题习题精讲_详细答案
一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))。
这两个定点叫双曲线的焦点。
要注意两点:(1)距离之差的绝对值。
(2)2a <|F 1F 2|。
当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; 当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在。
2、第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。
这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。
二、双曲线的标准方程(222a c b -=,其中|1F 2F |=2c )焦点在x 轴上:12222=-b y a x (a >0,b >0)焦点在y 轴上:12222=-bx a y (a >0,b >0)(1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上。
a 不一定大于b 。
(2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (3)双曲线方程也可设为:221(0)x y mn m n-=> 需要更多的高考数学复习资料请在淘.宝.上.搜.索.宝.贝.: 高考数学复习资料 知识点与方法技巧总结 例题精讲(详细解答)或者搜.店.铺..: 龙奇迹学习资料网 三、点与双曲线的位置关系,直线与双曲线的位置关系 1、点与双曲线点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2、直线与双曲线 代数法:设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b (1)0m =时,b bk a a-<<,直线与双曲线交于两点(左支一个点右支一个点); b k a ≥,bk a≤-,或k 不存在时,直线与双曲线没有交点;(2)0m ≠时,k 存在时,若0222=-k a b ,abk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;k 不存在,a m a -<<时,直线与双曲线没有交点;m a m a ><-或直线与双曲线相交于两点;3、过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x(1)当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a <-或k 不存在时直线与双曲线的一支有两个交点;(2)当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x bk a a y <<(00y ≠)或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ; b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); (3)当点00(,)P x y 在双曲线外部时:当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点; 需要更多的高考数学复习资料请在淘.宝.上.搜.索.宝.贝.: 高考数学复习资料 知识点与方法技巧总结 例题精讲(详细解答)或者搜.店.铺..: 龙奇迹学习资料网 四、双曲线与渐近线的关系1、若双曲线方程为22221(0,0)x y a b a b -=>>⇒渐近线方程:22220x y a b -=⇔x a by ±=2、若双曲线方程为12222=-b x a y (a >0,b >0)⇒渐近线方程:22220y x a b -= ay x b =±3、若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x , 0λ≠。
双曲线经典知识点总结-双曲线知识点总结
双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1.双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2.若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3.若常数满足约束条件:,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F 1F 2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a >0,b >0)的简单几何性质(1)对称性:对于双曲线标准方程(a >0,b >0),把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以双曲线(a >0,b >0)是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a 和x=a 的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x ≤-a 或x ≥a 。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a >0,b >0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A 1(―a ,0),A 2(a ,0),顶点是双曲线两支上的点中距离最近的点。
双曲线相关知识点总结
双曲线是数学中的一种特殊曲线形式,具有许多有趣的性质和应用。
在本文中,我
们将对双曲线的相关知识点进行总结。
1.双曲线的定义:双曲线是一个平面上的曲线,其定义是到两个定点
(焦点)的距离之差等于常数的点的集合。
双曲线有两支,分别称为实轴和虚轴,这两支在无穷远处相交。
2.双曲线的方程:双曲线的一般方程形式为:(x2/a2) - (y2/b2) = 1,其
中a和b为正实数。
这个方程可以通过平移、旋转和伸缩来得到不同形状的双曲线。
3.双曲线的性质:
•双曲线的中心在原点,它的对称轴为x轴和y轴。
•双曲线的渐近线是直线y = bx,其中b = ±(a/b)。
•双曲线的离心率定义为e = c/a,其中c为焦点到中心的距离。
离心率小于1时,双曲线是“瘦长”的;离心率大于1时,双曲线是“扁平”的。
•双曲线的焦点到顶点的距离等于半径的距离,即c = a/e。
4.双曲线的应用:
•双曲线广泛应用于物理学、光学和电工领域。
例如,在光学中,双曲线被用来描述抛物面镜和双曲透镜的形状。
•双曲线也是一类重要的函数图像,如双曲正弦函数和双曲余弦函数。
这些函数在数学分析和应用中有广泛的应用。
•双曲线还在计算机图形学和计算机辅助设计等领域中被广泛使用。
它们可以用于生成各种曲线和曲面的形状。
总结:双曲线是一种有趣且重要的数学概念,它具有许多有用的性质和应用。
通过理解双曲线的定义、方程和性质,我们可以更好地理解和应用这一概念。
无论是在数学学习中还是在实际应用中,双曲线都有着广泛的应用和重要性。
人教版选修21第二章双曲线双曲线的标准方程讲义
案例(二)——精析精练课堂 合作 探究重点难点突破知识点一 双曲线的定义平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于21F F 且不等于零)的点 的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。
注意 (1)在此定义中“常数要大于0且小于21F F ”这一限制条件十分重要,不可去 掉。
(2)如果定义中常数改为等于21F F ,此时动点轨迹是以1F 、2F 为端点的两条射线(包 括端点)。
(3)如果定义中常数为0,此时动点轨迹为线段1F 2F 的垂直平分线。
(4)如果定义中常数改为大于21F F ,此时动点轨迹不存在。
(5)若定义中“差的绝对值”中的“绝对值”去掉的话,点的轨迹成为双面线的一支。
(6)设()y x M ,为双曲线上的任意一点,若M 点在双曲线右支上,则()02,2121>=->a a MF MF MF MF ;若M 在双曲线的左支上,则a MF MF MF MF 2,2121-=-<,因此得a MF MF 221±=-,这是与椭圆不同的地方。
知识点二 双曲线的标准方程1.如何正确理解双曲线的标准方程的两种形式(1)通过比较两种不同类型的双曲线方程()0,12222>>=-b a by a x (焦点在x 轴上)和()0,12222>>=-b a b x a y (焦点在y 轴上),可以看出,如果2x 项的系数是正的,那么焦点就在 x 轴上;如果2y 项的系数是正的,那么焦点就在y 轴上。
对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条 坐标轴上。
焦点在x 轴上的方程,只要将y x ,互换就能得到 焦点在y 轴上的方程。
(2)无论双曲线的焦点在哪个坐标轴上,标准方程中的c b a ,,三个量都满足222b ac +=所以c b a ,,恰好构成一个直角三角形的三边,且c 为斜边,如图所示。
双曲线方程高中数学知识点整理
双曲线方程高中数学知识点整理双曲线方程高中数学知识点整理双曲线方程1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点) “长加短减”原则:构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的'方程为:,代入得.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P 到两准线的距离比为m?n.简证: =.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.。
高中双曲线知识点
高中双曲线知识点在高中数学中,双曲线是一个重要的曲线类型,理解和掌握双曲线的相关知识对于解决数学问题和应对考试都具有重要意义。
接下来,咱们就来详细聊聊高中双曲线的那些事儿。
一、双曲线的定义平面内到两个定点 F₁、F₂的距离之差的绝对值等于常数 2a(2a <|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距,记为 2c。
需要注意的是,当 2a =|F₁F₂|时,轨迹是以 F₁、F₂为端点的两条射线;当 2a >|F₁F₂|时,轨迹不存在。
二、双曲线的标准方程1、焦点在 x 轴上的双曲线标准方程为:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2= a^2 + b^2\),焦点坐标为\((\pm c, 0)\)。
2、焦点在 y 轴上的双曲线标准方程为:\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2= a^2 + b^2\),焦点坐标为\((0, \pm c)\)。
这里的 a 表示双曲线的实半轴长,b 表示双曲线的虚半轴长,c 表示半焦距。
三、双曲线的几何性质1、范围对于焦点在 x 轴上的双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),x 的取值范围是\(x \leq a\)或\(x \geq a\);y 的取值范围是 R。
对于焦点在 y 轴上的双曲线\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\),y 的取值范围是\(y \leq a\)或\(y \geq a\);x 的取值范围是 R。
2、对称性双曲线关于 x 轴、y 轴和原点都对称。
3、顶点焦点在 x 轴上的双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\)的顶点坐标为\((\pm a, 0)\);焦点在 y 轴上的双曲线\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)的顶点坐标为\((0, \pm a)\)。
双曲线知识点与性质大全
双曲线与方程【知识梳理】1、双曲线的定义(1)平面内,到两定点、的距离之差的绝对值等于定长的点的轨迹称为双曲线,其中两1F 2F ()1222,0a F F a a >>定点、称为双曲线的焦点,定长称为双曲线的实轴长,线段的长称为双曲线的焦距.此定义为双曲线1F 2F 2a 12F F 的第一定义.【注】,此时点轨迹为两条射线.12122PF PF a F F -==P (2)平面内,到定点的距离与到定直线的距离比为定值的点的轨迹称为双曲线,其中定点称为双曲线的()1e e >焦点,定直线称为双曲线的准线,定值称为双曲线的离心率.此定义为双曲线的第二定义.e 2、双曲线的简单性质标准方程()22221,0x y a b a b -=>()22221,0y x a b a b -=>顶点坐标(),0A a ±()0,B a ±焦点坐标左焦点,右焦点()1,0F c -()2,0F c 上焦点,下焦点()10,F c ()20,F c -虚轴与虚轴实轴长、虚轴长2a 2b实轴长、虚轴长2a 2b有界性x a≥,y a ≥对称性关于轴对称,关于轴对称,同时也关于原点对称.x y 3、渐近线双曲线的渐近线为,即,或.()22221,0x y a b a b -=>22220x y a b -=0x y a b ±=by x a=±【注】①与双曲线具有相同渐近线的双曲线方程可以设为;22221x y a b -=()22220x y a b λλ-=≠②渐近线为的双曲线方程可以设为;by x a=±()22220x y a b λλ-=≠③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线.4、焦半径双曲线上任意一点到双曲线焦点的距离称为焦半径.若为双曲线上的任意一点,P F 00(,)P x y ()22221,0x y a b a b -=>,为双曲线的左、右焦点,则,,其中.1(,0)F c -2(,0)F c 10||PF ex a =+20||PF ex a =-ce a=5、通径过双曲线焦点作垂直于虚轴的直线,交双曲线于、两点,称线段为双曲线的通径,()22221,0x y a b a b -=>F A B AB 且.22b AB a=6、焦点三角形为双曲线上的任意一点,,为双曲线的左右焦点,称为双曲线的焦P ()22221,0x y a b a b-=>1(,0)F c -2(,0)F c 12PF F ∆点三角形.若,则焦点三角形的面积为:.12F PF θ∠=122cot 2F PF S b θ∆=7、双曲线的焦点到渐近线的距离为(虚半轴长).b 8、双曲线的焦点三角形的内心的轨迹为()22221,0x y a b a b-=>()0x a y =±≠9、直线与双曲线的位置关系直线,双曲线:,则:0l Ax By C ++=Γ()22221,0x y a b a b-=>与相交;l Γ22222a A b B C ⇔->与相切;l Γ22222a A b B C ⇔-=与相离.l Γ22222a A b B C ⇔-<10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条.11、焦点三角形角平分线的性质点是双曲线上的动点,是双曲线的焦点,是的角平分线上一点,且(,)P x y ()22221,0x y a b a b-=>12,F F M 12F PF ∠,则,即动点的点的轨迹为.20F M MP ⋅=u u u u r u u u rOM a =M ()222x y a x a +=≠±12、双曲线上任意两点的坐标性质【推广2】设直线交双曲线于两点,交直线于点.若()110l y k x m m =+≠、()22221,0x y a b a b -=>C D 、22l y k x =、E 为的中点,则.E CD 2122b k k a=13、中点弦的斜率直线过与双曲线交于两点,且,则直线的斜率l ()()000,0M x y y ≠()22221,0x y a b a b-=>,A B AM BM =l .2020ABb x k a y =14、点是双曲线上的动点,过作实轴的平行线,交渐近线于两(,)(0,0)P x y x y >>()22221,0x y a b a b-=>P ,M N 点,则定值.PM PN =2a 15、点是双曲线上的动点,过作渐近线的平行线,交渐近线于(,)(0,0)P x y x y >>()22221,0x y a b a b-=>P 两点,则定值.,M N OMPN S =Y 2ab 【典型例题】例1、双曲线的渐近线方程为,焦距为,这双曲线的方程为_________.20x y ±=10【变式1】若曲线表示双曲线,则的取值范围是_________.22141x y k k+=+-k【变式2】双曲线的两条渐近线的夹角为_________.22148x y -=【变式3】已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程为_________.2222135x y m n +=2222123x y m n-=【变式4】若椭圆和双曲线有相同焦点、,为两曲线的一个交221(0)x y m n m n +=>>221(0,0)x y a b a b-=>>1F 2F P 点,则_________.12PF PF ⋅=【变式5】如果函数的图像与曲线恰好有两个不同的公共点,则实数的取值范围是2y x =-22:4C x y λ+=λ( )A .B .C .D . [1,1)-{}1,0-(,1][0,1)-∞-U [1,0](1,)-+∞U 【变式6】直线与双曲线的渐近线交于两点,设为双曲线上的任意一点,若2=x 14:22=-y x C B A ,P C (为坐标原点),则下列不等式恒成立的是( )b a +=O R b a ,,∈A .B . 222a b +≥2122≥+b a C . D .222a b +≤2212a b +≤【变式7】设连接双曲线与的四个顶点为四边形面积为,连接其四个焦点的四边形面积22221x y a b -=22221y x b a-=1S 为,则的最大值为_________.2S 12S S 例2、设分别是双曲线的左右焦点,若点在双曲线上,且,则12F F 、2219y x -=P 12=0PF PF u u u r u u u u r g =_________.12PF PF +u u u r u u u u r【变式1】过双曲线的左焦点的弦,则(为右焦点)的周长为_________.221109x y -=1F 6AB =2ABF ∆2F 【变式2】双曲线的左、右焦点、,是双曲线上的动点,且,则_________.2211620x y -=1F 2F P 19PF =2PF =例3、设是双曲线的两个焦点,点是双曲线的任意一点,且,求的面12F F 、2214x y -=P 123F PF π∠=12PF F ∆积.例4、已知直线与双曲线有两个不同的交点,如果以为直径的圆恰好过原点,1y kx =+2231x y -=A B 、AB O试求的值.k 例5、已知直线与双曲线相交于两点,那么是否存在实数使得两点关于直线1y kx =+2231x y -=A B 、k A B 、对称?若存在,求出的值;若不存在,说明理由.20x y -=k 例6、已知双曲线的右焦点为,若过点的直线与双曲线的右支有且只有一个交点,求此直线的斜221124x y -=F F 率的取值范围为_________.【变式1】已知曲线:;C 21(4)x y y x -=≤(1)画出曲线的图像;C (2)若直线:与曲线有两个公共点,求的取值范围;l 1y kx =-C k (3)若,为曲线上的点,求的最小值.()0P p 、()0p >Q C PQ 【变式2】直线:与曲线:.l 10ax y --=C 2221x y -=(1)若直线与曲线有且仅有一个交点,求实数的取值范围;l C a(2)若直线被曲线截得的弦长,求实数的取值范围;l C PQ =a(3)是否存在实数,使得以为直径的圆经过原点,若存在,求出的值;若不存在,请说明理由.a PQ a 例7、已知是双曲线的左焦点,,是双曲线右支上的动点,求的最小值.F 221412x y -=(14)A 、P PF PA +【变式】是双曲线的右支上一点,分别是圆和上的点,则P 221916x y -=,M N ()2254x y ++=()2251x y -+=的最大值等于_________.PM PN -例8、已知动圆与两个定圆和都外切,求动圆圆心的轨迹方程.P ()2251x y -+=()22549x y ++=P 【变式1】的顶点为,,的内切圆圆心在直线上,则顶点的轨迹方程是ABC ∆()50A -、()5,0B ABC ∆3x =C _________.【变式2】已知双曲线的中心在原点,且一个焦点为,直线与其相交于两点,线段)F1y x =-M N 、的中点的横坐标为,求此双曲线的方程.MN 23-例9、已知双曲线,若点为双曲线上任一点,则它到两渐近线距离的乘积为_________.221916x y -=M例10、焦点在轴上的双曲线的两条渐近线经过原点,且两条渐近线均与以点为圆心,以1为半径的x C P 圆相切,又知双曲线的一个焦点与关于直线对称C P y x =(1)求双曲线的方程;(2)设直线与双曲线的左支交于两点,另一直线经过点及的中点,求直线在1y mx =+C ,A B l (2,0)M -AB l 轴上的截距的取值范围.n【变式】设直线的方程为,等轴双曲线:右焦点为.l 1y kx =-C 222x y a -=)(1)求双曲线的方程;(2)设直线与双曲线的右支交于不同的两点,记中点为,求实数的取值范围,并用表示点l A B 、AB M k k 的坐标;M (3)设点,求直线在轴上的截距的取值范围.()1,0Q -QM y 例11、已知双曲线方程为:.C 2212y x -=(1)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求的0x y m -+=C A B 、AB 225x y +=m 值;(2)设直线是圆:上动点()处的切线,与双曲线交于不同的两点l O 222x y +=00(,)P x y 000x y ≠l C,证明的大小为定值.A B 、AOB ∠例12、已知中心在原点,顶点在轴上,其渐近线方程是,双曲线过点.12A A 、x y x =()6,6P (1)求双曲线的方程;(2)动直线经过的重心,与双曲线交于不同的两点,问:是否存在直线,使平分线段l 12A PA ∆G M N 、l G ,证明你的结论.MN 例13、已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交1F 2F C ()01222>=-b by x 2F x x 双曲线于点,且.圆的方程是.C M ︒=∠3021F MF O 222b y x =+(1)求双曲线的方程;C (2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;C P 1P 2P 21PP PP ⋅(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:O ()00y ,x Q O l C A B AB M例14、已知双曲线:的一个焦点是,且.C ()222210,0x y a b a b-=>>()22,0F a b 3=(1)求双曲线的方程;C (2)设经过焦点的直线l 的一个法向量为,当直线与双曲线C 的右支相交于不同的两点时,求实2F )1,(m l B A ,数的取值范围;并证明中点在曲线上.m AB M 3)1(322=--y x(3)设(2)中直线与双曲线的右支相交于两点,问是否存在实数,使得为锐角?若存在,请l C B A ,m AOB 求出的范围;若不存在,请说明理由.m。
数学双曲线知识点 总结
数学双曲线知识点总结一、双曲线的定义1. 定义:双曲线是平面上一个点到两个给定点的距离之差等于一个常数的动点轨迹。
这两个给定点称为焦点,常数称为离心率。
双曲线的离心率小于1。
双曲线有两个分支,每个分支有一组渐近线。
2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1。
其中,a和b分别为双曲线在x轴和y轴上的焦点坐标。
3. 参数方程:双曲线的参数方程为x = a·secθ, y = b·tanθ。
其中,a和b分别为双曲线在x 轴和y轴上的焦点坐标,θ为参数。
4. 极坐标方程:双曲线的极坐标方程为r^2 = a^2·sec^2θ - b^2·tan^2θ。
其中,a和b分别为双曲线在x轴和y轴上的焦点坐标,θ为参数。
二、双曲线的性质1. 对称性:双曲线关于x轴和y轴均对称。
2. 渐近线:双曲线有两条渐近线。
两条渐近线的夹角等于双曲线的离心率e的反正切值。
第一条渐近线的斜率为b/a,第二条渐近线的斜率为-b/a。
3. 凹凸性:双曲线的两个分支分别为凹曲和凸曲。
4. 渐进性质:当x趋于正无穷时,双曲线的y趋于无穷;当x趋于负无穷时,双曲线的y 趋于无穷。
当y趋于正无穷时,双曲线的x趋于无穷;当y趋于负无穷时,双曲线的x趋于无穷。
5. 双曲线的离心率e的物理意义:离心率e表示焦距和直距的比值,即e=c/a。
其中,c 为焦点之间的距离,a为双曲线在x轴上的焦点坐标。
6. 双曲线的离心率与点到焦点的距离的关系:双曲线上任意一点P到两个焦点F1和F2的距离之差等于一个常数2a。
即|PF1 - PF2| = 2a。
三、双曲函数1. 双曲正弦函数:sinh x = (e^x - e^(-x))/2,定义域为x∈R,值域为y>0。
2. 双曲余弦函数:cosh x = (e^x + e^(-x))/2,定义域为x∈R,值域为y≥1。
3. 双曲正切函数:tanh x = sinh x / cosh x = (e^x - e^(-x))/(e^x + e^(-x)),定义域为x∈R,值域为y∈(-1, 1)。
双曲线经典知识点总结-双曲线知识点总结
双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
双曲线知识点与性质大全
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中c e a=. 5、通径过双曲线()22221,0x y a b a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值;(2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.l。
高中数学双曲线知识点归纳
高中数学双曲线知识点归纳1. 双曲线的定义双曲线是数学中的一种曲线形状,定义为平面上满足一定关系式的点的集合。
双曲线由两个分离的曲线支构成,且每个支都是无限延伸的。
双曲线有许多重要的性质和应用。
2. 双曲线的标准方程双曲线的标准方程可以表示为以下形式:- 横轴双曲线方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a>0$且$b>0$。
- 纵轴双曲线方程:$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$,其中$a>0$且$b>0$。
3. 双曲线的焦点和准线双曲线的焦点和准线是双曲线的重要概念。
- 焦点:对于横轴双曲线,焦点是位于横轴上的两个点;对于纵轴双曲线,焦点是位于纵轴上的两个点。
焦点具有很多重要的性质,如与双曲线的离心率相关等。
- 准线:对于横轴双曲线,准线是位于横轴上的两个点;对于纵轴双曲线,准线是位于纵轴上的两个点。
准线也与双曲线的离心率有关。
4. 双曲线的性质双曲线具有许多特殊的性质,包括但不限于:- 双曲线是对称的,关于$x$轴和$y$轴都具有对称性。
- 双曲线的离心率为超过1的正实数,离心率越大,曲线形状越扁平。
- 双曲线的渐近线是曲线的两个分支的极限位置,与曲线的形状和方程有关。
5. 双曲线的应用双曲线在数学和其他领域中有广泛的应用。
- 物理学中的抛物线轨迹、光学中的抛物面反射、天体力学中的行星轨道等问题都涉及到双曲线。
- 经济学中的供求曲线、成本曲线等也可以用双曲线进行建模和分析。
以上是对高中数学中双曲线知识点的简要归纳,希望对你有所帮助。
双曲线是数学中一个重要而有趣的概念,深入学习和应用双曲线将能拓宽你的数学视野。
(完整版)双曲线经典知识点总结
双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
双曲线知识点
双曲线:注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意: 1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a 或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线一、知识点讲解(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。
||221F F a =表示两条射线;||221F F a >没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a b x a y 图 形顶 点 )0,(),0,(21a A a A - ),0(),,0(21a B a B -对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2焦 点 )0,(),0,(21c F c F -),0(),,0(21c F c F -焦 距 )0(2||21>=c c F F 222b a c+=离心率 )1(>=e ace (离心率越大,开口越大) 渐近线 x ab y ±= x ba y ±= 通 径22b a(3)双曲线的渐近线:①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到0x y a b ±=。
②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x ; (4)等轴双曲线为222t y x=-,其离心率为2(4)常用结论:(1)双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,过1F 的直线交双曲线的同一支于B A ,两点,则2ABF ∆的周长=xO F 1P B 2 B 1 F 2xO F 1 F 2PyA 2 A 1y(2)设双曲线)0,0(12222>>=-b a by a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交双曲线于Q P ,两点,则Q P ,的坐标分别是 =||PQ二、例题讲解。
例1、如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a by a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△ABF 2是等边三角形,则双曲线的离心率为( )(A )3 (B )5 (C )25 (D )31+【解析1】设AB 交x 轴于M ,并设双曲线半焦距为c ,∵△AB F 2是等边三角形,∴3,.22c OM MA c ==点3,22c A c ⎛⎫- ⎪ ⎪⎝⎭代入双曲线方程: ()()2222222222222233444c b a c a b c c a a c a c a ⋅-⋅=⇒--=-.化简得:422442284084042331c a c a e e e e -+=⇒-+=⇒=+⇒=+.(∵e >1,∴2423e=-及31e =-舍去)故选D.【解析2】连AF 1,则△AF 1F 2为直角三角形,且斜边F 1F 2之长为2c.令1122,.AF r AF r ==由直角三角形性质知:211221221222r r ar c r a c r c r r -=⎧=⎧⎪⇒⎨⎨=+⋅=⎩⎪⎩. ∵()222222222124,24220220r r c a c c c a ac c e e +=∴++=⇒+-=⇒--=.∵e ﹥1,∴取31e =+.选D.例2、设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A .63B .12 C.123 D .24【解析】双曲线的实、虚半轴和半焦距分别是:1,23,13ab c ===.设;12123,2.22, 2.PF r PF r PF PF a r ==-==∴= 于是2221212126, 4.52PF PF PF PF F F ==+==,故知△PF 1F 2是直角三角形,∠F 1P F 2=90°.∴121211641222PF FS PF PF ∆=⋅=⨯⨯=.选B. 例3、已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6) (1)求双曲线方程(2)动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问 是否存在直线l ,使G 平分线段MN ,证明你的结论解 (1)如图,设双曲线方程为2222b y a x -=1 由已知得321,16622222222=+==-a b a e b a ,解得a 2=9,b 2=12 所以所求双曲线方程为12922y x -=1 (2)P 、A 1、A 2的坐标依次为(6,6)、(3,0)、(-3,0),∴其重心G 的坐标为(2,2) 假设存在直线l ,使G (2,2)平分线段MN ,设M (x 1,y 1),N (x 2,y 2) 则有22121112221212224129108124,493129108x x x y y y y y x x x y ⎧+=-=⎧-⎪⇒==⎨⎨+=--=⎪⎩⎩,∴k l =34∴l 的方程为 y =34 (x -2)+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0 ∵Δ=16-4×28<0,∴所求直线l 不存在一、 同步练习。
1. 如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A)364 (B)362 (C)62 (D)322. 已知双曲线C ∶22221(x y a a b-=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是(A )a(B)b(C)ab(D)22b a +3. 以双曲线221916x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A 221090x y x +-+= B .2210160x y x +-+= C .2210160x y x +++= D .221090x y x +++=XYOF 1F 2P 2rA 1A 2MNGPoyx4. 以双曲线222x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( )A.22430x y x +--= B.22430x y x +-+= C.22450x y x ++-=D.22450x y x +++=5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)6. 若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心率是( )(A )3 (B )5 (C )3 (D )57. 已知双曲线)0(12222>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则12PF PF ⋅=( )A. -12B. -2C. 0D. 4 二、填空题8. 过双曲线221916x y -=的右顶点为A ,右焦点为F 。
过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为_______9. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P使1221sin sin PF F aPF F c=,则该双曲线的离心率的取值范围是 .10. 过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线相交于,M N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为______11. 已知点P 在双曲线221169x y -=上,并且P 到这条双曲线的右准线的距离恰是P 到双曲线两个焦点的距离的等差中项,那么P 点的横坐标是_________12. 已知12,F F 是双曲线221169x y -=的两个焦点,PQ 是过点1F 的弦,且PQ 的倾斜角为α,那么22||||||PF QF PQ +-的值是__________13. 已知(6,0),(6,0)B C -是ABC 的两个顶点,内角,,A B C 满足1sin sin sin 2B C A -=,则顶点A 的轨迹方程是________________ 二、 解答题14. 如图,在以点O 为圆心,||4AB =为直径的半圆ADB 中,OD AB ⊥,P 是半圆弧上一点,30POB ∠=︒,曲线C 是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△OEF 的面积不小于...22,求直线l 斜率的取值范围.15. 已知双曲线C 的方程为22221(0,0)y x a b a b-=>>,离心率52e =,顶点到渐近线的距离为255。
(1)求双曲线C 的方程;(2)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,若1,[,2]3AP PB λλ=∈,求AOB ∆面积的取值范围选择题:1. A 2. B 3. A 4. B 5. B 6. D 7. C填空题: 8. 3215 9. (1,12)+ 10. 2 11. 645- 12. 16 13.221(3)927x y x -=<- 17. 解:(Ⅰ)以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实半轴长为a ,虚半轴长为b ,半焦距为c ,则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2. ∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |< |AB |=4. ∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a by a x (12222=->0,b >0).则由 ⎪⎩⎪⎨⎧=+=-411322222b a ba )(解得a 2=b 2=2, ∴曲线C 的方程为.12222=-y x(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0. ∵直线l 与双曲线C 相交于不同的两点E 、F ,∴ ⎪⎩⎪⎨⎧-⨯+-=∆≠0)1(64)4(01222k k k -⇔ 133k k ≠±⎧⎪⎨-<<⎪⎩ ∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=k x x k k --=-16,14212,于是 |EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2). 解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理, 得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F ,∴ 22210(4)46(1)0k k k ⎧≠⎪⎨∆=-+⨯->⎪⎩-⇔ 133k k ≠±⎧⎪⎨-<<⎪⎩.∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示),S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆ODF OEF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆OEF S.22,022*******2≤≤-≤-⇔≥--k k k kk 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).18. (Ⅰ)由题意知,双曲线C 的顶点(0,a )到渐近线2505ax by -=的距离为, 所以22255ab a b =+所以255ab c = 由22225525125ab c a cb ac c a b ⎧=⎪⎪⎧=⎪⎪⎪==⎨⎨⎪⎪=⎩⎪=+⎪⎪⎩得 所以曲线C 的方程是2y 421x -= (Ⅱ)设直线AB 的方程为,y kx m =+ 由题意知2,0k m <>由2,),222y kx m m m A y x k k =+⎧⎨=--⎩得点的坐标为(由2,),222y kx m m mB y xk k =+⎧-⎨=-++⎩得点的坐标为(121,(),()122122m m AP PB P k k k k λλλλλ=-++-++-+得点的坐标为(uu u r uu r将P 点的坐标代入21x -=2y 4得2224(1)4m k λλ+=- 设Q 为直线AB 与y 轴的交点,则Q 点的坐标为(0,m )AOB S ∆=AOQ BOQ S S ∆∆+22111()222114()2222411()12A B A B OQ x OQ x m x x m m m m k k k λλ=+=-=+=-+-=++g g g。