04183概率论与数理统计(经管类)(有问题详解)

合集下载

04183 概率论与数理统计(经管类)讲义

04183 概率论与数理统计(经管类)讲义

w
页码,8/19(W)
例6. 习题1.2 13 设A,B,C为三个随机事件,且P(A)=P(B)=P(C)= ,P(AB)=P(BC)= ,P(AC)=0。求: (1)A,B,C中至少有一个发生的概率; 【答疑编号:12010305】 (2)A,B,C全不发生的概率。 【答疑编号:12010306】 解: (1)“A,B,C至少有一个发生”表示为A∪B∪C,则所求概率为 P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
④A与B相互对立 A与B互不相容. 小结:关系:包含,相等,互不相容,互为对立; 运算:和,积,差,对立. (7)事件的运算性质
①(和、积)交换律 A∪B=B∪A,A∩B=B∩A;
②(和、积)结合律 (A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);
③(和、积)分配律 A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)
mk:@MSITStore:C:\Users\lenovo\AppData\Local\Temp\RarSFX4\gll01... 2011/1/12
w
页码,10/19(W)
2.全概率公式与贝叶斯公式
(1)划分:设事件 ① , ,…, ② 当 , ,…,
, ,…, 满足如下两个条件:
互不相容,且
,i=1,2,…,n;
设a表示第一次取球取到白球b表示第二次取球取到白球则例10p16例125在某工厂中有甲乙丙三台机器生产同一型号的产品它们的产量各占303535并且在各自的产品中废品率分别为543求从该厂的这种产品中任取一件是废品的概率
w
页码,1/19(W)
第一章 随机事件与概率

2022年自考概率论与数理统计10月真题及详解答案

2022年自考概率论与数理统计10月真题及详解答案
A.A1A2B.
C. D.
2.某人每次射击命中目旳旳概率为p(0<p<1),她向目旳持续射击,则第一次未中第二次命中旳概率为(D)
A.p2B.(1-p)2
C.1-2pD.p(1-p)
3.已知P(A)=0.4,P(B)=0.5,且A B,则P(A|B)=(C)
A.0B.0.4
C.0.8D.1
解:(P14)∵A B,∴ , 。
26.设二维随机变量(X,Y)只能取下列数组中旳值:
(0,0),(-1,1),(-1, ),(2,0),
且取这些值旳概率依次为 , , , .
(1)写出(X,Y)旳分布律;
(2)分别求(X,Y)有关X,Y旳边沿分布律.
解:(P?)由已知条件可得: , ,
, ,即X取-1,0,2;Y取0, ,1;
∴(1)(X,Y)旳分布律如下表:
且E(X)= .求:(1)常数a,b;(2)D(X).
解:(P39)(1)由概率密度旳性质 ,得
,简化为 ……………①
又 ,
简化得 ……………………………………………………………………………②
联立①、②解之得, , ;代入得
(2)另 ,
∴ ,
答:略。
29.设测量距离时产生旳随机误差X~N(0,102)(单位:m),现作三次独立测量,记Y为三次测量中误差绝对值不小于19.6旳次数,已知Φ(1.96)=0.975.
(1)求每次测量中误差绝对值不小于19.6旳概率p;
(2)问Y服从何种分布,并写出其分布律;
(3)求E(Y).
解:(P?)(1)∵随机误差X~N(0,102)∴ ,
p= ;
(2)(P32)∵三次测量均独立∴Y服从参数为3,0.025旳二项式分布,即 ,

10月全国自考概率论与数理统计答案详解—答案04183概率论与数理统计(经管)历年试题资料文

10月全国自考概率论与数理统计答案详解—答案04183概率论与数理统计(经管)历年试题资料文

全国2021年10月高等教育自学考试《概率论与数理统计》(经管类)真题及答案详解课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)1.已知事件A ,B ,B A 的概率分别为5.0,4.0,6.0,则=)(B A P ( B ) A .1.0B .2.0C .3.0D .5.0A .0)(=-∞F ,0)(=+∞FB .1)(=-∞F ,0)(=+∞FC .0)(=-∞F ,1)(=+∞FD .1)(=-∞F ,1)(=+∞F3.设),(Y X 服从区域1:22≤+y x D 上的均匀分布,则),(Y X 的概率密度为( D ) A .1),(=y x fB .⎩⎨⎧∈=其他,0),(,1),(Dy x y x fC .π1),(=y x fD .⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x y x f π4.设随机变量X 服从参数为2的指数分布,则=-)12(X E ( A ) A .0B .1C .3D .45.设二维随机变量),(Y X 的分布律为则=)3(X D ( B ) A .92 B .2 C .4 D .621n 11=⎭⎬⎫⎩⎨⎧≤∑=→∞0lim 1n i i n X P ( C ) A .0B .25.0C .5.0D .17.设n x x x ,,,21 为来自总体),(σμN 的样本,,σμ是未知参数,则下列样本函数为统计量的是( D ) A .μ-∑=ni i x 1B .∑=ni i x 121σC .∑=-ni i x n 12)(1μD .∑=n i i x n 121A .置信度越大,置信区间越长B .置信度越大,置信区间越短C .置信度越小,置信区间越长D .置信度大小与置信区间长度无关01A .1H 成立,拒绝0H B .0H 成立,拒绝H 0 C .1H 成立,拒绝1HD .0H 成立,拒绝1H10.设一元线性回归模型:i i i x y εββ++=10,i ε~),0(σN (n i ,,2,1 =),且各i ε相互独立.依据样本),(i i y x (n i ,,2,1 =),得到一元线性回归方程x y 10ˆˆˆββ+=,由此得i x 对应的回归值为i y ˆ,i y 的平均值∑==ni i y n y 11(0≠y ),则回归平方和回S 为( C )A .∑=-ni i y y 12)(B .∑=-ni i i yy 12)ˆ( C .∑=-ni i y y12)ˆ( D .∑=ni i y12ˆ21ˆnii y=∑二、填空题(本大题共15小题,每小题2分,共30分)11.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为8.0,5.0,则甲、乙两人同时击中目标的概率为___________.12.设A ,B 为两事件,且)()(==B P A P ,)|(=B A P ,则=)|(B A P ___________.14.设随机变量X 的分布律为则=a ___________.15.设随机变量X ~)2,1(N ,则=≤≤-}31{X P ___________.(附:8413.0)1(=Φ)16.设随机变量X 服从区间],2[θ上的均匀分布,且概率密度⎪⎩⎪⎨⎧≤≤=其他,02,41)(θx x f 则17.设二维随机变量),(Y X 的分布律为则==}{Y X P ___________.X20.设二维随机变量),(Y X 的分布律为则=+)(22Y X E ___________.有=⎭⎬⎫⎩⎨⎧<-→∞εp n m P n lim ___________.n 21x xn 21α分位数,则μ的置信度为96.0的置信区间长度是___________.25.设总体X ~),(σμN ,σ未知,n xx x ,,,21 为来自总体的样本,x 和s 分别是样本均值和样本方差,则检验假设00:μμ=H ;01:μμ≠H 采用的统计量表达式为___________.26.一批零件由两台车床同时加工,第一台车床加工的零件数比第二台多一倍.第一台车床出现不合格品的概率是03.0,第二台出现不合格品的概率是06.0. (1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设=A {取出第一台车床加工的零件},=B {取出合格品},则所求概率分别为: (1)96.0252494.03197.032)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P ; (2)3264.01442796.094.031)()|()()|(≈=⨯==B P A B P A P B A P .27.已知二维随机变量),(Y X 的分布律为求:(1)X 和Y 的分布律;(2)),cov(Y X 解:(1)X 和Y 的分布律分别为(2)4.04.016.00)(=⨯+⨯=X E ,3.01.015.004.0)1()(-=⨯+⨯+⨯-=Y E ,1.00113.0011.0)1(11.0102.0003.0)1(0)(-=⨯⨯+⨯⨯+⨯-⨯+⨯⨯+⨯⨯+⨯-⨯=XY E , 02.0)3.0(4.01.0)()()(),cov(=-⨯--=-=Y E X E XY E Y X .四、综合题(本大题共2小题,每小题12分,共24分)28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布),75(2σN ,已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率. 解:用X 表示考生的数学成绩,由题意可得05.0}85{=>X P ,近似地有05.075851=⎪⎭⎫ ⎝⎛-Φ-σ,05.0101=⎪⎭⎫ ⎝⎛Φ-σ,95.010=⎪⎭⎫ ⎝⎛Φσ,所求概率为⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ≈≤≤σσσσ101075657585}8565{X P9.0195.021102=-⨯=-⎪⎭⎫⎝⎛Φ=σ.29.设随机变量X 服从区间]1,0[上的均匀分布,Y 服从参数为1的指数分布,且X 与Y 相互独立.求:(1)X 及Y 的概率密度;(2)),(Y X 的概率密度;(3)}{Y X P >.解:(1)X 的概率密度为⎩⎨⎧≤≤=其他,010,1)(x x f X ,Y 的概率密度为⎩⎨⎧≤>=-0,00,)(y y e y f y Y ;(2)因为X 与Y 相互独立,所以),(Y X 的概率密度为=),(y x f )(x f X ⎪⎩⎪⎨⎧>≤≤=-其他,00,10,)(y x e y f yY ;(3)⎰⎰⎰⎰⎰⎰--->-=-=⎪⎪⎭⎫ ⎝⎛==>10100100)1()(),(}{dx e dx e dx dy e dxdy y x f Y X P x x yx y y x11)(--=+=e e x x .五、应用题(10分)30.某种产品用自动包装机包装,每袋重量X ~)2,500(2N (单位:g ),生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值g x 502=.问:当方差不变时,这天包装机工作是否正常(05.0=α)?(附:96.1025.0=u ) 解:0H :500=μ,1H :500≠μ.已知5000=μ,20=σ,9=n ,502=x ,05.0=α,96.1025.02/==u u α,算得2/0096.139/2500502/||ασμu n x u =>=-=-=,拒绝0H ,这天包装机工作不正常.。

2022年自考04183概率论与数理统计(经管类)核心考点资料

2022年自考04183概率论与数理统计(经管类)核心考点资料

(2) =φ,φ=Ω.
(3)A-B=
=A-AB.
在进行事件运算时,经常要用到下述运算律,设 A,B,C 为事件,则有: 交换律:A∪B=B∪A,A∩B=B∩A. 结合律:A∪(B∪C)=(A∪B) ∪C,
A∩(B∩C)=(A∩B)∩C. 分配律:A∪(B∩C)=(A∪B)∩(A∪C),
A∩(B∪C)=(A∩B)∪(A∩C). 对偶律:
, 其中 0<p<1,p+q=1,则称 X 服从参数为 n,p 的二项分布,简记为 X~B(n,p). 泊松分布: 设随机变量 X 的可能取值为 0,1,2,…,n,…,而 X 的分布律为
其中λ>0,则称 X 服从参数为λ的泊松分布,简记为 X~P(λ). 泊松( Poisson)定理设λ>0 是常数,n 是任意正整数,且 npn=λ,则对于任意取定的非负整 数 k,有
当 g(x1),g(x2),…,g(xk),…有相等的情况时,应把使 g(xk)相等的那些 xi 所对应的概率相 加,作为 Y 取 g(xk)时的概率,这样才能得到 Y 的分布律. 设 X 为连续型随机变量,其概率密度为 fx(x).设 g(x)是一严格单调的可导函数,其值域为[α, β]且 g’(x)≠0.记 x=h(y)为 y=g(x)的反函数,则 Y=g(X)的概率密度
.
即当 n 很大很小时,有近似公式
,其中λ=np.
二、随机变量的分布函数 设 X 为随机变量,称函数
F(x)=P{X≤x},x∈(-∞,+∞) 为 X 的分布函数. 当 X 为离散型随机变量时,设 X 的分布律为
pk=P{X=k},k=0,1,2,…
由于
,由概率性质知,



其中求和是对所有满足 xk≤x 时,xk 相应的概率 pk 求和. 分布函数有以下基本性质:

最新全国07月自学考试04183《概率论与数理统计(经管类)》历年真题参考详解答案

最新全国07月自学考试04183《概率论与数理统计(经管类)》历年真题参考详解答案

2013年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试卷(课程代码04183)一、单选题(本大题共10小题,每小题2分,共20分) 1、若A B ⊂,2.0)(=A P ,3.0)(=B P ,则=)(A B P ( ) A.0.1 B.0.2 C.0.3 D.0.42、设随机变量A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( ) A.P(A)=1-P(B) B.P(AB)=P(A)P(B) C.P(A ∪B)=1 D.P(BA)=13、设随机变量X 的分布律为P(X=k)=k/10(k=1,2,3,4),则P(0.2<X ≤2.5)= ( ) A.0.1 B.0.3 C.0.5 D.0.64、设随机变量X 的概率密度,,10,0,10,)(2⎪⎩⎪⎨⎧≤>=x x x ax f 则常数a= ( )A.-10B. 5001-C. 5001D.10 5、随机变量(X,Y )的分布律如下表所示,当X 与Y 相互独立时,(a ,b )= ( ) A. ⎪⎭⎫ ⎝⎛92,91 B. ⎪⎭⎫ ⎝⎛181,92 C. ⎪⎭⎫ ⎝⎛181,91 D. ⎪⎭⎫ ⎝⎛91,181 6、设连续型随机变量(X,Y )服从区域G:0≤X ≤2,2≤Y ≤5上的均匀发布,则其概率密度函数=),(y x f ( )A.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,6),(B. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,61),( C.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,4),( D. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,41),(7、设随机变量X 服从参数为3的泊松分布,Y ~B )31,8(,且X,Y 相互独立,则D (X-3Y-4)= ( ) A.0.78 B.4.78 C.19 D.238、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,x 是样本均值,2s 是样本方差,则有 ( )A. 2222)(σμ-=--s xE B. 2222)(σμ+=+-s x E C.22)(σμ+=-s x E D.22)(σμ+=+s x E9、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,要使3216131x ax x ++=∧μ,是未知参数μ 的无偏估计,则常数 =a ( )A. 61B. 31C. 21D. 110、设总数X 服从正态分布,其均值未知,对于需要检验的假设202:0:σσ≤H ,则其拒绝域为 ( )A. )(1-22n x x a >B. )(1-2-12n x x a <C. )(n x x a 22>D. )(n x x a 22< 二、填空题(本大题共15小题,每小题2分,共30分)11、设p )(=A P ,q )(=B P , r )(=B A P ,则=)(B A P12、从一副扑克牌(计52张)中连续抽取2张(不放回抽取),这2张均为红色的概率是13、假设患者从某种心脏外科手术中康复的概率是0.8,现对3位患者施行这种手术,其中恰恰有2人康复的概率是14、设连续型随机变量X 的发布函数,0,00,-1)(3-⎩⎨⎧≤>=x x e x F x 其概率密度为),(x f 则=)1(f 15、设随机变量K ~U (0,5),则关于x 的一元二次方程024X 42=+++K KX 有实根的概率是16、设连续型随机变量X 服从参数为)(0>λλ的泊松分布,且{}{}2210====X P X P ,则参数=λ 17、设二维随机变量(X,Y )服从区域G:0≤X ≤3,0≤Y ≤3上的均匀发布,则概率{}=≤≤=1,1Y X P18、设二维随机变量(X,Y )的概率密度为(),,000,),(2⎩⎨⎧>>=+-其他,y x Ae y x f y x 则常数A=19、设二维随机变量(X,Y )的分布律为 则{}=-==1XY P20、设随机变量X 服从参数为λ的指数分布,已知()82==X E ,则其方差D(X)=21、设随机变量X ~B (10000,0.8),试用切比雪夫不等式计算{}≥<<82007800X P22、设总体X ~N (),(2σμ,4321,,,x x x x 为来自总体X 的样本,i 41i 41x x ∑==,则2i 41i 2)(1x x -∑=σ服从自由度为的2x 分布。

最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案

最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案

2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。

错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。

A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

全国2016年10月自学考试04183概率论与数理统计(经管类)试题答案

全国2016年10月自学考试04183概率论与数理统计(经管类)试题答案

全国2016年10月高等教育自学考试 概率论与数理统计(经营类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设A 与B 是两个随机事件,则P (A-B )=(D ) A .P (A ) B .P (B ) C .P (A )-P (B ) D .P (A )-P (AB )第1章第5个知识点。

2.设随机变量X 的分布律为10120.10.20.30.4X P-,则P{-1<X ≤1}=(D )A .0.1B .0.2C .0.3D .0.5第2章第1个知识点。

3.设二维随机变量(X ,Y )的分布律为0100.20.21Y Xab且X 与Y 相互独立,则下列结论正确的是(B ) A .a =0.2,b =0.2 B .a =0.3,b =0.3 C .a =0.4,b =0.2 D .a =0.2,b =0.4第3章第6个知识点。

4.设二维随机变量(X ,Y )的概率密度为1,04,04,(,)160x y f x y ⎧<<<<⎪=⎨⎪⎩,其他,则{02,02}P X Y <<<<=(B )A .1/16B .1/4C .9/16D .1第3章第3个知识点。

5.设随机变量X 服从参数为1/2的指数分布,则D (X )=(D ) A .1/4 B .1/2 C .2D .4第4章第6个知识点。

6.设随机变量X 服从二项分布B (10,0.6),Y 服从均匀分布U (0,2),则E (X -2Y )=(A ) A .4 B .5 C .8D .10第4章第6个知识点。

7.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,ρXY 为X 与Y 的相关系数,则Cov (X ,Y )=(A )A .XY ρB .()()XY D X D Y ρ⋅⋅C .()()E X E Y ⋅D .()()D X D Y ⋅第4章第8个知识点。

全国2016年4月自学考试04183概率论与数理统计(经管类)试题答案

全国2016年4月自学考试04183概率论与数理统计(经管类)试题答案

设事件 Ai 表示“售出的 2 件商品中有 i 件一等品”,i=0,1,2,B 表示“取出的一件为一等品”,
P(B) P( A0)P(B | A0) P( A1)P(B | A1) P( A2)P(B | A2)
……4 分
C22 8 C21C81 7 C82 6 C120 8 C120 8 C120 8
计算可得 | t | x 0 1 2.306 s/ n
……8 分
故接受 H0,即认为水泥包装机工作正常。 第 8 章第 2 个知识点。
……10 分
13.设 A,B 为随机事件,P(A)=0.8, P( AB) 0.6 ,则 P(B|A)=___0.25___.
第 1 章第 6 个知识点。
14.设随机变量 X~B(3,0.4),令Y X 2,则P(Y 9) ___0.064___.
第 2 章第 2 个知识点。
0,x 0
15.设随机变量
(1)由 P{Y 0} P{X 0,Y 0} P{X 1,Y 0} 0.1 b 0.4
得 b=0.3;再由分布律的性质可得 a=0.1。 第 3 章第 2 个知识点。
……4 分
X0 1
(2)(X,Y)关于 X 的边缘分布律为
P 0.4 0.6 E( X ) 0.6, E( X 2) 0.6, D( X ) 0.24
11.已知随机事件 A,B 互不相容,P(B)>0,则 P( A | B) ___1___.
第 1 章第 5 个知识点。
12.随机事件 A1, A2, A3 是样本空间的一个划分,且 P( A2) 0.5, P( A3) 0.3,则 P( A1) ___0.2___.
第 1 章第 7 个知识点。
(2)问 X 与 Y 是否独立?为什么? (3)求 E(X)。 解: (1)由

自考备考:04183 概率论与数理统计(经管类)习题集及答案

自考备考:04183 概率论与数理统计(经管类)习题集及答案

成都理工大学自学考试省考课程习题集课程名称:《概率论与数理统计(经管类)》课程代码:04183第一部分 习题一、选择题1. 对于事件A 、B ,下列命题正确的是()A. 如果A 、B 互不相容,则A 、B 也互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ⊃,则A B ⊃D. 如果A 、B 对立,则A 、B 也对立 2. 设A 、B 为任意两个事件,则有()A. ()AB B A -= B. ()A B B A -= C. ()A B B A -⊂ D. ()A B B A -⊂3.设事件A 与B 互不相容,且()0P A >,()0P B >,则有()A. ()1P AB =B. ()1()P A P B =-C. ()()()P AB P A P B =D. ()1P AB =4.设随机事件A 与B 互不相容,()0.2P A =,()0.4P B =,则(|)P B A =()A. 0B. 0.2C. 0.4D. 15.若A 与B 互为对立事件,则下式成立的是( )A. ()P AB =Ω B. ()()()P AB P A P B = C. ()1()P A P B =- D. ()P AB φ=6.设事件A 与B 相互独立,且1()5P A =,3()5P B =,则()P A B =( )A.325B.1725C. 45D. 23257.设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是()A. ()0P AB =B. ()()()P A B P A P B -=C. ()()1P A P B +=D. (|)0P A B =8.设事件A 、B 相互独立,且1()3P A =,()0P B >,则(|)P A B =( )A.115B.15C. 415D. 139.设A 、B 为两件事件,已知()0.3P A =,则有()A. (|)(|)1P B A P B A +=B. (|)(|)1P B A P B A +=C. (|)(|)1P B A P B A +=D. ()0.7P B =10.设A 、B 为两个随机事件,且B A ⊂,()0P B >,则(|)P A B =( )A. 1B. ()P AC. ()P BD. ()P AB11.设A 、B 为两事件,已知1()3P A =,2(|)3P A B =,3(|)5P B A =,则()P B =() A.15B.25C.35D. 4512.已知()0.4P A =,()0.5P B =,且A B ⊂,则(|)P A B =()A. 0B. 0.4C. 0.8D. 113.设A 与B 相互独立,()0.2P A =,()0.4P B =,则(|)P A B =()A. 0.2B. 0.4C. 0.6D. 0.814.设随机事件A 与B 互不相容,()0.4P A =,()0.5P B =,则()P AB =()A. 0.1B. 0.4C. 0.9D. 115.某人每次射击命中目标的概率为(01)p p <<,他向目标连续射击,则第一次未中第二次命中的概率为( )A. 2pB. 2(1)p -C. 12p -D. (1)p p -16.同时抛掷3枚均匀的硬币,则恰好有三枚均为正面朝上的概率为( ) A. 0.125 B. 0.25 C. 0.375 D. 0.5017.一批产品中有5%的不合格品,且合格品中一等品占60%,从这批产品中任取1件,则该产品是一等品的概率为( ) A. 0.20 B. 0.30 C. 0.38 D. 0.5718设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( ) A. 16 B. 14C. 13D.1219.下列函数中可作为随机变量分布函数的是()A. 1,01()0,x F x ≤≤⎧=⎨⎩其他B. -1,0(),010,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩D. 0,0(),012,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩20.已知随机变量X 的分布函数为0,01,012()2,1331,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩,则{1}P X ==()A.16B.12C.23D. 121.下列各函数中,可作为某随机变量概率密度的是()A. 2,01()0,x x f x <<⎧=⎨⎩其他B. 1,01()20,x f x ⎧<<⎪=⎨⎪⎩其他C. 23,01()1,x x f x ⎧<<=⎨-⎩其他D. 34,11()0,x x f x ⎧-<<=⎨⎩其他22.设随机变量X 的概率密度为3,01()0,ax x f x ⎧≤≤=⎨⎩其他,则常数a =()A.14B.13C. 3D. 423.设随机变量X 的概率密度为,01()2,120,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其他,则{0.2 1.2}P X <<=() A. 0.5B. 0.6C. 0.66D. 0.724.设随机变量X 在[1,2]-上服从均匀分布,则随机变量X 的概率密度为()f x 为()A. 1,12()30,x f x ⎧-≤≤⎪=⎨⎪⎩其他B. 3,12()0,x f x -≤≤⎧=⎨⎩其他C. 1,12()0,x f x -≤≤⎧=⎨⎩其他D. 1,12()30,x f x ⎧--≤≤⎪=⎨⎪⎩其他25.设随机变量(1,4)XN ,()x Φ为标准正态分布函数,已知(1)0.8413Φ=,(0)0.5Φ=,则事件{13}X ≤≤的概率为()A. 0.1385B.0.2413C. 0.2934D. 0.341326.设随机变量X 的概率密度为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意的实数a ,有()A. 0()1()aF a f x dx -=-⎰B. 01()()2aF a f x dx -=-⎰ C. ()()F a F a -=D. ()2()1F a F a -=-27.设随机变量(,)X Y 只取如下数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且相应的概率依次为12c 、1c 、14c 、54c ,则c 的值为( )A. 2B. 3C. 4D. 528.设二维随机变量(,)X Y 的联合分布为则{0}P XY ==()A.14B.512C.34D. 129.设随机变量X则有()A. 12,99αβ== B. 21,99αβ== C. 12,33αβ== D. 21,33αβ== 30.设二维随机变量(,)X Y 的概率密度为,02,02(,)0,c x y f x y ≤≤≤≤⎧=⎨⎩其他,则常数c =()A.14B.12C. 2D. 431设二维随机变量(,)X Y 的概率密度为1,02,02(,)40,x y f x y ⎧<<<<⎪=⎨⎪⎩其他,则{01,01}P X Y <<<<=() A.14B.12C.34D. 132.设二维随机变量(,)X Y 的概率密度为4,01,01(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其他,则当01y ≤≤时,(,)X Y 关于Y 的边缘概率密度()Y f y =() A.12xB. 2xC.12yD. 2y33.设随机变量X 与Y 独立同分布,它们取-1、1两个值的概率分别为14、34,则{1}P XY =-=()A.116B.316C.14D.3834.设随机变量X 的概率密度为2(3)4()x f x --=,则()E X 、()D X 分别为( )A. -B. 3,2-C. D. 3,2 35.设随机变量X 服从参数为12的指数分布,则()E X =( ) A.14B.12C. 2D. 436.已知随机变量X 的分布函数为21,0()0,x e x F x -⎧->=⎨⎩其他,则X 的均值和方差为()A. ()2,()4E X D X ==B. ()4,()2E X D X ==C. 11(),()42E X D X ==D. 11(),()24E X D X == 37.设随机变量110,3XB ⎛⎫⎪⎝⎭,则()()D X E X =()A.13B.23C. 1D. 10338.设随机变量()21,3X N ,则下列选项中,不成立的是()A. ()1E X =B. ()3D X =C. {1}0P X ==D. {1}0.5P X <=39.设二维随机变量(,)X Y 的分布律为则()E XY =()A. 19-B. 0C.19D.1340.且()1E X =,则常数x =( ) A. 2B. 4C. 6D. 841.设随机变量X 与Y 相互独立,且(0,9)X N ,(0,1)YN ,令2Z X Y =-,则()D Z =() A. 5B. 7C. 11D. 1342.设()E X ,()E Y 、()D X 、()D Y 及(,)Cov X Y ,则()D X Y -=() A. ()()D X D Y +B. ()()D X D Y -C. ()()2(,)D X D Y Cov X Y +-D. ()()2(,)D X D Y Cov X Y -+43.设1(10,)2XB 、(2,10)YN ,又()14E XY =,则X 与Y 的相关系数XY ρ=( )A. -0.8B. -0.16C. 0.16D. 0.844.设随机变量X 服从参数为0.5的指数分布,利用切比雪夫不等式估算概率{}|2|3P X -≥≤() A.16B.13C.49D.1245.设12100,,,x x x 为来自总体2(0,4)XN 的一个样本,以x 表示样本均值,则x()A. (0,16)NB. (0,0.16)NC. (0,0.04)ND. (0,1.6)N46.设总体2(,)XN μσ,其中μ未知,1234,,,x x x x 为来自总体X 的一个样本,则以下关于μ的四个估计:112341ˆ()4x x x x μ=+++,2123111ˆ555x x x μ=++,31212ˆ66x x μ=+,411ˆ7x μ=中,哪一个是无偏估计?()A. 1ˆμB. 2ˆμC. 3ˆμD. 4ˆμ47.在假设检验中,0H 为原假设,则显著性水平α的意义是()A. 00{|}P H H 拒绝为真B. 00{|}P H H 接受为真C. 00{|}P H H 接受不真D. 00{|}P H H 拒绝不真48.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验00:H μμ=,10:H μμ≠,则检验统计量为()A.x B.x C.01()x μ-D.0)x μ-49.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,2211()1ni i s x x n ==--∑,检验假设2200:H σσ=时采用的统计量为()A. (1)x t t n =-B. ()x t t n =C.22220(1)(1)n s n χχσ-=-D.22220(1)()n s n χχσ-=50.设有一组观测数据(,),1,2,,i i x y i n =,其散点图呈线性趋势,若要拟合一元线性回归方程01ˆˆˆy x ββ=+,且01ˆˆˆ,1,2,,i iy x i n ββ=+=,则估计参数0β、1β时应使( )A. 1ˆ()niii y y=-∑最小 B.1ˆ()niii y y=-∑最大 C.21ˆ()niii y y=-∑最小 D.21ˆ()niii y y=-∑最大二、填空题51. 盒中有10个球,分别编有1至10的号码,设A ={取得球的号码是偶数},B ={取得球的号码小于5},则AB =__________.52. 设随机事件A 与B 互不相容,且()0.2P A =,()0.6P A B =,则()P B =__________. 53.设A 、B 为两事件,已知1()3P A =,2()3P A B =,若事件A 与B 相互独立,则()P B =__________.54.设随机事件A 与B 相互独立,且()0.7P A =,()0.6P A B -=,则()P B =__________.55.设事件A 与B 相互独立,且()0.6P A B =,()0.2P A =,则()P B =__________.56.设A 、B 为两个随机事件,且A 与B 相互独立,()0.3P A =,()0.4P B =,则()P AB =__________.57.设事件A 、B 相互独立,且()0.5P A =,()0.2P B =,则()P A B =__________. 58.设事件A 、B 相互独立,且()0.3P A =,()0.4P B =,则()P A B =__________59.设事件A 、B 相互独立,()0.6P AB =,()0.4P A =,则()P B =__________.60.设A 、B 为两个随机事件,若A 发生必然导致B 发生,且()0.6P A =,则()P AB =__________.61.设A 、B 为随机事件,()0.6P A =,(|)0.3P B A =,则()P AB =__________. 62.设A 、B 为随机事件,且()0.8P A =,()0.4P B =,(|)0.25P B A =,则(|)P A B =__________.63.设1(|)6P A B =,1()2P B =,1(|)4P B A =,则()P A =__________. 64.设随机事件A 、B 互不相容,()0.6P A =,()0.8P AB =,则()P B =__________.65.已知()0.7P A =,()0.3P A B -=,则()P AB =__________. 66.设()0.4P A =,()0.3P B =,()0.4P AB =,则()P AB =__________.67.设A 、B 相互独立且都不发生的概率为19,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则()P A =__________.68.设()0.3P A =,(|)0.6P B A =,则()P AB =__________.69.已知事件A 、B 满足:()()P AB P AB =,且()P A p =,则()P B =__________. 70.设事件A 、B 互不相容,已知()0.3P A =,()0.6P B =,则=)/(B A P __________。

全国2013年1月自学考试04183概率论与数理统计(经管类)试题答案

全国2013年1月自学考试04183概率论与数理统计(经管类)试题答案
综上所述X Y的分布律为
X Y 0
1
23
P
25 / 48 13 / 48 7 / 48 3 / 48
第 3 章第 2 个知识点。
四、综合题(本大题共 2 小题,每小题 12 分,共 24 分)
0,x 0,
28.设连续型随机变量
X
的分布函数为
F
(
x
)
Ax2,0 x 1, Ax,1 x 2,
4
第 4 章第 6 个知识点。
22.设总体 X
服从正态分布 N (, 2 ),X1,X 2…X n 为其样本,则参数 2 的矩估计值 2
1 n
n i1
( xi
x )2
.
第 7 章第 1 个知识点。
23.设制造某种单件产品所需工时(单位:小时)服从正态分布,为了估计制造这种产品所需的单件平均工时,现
0 / n 第 8 章第 2 个知识点。
25.已知一元线性回归方程为 Yˆ 1 ˆ1x,且x 2, y 9,则ˆ1 4. 第 9 章第 1 个知识点。
三、计算题(本大题共 2 小题,每小题 8 分,共 16 分) 26.对同一目标进行三次独立射击,第一次、第二次、第三次射击的命中率分别为 0.4,0.5,0.7,求在这三次射击中, 恰好有一次击中目标的概率. 解:
第 1 章第 8 个知识点。
27.设随机变量 X 在 1,2,3,4 四个整数中等可能的取值,另一随机变量 Y 在1 ~ X 中等可能的取值,试求 X-Y 的分布 律.
解:
P{X 1,Y 1} 1 4
P{X 1,Y 2} P{X 1,Y 3} P{X 1,Y 4} 0
P{X 2,Y 1} P{X 2,Y 2} 1 1 1 42 8

2021年4月自考04183概率论与数理统计真题及答案

2021年4月自考04183概率论与数理统计真题及答案

2021年4月高等教育自学考试概率论与数理统计(经管类)试题(课程代码04183)一、单项选择题:本大题共10小题,每小题2分共20分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.某人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是A.“两次都不中靶”B.“两次都中靶”C.“只有一次中靶”D.“至多有一次中靶”2.设事件A与B互不相容,且P(A)=0.5,P(B)=0.3,则P(A-B)=A.0.2B.0.3C.0.5D.0.83.甲、乙两人对弈一局,两人下成和棋的概率是1/2,乙获胜的概率是1/3,则甲获胜的概率是A.1/6B.1/3C.1/2D.2/34.设随机变量X~N(3,2²),且P{X>c}=P{x≤c},则常数c=A.0B.2C.3D.45.对于任意参数,随机变量X均可满足E(X)=D(X),则X服从的分布一定是A.均匀分布B.指数分布C.二项分布D.泊松分布6.设随机变量X~N(1,4²),Y~N(0,2²),X与Y相互独立,则D(X-Y)=A.2B.6C.12D.207.设X1,X2,X3,X4是来自总体X~N(0,4)的样本, Y=a(X1-2X2)²+b(3X3-4X4)²,如果Y~x ²(2),则常数a,b的值分别为A. BC.a=20,b=100D.a=12,b=288.设总体X~N(0,σ²),X1,X2,…,X n (n>1)为来自X的样本, 为样本均值,则未知参数σ²的无偏估计是A. B.C. D.9.设总体已知,μ的置信度为1-α的置信区间长度为l,则当α增大时,l的变化为A.增大B.减小C.不变D.不确定10.在线性回归模型中,总的偏差平方和为SST,剩余平方和为SSE,回归平方和为SSR,三者之间的关系是A. SSE= SST +SSRB. SSR=SST+SSEC. SST=SSE+SSRD. SST+SSE+SSR=0二、填空题:本大题共15小题,每小题2分,共30分。

全国2019年10月自学考试04183概率论与数理统计(经管类)试题答案

全国2019年10月自学考试04183概率论与数理统计(经管类)试题答案

求:(1)X 与 Y 的概率密度 f X x 与 fY y ;
(2)(X,Y)的概率密度 f x, y ;
(3)P{Y≤X} 答:
(1)X 与 Y 的概率密度 f X x 与 fY y ;
fX
x
1, 0 0,
x 1, 其他,fY
y
e y , 0,
y>0, y 0;
4分
(2)(X,Y)的概率密度 f x, y ;
A. A1 A2
B. A1 A2
C. A1 A2
D. A1 A2
2.设事件 A 与 B 相互独立,P(A)=0.4,P(B)=0.2,则 P(B∣A)=(A)
A.0.2
B.0.4
C.0.5
D.0.6
X0 1 2
3.已知随机变量 X 的分布律为
,则 P{X≥1}=(D)
P 0.3 0.2 0.5
A.0.2
__ 1 ___。 2
17.设随机变量 X 服从区间[-1,1]上的均匀分布,则 E( X 2 ) =__ 1 ___。
3
18.设随机变量 X 的分布律为 X P
1 a
0 b
1 0.4,a
,b为常数,且a
b
0.2
,则
D(X)=__0.8___。
19.设随机变量 X 与 Y 的相关系数为 0.6,且 D(X)=D(Y)=10,则 Cov X ,Y =__6___。
的 2.28%,试求考生的数学成绩在 60 分至 84 分之间的概率 p。(附:Φ(1)=0.8413,Φ(2)=0.9772)
答:
由题意可知,X ~ N (72, 2 ),PX>96 0.0228,
所以P
X>96
P

2009年1月高等教育自学考试概率论与数理统计(经管类)04183试题及答案

2009年1月高等教育自学考试概率论与数理统计(经管类)04183试题及答案

2009年1月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375D.0.52.设A 、B 为任意两个事件,则有( ) A.(A ∪B )-B=A B.(A-B)∪B=A C.(A ∪B)-B ⊂AD.(A-B)∪B ⊂A3.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{0.2<X<1.2}的值是( )A.0.5B.0.6C.0.66D.0.74.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( ) A.0.027 B.0.081 C.0.189D.0.2165.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为( )则F (0,1)= A.0.2 B.0.6 C.0.7D.0.8 6.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41B.31C.21 D.32 7.设X~B(10,31), 则=)X (E )X (D ( ) A.31 B.32 C.1D.310 8.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.0;0x e 1x 2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21D.E(X)=21, D(X)=419.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( ) A.91B.31C.98 D.110.记F 1-α(m,n)为自由度m 与n 的F 分布的1-α分位数,则有( )A.)n ,m (F 1)m ,n (F 1α-α=B.)n ,m (F 1)m ,n (F 11α-α-=C.)n ,m (F 1)m ,n (F αα=D.)m ,n (F 1)m ,n (F 1α-α=二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

2011年4月自考04183概率论与数理统计(经管类)》试题及答案

2011年4月自考04183概率论与数理统计(经管类)》试题及答案

全国2011年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为( )A.错误!未找到引用源。

B.错误!未找到引用源。

BCC.ABC D.错误!未找到引用源。

2.设随机事件A与B相互独立,且P(A)=错误!未找到引用源。

,P(B)=错误!未找到引用源。

,则P(A 错误!未找到引用源。

B)=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

3.设随机变量X~B(3,0.4),则P{X≥1}=( )A.0.352B.0.432C.0.784D.0.9364.已知随机变量X的分布律为P{-2<X≤4 }=( )A.0.2C.0.55D.0.85.设随机变量X的概率密度为f(x)=错误!未找到引用源。

,则E(X),D(X)分别为( )A.-3,错误!未找到引用源。

B.-3,2C.3,错误!未找到引用源。

D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=错误!未找到引用源。

则常数c=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,错误!未找到引用源。

)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则错误!未找到引用源。

XY=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

9.设随机变量X~错误!未找到引用源。

2(2),Y~错误!未找到引用源。

04183概率论与数理统计(经管类)(有问题详解)

04183概率论与数理统计(经管类)(有问题详解)

文案大全04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

文案大全A .21)0(=≤+Y X PB .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文案大全04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

文案大全A .21)0(=≤+Y X PB .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

A .nx /0σμμ-=B .1/0--=n x σμμC .ns x t /0μ-=D .sx t 0μ-=11.A,B 为二事件,则=B A ( )。

A .B AB .ABC .ABD . B A12.设A 、B 表示三个事件,则AB 表示 ( B )。

A .A 、B 中有一个发生; B .A 、B 都不发生; C .A 、B 中恰好有两个发生; D . A 、B 中不多于一个发生13.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=-,0,0;0,e )(5x x c x f x 则常数c 等于( C )A .-0.5B .0.5C .0.2D .-0.214.设随机变量X 的概率密度为其他10,,0)(3≤≤⎩⎨⎧=x ax x f ,则常数a= ( A )。

A .4B .1/2C .1/4D .315.设21)(=A P ,31)(=B P ,61)(=A B P ,则=)(AB P C 。

A .118B .187C .112D .4116. 随机变量F~F(n 1 ,n 2),则F1~ ( D )。

A .N(0,2) B .χ2(2) C .F(n 1,n 2)D .F(n 2,n 1)17. 对任意随机变量X ,若E(X)存在,则E(E(X))等于( )。

A .0B .E(X)C .(E(X))3D .X18.设()~0,2X N ,()~0,1Y N ,且X 与Y 相互独立,则随机变量~Z X Y =- C 。

A .(0,1)NB .(0,2)NC .(0,3)ND .(0,4)N19.抛一枚不均匀硬币,正面朝上的概率为2,将此硬币连抛4次,则恰好3次正面朝文案大全上的概率是 A 。

A .8B .278C .8132D .4320、设C B A ,,为三事件,则=⋃B C A )( B 。

A .ABC B .B C A ⋃)(C .C B A ⋃⋃)(D .C B A ⋃⋃)(21.已知)(A P =0.7,)(B P =0.6,3.0)(=-B A P ,则=)(B A P A 。

A .0.1B .0.2C .0.3D .0.422.设随机变量X 服从正态分布N(μ,σ2),则随σ的增大,概率P {}σμ≤-X ( A )。

A .保持不变B . 单调减小C .单调增大D .不能确定23.对正态总体的数学期望μ进行假设检验,如果在0.05的显著水平下拒绝H 0:μ=μ0,那么在0.01的显著水平下,( C )。

A .必接受H 0B 不接受也不拒绝H 0C .必拒绝H 0D .可能接受,也可能拒绝24.设()F x 和()f x 分别为某随机变量的分布函数和概率密度,则必有( C )A .()f x 单调不减B .()1F x dx +∞-∞=⎰C .()0F -∞=D .()()F x f x dx +∞-∞=⎰25.设X 的方差为2,则根据切比雪夫不等式有估计≤≥-)2(EX X P D 。

A .0.1 B .0.2 C .0.4 D .0.526.设二维随机变量),(Y X 的联合分布律为则(1)P X Y +≤= D 。

A .0.2B .0.4C .0.6D .0.827.已知随机变量X 的概率密度为)(x f X ,令Y= -2X ,则Y 的概率密度)(y f Y 为( C )。

A .)2(y f X -B .)2(yf X -C .)2(21y f X --D .)2(21yf X - 28.设随机变量X 服从参数为λ的指数分布,且)1(+X E =3,则λ= D 。

A .0.2B .0.3C .0.4D .0.529.设二维随机变量(X,Y)的分布函数为F(x, y),则F(x,+∞) = ( A )。

文案大全A .F x (x)B .F y (y)C .0D .130.设A与B互为对立事件,且P(A)>0, P(B)>0,则下列各式中正确的是( D )。

A .()1PB A =B .1)(=B A PC .()1P B A =D . ()0.5P AB =31.设随机变量X的分布函数是F(x),下列结论中不一定成立的是( D )。

A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 为连续函数 32.设随机变量X~U(2, 4), 则P(3<X<4)= ( A )。

A .P(2.25<X<3.25)B .P(1.5<X<2.5)C .P(3.5<X<4.5)D .P(4.5<X<5.5)33.设随机变量X 的概率密度为⎩⎨⎧<<=其它,010,2)(x x x f ,则)32(<<-X P = A 。

A .1B .2C .3D .434.设X~N(-1, 2), Y~N(1, 3), 且X与Y相互独立,则X+Y~ B 。

A . N(0, 14)B .N(0, 5)C .N(0, 22)D .N(0, 40) 35.设随机变量X ~B (36,61),则D (X )=( D )。

A .61B .65C .625D .5二、填空题1. 100件产品,有10件次品,不放回地从中接连取两次,每次取一个产品,则第二次取到次品的概率是 0.1 。

2.袋中有5个黑球,2个白球,一次随机地摸出3个球,其中恰好有2个白球的概率为 0.3 。

3.已知随机变量X 服从参数为λ的泊松分布,则)3(=X P =λλ-e !33。

4.设随机变量X~N(0,1),Y~N(0,1),且X 与Y 相互独立,则X 2+Y 2~)2(2χ。

5.设总体X 服从正态分布()2,Nμσ,n X XX ,,,21来自总体X 的样本,X 为样本均值,则)(X D =n2σ。

6.设随机变量X 的分布律为则(212)P X -<= 1 。

7.设随机变量X 服从参数为λ的泊松分布,且[(1)(2)]1E X X --=,则λ= 。

文案大全8.设()1F x 与()2F x 分别为随机变量1X 与2X 的分布函数,为使()()()12F x aF x bF x =-是某一随机变量的分布函数,则b a ,满足 a-b=1 。

9.设X ~N(1,4) ,则4)1(2-X ~)1(2χ。

10.设n X X X ,,,21 来自正态总体()2,N μσ(0>σ)的样本,则nX σμ-服从N(0,1) 。

11. 已知)(A P =)(B P =31,61)(=B A P ,则=)(B A P 7/18 。

12. 抛硬币5次,记其中正面向上的次数为X ,则P(X ≤4)= 5/32 。

13.设D(X)=1, D(Y)=4, 相关系数xy ρ=0.12, 则COV(X,Y)=____0.24 ___。

14. (X,Y)~f(x, y)=其他0,0,,0)(≥≥⎩⎨⎧+-y x Ce y x ,则C= 1 。

15 若随机变量X 的方差存在,由切比雪夫不等式可得≤>-)1)((X E X P D(X) 。

16 总体X~N (2,σμ),n x x x 21,为其样本,未知参数μ的矩估计为 x 。

17. 设随机变量X 的概率密度为⎩⎨⎧<<=其它,010,2)(x x x f ,以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,则EY = 3/4 。

18. 样本来自正态总体N(μ,σ2),当σ2未知时,要检验H 0: μ=μ0 ,采用的统计量是nSX μ-。

19.在一次考试中,某班学生数学和外语的及格率都是0.7,且这两门课是否及格相互独立。

现从该班任选一名学生,则该生数学和外语只有一门及格的概率为 0.42 。

20.设连续型随机变量X 的密度为⎩⎨⎧<<=其它,020,2)(x x x f ,则=≤≤-)1X 1(P1/4 。

21.设X 服从)4,2(N ,则)2(≤X P = 0.5 . 22.设12,,,n X X X 是来自于总体服从参数为λ的泊松分布的样本,则λ的一无偏估计文案大全为 X 。

19.设随机变量(1,2)i X i =的分布律为且12,X X 独立,则{}120,1P X X ==-= 1/8 。

23.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则Y X 2+服从 N(2,5)24.设X 为连续型随机变量,c 为常数,则()P Xc == 。

相关文档
最新文档