2019年贵州省黔南州中考数学试题及参考答案与解析

合集下载

2019年贵州省黔东南州中考数学试题(WORD版有解析)

2019年贵州省黔东南州中考数学试题(WORD版有解析)

2019年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中,2019的相反数是()A. B. C. D.2.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A. B. C. D.3.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A. 国B. 的C. 中D. 梦4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A. 4个B. 3个C. 2个D. 1个5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3-3=-3;②-=;③(2a2)3=8a5;④-a8÷a4=-a4A. B. C. D.6.如果3ab2m-1与9ab m+1是同类项,那么m等于()A. 2B. 1C.D. 07.在下列长度的三条线段中,不能组成三角形的是()A. 2cm,3cm,4cmB. 3cm,6cm,76cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A. B. C. D. 19.若点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-的图象上,则y1、y2、y3的大小关系是()A. B. C. D.10.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.一组数据:2,1,2,5,3,2的众数是______.12.分解因式:9x2-y2=______.13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______.14.已知是方程组的解,则a+b的值为______.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为______.17.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第______个箭头方向相同(填序号).18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有______个白球.19.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为______.20.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是______.三、计算题(本大题共1小题,共12.0分)21.(1)计算:|-|+(-1)2019+2-1-(π-3)0;(2)解方程:1-=四、解答题(本大题共5小题,共68.0分)22.如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:PA=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°-∠P)成立.请你写出推理过程.23.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了______名学生,条形统计图中m=______,n=______;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有______封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,-3}=-3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=______,②min{sin30°,cos60°,tan45°}=______;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为______;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:2019的相反数是-2019,故选:A.根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】D【解析】解:55000这个数用科学记数法可表示为5.5×104,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】B【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:①30+3-3=1+=1,故此选项错误;②-无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④-a8÷a4=-a4,正确.故选:D.直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】A【解析】解:根据题意,得:2m-1=m+1,解得:m=2.故选:A.根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.根据三角形任意两边的和大于第三边,进行分析判断.本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.【答案】B【解析】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.【答案】C【解析】解:∵点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-的图象上,∴y1=-=,y2=-=,y3=-,又∵-<<,∴y3<y1<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.【答案】D【解析】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12-(4)2=100(cm2).故选:D.设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.11.【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数.12.【答案】(3x+y)(3x-y)【解析】解:原式=(3x+y)(3x-y),故答案为:(3x+y)(3x-y).利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b).13.【答案】34°【解析】解:∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°-∠B)÷2=70°,∴∠DAC=∠BAC-∠BAD=34°故答案为:34°.根据三角形的内角和得出∠BAC=180°-∠B-∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°-∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC-∠BAD=34°.本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.【答案】1【解析】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.把代入方程组得:,相加可得出答案.本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b 后相加即可.15.【答案】2000【解析】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.【答案】3【解析】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.根据勾股定理求出BC,根据正方形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.【答案】3【解析】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.【答案】20【解析】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.【答案】x<4【解析】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.【答案】15-5【解析】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.故答案是:15-5.过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.21.【答案】解:(1)原式=-1+-1=-1;(2)去分母得:2x+2-x+3=6x,解得:x=1,经检验x=1是分式方程的解.【解析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】解:(1)∵AB是直径∴∠ACP=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴PA=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°-∠P,∴∠BCP=(90°-∠P)【解析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与PA的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.【答案】500 225 25 425【解析】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1-45%)=60500(名).(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=-x+40(2)依题意,设利润为w元,得w=(x-10)(-x+40)=-x2+50x+400整理得w=-(x-25)2+225∵-1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【解析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x (元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.【答案】-2≤x≤4【解析】解:(1)①M{(-2)2,22,-22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3-2x,1+3x,-5}=-5,∴,解得-2≤x≤4,故答案为-2≤x≤4.(3)∵M{-2x,x2,3}=2,∴=2,解得x=-1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2-2x+3…①,顶点坐标为(-1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BDsin∠CBO=2,则点D(-1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=-x-1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(-x2-2x+3-x-3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

2019年黔西南州中考数学试题及答案(Word版)

2019年黔西南州中考数学试题及答案(Word版)

2019年黔西南州中考数学试题及答案(Word版)数学试卷黔西南州2019年初中毕业生学业暨升学统一考试试卷数学考生注意:1.一律用黑色笔或2B铅笔将答案填写或填涂在答题卷指定位置内。

2.本试卷共4页,满分150分,答题时间120分钟。

一、选择题(每小题4分,共40分)1.求-3的相反数。

A、3B、-3C、±3D、1/32.分式(x-1)/(x+1)的值为零,则x的值为A、-1B、0C、±1D、13.已知ABCD中,∠A+∠C=200°,则∠B的度数是A、100°B、160°C、80°D、60°4.下列调查中,可用普查的是A、了解某市学生的视力情况B、了解某市中学生的课外阅读情况C、了解某市百岁以上老人的健康情况D、了解某市老年人参加晨练的情况5.一直角三角形的两边长分别为3和4,则第三边的长为A、5B、7C、5√2D、5或76.如图1所示,线段AB是O上一点,∠CDB=20°,过点C作O的切线交AB的延长线于点E,则∠E等于A、50°B、40°C、60°D、70°7.某机械厂七月份生产零件50万个,第三季度生产零件196万个,则方程50(1+x)+50(1+x^2)=196的解为A、x=1B、x=2C、x=1或x=2D、x=08.在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有A、1个B、2个C、3个D、4个9.如图2,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为A、x<3/2B、x<3C、x>3/2D、x>310.如图3所示,二次函数y=ax^2+bx+c的图像中,XXX 同学观察得出了下面四条信息:(1)b^2-4ac>0 (2)c>1 (3)2a-b<0 (4)a+b+c<0,其中错误的有A、1个B、2个C、3个D、4个二、填空题(每小题3分,共30分)11、81的平方根是9.12、xxxxxxx用科学记数法表示(并保留两个有效数字)为3.01×10^6.13、有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的和为20.乙、丙三个景点旅游,其中甲景点有70%的员工去过,乙景点有60%的员工去过。

贵州省黔西南州2019年中考数学试题含答案(word版)

贵州省黔西南州2019年中考数学试题含答案(word版)

秘密★启用前黔西南州2019年初中毕业生学业暨升学统一考试试卷数 学考生注意:1.一律用黑色笔或2B 铅笔将答案填写或填涂在答题卷指定位置内。

2.本试卷共4页,满分150分,答题时间120分钟。

一、选择题(每小题4分,共40分) 1.下列各数是无理数的是A .4B .31-C .πD .1-2.分式11-x 有意义,则x 的取值范围是 A .1>x B .1≠xC .1<xD .一切实数3.如图1,在菱形ABCD 中,AC 与BD 相交于点O ,AC=8,BD=6,则菱形的边长AB 等于 A .10 B .7 C .6D .5 4.已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .25.已知△ABC ∽△C B A '''且21=''B A AB ,则C B A ABC S S '''∆∆:为A .1:2B .2:1C .1:4D .4:1 6.如图2,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB 等于 A .150° B .130° C .155° D .135°7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x 米,则可列方程为 A .180)11(=-x x B .180)11(22=-+x x C .180)11(=+x x D .180)11(22=++x x 8.下面几个几何体,主视图是圆的是A B C D9.如图3,在Rt △ABC 中,∠C=90°,AC=4cm,BC=6cm,动点P 从点C 沿CA 以1cm/s 的速度向A 点运动,同时动点Q 从C 点沿CB 以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ 的面积y(cm ²)与运动时间x(s)之间的函数图像大致是10.在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图4①;将AB 折成正三角形,使点A 、B 重合于点P ,如图4②;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N(n ,0),如图4③,当m=3时,n 的值为A .4-B .432-C .332-D .332二、填空题(每小题3分,共30分) 11.32a a ⋅= .12.42500000用科学记数法表示为 .13.如图5,四边形ABCD 是平行四边形,AC 与BD 相交于点O ,添加一个条件: ,可使它成为菱形.14.如图6,AB 是⊙O 的直径,BC 是⊙O 的弦,若∠AOC=80°,则∠B= . 15.分解因式:4842++x x = . 16.如图7,点A 是反比例函数xky =图像上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k = .17.已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是 . 18.已知215-=x ,则12++x x = . 19.如图8,AB 是⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB 于点E ,已知CD=4,AE=1,则⊙O 的半径为 .20.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A = .三、(本题共12分)21.(1)计算:8)21(45tan )20143(1+-︒-+-- (2)解方程:31112=-+-xx x . 四、(本题共12分)22.如图9所示,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C. (1)求证:直线PB 与⊙O 相切(2)PO 的延长线与⊙O 交于点E ,若⊙O 的半径为3,PC=4.求弦CE 的长.五、(本题共14分)23.为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图10(未画完整). (1)这次调查中,一共调查了 名学生; (2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.六、(本题共14分)24.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元? 七、阅读材料题(本题共12分)25.求不等式0)3)(12(>+-x x 的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧>+>-03012x x 或 ②⎩⎨⎧<+<-03012x x .解①得21>x ;解②得3-<x . ∴不等式的解集为21>x 或3-<x .请你仿照上述方法解决下列问题: (1)求不等式0)1)(32(<+-x x 的解集.(2)求不等式02131≥+-x x 的解集.八、(本题共16分)26.如图11,在平面直角坐标系中,平行四边形ABOC 如图放置,将此平行四边形绕点O 顺时针旋转90°得到平行四边形C O B A '''.抛物线322++-=x x y 经过点A 、C 、A ′三点.(1)求A 、A ′、C 三点的坐标;(2)求平行四边形ABOC 和平行四边形C O B A '''重叠部分OD C '∆的面积;(3)点M 是第一象限内抛物线上的一动点,问点M 在何处时,A AM '∆的面积最大?最大面积是多少?并写出此时M 的坐标.黔西南州2019年初中毕业生学业暨升学统一考试试卷数学参考答案及评分标准一、选择题(每小题4分,共40分) 1.C 2.B 3. D 4.A 5. C 6. B 7. C 8. B 9. C 10.A二、填空题(每小题3分,共30分)11.5a12. 4.25×107 13. AC ⊥BD 14. 40° 15. 2)1(4+x16. -4 17. π15 18. 2 19. 2520. 840 三、21.题(本题共两个小题,每小题6分,共12分)(1)解:原式=1+1-2+22……………………………………………………………(4分) =22…………………………………………………………………(6分) (2)解:去分母得:213(1)x x -=- ……………………………………………(2分) 2x -=- ………………………………………………………………………(3分) 2=x ………………………………………………………………………(4分) 检验:把2=x 代入(1-x )≠0,∴2=x 是原分式方程的解 ………………(6分) 四、22题(每小题6分,共12分)(1)证明:过点O 作OD ⊥PB,连接OC. …………(2分) ∵AP 与⊙O 相切, ∴OC ⊥AP. ……………………(3分) 又∵OP 平分∠APB, ∴OD=OC.……………………(4分) ∴PB 是⊙O 的切线. …………………………………(6分)(2)解:过C 作CF ⊥PE 于点F .……………………………………………………(1分)在Rt △OCP 中,OP=522=+CP OP ……………………………………………(2分)∵CF OP CP OC S OCP ⋅=⋅=∆2121 ∴512=CF ……………………………………………………………………(3分)在R t △COF 中,95OF == ∴524593=+=FE 在Rt △CFE 中,551222=+=EF CF CE ………………………………………(6分) 五、23题(3+4+7分,共14分)(1)200…………………………………………………………………………………(3分) (2)如图 ………………………………………………………………………………(4分) (3)用321、C 、C C 表示喜欢跳绳的学生,用B 表示喜欢足球的学生,列表如下(C ……………………………………………………………………(4分)∴P(一人是喜欢跳绳,一人是喜欢足球的学生)=21126=………………………………(7分) 六、24题(本题5+5+4共14分) 解:(1)设每吨水的政府补贴优惠价和市场调节价分别为x 元,y 元.依题意得………(1分)⎩⎨⎧=+=+32812421212y x y x ……………………………………………………………(3分)解方程组得:⎩⎨⎧==5.21y x ………………………………………………………(4分)答:每吨水的政府补贴优惠价1元, 市场调节价2.5元 …………………(5分)(2)当x ≤12时,y=x; ………………………………………………………………(2分)当x>12时,y=12+2.5(x-12)即y=2.5x-18. …………………………………………………………………(5分)(3)当x=26时,y=2.5×26-18=65-18=47(元) ……………………………(3分) 答:小黄家三月份应交水费47元. …………………………………(4分)七、25题(每小题6分,共12分)(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ② ⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分) ∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x<-2………………………………………………………(4分)∴原不等式的解集为x ≥3或x<-2……………………………………………(6分) 八、26题(本题4+6+6分,共16分)(1)解:(1)当0=y 时,0322=++-x x ……………………………………… (1分)解得1,321-==x x ……………………………………………………………(3分) ∴C (-1,0),A ′(3,0).当x=0时,y=3.∴A(0,3) ……………………………(4分)(2)∵C (-1,0),A(0,3) , ∴B(1,3)∴101322=+=OB ………………………………………………………………(1分) ∴△AOB 的面积为131322S =⨯⨯= ………………………………………………(2分)又∵平行四边形ABOC 旋转90得平行四边形A ′B ′OC ′,∴∠ACO =∠OC ′D又∵∠ACO =∠ABO ,∴∠ABO =∠OC ′D.又∵∠C ′OD =∠AOB ,∴△ C ′OD ∽△BOA …………………………………………………………(4分) ∴22)101()(='=∆'∆OB C O S S BOA OD C ……………………………………………………(5分)∴203='∆OD C S ………………………………………………………………(6分) (3)设M 点的坐标为(32,2++-m m m ),连接OM ……………………(1分)3321321)32(3212⨯⨯-⨯⨯+++-⨯⨯='∆m m m s A AM ……………(3分) =)30.(29232<<+-m m m …………………………………………(4分)当23=m 时,A AM S ''∆取到最大值为827 ………………………………(5分)∴M(415,23) ………………………………………………(6分)。

2019年贵州黔三州中考数学真题--含解析

2019年贵州黔三州中考数学真题--含解析

2019贵州省黔三州市初中学业水平考试试卷数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题 后括号内.1 . (2019黔三州,1, 4分)下列四个数中,2019的相反数是A.-2019B.C. —D.20192019【答案】A.【解析】解:2019的相反数是-2019, 故选A.【知识点】相反数.2. (2019黔三州,2, 4分)举世瞩目的港珠澳大桥丁 2018年10月24日正式开通营运,它是迄 今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为A.5.5 X 103B.55 X 103C.0.55 X 105D.5.5 X 104【答案】D.【解析】解:将55000用科学记数法表示为5.5 X 104, 故选C.【知识点】科学记数法.3. (2019黔三州,3, 4分)某正方体的平面展开图如下,由此可知,原正方体“中”字所在面的 对面的汉字是A.国B. 的C. 中D. 梦【答案】B.【解析】解:这是一个正方体的平■面展开图,共有六个面,其中面“中”与面“的”相对,面“国” 与面“我”相对,“梦”与面“梦”相对, 故选B.【知识点】正方体相对两个面上的文字.菁优网版权所有 【答案】B.【解析】解:第一个是中心对称图形,不是是轴对称图形;第二个既是中心对称图形,乂是轴对称图形; 第三个既是中心对称图形,乂是轴对称图形; 第四个既是中心对称图形,乂是轴对称图形. 综上可得,共有3个符合题意, 故选B.【知识点】轴对称图形;中心对称图形.4 (2019黔三州,4, 4分)观察下列图案,既是轴对称图形乂是中心对称图形的共有2019B.3 个C.2 个D. 1 个5.(2019黔三州,5, 4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是3①3 +3 =-3 ② yj5^/2= .J3③ 2a 8a ④ a a aA.①B. ②C. ③D. ④【答案】D.【解析】解:①3°+3-1=1 + 1 = 4,故错误;3 3②、.5和、.2被开方数不同,不能合并,故错误;c 3 C C C C③2a 2 (a ) 8a ,故错误;④a8a4a84a4,故正确,故选D【知识点】零指数籍;负整数指数籍;二次根式加减;积的乘方;同底数籍的除法.6.(2019黔三州,6, 4分)如果3ab2m1与9ab n+1是同类项,那么m等丁A.2B.1C. — 1D.0【答案】A.【解析】解:...3ab2"1与9ab^是同类项,2n-1 = n+1,解得m=2,故选A.【知识点】同类项概念7.(2019黔三州,7, 4分)在下列长度的三条线段中,不能组成三角形的是A. 2 cm, 3 cm, 4 cmB. 3 cm, 6 cm, 6 cmC. 2 cm, 2 cm, 6 cmD.5 河6 cm, 7 cm【答案】C.【解析】解:A选项,因为2+3>4,所以能组成三角形;B选项,因为3+6>6,所以能组成三角形;C选项,因为2+2<6,所以不能组成三角形;D选项,因为5+6>7,所以能组成三角形,故选C.【知识点】三角形的三边关系.8.(2019黔三州,8, 4分)平行四边形ABC驴,AC BD是两条对角线,现从以下四个关系①AB=BC②AC=BD③AC± BD④ABL BC中随机取出一个作为条件,即可推出平■行四边形ABCD1菱形的概率为A. 1B. 1C. 3D.1【答案】B.【思路分析】根据菱形的判定,要证平行四边形ABCLg菱形,可证一组邻边相等或对角线互相垂直即可.【解答过程】解:..•四边形ABCLg平行四边形,...①AB=BC四边形ABCD!菱形;②AC=BD四边形ABCD!矩形;③ACL BD四边形ABCD!菱形;④ABL BC四边形ABCD!矩形.2 1只有①③可判定,所以可推出平■行四边形ABCtM菱形的概率为2」,4 2故选B.【知识点】平■行四边形的性质;菱形的判定;概率公式.1…9. (2019黔二州,9, 4分)若点A(-4 , y i)、B(-2 , V2、C(2, y3)都在反比例函数y 」的图像x上,则y i、y2、y3的大小关系是A.y i>y2>y3B. y3>y2>y iC. y2>y i>y3D. y i>y3>y2【答案】C.【思路分析】画出函数图象即可直观解答.【知识点】反比例函数图象上点的坐标特征.i0. (20i9黔三州,i0, 4分)如右图,在一斜边长30cm的直角三角形木板(即Rt△ ACB冲截取一个正方形CDEF点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=i:3,则这块木板截取正方形CDEFf,剩余部分的面积为A. 200 cm2B. i70 cm2C. i50 cm2D.i00 cm2【答案】D.【思路分析】根据AF:AC=i:3可设AF=x,则AC=8, CF=2(,根据四边形CDE理正方形可得△ BDE BCA进而得出BD=〃,BC=8,利用勾股定理得出x2的值,进而得出答案.【解答过程】解:•.•AF:AC=i:3,.•设AF=x,贝U AC=X CF=2L•.•四边形CDEF!正方形,••• DE// AC DE=2,••• ABDt^A BCA. BD BE DE 2x 2. • BC BA AC 3x 3'BD=4k, BC=&,在Rt△ ABC中,BC+AC=AB,9x2+36x2=900,. .x 2=20,S 剩余 =&ABC-S 正方形CDE = 3^6^ 2xc2x 5x 2 100, 故选D.【知识点】正方形的性质;相似三角形的判定与性质;勾股定理 ^ 二、填空题:本大题共10小题,每小题3分,共30分.11. (2019黔三州,11, 3分)一组数据:2 , 1, 2, 5, 3, 2的众数是 【答案】2.【解析】解:在数据2, 1, 2, 5, 3, 2中2出现3次,次数最多,所以众数为2, 故答案为2.【知识点】众数.12. (2019黔三州,12, 3分)分解因式:9x 2-y 2= _____________ . 【答案】(3x-y)(3 x+y).【解析】解:9x 2-y 2=(3x)2-y 2=(3x-y)(3 x+y), 故答案为(3x-y)(3 x+y). 【知识点】因式分解. 13. (2019黔三州,13, 3分)如右图,以△ ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边丁 点D,连接AD.若Z B=40° , / C=36 ,则/ DAC 勺大小为 ^【解析】解:根据题意可得BA=BD.. Z B=40° ,••• Z BADW BDA=70 . vZ B=40° , Z C=36 ,. .Z BAC=180 - Z B- Z C=104 , . .Z DAC^ BAC-Z BAD=34 ,故答案为340【知识点】等腰三角形性质;三角形内角和.x a14. (2019黔三州,14, 3分)已知是万程组y b【答案】1. 【解析】解:...x‘是方程组2x y 6的解, y b x 2y 32a b 6① a 2b 3 ②① +②,得 3a+3b=3, a+b=1, 故答案为1.【知识点】二兀一次方程的解2x y 6的解,则a+b 的值为 x 2y315. (2019黔三州,15, 3分)某品牌旗舰店平日将某商品按进价提高 40%t 标价,在某次电商购 物节中,为促销该商品,按标价 8折销售,售价为2240元,贝U 这种商品的进价是 元. 【答案】2000.【解析】解:设这种商品的进价为x 元,根据题意可得(1+40%)x • 0.8=2240, 解得 x=2000, 故答案为2000.【知识点】一元一次方程的应用.17. (2019黔三州,16, 3分)如图,点E 在正方形ABCES 勺边AB 上,若EB=1 EC=2那么正方形 ABCB 勺面积为 ^【答案】3.【解析】解:..•四边形ABCD^E 方形,••• Z B=90° . .• EB=1, EC=2••• BC=/CE 2BE 2441 名,二 S 正方形 ABC =B C=3, 故答案为3.【知识点】正方形的性质;勾股定理;面积计算.17. (2019黔三州,17, 3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向 旋转90o 得到,第2019个图案与第1个至第4个中的第 个箭头方向相同(填序号).©QOOO0- m令【答案】【解析】 故第2019个图案中的指针指向与第3个图案相同, 故答案为3.【知识点】规律探究.18. (2019黔三州,18, 3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述 过程,一共摸了 150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球 除颜色外,其他都一样,由此估计口袋中有 个白球. 【答案】20.【思路分析】先由频率=频数士数据总数计算出频率,再由题意列出方程求解即可.50 1【解题过程】 解:摸了 150次,其中有50次摸到黑球,则摸到黑球的频率是 一—=-,150 3设口袋中大约有x 个白球,则-1^ 1, x 10 3个哥,个 on 个 家冬个3.解:2019-4=504…3, A解得x=20.经检验,x=20是原方程的解,故答案为20.【知识点】利用频率估计概率;解分式方程.19. (2019黔三州,19, 3分)如图19所示,一次函数y=ax+b(a、b为常数,且a>0)的图像经过点A(4, 1),则不等式ax+b<1的解集为^【答案】x < 4.【思路分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式ax+b<1的解集. 【解题过程】解:一次函数y=ax+b的图象经过点A(4, 1),且函数值y随x的增大而增大,不等式ax+b< 1的解集是x<4,故答案为x< 4.【知识点】一次函数与一元一次不等式.20. (2019黔三州,20, 3分)三角板是我们学习数学的好帮手.将一对直角三角板如图20放置, 点C 在FD的延长线上,点B 在ED上,AB// CF, Z F=Z ACB=90 , Z E=45° , Z A=60° , AC=10 则CD 的长度是^【答案】15-5^3.【思路分析】过点B作B机FD 丁点M根据题意可求出BC的长度,然后在△ EFD中可求出Z EDF=45 ,进而可得出答案.【解题过程】解:过点B作BM_ FD丁点M在/\ ACB中,ZACB=90 , Z A=60° , AC=10. .Z ABC=30 , BC=1(X tan60 0 =10^3,.• AB// CF,••• BM=BCsin30 0 =10占x 1=502CM=B Ccos30° =15,在/X EFD中,Z F=90° , Z E=45 ,Z EDF=45 ,MD=BM=53 ,. .CD=CM-MD=15成,故答案为15-5捐.【知识点】含30度角的直角三角形;勾股定理;锐角三角函数概念 三、解答题(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤)21. (2019黔三州,21, 12 分) (1) (6 分)计算:【思路分析】(1)根据绝对值的定义,乘方法则,负整数指数籍和零指数籍的运算法则计算即可; (2)首先去分母,将分式方程转化为整式方程,然后解出整式方程即可. 【解题过程】 解:(1)原式=1-1+1-1=-1 ;2 2(2)去分母,得 2x+2-( x-3)=6 x 去括号,得 2x+2-x+3=6x, 移项,得 2x-x-6x=-2-3 , 合并同类项,得-5x=-5, 系数化为1,得x=1.经检验,x=1是原分式方程的解.【知识点】绝对值的定义;乘方法则;负整数指数籍;零指数籍;解分式方程 .22. (2019黔三州,22, 12分)如图,点P 在CDO 外,PC 是OO 的切线,C 为切点,直线PO 与CD O 相交丁点A 、B.(1)若Z A=30° ,求证 PA=3PB⑵小明发现,Z A 在一定范围内变化时,始终有 Z BCP=1 90o-Z P 成立.请你写出推理过程.2【思路分析】(1)首先连接OC 易证△OB0等边三角形,可得 后根据PC 与CD O 相切,可得出/ P 的度数,进而得出结论;(2)首先由题意可得Z A=Z ACO ZCOB=2A,然后根据PC 与O 。

2019年贵州省黔东南州中考数学试卷(含答案解析)

2019年贵州省黔东南州中考数学试卷(含答案解析)

2019年贵州省黔东南州中考数学试卷(含答案解析)一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.201902.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.07.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.19.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2 10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是.12.(3分)分解因式:9x2﹣y2=.13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.14.(3分)已知是方程组的解,则a+b的值为.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.2019年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.20190【分析】根据相反数的概念解答即可.【解答】解:2019的相反数是﹣2019,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;④是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④【分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:①30+3﹣3=1+=1,故此选项错误;②﹣无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④﹣a8÷a4=﹣a4,正确.故选:D.【点评】此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.【点评】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【分析】设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.【点评】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是2.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.12.(3分)分解因式:9x2﹣y2=(3x+y)(3x﹣y).【分析】利用平方差公式进行分解即可.【解答】解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a ﹣b).13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为34度.【分析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC﹣∠BAD=34°.【解答】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.(3分)已知是方程组的解,则a+b的值为1.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b 后相加即可.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为3.【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【解答】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第3个箭头方向相同(填序号).【分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.【解答】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【点评】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有20个白球.【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为x<4.【分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是15﹣5.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=【分析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+﹣1=﹣1;(2)去分母得:2x+2﹣x+3=6x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.【分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与P A的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答】解:(1)∵AB是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴P A=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【点评】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解答】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点评】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为﹣2≤x≤4;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.【分析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【解答】解:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4,故答案为﹣2≤x≤4.(3)∵M{﹣2x,x2,3}=2,∴=2,解得x=﹣1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.【点评】本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为y=﹣x2﹣2x+3,抛物线的顶点坐标为(﹣1,4);(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BD sin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x =(舍去正值),故点P (,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC =×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【点评】本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.第21页(共21页)。

2019年贵州省黔南州中考数学试卷(含答案解析)

2019年贵州省黔南州中考数学试卷(含答案解析)

2019年贵州省黔南州中考数学试卷(含答案解析)一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.201902.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.07.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.19.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2 10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是.12.(3分)分解因式:9x2﹣y2=.13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.14.(3分)已知是方程组的解,则a+b的值为.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.2019年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.20190【分析】根据相反数的概念解答即可.【解答】解:2019的相反数是﹣2019,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;④是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④【分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:①30+3﹣3=1+=1,故此选项错误;②﹣无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④﹣a8÷a4=﹣a4,正确.故选:D.【点评】此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.【点评】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【分析】设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.【点评】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是2.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.12.(3分)分解因式:9x2﹣y2=(3x+y)(3x﹣y).【分析】利用平方差公式进行分解即可.【解答】解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a ﹣b).13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为34度.【分析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC﹣∠BAD=34°.【解答】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.(3分)已知是方程组的解,则a+b的值为1.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b 后相加即可.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为3.【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【解答】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第3个箭头方向相同(填序号).【分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.【解答】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【点评】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有20个白球.【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为x<4.【分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是15﹣5.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=【分析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+﹣1=﹣1;(2)去分母得:2x+2﹣x+3=6x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.【分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与P A的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答】解:(1)∵AB是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴P A=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【点评】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解答】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点评】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为﹣2≤x≤4;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.【分析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【解答】解:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4,故答案为﹣2≤x≤4.(3)∵M{﹣2x,x2,3}=2,∴=2,解得x=﹣1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.【点评】本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为y=﹣x2﹣2x+3,抛物线的顶点坐标为(﹣1,4);(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BD sin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x =(舍去正值),故点P (,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC =×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【点评】本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.第21页(共21页)。

2019年初中毕业升学考试(贵州黔南州卷)数学【含答案及解析】

2019年初中毕业升学考试(贵州黔南州卷)数学【含答案及解析】

2019年初中毕业升学考试(贵州黔南州卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 一组数据:-5,2,0,3,则该组数据中最大的数为()A. ﹣5B. ﹣2C. 0D. 3二、选择题2. 下面四个图形中,∠1=∠2一定成立的是()A. B.C. D.3. 如图是一个三棱柱笔筒,则该物体的主视图是()A. B. C. D.4. 一组数据:1,﹣1,3,x,4,它有唯一的众数是3,则这组数据的中位数为()A.﹣1 B.1 C.3 D.45. 下列运算正确的是()A. B.C. D.6. 下列说法中正确的是()A.化简后的结果是 B.9的平方根为3C.是最简二次根式 D.﹣27没有立方根7. 函数的自变量x的取值范围在数轴上表示正确的是()A. B.C. D.8. 王杰同学在解决问题“已知A、B两点的坐标为A(3,﹣2)、B(6,﹣5)求直线AB关于x轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组:,解得,最后求得直线A′B′的解析式为y=x﹣1.则在解题过程中他运用到的数学思想是()A.分类讨论与转化思想 B.分类讨论与方程思想C.数形结合与整体思想 D.数形结合与方程思想9. 如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610. 如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.cm B.3cm C.cm D.6cm11. 是关于x的一次函数,则一元二次方程的根的情况为()A.没有实数根 B.有一个实数根C.有两个不相等的实数根 D.有两个相等的实数根12. 如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B. C.D.13. 已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个三、填空题14. 若ab=2,a﹣b=﹣1,则代数式的值等于.15. 计算:= .16. 如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.17. 如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为.18. 在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.19. 为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出个这样的停车位.(取=1.4,结果保留整数)四、解答题20. 如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.21. 解方程:.22. “2016国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为:A﹣经济和社会发展;B﹣产业与应用;C﹣技术与趋势;D﹣安全和隐私保护;E﹣电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了多少名观众?(2)请补全统计图,并求出扇形统计图中“D﹣安全和隐私保护”所对应的扇形圆心角的度数.(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E﹣电子商务”的人数是多少?23. 为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或;列表的方法进行说明.24. 已知二次函数的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.25. 如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.26. 都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.27. 如图,在四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥AO,交BO于点N,连结ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示);(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小;(4)在x轴正半轴上存在点Q,使得△QMN是等腰三角形,请直接写出不少于4个符合条件的点Q的坐标(用含t的式子表示).参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。

2019年贵州省黔南州中考数学试卷

2019年贵州省黔南州中考数学试卷

2019 年贵州省黔南州中考数学试卷副标题题号 得分一二三四总分一、选择题(本大题共 10 小题,共 40.0 分)1. 下列四个数中,2019 的相反数是() 11A. -2019B. C. - D. 2019020192019【答案】A【解析】解:2019 的相反数是-2019, 故选:A .根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数 的相反数是负数,一个负数的相反数是正数,0 的相反数是 0.2. 举世瞩目的港珠澳大桥于 2018 年 10 月 24 日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约 55000 米.55000 这个数用科学记数法可表示为(A. 5.5×103B. 55×103C. 0.55×105D. 5.5×104【答案】D) 【解析】解:55000 这个数用科学记数法可表示为 5.5×104, 故选:D .科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a |<10,n 为整数.确定 n 的值时,要 看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原 数绝对值大于 10 时,n 是正数;当原数的绝对值小于 1 时,n 是负数. 此题考查了科学记数法的表示方法.科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a | <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 3. 某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是( )A. 国B. 的D. 梦C. 中【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, 由此可知,原正方体“中”字所在面的对面的汉字是的. 故选:B .正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手, 分析及解答问题.4. 观察下列图案,既是轴对称图形又是中心对称图形的共有()A. 4 个B. 3 个C. 2 个D. 1 个【答案】B【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;④是轴对称图形,也是中心对称图形,故此选项正确.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.5. 下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3-3=-3;②√5-√2=√3;③(2a2)3=8a5;④-a8÷a4=-a4A. ①B. ②C. ③D. ④【答案】D11【解析】解:①30+3-3=1+ =1 ,故此选项错误;2727②√5-√2无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④-a8÷a4=-a4,正确.故选:D.直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6. 如果 3ab2m-1 与 9ab m+1 是同类项,那么m 等于()A. 2B. 1C. -1D. 0【答案】A【解析】解:根据题意,得:2m-1=m+1,解得:m=2.故选:A.根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7. 在下列长度的三条线段中,不能组成三角形的是()A. 2cm,3cm,4cmB. 3cm,6cm,6cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm 【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.根据三角形任意两边的和大于第三边,进行分析判断.本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8. 平行四边形 ABCD 中,AC 、BD 是两条对角线,现从以下四个关系①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为() 14134A. B. C. D. 12【答案】B【解析】解:根据平行四边形的判定定理, 可推出平行四边形 ABCD 是菱形的有①或③, 21概率为 = .42 故选:B .菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边 相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱 形(或“对角线互相垂直平分的四边形是菱形”).本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.19. 若点 A (-4,y )、B (-2,y )、C (2,y )都在反比例函数 y =- 的图象上,则 y 、 1 2 3 1푥y 、y 的大小关系是()2 3 A. y >y >y B. y >y >y C. y >y >y D. y >y >y 21 23 3 2 1 2 1 3 1 3【答案】C1【解析】解:∵点 A (-4,y )、B (-2,y )、C (2,y )都在反比例函数 y =- 的图象 1 2 3푥 上,1 11 11∴y 1=- = ,y =- = ,y =- , 2 3−4 4 −2 2 2 111又∵- < < , 2 4 2∴y <y <y . 3 1 2故选:C .根据反比例函数图象上点的坐标特征求出 y 、y 、y 的值,比较后即可得出结论. 1 2 3 本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出 y 、y 、y 的值是解题的关键. 1 2 3 10. 如图,在一斜边长 30cm 的直角三角形木板(即 Rt △ACB )中截取一个正方形 CDEF ,点 D 在边 BC 上,点 E 在斜 边 AB 上,点 F 在边 AC 上,若 AF :AC =1:3,则这块木板截取正方形 CDEF 后,剩余部分的面积为(A. 200cm 2B. 170cm 2C. 150cm 2 【答案】D) D. 100cm【解析】解:设 AF =x ,则 AC =3x , ∵四边形 CDEF 为正方形, ∴EF =CF =2x ,EF ∥BC , ∵EF ∥BC ,∴△AEF ∽△ABC , 퐸퐹 퐴퐹= 1∴ = , 3퐵퐶 퐴퐶∴BC =6x ,在Rt△ABC 中,AB=√(3푥)2+(6푥)2=3√5x,∴3√5x=30,解得x=2√5,∴AC=6√5,BC=12√5,1∴剩余部分的面积= ×6√5×12√5-(4√5)2=100(cm2).2故选:D.设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3√5x,则 3√5x=30,解得x=2√5,然后用△ABC 的面积减去正方形的面积得到剩余部分的面积.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题共10 小题,共30.0 分)11. 一组数据:2,1,2,5,3,2 的众数是______.【答案】2【解析】解:在数据 2,1,2,5,3,2 中 2 出现 3 次,次数最多,所以众数为 2,故答案为:2.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数.12. 分解因式:9x2-y2=______.【答案】(3x+y)(3x-y)【解析】解:原式=(3x+y)(3x-y),故答案为:(3x+y)(3x-y).利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b).13. 如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______度.【答案】34【解析】解:∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°-∠B)÷2=70°,∴∠DAC=∠BAC-∠BAD=34°故答案为:34.根据三角形的内角和得出∠BAC=180°-∠B-∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°-∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC-∠BAD=34°.本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.푥=푎푦=푏2푥+푦=6푥+2푦=−314. 已知{【答案】1 是方程组{的解,则a+b 的值为______.푥 = 푎 푦 = 푏 2푥 + 푦 = 6푥 + 2푦 = −3 【解析】解:把{ 代入方程组{ 得: ,①+②得:3a +3b =3,a +b =1,故答案为:1. 푥 = 푎 2푥 + 푦 = 6푥 + 2푦 = −3把{ 代入方程组{ 得: ,相加可得出答案.푦 = 푏 本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为 a 和 b 后相加即可.15. 某品牌旗舰店平日将某商品按进价提高 40%后标价,在某次电商购物节中,为促销该商品,按标价 8 折销售,售价为 2240 元,则这种商品的进价是______元. 【答案】2000【解析】解:设这种商品的进价是 x 元, 由题意得,(1+40%)x ×0.8=2240. 解得:x =2000, 故答案为 2000设这种商品的进价是 x 元,根据提价之后打八折,售价为 2240 元,列方程解答即可. 本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适 的等量关系,列方程解答.16. 如图,点 E 在正方形 ABCD 的边 AB 上,若 EB =1,EC =2,那么正方形 ABCD 的面积为______.【答案】3【解析】解:由勾股定理得,BC =√퐸퐶2 − 퐸퐵2=√3, ∴正方形 ABCD 的面积=BC 2=3,故答案为:3.根据勾股定理求出 BC ,根据正方形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是 a ,b ,斜边长为 c ,那 么 a 2+b 2=c 2.17. 下面摆放的图案,从第 2 个起,每一个都是前一个按顺时针方向旋转 90°得到,第2019 个图案与第 1 个至第 4 个中的第______个箭头方向相同(填序号).【答案】3【解析】解:2019÷4=504…3,故第 2019 个图案中的指针指向与第 3 个图案相同, 故答案为:3根据图形可以看出 4 个图形一循环,然后再 2019÷4=504…3,从而确定是第 3 个图形. 主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150 次,其中有 50 次摸到黑球,已知囗袋中仅有黑球 10 个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有______个白球.【答案】20501【解析】解:摸了 150 次,其中有 50 次摸到黑球,则摸到黑球的频率是= ,1503101设口袋中大约有x 个白球,则= ,푥+103解得x=20.故答案为:20.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19. 如图所示,一次函数y=ax+b(a、b 为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1 的解集为______.【答案】x<4【解析】解:函数y=ax+b 的图象如图所示,图象经过点A(4,1),且函数值y 随x 的增大而增大,故不等式ax+b<1 的解集是x<4.故答案为:x<4.由于一次函数y=ax+b(a、b 为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1 的解集.本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是______.【答案】15-5√3【解析】解:过点B 作BM⊥FD 于点M,在△ACB 中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10√3,∵AB∥CF,1∴BM=BC×sin30°=10√3×=5√3,2CM=BC×cos30°=15,在△EFD 中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5√3,∴CD=CM-MD=15-5√3.故答案是:15-5√3.过点B 作BM⊥FD 于点M,根据题意可求出BC 的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、计算题(本大题共1 小题,共12.0 分)121. (1)计算:|- |+(-1)2019+2-1-(π-3)0;2푥−33푥(2)解方程:1- =2푥+2푥+111【答案】解:(1)原式= -1+ -1=-1;22(2)去分母得:2x+2-x+3=6x,解得:x=1,经检验x=1 是分式方程的解.【解析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.四、解答题(本大题共5 小题,共68.0 分)22. 如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A、B.(1)若∠A=30°,求证:PA=3PB;1(2)小明发现,∠A 在一定范围内变化时,始终有∠BCP= (90°-∠P)成立.请你2写出推理过程.【答案】解:(1)∵AB 是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC 是⊙O 切线∴∠BCP=∠A=30°,∴∠P=30°,1∴PB=BC,BC= AB,2∴PA=3PB(2)∵点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=90°-∠P,1∴∠BCP= (90°-∠P)2【解析】(1)由PC 为圆O 的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A 的度数求出∠BCP 的度数,进而确定出∠P 的度数,再由PB=BC,AB=2BC,等量代换确定出PB 与PA 的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含 30 度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23. 某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过几封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了______名学生,条形统计图中m=______,n=______;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有______封;(4)全地区中学生共有 110000 名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【答案】500 225 25 425【解析】解:(1)此次调查的总人数为 150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C 选项人数为 500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有 425 封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有 110000×(1-45%)=60500(名).(1)由B 选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n 的值;(2)先求出C 选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24. 某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10 元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)15 y(袋)20 30 …25 20 10 …若日销售量y 是销售价x 的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【答案】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b 得25=15푘+푏20=20푘+푏푘=−1푏=40{,解得{故日销售量y(袋)与销售价x(元)的函数关系式为:y=-x+40(2)依题意,设利润为w 元,得w=(x-10)(-x+40)=-x2+50x+400整理得w=-(x-25)2+225∵-1<0∴当x=25 时,w 取得最大值,最大值为 225故要使这种土特产每日销售的利润最大,每袋的销售价应定为 25 元,每日销售的最大利润是 225 元.【解析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x (元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25. 某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用 min{a,b,1+2+9c}表示这三个数中最小的数,例如M{1,2,9}= =4,min{1,2,-3}=-3,min3(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=______,②min{sin30°,cos60°,tan45°}=______;(2)若 min(3-2x,1+3x,-5}=-5,则x 的取值范围为______;(3)若M{-2x,x2,3}=2,求x 的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x 的值.【答案】4-2≤x≤41324【解析】解:(1)①M{(-2)2,22,-22}= ,31②min{sin30°,cos60°,tan45°}= ;241故答案为:,.32(2)∵min(3-2x,1+3x,-5}=-5,3−2푥≥−5∴{,1+3푥≥−5解得-2≤x≤4,故答案为-2≤x≤4.(3)∵M{-2x,x2,3}=2,−2푥+푥2+3∴=2,3解得x=-1 或 3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},2+1+푥+2푥又∵=x+1,3푥+1≤2,∴{푥+1≤2푥解得1≤x≤1,∴x=1.(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26. 已知抛物线y=ax2+bx+3 经过点A(1,0)和点B(-3,0),与y 轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图 1,连接OP 交BC 于点D,当S△CPD:S△BPD=1:2 时,请求出点D 的坐标;(3)如图 2,点E 的坐标为(0,-1),点G 为x 轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P 的坐标;(4)如图 3,是否存在点P,使四边形BOCP 的面积为 8?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2-2x+3…①,顶点坐标为(-1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,22∴BD= BC= ×3√2=2√2,33y D=BD sin∠CBO=2,则点D(-1,2);(3)如图 2,设直线PE 交x 轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE 的表达式为:y=-x-1…②,−1±√17联立①②并解得:x= (舍去正值),2−1−√17√17−1故点P(,);22(4)不存在,理由:连接BC,过点P 作y 轴的平行线交BC 于点H,直线BC 的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),11则S BOCP=S△OBC+S△PBC= ×3×3+ (-x2-2x+3-x-3)×3=8,四边形22整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;22(2)S△CPD:S△BPD=1:2,则BD= BC= ×3√2=2√2,即可求解;33(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S BOCP=S△OBC+S△PBC=8,即可求解.四边形本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

2019年贵州省黔东南州中考数学试题(WORD版,有解析)

2019年贵州省黔东南州中考数学试题(WORD版,有解析)

2019年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中,2019的相反数是()A. −2019B. 12019C. −12019D. 201902.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A. 5.5×103B. 55×103C. 0.55×105D. 5.5×1043.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A. 国B. 的C. 中D. 梦4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A. 4个B. 3个C. 2个D. 1个5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3-3=-3;②√5-√2=√3;③(2a2)3=8a5;④-a8÷a4=-a4A. ①B. ②C. ③D. ④6.如果3ab2m-1与9ab m+1是同类项,那么m等于()A. 2B. 1C. −1D. 07.在下列长度的三条线段中,不能组成三角形的是()A. 2cm,3cm,4cmB. 3cm,6cm,76cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A. 14B. 12C. 34D. 19. 若点A (-4,y 1)、B (-2,y 2)、C (2,y 3)都在反比例函数y =-1x 的图象上,则y 1、y 2、y 3的大小关系是( )A. y 1>y 2>y 3B. y 3>y 2>y 1C. y 2>y 1>y 3D. y 1>y 3>y 210. 如图,在一斜边长30cm 的直角三角形木板(即Rt △ACB )中截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A. 200cm 2B. 170cm 2C. 150cm 2D. 100cm 2二、填空题(本大题共10小题,共30.0分) 11. 一组数据:2,1,2,5,3,2的众数是______. 12. 分解因式:9x 2-y 2=______.13. 如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的大小为______.14. 已知{x =a y =b 是方程组{2x +y =6x +2y =−3的解,则a +b 的值为______.15. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16. 如图,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为______.17. 下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第______个箭头方向相同(填序号).18. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有______个白球. 19. 如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为______.20. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是______.三、计算题(本大题共1小题,共12.0分) 21. (1)计算:|-12|+(-1)2019+2-1-(π-3)0;(2)解方程:1-x−32x+2=3xx+1四、解答题(本大题共5小题,共68.0分)22. 如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B .(1)若∠A =30°,求证:PA =3PB ;(2)小明发现,∠A 在一定范围内变化时,始终有∠BCP =12(90°-∠P )成立.请你写出推理过程.23.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了______名学生,条形统计图中m=______,n=______;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有______封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,=4,min{1,2,-3}=-3,min c}表示这三个数中最小的数,例如M{1,2,9}=1+2+93(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=______,②min{sin30°,cos60°,tan45°}=______;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为______;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:2019的相反数是-2019,故选:A.根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】D【解析】解:55000这个数用科学记数法可表示为5.5×104,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】B【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:①30+3-3=1+=1,故此选项错误;②-无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④-a8÷a4=-a4,正确.故选:D.直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】A【解析】解:根据题意,得:2m-1=m+1,解得:m=2.故选:A.根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.根据三角形任意两边的和大于第三边,进行分析判断.本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.【答案】B【解析】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.【答案】C【解析】解:∵点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-的图象上,∴y1=-=,y2=-=,y3=-,又∵-<<,∴y3<y1<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.【答案】D【解析】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12-(4)2=100(cm2).故选:D.设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.11.【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数.12.【答案】(3x+y)(3x-y)【解析】解:原式=(3x+y)(3x-y),故答案为:(3x+y)(3x-y).利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b).13.【答案】34°【解析】解:∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°-∠B)÷2=70°,故答案为:34°.根据三角形的内角和得出∠BAC=180°-∠B-∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°-∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC-∠BAD=34°.本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.【答案】1【解析】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.把代入方程组得:,相加可得出答案.本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b 后相加即可.15.【答案】2000【解析】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.【答案】3【解析】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.根据勾股定理求出BC,根据正方形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.【答案】3【解析】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.【答案】20【解析】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.【答案】x<4解:函数y=ax+b 的图象如图所示,图象经过点A (4,1),且函数值y 随x 的增大而增大,故不等式ax+b <1的解集是x <4.故答案为:x <4.由于一次函数y=ax+b (a 、b 为常数,且a >0)的图象经过点A (4,1),再根据图象得出函数的增减性,即可求出不等式ax+b <1的解集.本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 20.【答案】15-5√3【解析】解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10, ∵AB ∥CF ,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD 中,∠F=90°,∠E=45°,∴∠EDF=45°, ∴MD=BM=5, ∴CD=CM-MD=15-5. 故答案是:15-5.过点B 作BM ⊥FD 于点M ,根据题意可求出BC 的长度,然后在△EFD 中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答. 21.【答案】解:(1)原式=12-1+12-1=-1;(2)去分母得:2x +2-x +3=6x ,解得:x =1,经检验x =1是分式方程的解.(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】解:(1)∵AB是直径∴∠ACP=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=1AB,2∴PA=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°-∠P,∴∠BCP=1(90°-∠P)2【解析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与PA的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.【答案】500 225 25 425解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1-45%)=60500(名).(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:y =kx +b 得{25=15k +b 20=20k +b ,解得{k =−1b =40故日销售量y (袋)与销售价x (元)的函数关系式为:y =-x +40(2)依题意,设利润为w 元,得w =(x -10)(-x +40)=-x 2+50x +400整理得w =-(x -25)2+225∵-1<0∴当x =2时,w 取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【解析】(1)根据表格中的数据,利用待定系数法,求出日销售量y (袋)与销售价x (元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可. 本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.【答案】43 12 -2≤x ≤4【解析】 解:(1)①M{(-2)2,22,-22}=,②min{sin30°,cos60°,tan45°}=; 故答案为:,.(2)∵min (3-2x ,1+3x ,-5}=-5,∴,解得-2≤x≤4,故答案为-2≤x≤4.(3)∵M{-2x ,x 2,3}=2,解得x=-1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2-2x+3…①,顶点坐标为(-1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BDsin∠CBO=2,则点D(-1,2);3图2设线PE x轴H∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=-x-1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(-x2-2x+3-x-3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

2019年初中毕业升学考试(贵州黔西南州卷)数学【含答案及解析】

2019年初中毕业升学考试(贵州黔西南州卷)数学【含答案及解析】

2019年初中毕业升学考试(贵州黔西南州卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列各数是无理数的是()A. B. C. D.2. 分式有意义,则的取值范围是()A. B. C. D.一切实数3. 如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于()A.10 B. C.6 D.54. 已知一组数据:-3,6,2,-1,0,4则这组数据的中位数是()A.1 B. C.0 D.25. 已知△∽△且,则为()A.1:2 B.2:1 C.1:4 D.4:16. 如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150° B.130° C.155° D.135°7. 某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为米,则可列方程为()A. B.C. D.8. 下面几个几何体,主视图是圆的是()9. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA以1cm/s的速度向A点运动,同时动点Q从C点沿CB以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm²)与运动时间x(s)之间的函数图像大致是()10. 在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图①;将AB折成正三角形,使点A、B重合于点P,如图②;建立平面直角坐标系,平移此三角形,使它关于轴对称,且点P的坐标为(0,2),PM的延长线与轴交于点N(n,0),如图③,当m=时,n的值为()A. B. C. D.二、填空题11. = .12. 42500000用科学记数法表示为.13. 如图5,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.14. 如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B= .15. 分解因式:= .16. 如图,点A是反比例函数图像上的一个动点,过点A作AB⊥轴,AC⊥轴,垂足点分别为B、C,矩形ABOC的面积为4,则=17. 已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是.18. 已知,则= .19. 如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.20. 已知=3×2=6,=5×4×3=60,=5×4×3×2=120,=6×5×4×3=360,依此规律= .三、解答题21. (1)计算:(2)解方程:.四、计算题22. 如图所示,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4.求弦CE的长.五、解答题23. 为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.六、计算题24. 某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为吨,应交水费为元,写出与之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?七、解答题25. 求不等式的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得;解②得.∴不等式的解集为或.请你仿照上述方法解决下列问题:(1)求不等式的解集.(2)求不等式的解集.26. 如图,在平面直角坐标系中,平行四边形如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形.抛物线经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形和平行四边形重叠部分的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,的面积最大?最大面积是多少?并写出此时M的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

2019年贵州省黔东南州中考数学试卷及答案(Word解析版)

2019年贵州省黔东南州中考数学试卷及答案(Word解析版)

贵州省黔东南州2019年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)本大题每小题均有ABCD四个备选答案,其中只有一个是正确的。

2+=2、=2+3.(4分)(2019•黔东南州)如图是有几个相同的小正方体组成的一个几何体.它的左视图是()B4.(4分)(2019•黔东南州)从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够成B=5.(4分)(2019•黔东南州)如图,已知a∥b,∠1=40°,则∠2=()6.(4分)(2019•黔东南州)某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳7.(4分)(2019•黔东南州)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r=8.(4分)(2019•黔东南州)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()判断符号.9.(4分)(2019•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取解:联立10.(4分)(2019•黔东南州)如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为(),二、填空题(本题共6小题,每小题4分,共24分)11.(4分)(2019•黔东南州)平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0).12.(4分)(2019•黔东南州)使根式有意义的x的取值范围是x≤3.13.(4分)(2019•黔东南州)将一副三角尺如图所示叠放在一起,则的值是.形的对应边成比例,可得:==.故答案为:14.(4分)(2019•黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C ﹣∠B,则∠B=60度.15.(4分)(2019•黔东南州)若两个不等实数m、n满足条件:m2﹣2m﹣1=0,n2﹣2n﹣1=0,则m2+n2的值是6.16.(4分)(2019•黔东南州)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2019的值是1014049.)三、解答题:(本大题共8个小题,共86分)17.(10分)(2019•黔东南州)(1)计算:sin30°﹣2﹣1+(﹣1)0+;(2)先简化,再求值:(1﹣)÷,其中x=.﹣+1+÷×,时,原式+118.(8分)(2019•黔东南州)解不等式组,并把解集在数轴上表示出来.,19.(8分)(2019•黔东南州)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.20.(10分)(2019•黔东南州)为了解黔东南州某县2019届中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?=0.621.(12分)(2019•黔东南州)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人.(1)用树形图获列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率.名主持人来自不同班级的概率为:=女的概率为:=22.(12分)(2019•黔东南州)如图,在直角三角形ABC中,∠ABC=90°.(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC是所作⊙O的切线;(3)若BC=,sinA=,求△AOC的面积.,∠OCB=ACB=30,,××OE=2.23.(12分)(2019•黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?,24.(14分)(2019•黔东南州)已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.(1)求抛物线的解析式;(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P 在抛物线上,当S△PAB≤6时,求点P的横坐标x的取值范围.×。

2019年贵州省黔东南州中考数学试卷(解析版)

2019年贵州省黔东南州中考数学试卷(解析版)

2019年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中,2019的相反数是()A. -201912019 D. 2019°B -钵2,举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为( )A. 5.5 x 103B. 55 x 103C. 0.55 x 105D. 5.5 x 1043. 某正方体的平面展开图如图,由此可知,原正方体“中”字所在 网面的对面的汉字是( )|国|妇:A.国 B.的 C.中 '一—jD.梦L4, 观察下列图案,既是轴对称图形又是中心对称图形的共有( )O 据V 5.6.7. B. 3个 下列四个运算中,只有一个是正确的.这个正确运算的序号是()①3°+3,=-3; ®V5-V2=V3;③(2决)3=8a 5;④-a^a=-aA.①B.②C.③如果3沥2妇与9沥"I 是同类项,那么m 等于(A. 2B. 1C. —1在下列长度的三条线段中,不能组成三角形的是(A. 2cm, 3cm, 4cm C. 2cm, 2cm, 6cmA. 4个 C. 2个 D. 1个D.④D. 0)B. 3cm, 6cm 9 76cmD. 5cm, 6cm, 7cm )8.平行四边形A9CD 中,AC. HD 是两条对角线,现从以下四个关系®AB=BC ; ®AC=BD ; @ACLBD ; @AB1BC 中随机取出一个作为条件,即可推出平行四边形 ABCD 是菱形的概率为( )9.10.若点A (-4, yi )、B (-2, y 2)、C (2, y 3)都在反比例函数的图象上,则yi 、>2、ys 的大小关系是( )A. y!>y 2> y 3B. % > 无 > yiC. y 2 > yi > y 3D. % > % >如图,在一斜边长30cm 的直角三角形木板(即RtAACB )中截取一个正方形CDEF,点。

2019年贵州省黔东南州中考数学试题(WORD版,有答案)

2019年贵州省黔东南州中考数学试题(WORD版,有答案)

2019年初中毕业生学业(升学)考试数 学考生注意:1. 一律用黑色字迹的笔或2B 铅笔将答案填涂或书写在答题卡指定位置内。

2. 本试卷共6页,满分150分,考试时间120分钟。

一、选择题(本大题10小题,每题4分,共40分) 1、下列四个数中,2019的相反数是A.-2019B.20191C.20191- D.2019答案:A2、举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米,55000这个数用科学记数法可表示为A.3105.5⨯B.31055⨯C.51055.0⨯D.4105.5⨯ 答案:D3、某正方体的平面展开图 如下,由此可知,原正方体“中”字所在面的对面的汉子是A.国B.的C.中D.梦 答案:B4、观察下列图案,既是轴对称图形又是中心对称图形的共有A.4个B.3个C.2个D.1个 答案:B5、下列四个运算中,只有一个是正确这个正确运算的序号是①3-331-0=+ ②32-5= ③53282a a =)( ④448--a a a =÷ A. ① B.② C.③ D.④ 答案:D6、如果123-m ab 与19+m ab 是同类项,那么m 等于A.2B.1C.-1D.0 答案:A7、在下列长度的三条线段中,不能组成三角形的是A.cm cm cm 4,3,2B.cm cm cm 6,6,3C.cm cm cm 6,2,2D.cm cm cm 7,6,5 答案:C8、平行四边形ABCD 中,AC 、BD 是两条对角线,现从以下四个关系①BC AB =、②B D AC = ③BD AC ⊥、④BC AB ⊥中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为 A.41 B.21 C.43D.1 答案:B9、若点),()、,()、,(32122-4-y C y B y A 都在反比例函数x y 1-=的图像上,则321y y y 、、的大小关系是A.321y y y 〉〉B. 123y y y 〉〉C. 312y y y 〉〉D. 231y y y 〉〉 答案:C10、如右图,在一斜边长30cm 的直角三角形模板(即ACB Rt ∆)中截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若3:1:=AC AF ,则这块木板截取正方形CDEF 后,剩余部分的面积为A.2200cmB.2170cmC.2150cmD.2100cm 答案:D二、填空题(本大题10小题,每题3分,共30分)11.一组数据:2,1,2,5,3,2的众数是 . 答案:212.分解因式:229y x -= .答案:3(3-)x y x y +() 13.如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D,连接AD ,若︒=∠40B ,︒=∠36C ,,则DAC ∠的大小为 度.答案:34°14.已知是方程组的解,则b a +的值是 . 答案:115、某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价2240元,则这种商品的进价是 . 答案:200016.如图,点E 在正方形ABCD 的边AB 上,若EB=1,EC=2, 那么正方形ASCD 的面积为 .答案:317、下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第 个箭头方向相同(填序号)答案:318、从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有 个白球. 答案:2019、如图19所示,一次函数),(b a b a b ax y >为常数,且+=的图像经过点 A (4,1),则不等式1<b ax +的解集为 .答案:x <420、三角板是我们学习数学的好帮手,将一对直角三角板如图20放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF,,,,106045,90=︒=∠︒=∠︒=∠=∠AC A E ACB F 则CD 的长度是 .答案:15-三、解答题(本大题6小题,共80分) 21、(12分)(1)(6分)计算:012019)3(2)1(21--+-+--π (2)(6分)解方程:132231+=+--x xx x 解:(1)原式=111122+--=-1(2)方程两边同乘2(x+1),得: 2x+2-x+3=6x , 解得: x =1,经检验: x =1是原方程的根。

2019年贵州黔南州中考数学重点试题(一)

2019年贵州黔南州中考数学重点试题(一)

2019年贵州黔南州中考数学重点试题(一)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!(时间:120分钟分值:120分)【一】选择题(每题3分,共36分)1、如果a 与2互为相反数,那么|a |等于() A 、2B 、-2C 、1D 、-1解析:由题意,得a +2=0,∴a =-2,那么|-2|=2. 【答案】A2、深圳湾体育中心是2017年第26届世界大学生夏季运动会的主要分会场,占地面积共30.74公顷,总建筑面积达25.6万平方米,将25.6万平方米用科学记数法(四舍五入保留2个有效数字)表示约为________平方米、()A 、26×104B 、2.6×104C 、2.6×105D 、2.6×106 解析:25.6万=2.56×105≈2.6×105. 【答案】C3、以下计算正确的选项是()A 、2+3=23B 、a +a 2=a 3C 、(2a )·(3a )=6aD 、2-1=12 解析:A 项:2+3不能合并为23;B 项:a +a 2不能合并为a 3;C 项:(2a )·(3a )=6a 2≠6a ,故A 、B 、C 三项都不正确、 4、正十边形的每个内角为()A 、120°B 、135°C 、140°D 、144°【解析】正八边形的每个内角度数为(10-2)×180°÷10=144°. 【答案】D5、如图是由正方体和圆锥组成的几何体,它的俯视图是()解析:该几何体的俯视图有两个特点:①是圆锥顶点作为圆心,②是底面圆与正方形相切、【答案】D6、10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:)如下表所示:设两队队员身高的平均数依次为x 甲、x 乙,身高的方差依次为s 2甲、s 2乙,那么以下关系中完全正确的选项是()A .x 甲=x 乙,s 2甲>s 2乙B .x 甲=x 乙,s 2甲<s 2乙C .x 甲>x 乙,s 2s >S 2乙D .x 甲>x 乙,s 2甲<s 2乙解析:x 甲=x 乙=175,s 2甲=15×[(177-175)2+(176-175)2+(175-175)2+(172-175)2+(175-175)2]=2.8,s 2乙=15×[(170-175)2+(175-175)2+(173-175)2+(174-175)2+(183-175)2]=18.8,∴s 2甲<s 2乙.【答案】B7、如图①是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形,如图②,那么在Rt △ABC 中,sin ∠B 的值是_____、解析:能拼成正三角形说明∠B =60°,那么sinB =32.8、⊙O 1、⊙O 2的半径不相等,⊙O 1的半径长为3,假设⊙O 2上的点A 满足AO 1=3,那么⊙O 1与⊙O 2的位置关系是()A 、相交或相切B 、相切或相离C 、相交或内含D 、相切或内含解析:因为AO 1=3,所以点A 在⊙O 1上、又因为点A 在⊙O 2上,所以⊙O 1与⊙O 2的位置关系是相交或相切、【答案】A9、将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为() A 、10cmB 、30cmC 、40cmD 、300cm解析:由题意设每个圆锥容器的底面半径为r ,那么π·r ·30=13π·302,∴r =10cm .【答案】A10、如图是小华画的正方形风筝图案,他以图中的对角线AB 为对称轴,在对角线的另一侧面画一个三角形,使得新的风筝图案成为轴对称图形、假设以下有一图形为此对称图形,那么此图为()【解析】由轴对称的性质可知A 、B 、D 三项均不符合要求,只有C 项符合要求、【答案】C11、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()【解析】排除法,注意观察两图象的交点处及与y 轴的交点处、 【答案】C12、菱形OABC 在平面直角坐标系中的位置如下图,假设OA =2,∠AOC =45°,那么B 点的坐标是()A 、(2+2,2)B 、(2-2,2)C 、(-2+2,2)D 、(-2-2,2) 【解析】∵四边形OABC 是菱形,∴BC =OC =OA =2,过点B 向x 轴作垂线,垂足为D ,∵∠AOC =45°,∴∠BCD =45°,∴△BCD 是等腰直角三角形、由勾股定理可得BD =DC =2,所以OD =2+ 2.又B 在第二象限,所以点B 的坐标为(-2-2,2),应选D .【二】填空题(每题3分,共15分)13、假设二次根式2x -1有意义,那么x 的取值范围是________、【解析】假设2x -1有意义,∴2x -1≥0,∴x ≥12.【答案】x ≥1214、一个正多边形的每个外角都是36°,这个正多边形的边数是________、【解析】∵正多边形的外角和是360°,∴n =360°36°=10. 【答案】1015、某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元、签字笔每支2元,圆珠笔每支1.5元,那么其中签字笔购买了________支、 【解析】设签字笔购买了x 支,那么圆珠笔购买了(15-x )支,那么⎩⎪⎨⎪⎧2x +1.5(15-x )>26,2x +1.5(15-x )<27,∴7<x <9,∴x =8.【答案】816、不等式组⎩⎪⎨⎪⎧2x -1<31-x >2的解集是________、解析:由2x -1<3得x <2,由1-x >2得,x <-1,由“小小取小”得x <-1. 【答案】x <-117、在梯形ABCD 中,AD ∥BC ,∠B =70°,∠C =40°,作DE ∥AB 交BC 于点E .假设AD =3,BC =10,那么CD 的长是________、【解析】因为∠DEC =∠ABE =70°,又∠DCE =40°,所以∠EDC =70°,所以EC =DC .∵EC =10-3=7,∴CD =7. 【答案】7【三】解答题(本大题包括8个小题,共69分)18、(5分)|2-tan 60°|-(π-3.14)0+(-12)-2+1212.【答案】解:原式=|2-3|-1+4+3=2-3+3+3=5.19、(8分)如图,PA 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点、OA =2,OP =4.(1)求∠POA 的度数;(2)计算弦AB 的长、【答案】解:(1)因为PA 与⊙O 相切于A 点,所以OA ⊥AP .在Rt △PAO 中,cos ∠POA =OA OP =24=12,所以∠POA =60°.(2)因为AB ⊥OP ,所以AC =BC =12AB .在Rt △ACO 中,sin ∠POA =ACOA ,所以AC =OA ·sin ∠POA =2×sin 60°=2×32= 3.所以AB =2AC =2 3.20、(8分)老师布置了一个探究活动作业:仅用一架天平和一个10克的砝码测量壹元硬币和伍角硬币的质量、(注:同种类的每枚硬币质量相同)聪明的孔明同学找来足够多的壹元和伍角的硬币,经过探究得到以下两种探究记录:请你用所学的数学知识计算出一枚壹元硬币多少克,一枚伍角硬币多少克? 【答案】解:设一枚壹元硬币x 克,一枚伍角硬币y 克,依题意得 ⎩⎪⎨⎪⎧ 5x +10=10y ,15x =20y +10,解得⎩⎪⎨⎪⎧x =6.y =4. 答:一枚壹元硬币6克,一枚伍角硬币4克、21、(7分)永乐桥摩天轮是天津市的标志性景观之一、某校数学兴趣小组测量摩天轮的高度、如图,他们在C 处测得摩天轮的最高点A 的仰角为45°,再往摩天轮的方向前进50m 至D 处,测得最高点A 的仰角为60°,求该兴趣小组测得的摩天轮的高度AB .(3≈1.732,结果保留整数)【答案】解:根据题意可知∠ADB =60°,DC =50. 在Rt △ABC 中,由∠BAC =∠BCA =45°,得BC =AB .在Rt △ABD 中,由tan ∠ADB =ABBD ,得BD =AB tan ∠ADB =AB tan60°=33AB .又∵BC -BD =DC ,∴AB -33AB =50,即(3-3)AB =150.∴AB =1503-3≈118.答:该兴趣小组测得的摩天轮的高度约为118m .22、(9分)学校为了了解全校1600名学生到校上学的方式,在全校随机抽取了假设干名学生进行问卷调查、问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选、同时把调查得到的结果绘制成如下图的频数分布直方图和扇形统计图(均不完整)、 (1)问:在这次调查中,一共抽取了多少名学生? (2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车上学、【答案】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取的学生总数为24÷30%=80(人)、(2)被抽到的学生中,步行的人数为80×20%=16,直方图如下图、(3)被抽到的学生中,乘公交车的人数为80-(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为2680×1600=520.23、(10分)如图,△ABC 中,∠A =90°,AB =6,AC =8,D 是AB 上一动点,DE ∥BC ,交AC 于E ,将四边形BDEC 沿DE 向上翻折,得四边形B ′DEC ′,B ′C ′与AB 、AC 分别交于点M 、N .(1)证明:△ADE ∽△ABC ;(2)设AD 为x ,梯形MDEN 的面积为y ,试求y 与x 的函数关系式、当x 为何值时,y 有最大值?【答案】(1)证明:∵DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C , ∴△ADE ∽△ABC .(2)解:∵S △ABC =24,△ADE ∽△ABC ,相似比为x6,∴S △ADE S △ABC =(x 6)2,∴S △ADE =23x 2. ∵∠1=∠2,∠1=∠B ′,∠2=∠B ′MD . ∴∠B ′=∠B ′MD .∴B ′D =MD . 又B ′D =BD ,∴MD =BD .∴AM =AB -MB =6-2(6-x )=2x -6.同理,△AMN ∽△ABC ,S △AMN =24×(2x -66)2=83(x -3)2.∴y =S △ADE -S △AMN =23x 2-83(x -3)2=-2x 2+16x -24. 整理,得y =-2(x -4)2+8 ∴当x =4时,y 有最大值、24、(10分)为打造“书香校园”,某学校计划用不超过1900本科学类书籍和1620本人文类书籍,组建中、小型两类图书角共30个、组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本、 (1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)假设组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?【答案】解:(1)设组建中型图书角x 个,那么组建小型图书角为(30-x )个、由题意得⎩⎪⎨⎪⎧80x +30(30-x )≤1 900,50x +60(30-x )≤1 620.解得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个、 (2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用越低,所以方案一费用最低, 最低费用是860×18+570×12=22320(元)、方法二:①方案一的费用是:860×18+570×12=22320(元); ②方案二的费用是:860×19+570×11=22610(元); ③方案三的费用是:860×20+570×10=22900(元)、 故方案一费用最低,最低费用是22320元、25、(12分)如图,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴与x 轴的正半轴于E 、F 两点、(1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)连接EF ,设△BEF 与△BFC 的面积之差为S ,问:当CF 为何值时S 最小,并求出这个最小值、【答案】解:(1)由题意可得A (0,2),B (2,2),C (3,0), 设所求抛物线的解析式为y =ax 2+bx +c ,那么⎩⎪⎨⎪⎧c =2,4a +2b +c =2,9a +3b +c =0,解得⎩⎪⎨⎪⎧a =-23,b =43,c =2.∴抛物线的解析式为y =-23x 2+43x +2.(2)设抛物线的顶点为G ,那么G (1,83)、如图,过点G 作GH ⊥AB ,垂足为H ,那么AH=BH =1,GH =83-2=23.∵EA ⊥AB ,GH ⊥AB , ∴EA ∥GH .∴GH 是△BEA 的中位线,∴EA =2GH =43.过点B 作BM ⊥OC ,垂足为M ,那么BM =OA =AB . ∵∠EBF =∠ABM =90°,∴∠EBA =∠FBM =90°-∠ABF ,∴Rt △EBA ≌Rt △FBM ,∴FM =EA =43.∵CM =OC -OM =3-2=1,∴CF =FM +CM =73.(3)设CF =a ,那么FM =a -1或1-a ,同时0<a <3 ∴BF 2=FM 2+BM 2=(a -1)2+22=a 2-2a +5. ∵△EBA ≌△FBM ,∴BE =BF .那么S △BEF =12BE ×BF =12BF 2=12(a 2-2a +5),又∵S △BFC =12FC ×BM =12×a ×2=a ,∴S =12(a 2-2a +5)-a =12a 2-2a +52,即S =12(a -2)2+12,∴当a =2(在0<a <3范围内)时,S 最小值=12.。

贵州省黔东南州2019年中考数学真题试题(含解析)

贵州省黔东南州2019年中考数学真题试题(含解析)

2019年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中,2019的相反数是()A. −2019B. 12019C. −12019D. 201902.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A. 5.5×103B. 55×103C. 0.55×105D. 5.5×1043.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A. 国B. 的C. 中D.梦4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A. 4个B. 3个C. 2个D. 1个5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3-3=-3;②√5-√2=√3;③(2a2)3=8a5;④-a8÷a4=-a4A. ①B. ②C. ③D. ④6.如果3ab2m-1与9ab m+1是同类项,那么m等于()A. 2B. 1C. −1D. 07.在下列长度的三条线段中,不能组成三角形的是()A. 2cm,3cm,4cmB. 3cm,6cm,76cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A. 14B. 12C. 34D. 19.若点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-1x的图象上,则y1、y2、y3的大小关系是()A. x1>x2>x3B. x3>x2>x1C. x2>x1>x3D. x1>x3>x210.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A. 200xx2B. 170xx2C. 150xx2D. 100xx2二、填空题(本大题共10小题,共30.0分)11.一组数据:2,1,2,5,3,2的众数是______.12.分解因式:9x2-y2=______.13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______.14. 已知{x =x x =x 是方程组{2x +x =6x +2x =−3的解,则a +b 的值为______. 15. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16. 如图,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为______.17. 下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第______个箭头方向相同(填序号).18. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有______个白球.19. 如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为______.20. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是______.三、计算题(本大题共1小题,共12.0分)21. (1)计算:|-12|+(-1)2019+2-1-(π-3)0;(2)解方程:1-x −32x +2=3x x +1四、解答题(本大题共5小题,共68.0分)22. 如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B .(1)若∠A =30°,求证:PA =3PB ;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=1(90°-∠P)成立.请2你写出推理过程.23.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了______名学生,条形统计图中m=______,n=______;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有______封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如x(元)15 20 30 …若日销售量是销售价的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+9=4,min{1,2,-3}=-3,min3(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=______,②min{sin30°,cos60°,tan45°}=______;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为______;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:2019的相反数是-2019,故选:A.根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】D【解析】解:55000这个数用科学记数法可表示为5.5×104,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】B【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:①30+3-3=1+=1,故此选项错误;②-无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④-a8÷a4=-a4,正确.故选:D.直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】A【解析】解:根据题意,得:2m-1=m+1,解得:m=2.故选:A.根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.根据三角形任意两边的和大于第三边,进行分析判断.本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.【答案】B【解析】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.【答案】C【解析】解:∵点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-的图象上,∴y1=-=,y2=-=,y3=-,又∵-<<,∴y3<y1<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.【答案】D【解析】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12-(4)2=100(cm2).故选:D.设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.11.【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数.12.【答案】(3x+y)(3x-y)【解析】解:原式=(3x+y)(3x-y),故答案为:(3x+y)(3x-y).利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b).13.【答案】34°【解析】解:∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°-∠B)÷2=70°,∴∠DAC=∠BAC-∠BAD=34°故答案为:34°.根据三角形的内角和得出∠BAC=180°-∠B-∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°-∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC-∠BAD=34°.本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.【答案】1【解析】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.把代入方程组得:,相加可得出答案.本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.15.【答案】2000【解析】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.【答案】3【解析】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.根据勾股定理求出BC,根据正方形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.【答案】3【解析】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.【答案】20【解析】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.【答案】x<4【解析】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 20.【答案】15-5√3【解析】解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10,∵AB ∥CF ,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD 中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.故答案是:15-5.过点B 作BM ⊥FD 于点M ,根据题意可求出BC 的长度,然后在△EFD 中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.21.【答案】解:(1)原式=12-1+12-1=-1;(2)去分母得:2x +2-x +3=6x ,解得:x =1,经检验x =1是分式方程的解.【解析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】解:(1)∵AB 是直径∴∠ACP =90°,∵∠A =30°,∴AB =2BC∵PC 是⊙O 切线∴∠BCP =∠A =30°,∴∠P =30°,∴PB =BC ,BC =12AB ,∴PA =3PB(2)∵点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B , ∴∠BCP =∠A ,∵∠A +∠P +∠ACB +∠BCP =180°,且∠ACB =90°,∴2∠BCP =180°-∠P ,∴∠BCP =12(90°-∠P )【解析】(1)由PC 为圆O 的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A ,由∠A 的度数求出∠BCP 的度数,进而确定出∠P 的度数,再由PB=BC ,AB=2BC ,等量代换确定出PB 与PA 的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.【答案】500 225 25 425【解析】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C 选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1-45%)=60500(名).(1)由B 选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m 、n 的值;(2)先求出C 选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y =kx +b 得{25=15x +x 20=20x +x ,解得{x =−1x =40故日销售量y (袋)与销售价x (元)的函数关系式为:y =-x +40(2)依题意,设利润为w 元,得w =(x -10)(-x +40)=-x 2+50x +400整理得w=-(x-25)2+225∵-1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【解析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.【答案】4312-2≤x≤4【解析】解:(1)①M{(-2)2,22,-22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3-2x,1+3x,-5}=-5,∴,解得-2≤x≤4,故答案为-2≤x≤4.(3)∵M{-2x,x2,3}=2,∴=2,解得x=-1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2-2x+3…①,顶点坐标为(-1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BDsin∠CBO=2,则点D(-1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=-x-1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(-x2-2x+3-x-3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

贵州省黔东南州2019年中考数学真题试题(含解析)

贵州省黔东南州2019年中考数学真题试题(含解析)

2019年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中,2019的相反数是()A. −2019B. 12019C. −12019D. 201902.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A. 5.5×103B. 55×103C. 0.55×105D. 5.5×1043.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A. 国B. 的C. 中D.梦4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A. 4个B. 3个C. 2个D. 1个5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3-3=-3;②√5-√2=√3;③(2a2)3=8a5;④-a8÷a4=-a4A. ①B. ②C. ③D. ④6.如果3ab2m-1与9ab m+1是同类项,那么m等于()A. 2B. 1C. −1D. 07.在下列长度的三条线段中,不能组成三角形的是()A. 2cm,3cm,4cmB. 3cm,6cm,76cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A. 14B. 12C. 34D. 19.若点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-1x的图象上,则y1、y2、y3的大小关系是()A. x1>x2>x3B. x3>x2>x1C. x2>x1>x3D. x1>x3>x210.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A. 200xx2B. 170xx2C. 150xx2D. 100xx2二、填空题(本大题共10小题,共30.0分)11.一组数据:2,1,2,5,3,2的众数是______.12.分解因式:9x2-y2=______.13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______.14. 已知{x =x x =x 是方程组{2x +x =6x +2x =−3的解,则a +b 的值为______. 15. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16. 如图,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为______.17. 下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第______个箭头方向相同(填序号).18. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有______个白球.19. 如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为______.20. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是______.三、计算题(本大题共1小题,共12.0分)21. (1)计算:|-12|+(-1)2019+2-1-(π-3)0;(2)解方程:1-x −32x +2=3x x +1四、解答题(本大题共5小题,共68.0分)22. 如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B .(1)若∠A =30°,求证:PA =3PB ;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=1(90°-∠P)成立.请2你写出推理过程.23.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了______名学生,条形统计图中m=______,n=______;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有______封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如x(元)15 20 30 …若日销售量是销售价的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+9=4,min{1,2,-3}=-3,min3(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=______,②min{sin30°,cos60°,tan45°}=______;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为______;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:2019的相反数是-2019,故选:A.根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】D【解析】解:55000这个数用科学记数法可表示为5.5×104,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】B【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:①30+3-3=1+=1,故此选项错误;②-无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④-a8÷a4=-a4,正确.故选:D.直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】A【解析】解:根据题意,得:2m-1=m+1,解得:m=2.故选:A.根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.根据三角形任意两边的和大于第三边,进行分析判断.本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.【答案】B【解析】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.【答案】C【解析】解:∵点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-的图象上,∴y1=-=,y2=-=,y3=-,又∵-<<,∴y3<y1<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.【答案】D【解析】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12-(4)2=100(cm2).故选:D.设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.11.【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数.12.【答案】(3x+y)(3x-y)【解析】解:原式=(3x+y)(3x-y),故答案为:(3x+y)(3x-y).利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b).13.【答案】34°【解析】解:∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°-∠B)÷2=70°,∴∠DAC=∠BAC-∠BAD=34°故答案为:34°.根据三角形的内角和得出∠BAC=180°-∠B-∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°-∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC-∠BAD=34°.本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.【答案】1【解析】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.把代入方程组得:,相加可得出答案.本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.15.【答案】2000【解析】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.【答案】3【解析】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.根据勾股定理求出BC,根据正方形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.【答案】3【解析】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.【答案】20【解析】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.【答案】x<4【解析】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 20.【答案】15-5√3【解析】解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10,∵AB ∥CF ,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD 中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.故答案是:15-5.过点B 作BM ⊥FD 于点M ,根据题意可求出BC 的长度,然后在△EFD 中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.21.【答案】解:(1)原式=12-1+12-1=-1;(2)去分母得:2x +2-x +3=6x ,解得:x =1,经检验x =1是分式方程的解.【解析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】解:(1)∵AB 是直径∴∠ACP =90°,∵∠A =30°,∴AB =2BC∵PC 是⊙O 切线∴∠BCP =∠A =30°,∴∠P =30°,∴PB =BC ,BC =12AB ,∴PA =3PB(2)∵点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B , ∴∠BCP =∠A ,∵∠A +∠P +∠ACB +∠BCP =180°,且∠ACB =90°,∴2∠BCP =180°-∠P ,∴∠BCP =12(90°-∠P )【解析】(1)由PC 为圆O 的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A ,由∠A 的度数求出∠BCP 的度数,进而确定出∠P 的度数,再由PB=BC ,AB=2BC ,等量代换确定出PB 与PA 的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.【答案】500 225 25 425【解析】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C 选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1-45%)=60500(名).(1)由B 选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m 、n 的值;(2)先求出C 选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y =kx +b 得{25=15x +x 20=20x +x ,解得{x =−1x =40故日销售量y (袋)与销售价x (元)的函数关系式为:y =-x +40(2)依题意,设利润为w 元,得w =(x -10)(-x +40)=-x 2+50x +400整理得w=-(x-25)2+225∵-1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【解析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.【答案】4312-2≤x≤4【解析】解:(1)①M{(-2)2,22,-22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3-2x,1+3x,-5}=-5,∴,解得-2≤x≤4,故答案为-2≤x≤4.(3)∵M{-2x,x2,3}=2,∴=2,解得x=-1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2-2x+3…①,顶点坐标为(-1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BDsin∠CBO=2,则点D(-1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=-x-1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(-x2-2x+3-x-3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年贵州省黔南州中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(本大题10小题,每题4分,共40分)1.下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.201902.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;①﹣=;①(2a2)3=8a5;①﹣a8÷a4=﹣a4A.①B.①C.①D.①6.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.07.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,76cm C.2cm,2cm,6cm D.5cm,6cm,7cm8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;①AC=BD;①AC⊥BD;①AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.19.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y210.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2二、填空题(本大题10小题,每题3分,共30分)11.一组数据:2,1,2,5,3,2的众数是.12.分解因式:9x2﹣y2=.13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为.14.已知是方程组的解,则a+b的值为.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.16.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为.17.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.19.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.20.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED 上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=22.(12分)如图,点P在①O外,PC是①O的切线,C为切点,直线PO与①O相交于点A、B.(1)若∠A=30°,求证:PA=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,①min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG =2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题10小题,每题4分,共40分)1.下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.20190【知识考点】相反数;零指数幂.【思路分析】根据相反数的概念解答即可.【解答过程】解:2019的相反数是﹣2019,故选:A.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答过程】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【知识考点】正方体相对两个面上的文字.【思路分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答过程】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【总结归纳】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:①不是轴对称图形,是中心对称图形,故此选项错误;①是轴对称图形,也是中心对称图形,故此选项正确;①是轴对称图形,也是中心对称图形,故此选项正确;①是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;①﹣=;①(2a2)3=8a5;①﹣a8÷a4=﹣a4A.①B.①C.①D.①【知识考点】幂的乘方与积的乘方;同底数幂的除法;零指数幂;负整数指数幂;二次根式的加减法.【思路分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答过程】解:①30+3﹣3=1+=1,故此选项错误;①﹣无法计算,故此选项错误;①(2a2)3=8a6,故此选项错误;①﹣a8÷a4=﹣a4,正确.故选:D.【总结归纳】此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.0【知识考点】同类项.【思路分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答过程】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.【总结归纳】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,76cm C.2cm,2cm,6cm D.5cm,6cm,7cm【知识考点】三角形三边关系.【思路分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答过程】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【总结归纳】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;①AC=BD;①AC⊥BD;①AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【知识考点】平行四边形的判定与性质;菱形的判定;概率公式.【思路分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);①四条边都相等的四边形是菱形.①对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答过程】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或①,概率为.故选:B.【总结归纳】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【知识考点】反比例函数图象上点的坐标特征.【思路分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答过程】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【总结归纳】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【知识考点】正方形的性质;相似三角形的应用.【思路分析】设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.【解答过程】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.【总结归纳】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题10小题,每题3分,共30分)11.一组数据:2,1,2,5,3,2的众数是.【知识考点】众数.【思路分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答过程】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【总结归纳】此题考查了众数,众数是一组数据中出现次数最多的数.12.分解因式:9x2﹣y2=.【知识考点】因式分解﹣运用公式法.【思路分析】利用平方差公式进行分解即可.【解答过程】解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).【总结归纳】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C =36°,则∠DAC的大小为.【知识考点】等腰三角形的性质.【思路分析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC﹣∠BAD=34°.【解答过程】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34°.【总结归纳】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.已知是方程组的解,则a+b的值为.【知识考点】二元一次方程组的解.【思路分析】把代入方程组得:,相加可得出答案.【解答过程】解:把代入方程组得:,①+①得:3a+3b=3,a+b=1,故答案为:1.【总结归纳】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.【知识考点】一元一次方程的应用.【思路分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答过程】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【总结归纳】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为.【知识考点】勾股定理.【思路分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【解答过程】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.【总结归纳】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).【知识考点】规律型:图形的变化类;生活中的旋转现象.【思路分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.【解答过程】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【总结归纳】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.【知识考点】用样本估计总体.【思路分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答过程】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.【总结归纳】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.【知识考点】一次函数与一元一次不等式.【思路分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答过程】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【总结归纳】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED 上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.【知识考点】含30度角的直角三角形;勾股定理.【思路分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答过程】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【总结归纳】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=【知识考点】实数的运算;零指数幂;负整数指数幂;解分式方程.【思路分析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:(1)原式=﹣1+﹣1=﹣1;(2)去分母得:2x+2﹣x+3=6x,解得:x=1,经检验x=1是分式方程的解.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12分)如图,点P在①O外,PC是①O的切线,C为切点,直线PO与①O相交于点A、B.(1)若∠A=30°,求证:PA=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.【知识考点】切线的性质.【思路分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与PA的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答过程】解:(1)∵AB是直径∴∠ACP=90°,∵∠A=30°,∴AB=2BC∵PC是①O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴PA=3PB(2)∵点P在①O外,PC是①O的切线,C为切点,直线PO与①O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【总结归纳】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【知识考点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解答过程】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【知识考点】二次函数的应用.【思路分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答过程】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【总结归纳】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,①min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.【知识考点】解一元一次不等式组;特殊角的三角函数值;算术平均数.【思路分析】(1)①根据平均数的定义计算即可.①求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【解答过程】解:(1)①M{(﹣2)2,22,﹣22}=,①min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4,故答案为﹣2≤x≤4.(3)∵M{﹣2x,x2,3}=2,∴=2,解得x=﹣1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.【总结归纳】本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG =2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解答过程】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BDsin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…①,联立①①并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【总结归纳】本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

相关文档
最新文档