整式的乘法第一课时参考教案
4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)
![4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)](https://img.taocdn.com/s3/m/8cb2958e32d4b14e852458fb770bf78a65293ac7.png)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将几个物品的个数相乘的情况?”(如购买水果时计算总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘法的奥秘。
本节课将结合具体实例,让学生在实际操作中掌握整式乘法的基本方法,培养他们的运算能力和逻辑思维能力。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过整式乘法的学习,使学生能够运用数学语言和符号进行逻辑推理,理解数学概念之间的内在联系,提高解决问题的能力。
2.发展学生的数学建模素养:让学生在实际问题中运用整式乘法建立数学模型,培养他们从现实情境中抽象出数学问题,并用数学语言进行表达和分析的能力。
-合并同类项:在乘法运算过程中,学生容易忽视或错误处理含有相同字母的项的合并。
难点举例:在计算4x^2 * (x + 2x)时,学生可能会错误地将结果写为8x^3,而忽略了字母x的指数合并。
-系数与指数的正确处理:在计算过程中,学生可能会混淆系数的乘法与字母指数的加法。
难点举例:3x^2 * 4x中,学生可能会错误地将系数3和4相加,而将字母x的指数2和1相乘。
在学生小组讨论时,我尝试作为一个引导者,提出了一些开放性的问题。我发现这样的问题能够激发学生的思考,促使他们从不同角度去理解和应用整式乘法。但同时,我也发现部分学生在分享成果时表达不够清晰,可能是因为他们对知识的掌握还不够牢固。
人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教学设计
![人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教学设计](https://img.taocdn.com/s3/m/e2553a5702d8ce2f0066f5335a8102d277a26160.png)
人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教学设计一. 教材分析人教版数学八年级上册15.1.3《整式的乘法》是初中数学的重要内容,是学习更高级数学的基础。
本节课主要介绍了整式乘法的基本概念和运算方法,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。
学生通过学习本节课的内容,可以加深对整式的理解和应用,为后续学习函数、方程等知识打下基础。
二. 学情分析八年级的学生已经学习了有理数、代数式、方程等基础知识,对整式的概念和运算有一定的了解。
但学生在进行整式乘法运算时,容易出错,对乘法分配律的理解不够深入。
因此,在教学过程中,需要帮助学生巩固整式的基本概念,引导学生理解乘法分配律,并通过实例让学生熟练掌握整式乘法的运算方法。
三. 教学目标1.知识与技能:使学生掌握整式乘法的基本概念和运算方法,能够正确进行整式乘法运算。
2.过程与方法:通过实例分析,引导学生理解乘法分配律,培养学生运用数学知识解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:整式乘法的基本概念和运算方法。
2.教学难点:乘法分配律的理解和运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题,引导学生主动探究整式乘法的运算规律;通过案例分析,让学生深入了解乘法分配律;通过小组合作,培养学生团队合作解决问题的能力。
六. 教学准备1.教师准备:教材、教案、PPT、黑板、粉笔等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过提问方式复习整式的基本概念,如整式的定义、单项式、多项式等。
然后引导学生思考:如何进行整式的乘法运算?从而引出本节课的主题。
2.呈现(10分钟)教师通过PPT展示整式乘法的三个基本类型:单项式乘单项式、单项式乘多项式、多项式乘多项式。
并对每个类型给出一个示例,让学生观察和思考。
《整式的乘法(第一课时)》教案
![《整式的乘法(第一课时)》教案](https://img.taocdn.com/s3/m/4e4a200c571252d380eb6294dd88d0d232d43c5b.png)
《整式的乘法(第一课时)》教案知能演练提升一、能力提升1.若M=(x-3)(x-7),N=(x-2)(x-8),则M与N的大小关系为()A.M<NB.M>NC.M=ND.不能确定2.若(x+k)(x-5)的结果中不含有x的一次项,则k的值是()A.0B.5C.-5D.-5或53.如图,在长方形中,两个阴影部分都是长方形,依照图中标出的数据,计算图中空白部分的面积,其面积是()A.bc-ab+ac+c2B.a2+ab+bc-acC.ab-bc-ac+c2D.b2-bc+a2-ab4.计算:ab·(a+1)= .5.如图,阴影部分的面积是(用含a的式子表示).6.计算:(1)(-2abc )2·(-ab )3·32ab 2; (2)-12a 2b 2(25a 2-4ab +43b 2); (3)(-12abc )(16a 2b -14ab 2c +13); (4)(2x 2+3)(3x 2-x+4).7.先化简,再求值:(x-2)(x 2-6x-9)-x (-2x-7),其中x=12.8.小张刚买了一套新房子,如图(单位:m),他打算把客厅铺上地砖,请你帮他算一下至少需要铺多少平方米的地砖?9.已知等式3a (2a-5)+2a (1-3a )=26,求a 的值.10.如图,边长分别为a ,b (a<b )的两个正方形并排放着,请你计算出图中阴影部分的面积.★11.若x 2+nx+3与x 2-3x+m 的乘积中不含x 2和x 3项,求m 和n 的值.二、创新应用★12.甲、乙两人共同计算一道整式乘法题:(2x+a )(3x+b ),甲由于抄错了第一个多项式中a 的符号,得到的结果为6x 2+11x-10;乙由于漏抄了第二个多项式中x 的系数,得到的结果为2x 2-9x+10.(1)你能知道式子中a ,b 的值各是多少吗? (2)请你计算出正确结果.知能演练·提升一、能力提升 1.B2.B (x+k )(x-5)=x 2-5x+kx-5k=x 2+(k-5)x-5k.因为积中不含有x 的一次项,所以k-5=0,解得k=5.3.C 空白部分可以看作是长为(a-c ),宽为(b-c )的长方形.4.a 2b+ab5.20a 26.解 (1)原式=4a 2b 2c 2·(-a 3b 3)·32ab 2=-6a 6b 7c 2.(2)原式=-15a 4b 2+2a 3b 3-23a 2b 4. (3)原式=-2a 3b 2c+3a 2b 3c 2-4abc. (4)原式=6x 4-2x 3+17x 2-3x+12.7.解 (x-2)(x 2-6x-9)-x (-2x-7)=x (x 2-6x-9)-2(x 2-6x-9)+2x 2+7x=x 3-6x 2-9x-2x 2+12x+18+2x 2+7x=x 3-6x 2+10x+18.当x=12时,原式=(12)3-6×(12)2+10×12+18=18−32+5+18=2158. 8.分析 由题图可知,客厅的一边长是(2b+a ),另一边长是(3b-a ). 解 (2b+a )(3b-a )=2b (3b-a )+a (3b-a )=2b ·3b-2ba+a ·3b-a 2=6b 2+ab-a 2. 故他至少需要铺(6b 2+ab-a 2)m 2的地砖.9.解 原等式左边=6a 2-15a+2a-6a 2=-13a.原等式即-13a=26,解得a=-2. 10.解 如图,补出一个边长分别为b ,a+b 的长方形.S 阴影=b (a+b )-12b 2-12a (a+b )-12a (b-a )=12b 2.11.解 (x 2+nx+3)(x 2-3x+m )=x 4-3x 3+mx 2+nx 3-3nx 2+mnx+3x 2-9x+3m=x 4+(n-3)x 3+(m-3n+3)·x 2+(mn-9)x+3m.由题意,得{n -3=0,m -3n +3=0,解得{m =6,n =3.二、创新应用12.分析 根据题意列出关于a ,b 的方程组. 解 (1)∵甲抄错了第一个多项式中a 的符号,∴甲计算的乘法为(2x-a )(3x+b ). ∵(2x-a )(3x+b )=6x 2+(2b-3a )x-ab. 又甲得到的结果为6x 2+11x-10,∴2b-3a=11.①∵乙漏抄了第二个多项式中x 的系数, ∴乙计算的乘法为(2x+a )(x+b ). ∵(2x+a )(x+b )=2x 2+(2b+a )x+ab. 又乙得到的结果为2x 2-9x+10,∴2b+a=-9. ②解由①②组成的方程组,得{a =-5,b =-2.(2)∵a=-5,b=-2,∴(2x+a )(3x+b )=(2x-5)(3x-2)=6x 2-4x-15x+10=6x 2-19x+10.。
14.1.4《整式的乘法(1)》教案
![14.1.4《整式的乘法(1)》教案](https://img.taocdn.com/s3/m/3e3e0595d05abe23482fb4daa58da0116d171f5d.png)
【解题过程】(1) 3x2 5x3 =15x5 ;(2) (2a3 )(3a)2 = 18a5 【思路点拨】确定运算顺序,先算乘方,再算乘法,注意确定运算中的符号,再利用单项式 与单项式相乘的法则进行计算. 【答案】(1)15x5 ; (2) 18a5 . 2.下面计算对不对?如果不对,应当怎样改正? (1) 3a3 2a2 6a6 ;(2) 5 y3 3y5 8 y15 . 【知识点】单项式与单项式相乘的法则 【数学思想】
学生容易得出:1 光年大约是( 3107 )×( 3105 )km.
问题 2:如何计算( 3107 )×( 3105 )呢? 师:学习了今天的知识,你一定就会迎刃而解了. 【设计意图】用光年知识,激发学生对新知主动探索的欲望,调动学生学习兴趣. 探究二:探究单项式与单项式相乘的法则,并会运用法则计算. ★ ●活动①大胆猜想,探究单项式与单项式相乘的法则. 问题 1:怎样计算( 3107 )×( 3105 )?计算过程中用到哪些运算律及运算性质? 学生计算后,展示计算过程: ( 3107 )×( 3105 ) (3 3) (107 105 ) 9 1012 运用了乘法交换律、乘法结合律及同底数幂的乘法的性质. 问题 2:如果将上式中的数字改为字母,比如 ac5 bc2 ,怎样计算这个式子呢? 学生独立思考后,展示: ac5 bc2 (a b) (c5 c2 ) abc7 .
.
14.1 整式的乘法(第 3 课时)
14.1.4 整式的乘法(第 1 课时)
一、教学目标 (一)学习目标
1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性. 2.理解单项式与单项式相乘的法则和单项式与多项式相乘的法则,并会运用法则进 行计算. 3.两个法则的熟练,灵活运用. (二)学习重点 单项式与单项式、单项式与多项式相乘的运算法则的理解及其运用. (三)学习难点 灵活地运用单项式与单项式、单项式与多项式相乘的法则进行计算. 二、教学设计 (一)课前设计 1.预习任务 (1)单项式与单项式相乘的法则: 单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式. (2)单项式与多项式相乘的法则: 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 2.预习自测 (1)计算: 2a3b 5a4 【知识点】单项式与单项式相乘的法则. 【数学思想】 【解题过程】 2a3b 5a4 (2 5) (a3 a4 ) b 10a34b 10a7b 【思路点拨】利用单项式与单项式相乘的法则计算. 【答案】 10a7b .
人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案
![人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案](https://img.taocdn.com/s3/m/0b271f5af02d2af90242a8956bec0975f565a47f.png)
人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案一. 教材分析人教版数学八年级上册15.1.3《整式的乘法》是整式部分的重要内容,也是学习多项式乘法、平方差公式和完全平方公式的基石。
本节课主要让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用,为后续学习更复杂的整式运算打下基础。
二. 学情分析学生在七年级时已经学习了有理数的乘法、分配律等基础知识,对于整式的加减法有一定的了解。
但是,对于整式的乘法运算,学生可能还存在着一定的困难。
因此,在教学过程中,要注重引导学生理解乘法分配律,并通过大量的练习让学生熟练掌握整式乘法的方法。
三. 教学目标1.知识与技能:让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用。
2.过程与方法:通过实例演示、自主探究、合作交流等方式,让学生经历整式乘法的过程,培养学生的运算能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:整式乘法的基本方法。
2.教学难点:乘法分配律在整式乘法中的应用。
五. 教学方法采用启发式教学法、情境教学法、合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的运算能力和思维能力。
六. 教学准备1.教师准备:熟练掌握整式乘法的方法,准备相关教学案例和练习题。
2.学生准备:掌握有理数的乘法、分配律等基础知识。
七. 教学过程1. 导入(5分钟)教师通过一个实际问题引导学生思考:已知长方形的长是10cm,宽是5cm,求长方形的面积。
学生可以很容易地得出答案,从而引出整式乘法的概念。
2. 呈现(10分钟)教师通过PPT展示整式乘法的定义和基本方法,引导学生理解整式乘法的运算规律。
例如,对于两个整式ax + b和cx + d的乘法,可以将其看作是(a c)x^2 + (a d + b c)x + b d。
3. 操练(10分钟)教师给出几个简单的整式乘法例子,让学生在纸上完成。
人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例
![人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例](https://img.taocdn.com/s3/m/43732588162ded630b1c59eef8c75fbfc67d9449.png)
一、案例背景
本节课为人教版数学八年级上册第14章第1节第4课时,内容为整式的乘法。在此之前,学生已经学习了有理数的乘法、乘方的概念和性质,以及整式的加减法。本节课的学习为后续多项式乘多项式、多项式乘单项式、单项式乘单项式等知识的学习奠定基础。
(二)问题导向
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)小组合作
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
(二)讲授新知
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
2.问题导向与自主探究的结合:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。同时,鼓励学生自主探究、尝试计算,培养学生的自主学习能力。
3.小组合作与互动交流:将学生分成小组,鼓励小组间的互动交流,让学生在分享经验中共同成长。通过小组讨论,培养学生的合作交流能力和团队协作精神。
整式的乘法(第一课时)教案
![整式的乘法(第一课时)教案](https://img.taocdn.com/s3/m/ba5532ad284ac850ad02429b.png)
1.小民的步长为a米,他量得家里的卧室长15步,宽14步,这间卧室的面积有多少平方米?
2
(-10xy3)(2xy4z) (-2xy2)(-3x2y3)( xy)
3、
3(x-y)2·[ (y-x)3][ (x-y)4]
4.判断:单项式乘以单项式,结果一定是单项式()
两个单项式相乘,积的系数是两个单项式系数的积()
教学重点、难点
重点:单项式与单项式、单项式与多项式和多项式与多项式相乘的法则
难点:项式与多项式相乘的法则
教具准备:数控一体机
教学过程
教学环节
教师活动
预设学生活动
设计意图
(一)知识回顾:回忆幂的运算性质:
(二)创设情境,引入新课
(三)自己动手,得到新知
(四)巩固结论,加强练习
(五)小结
am·an=am+n(am)n=amn(ab)n=anbn(m,n都是正整数)
问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?
问题的推广:如果将上式中的数字改为字母,即ac5·bc2,如何计算?
.类似地,请你试着计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c)
例:计算:(-5a2b)·(-3a)(2x)3·(-5xy2)
两个单项式相乘,积的次数是两个单项式次数的积()
两个单项式相乘,每一个因式所含的字母都在结果里出现()
5.计算:0.4x2y·( xy)2-(-2x)3·xy3
6.已知am=2,an=3,求(a3m+n)2的值
求证:52·32n+1·2n-3n·6n+2能被13整除
《整式的乘法》第1课时示范公开课教案【北师大数学七年级下册】
![《整式的乘法》第1课时示范公开课教案【北师大数学七年级下册】](https://img.taocdn.com/s3/m/52dc4ad3c9d376eeaeaad1f34693daef5ff71346.png)
《整式的乘法》教学设计第1课时一、教学目标1.熟练并掌握单项式乘以单项式的运算法则.2.能够熟练地进行单项式的乘法计算,发展运算能力.3.经历探索单项式乘单项式的运算法则的过程,通过类比学习,利用乘法的运算律将问题转化,培养学生转化的数学思想.4.让学生主动参与到探索过程中,培养学生思维的严密性和初步解决问题的能力.二、教学重难点重点:熟练并掌握单项式乘以单项式的运算法则.难点:能够熟练地进行单项式的乘法计算.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计【复习回顾】教师活动:教师提出问题,引导学生思考回答.问题:下列代数式中,哪些是单项式?预设:234235abx ab y --,,,是单项式.提问:什么是单项式?预设:数与字母的乘积,这样的代数式叫做单项式,单独的一个数或一个字母也是单项式.【情境导入】京京用两张同样大小的纸,精心制作了两幅画.如下图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有18x m 的空白.提问:你能计算出这两幅画的画面面积吗?【探究】教师活动:引导学生通过计算画面的面积引入单项式乘单项式的运算,类比数的运算,利用乘法的交换律和同底数幂的乘法,获得单项式乘单项式的运算法则.(1)第一幅画的画面面积是多少平方米?第二幅呢?你是怎样做的?预设: 第一幅画:(1.2)x x ⋅()1.2x x =⋅⋅ 乘法的交换律、结合律 21.2x = 同底数幂的乘法第二幅画:11(1.2)(1)88x x x ⋅--3=(1.2)()4x x ⋅()3(1.2)4x x =⨯⋅⋅乘法的交换律、结合律20.9x = 同底数幂的乘法(2)若把图中的1.2x 该为mx ,其他不变,则两幅画的面积又该怎样表示呢?预设: 第一幅画:()x mx ⋅()m x x =⋅⋅ 乘法的交换律、结合律 2mx = 同底数幂的乘法第二幅画:11()(1)88mx x x ⋅--3=()()4mx x ⋅()3()4m x x =⨯⋅⋅乘法的交换律、结合律234mx = 同底数幂的乘法 【想一想】(1)3a ²b ·2ab 3 及 xyz ·y 2z 等于什么?你是怎样计算的?预设: 3a ²b ·2ab 3 =(3×2)(a 2·a )(b ·b 3) = 6a 3b 4注:系数与系数相乘,同底数幂相乘. xyz ·y 2z=x ·(y ·y 2)·(z ·z )= xy 3z 2.注:只在一个单项式里含有的字母,连同)36a b6))()()22x x x y y z z32y z思维导图的形式呈现本节课的主要内容:。
《整式的乘法(1)》参考教案
![《整式的乘法(1)》参考教案](https://img.taocdn.com/s3/m/d5ecfbfda0116c175f0e48a3.png)
6.5 整式的乘法(一)●教学目标(一)教学知识点1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.(二)能力训练要求1.发展有条理的思考和语言表达能力.2.培养学生转化的数学思想.(三)情感与价值观要求在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣.●教学重点单项式与单项式相乘的运算法则及其应用.●教学难点灵活地进行单项式与单项式相乘的运算.●教学方法引导——发现法●教具准备投影片四张第一张:问题情景,记作(§6.5.1A)第二张:想一想,记作(§6.5.1B)第三张:例题,记作(§6.5.1C)第四张:练习,记作(§6.5.1D)●教学过程Ⅰ.创设问题情景,引入新课[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项.[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法.下面我们先来看投影片§6.5.1A 中的问题:为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画.受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图6-1所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有81x 米的空白.图6-1(1)第一幅画的画面面积是 米2; (2)第二幅画的画面面积是 米2.[生]从图形我们可以读出条件,第一个画面的长、宽分别为x 米,mx 米;第二个画面的长、宽分别为mx 米、(x -81x -81x)即43x 米.因此,第一幅画的画面面积是x·(mx)米2;第二幅画的画面面积是(mx)·(43x)米2.[师]我们一起来看这两个运算:x·(mx),(mx)·(43x).这是什么样的运算.[生]x,mx,43x 都是单项式,它们相乘是单项式与单项式相乘.[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法.我们先来学习单项式与单项式相乘.Ⅱ.运用乘法的交换律、结合律和同底数幂乘法的运算性质等知识,探索单项式与单项式相乘的运算法则出示投影片(§6.5.1B)想一想:(1)对于上面的问题小明也得到如下的结果:第一幅画的画面面积是x·(mx)米2;3x)米2.第二幅画的画面面积是(mx)·(4可以表达的更简单些吗?说说你的理由.(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?(3)如何进行单项式与单项式相乘的运算?[师]我们来看“想一想”中的三个问题.[生]我认为这两幅画的画面面积可以表达的更简单些.x·(mx)=m·(x·x)——乘法交换律、结合律=mx2——同底数幂乘法运算性质3x)(mx)·(43m)(x·x)——乘法交换律、结合律=(43mx2——同底数幂乘法运算性质=4[生]类似地,3a2b·2ab3和(xyz)·y2z也可以表达得更简单些.3a2b·2ab3=(3×2)·(a2·a)·(b·b3)——乘法交换律、结合律=6a3b4——同底数幂乘法运算性质(xyz)·y2z=x·(y·y2)·(z·z)——乘法交换律、结合律=xy3z2——同底数幂乘法的运算性质[师]很棒!这两位同学恰当地运用了乘法交换律、结合律以及同底数幂乘法的运算性质将这几个单项式与单项式相乘的结果化成最简.在(1)(2)的基础上,你能用自己的语言描述总结出单项式与单项式相乘的运算法则吗?你们一定做得会更棒.[生]单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.[师]我们接下来就用这个法则去做几个题,出示投影片(§6.5.1C) [例1]计算: (1)(2xy 2)·(31xy);(2)(-2a 2b 3)·(-3a);22(3)7(2)xy z xyz ⋅.解:(1)(2xy 2)·(31xy)=(2×31)·(x·x)(y 2·y)=32x 2y 3;(2)(-2a 2b 3)·(-3a)=[(-2)·(-3)](a 2a)·b 3=6a 3b 3;222222343(3)7(2)7428.xy z xyz xy z x y z x y z ⋅=⋅=[师生共析]单项式与单项式相乘的乘法法则在运用时要注意以下几点: 1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a 3·3a 2=6a 5,而不要认为是6a 6或5a 5.2.相同字母的幂相乘,运用同底数幂的乘法运算性质.3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.4.单项式乘法法则对于三个以上的单项式相乘同样适用.5.单项式乘以单项式,结果仍是一个单项式.Ⅲ.练习,熟悉单项式与单项式相乘的运算法则,及每一步运算的算理 出示投影片(§6.5.1D) 1.计算: (1)(5x 3)·(2x 2y); (3)(-3ab)·(-4b 2); (3)(2x 2y)3·(-4xy 2).2.一种电子计算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?(由几位同学板演,最后师生共同讲评) 1.解:(1)(5x 3)·(2x 2y)=(5×2)(x 3·x 2)·y=10x 3+2y=10x 5y; (2)(-3ab)·(-4b 2)=[(-3)×(-4)]a·(b·b 2)=12ab 3;(3)(2x 2y)3·(-4xy 2) =[23(x 2)3·y 3]·(-4xy 2) =(8x 6y 3)·(-4xy 2)=[8×(-4)]·(x 6·x)(y 3·y 2)=-32x 7y 5 2.解:(4×109)×(5×102) =(4×5)×(109×102) =20×1011=2×1012(次)答:工作5×102秒,可做2×1012次运算. Ⅳ.课时小结这节课我们利用乘法交换律和结合律及同底数幂乘法的法则探索出单项式相乘的运算法则,并能熟练地运用.Ⅴ.课后作业 课本习题6.8 Ⅵ.活动与探究若(a m+1b n+2)·(a 2n -1b 2m )=a 5b 3,则m+n 的值为多少?[过程]根据单项式乘法的法则,可建立关于m,n 的方程,即(a m+1b n+2)·(a 2n-1b 2m )=(a m+1·a 2n -1)·(b n+2·b 2m )=a 2n+m b 2m+n+2=a 5b 3,所以2n+m=5①,2m+n+2=3即2m+n=1②,观察①②方程的特点,很容易就可求出m+n.[结果]根据题意,得2n+m=5①,2m+n=1②,①+②得3n+3m=6,3(m+n)=6,所以m+n=2.●板书设计§6.5 整式的乘法(一)——单项式与单项式相乘问题:如何将x·(mx);(mx)·(43x)化成最简?探索:x·(mx)=m·(x·x)——乘法交换律、结合律 =mx 2——同底数幂乘法运算性质(mx)·(43x)=(43m)·(x·x)——乘法交换律、结合律3mx2——同底数幂乘法运算性质=4类似地,3a2b·2ab3=(3×2)(a2·a)(b·b3)=6a3b4;(xyz)·y2z=x·(y·y2)(z·z)=xy3z2.归纳:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.例题:例1.(师生共析)练习:(学生板演,师生共同讲评)●备课资料有趣的“3x+1问题”现有两个代数式:3x+1 ①1x ②2如果随意给出一个正整数x,那么我们都可以根据代数式①或②求出一个对应值.我们约定:若正整数x为奇数,我们就根据①式求出对应值;若正整数x 为偶数,我们就根据②式求出对应值.例如,根据这种规则,若取正整数x为18(偶数),则由②式求得对应值为9;而9是奇数,由①式求得对应值为28;同样正整数28(偶数)对应14……我们感兴趣的是,从某一个正整数出发,不断地这样对应下去,会是一个什么样的结果呢?也许这是一个非常吸引人的数学游戏.下面我们以正整数18为例,不断地做下去,如a所示,最后竟出现了一个循环:4,2,1,4,2,1…再取一个奇数试试看,比如取x为21,如b所示,结果是一样的——仍然是一个同样的循环.大家可以随意再取一些正整数试一试,结果一定同样奇妙——最后总是落入4,2,1的“黑洞”,有人把这个游戏称为“3x+1问题”.是不是从所有的正整数出发,最后都落入4,2,1的“黑洞”中呢?有人借助计算机试遍了从1到7×10的所有正整数,结果都是成立的.遗憾的是,这个结论至今还没有人给出数学证明(因为“验证”得再多,也是有限多个,不可能把正整数全部“验证”完毕).这种现象是否可以推广到整数范围?大家不妨取几个负整数或0再试一试.。
整式的乘法教学设计 人教版(优秀教案)
![整式的乘法教学设计 人教版(优秀教案)](https://img.taocdn.com/s3/m/66f0a0e8240c844769eaeed4.png)
第一章整式的乘除整式的乘法(第课时)一、学生起点分析:学生的知识技能基础:学生在小学就已经了解乘法分配律,在本章前面几节课中学生了解了幂的运算性质,并能正确运用幂的运算性质解决相关问题.在整式乘法的第一课时中又学习了单项式乘以单项式的运算法则,为本课时单项式乘多项式的学习奠定了充足的知识基础.学生的活动经验基础:在前面学习幂的运算时,学生经历了一些探索活动,初步积累了一些经验.在第一课时探索单项式乘单项式法则的过程中,学生也体会了转化思想在解决新问题中的重要作用,这都为本课时的探索积累了活动经验.二、教学任务分析:教科书根据整式运算的知识脉络和学生的认知基础确定了本节课的主要教学任务:让学生经历猜想、验证单项式与多项式相乘的运算法则的过程,能运用法则进行计算并解决实际问题.单项式乘以多项式看起来是一个新问题,但是学生结合前面的学习经验,类比数的乘法分配律,很容易将它转化为单项式乘单项式,使新知识的学习水到渠成.因此本节课应关注学生对算理的理解,发展学生有条理的思考及语言表达能力.具体教学目标为:.知识与技能:在具体情境中了解单项式与多项式乘法的意义,会进行单项式与多项式的乘法运算..过程与方法:经历探索单项式与多项式乘法法则的过程,理解单项式与多项式相乘的算理,体会乘法分配律的重要作用及转化的数学思想,发展学生有条理的思考和语言表达能力..情感与态度:在探索单项式与多项式乘法运算法则的过程中,获得成就感,激发学习数学的兴趣.三、教学设计分析:本节课共设计了七个环节:前置诊断,开辟道路——创设情境,自然引入——设问质疑,探究尝试——目标导向,应用新知——变式训练,巩固提高——总结串联,纳入系统——达标检测,评价矫正第一环节:前置诊断,开辟道路活动内容:教师提出问题,引导学生复习上节课所学的单项式乘单项式 、如何进行单项式乘单项式的运算?你能举例说明吗?、计算: ()223123abc abc b a ⋅⋅ ()4233)2()21(n m n m -⋅- 、写一个多项式,并说明它的次数和项数.活动目的:首先引导学生回忆单项式乘单项式的运算法则,目的是为探索单项式乘以多项式法则做好铺垫,因为最终我们要将它转化为单项式乘以单项式,所以这里通过活动、来进行回顾十分必要.有上一课时的课堂学习加上课后作业的巩固,学生应该能够熟练应用法则进行计算,所以问题设置的综合性较上节课的练习更强一些.问题的设置为今天的新课学习奠定基础.实际教学效果:绝大多数学生能够较熟练的说出单项式乘单项式的运算法则,通过练习发现学生在处理问题的第()小题时出错较多,既有符号的错误,也有幂的乘方出现问题.通过教师与学生共同订正错误,使学生的认识有了进一步的提高.第二环节:创设情境,自然引入活动内容:延续上节课的问题情境,才艺展示中,小颖也作了一幅画,所用纸的大小如图所示,她在纸的左、右两边各留了m 81x 的空白,这幅画的画面面积是多少?先让学生独立思考,之后全班交流.交流时引导学生呈现出自己的思考过程?同学之中主要有两种做法: 法一:先表示出画面的长和宽,由此得到画面的面积为)41(x mx x -; 法二:先求出纸的面积,再减去两块空白处的面积,由此得到画面的面积为2241x mx -m 1x m 1x教师启发学生:两种方法得到的答案不一样,到底哪种方法对?短暂的思考之后,学生回答都对,由此引出)41(x mx x -2241x mx -这个等式. 引导学生观察这个算式,并思考两个问题:式子的左边是什么运算?能不能用学过的法则说明这个等式成立的原因? 学生不难总结出,式子的左边是一个单项式与一个多项式相乘,利用乘法分配律可得)41(x mx x -x x mx x 41⋅-⋅,再根据单项式乘单项式法则或同底数幂的乘法性质得到x x mx x 41⋅-⋅2241x mx -,即)41(x mx x -2241x mx - 由此引出本节课的学习内容:单项式乘以多项式.活动目的:从实际问题出发,学生通过对同一面积的不同表达,引出)41(x mx x -2241x mx -这个等式.教师再引导学生运用乘法分配律、同底数幂乘法的性质说明上述等式成立的原因,由此引出新课.实际教学效果:这个问题让学生独立思考之后,全班交流.在这一问题的解决过程中学生可以体会到通过不同方法求同一图形面积就可以得到一个等式,而这种方法在后面的乘法法则探索中将一直沿用.第三环节:设问质疑,探究尝试活动内容:在刚才的数学活动基础上,教师再提出以下两个问题:问题:)2(x abc ab +⋅及)(2p n m c -+⋅等于什么?你是怎样计算的?问题: 如何进行单项式与多项式相乘的运算?要求学生先独立思考,再在四人小组内交流,之后全班交流.问题有上一环节的铺垫,学生几乎都能做出答案.在全班交流环节,教师重点引导学生说说是怎样计算的,目的是让学生明白每一步的算理,理解知识的形成过程.问题多数学生明白怎么做,但是组织语言时不够简练,只要意思正确,教师都加以肯定,再鼓励他们不断精炼语言,最后总结出单项式乘多项式的法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.活动目的:设置问题是让学生获得更充分的体验,为下面顺利归纳单项式与多项式的乘法法则铺平道路.问题交给学生尝试解决,目的是引导学生进一步理解算理,体会到乘法分配律的重要作用和转化的数学思想,在此基础上,学生自己总结出单项式乘以多项式的运算法则,并运用语言进行描述.实际教学效果:实际教学中,学生能够较顺利的发现规律,得到法则.只是在法则的归纳中,语言不够简练,需要教师不断的引导帮助.在这里重要的是能够理解运算法则及其探索过程,体会运用乘法分配律将单项式乘以多项式转化为上节课学习的单项式乘以单项式,不必要求学生背诵法则.第四环节:目标导向,应用新知活动内容:教师通过例题,引导学生应用单项式乘多项式的法则进行计算.实际教学中,教师将四道例题全部呈现,让学生先独立尝试完成,教师巡视批阅,根据巡视批阅中发现的问题,有针对性地进行讲解.例 计算:())35(222b a ab ab +()ab ab ab 21)232(2⋅- ())32()5(-22n m n n m -+⋅ ()xyz z xy z y x ⋅++)(2322教师先批阅每个学习小组中做的最快的同学,再由他批阅组内另三个同学的练习,之后由他总结汇报组内同学的完成情况,并分析错误成因.交流之后,留给学生两分钟的反思时间,一方面为刚才有错误的同学留下改错和消化的时间,另一方面也让学生结合刚才的例题总结做单项式与多项式乘法时,需要注意什么问题.让学生反思总结,升华提高,再有目的的进行练习.活动目的:例题的处理并不是单一的教师讲,学生模仿,而是先让学生独立尝试解决.事实上,教师提前就预料到学生容易出现哪些错误,但只有让学生在解决问题的过程中亲身经历错误,才能真正提高解决问题的能力.教师批阅每个组最快的学生,然后再让这个学生当小老师去批阅其他同学的,既调动了优生的积极性,又让老师有精力去关注那些学困生.例中第,,题是课本例题,第题教师在例题的基础上稍作改动,增加了符号这一易错点,这样学生才能结合自己的实践提高认识.实际教学效果:学生运用法则的正确率较高,说明能够理解单项式乘以多项式的实质就是运用乘法分配律,将其转化为单项式乘以单项式,但仍有学生出现符号错误、漏乘等问题.给学生分钟时间反思和消化,进一步加深对算理的理解,同时总结易错点,提高做题的正确率.第五环节:变式训练,巩固提高活动内容:★、计算:())(2n m a a + ())3(22a a b b -+())121(33-xy y x ()d ef d f e 22)(4⋅+ ★★、计算: )(5)21(2-2222ab b a a b ab a --+⋅ ★★★、已知的值求)3(,352732y y x y x xy xy ----=活动目的:设置了三个层次的练习,以题组的形式抛给学生,既避免了优生早早做完题无事可干,又能让基础薄弱的学生进行基本的巩固练习.通过不同难度的练习题,不断促进学生思考,运用所学知识解决新问题,在解决问题的过程中获得能力的提高.教学中,教师可以通过灵活的评价方式,激励学生挑战多星题,培养学生乐于钻研的精神.实际教学效果:通过前面例题有针对性的讲解,再加上学生的反思消化,第题的计算正确率明显提高.第三题考察学生整体代入思想,求值过程需要教师的点拨.第六环节:总结串联,纳入系统活动内容: 教师引导学生回顾本节课的学习过程,自己总结:、本节课学习了哪些知识?、领悟到哪些解决问题的方法?感触最深的是什么?、对于本节课的学习还有什么困惑?活动目的:回顾一节课的学习过程,教师引导学生从知识的学习、方法的领悟、相关内容的逻辑关联,这几个方面进行归纳总结本节课,使学生将本节课所学知识纳入个人的知识体系.教师希望学生能从前面所讲的内容中得到启发,解决后面遇到的问题,所以让学生理解知识之间内在的逻辑联系,是掌握全部内容的重要环节.实际教学效果:学生能够总结出单项式与多项式相乘的运算法则以及在练习中自己所出的错误,理解将单项式乘多项式转化为单项式乘单项式这种转化的数学思想.第七环节:达标检测,评价矫正计算:())478)(21-3+-x x x ( ())3)(1944(22x x x -+- 活动目的:用两道比较基本的题作为本节课的达标检测题,既检查了本节课重点内容的掌握,又能帮助学生树立自信,收获成功.实际教学效果:两道题的通过率比较高.课后作业:1. 习题.拓展作业:.,,62)3(232532的值求若n m y x y x xy y x y x nm -=+-- 四、 教学设计反思:本节课的教学设计以“阿克斯()动机”教学模式为指导:(),引起注意;(),教学内容与学习者的贴切性和相关性;(),通过成就增强自信;(),对学习效果满意.这一单元的教学是以习题训练为主的,知识前后联系紧密,层层递进,教学时注意选择了有层次的例题和练习,更主要的渗透了类比、转化等重要的数学思想方法.课堂上充分利用学习小组,组织学生开展合作学习,教师通过对小组进行评价,激发学生的竞争意识,让课堂学习更高效.。
《整式的乘法》第一课时参考教案
![《整式的乘法》第一课时参考教案](https://img.taocdn.com/s3/m/217467308e9951e79b892748.png)
整式的乘法(1)凤台四中邓丽春(一)教学目标:掌握单项式与单项式相乘的法则.教学重点:单项式与单项式相乘的法则.教学难点:对单项式的乘法运算的算理的理解. (二)教学过程4×y.3xy²; (2)4a利用乘法交换律、结合律以及前面所学的幂的运算性质,(2)4a bx)b·x这个字母及其指数不变母相乘式相乘的结果仍是单项式xy²)²答案应怎样改正(2)(-1.2102.-108x3.1.5×15.1.4 整式的乘法(1)单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。
人生不如意十之八九,有些东西,你越是在意,越会失去。
一个人的生活,快乐与否,不是地位,不是财富,不是美貌,不是名气,而是心境。
有时候极度的委屈,想脆弱一下,想找个踏实的肩膀依靠,可是,人生沧海,那个踏实肩膀的人,也要食人间烟火,也要面对自己的不堪与无奈。
岁月告诉我:当生活刁难,命运困苦,你的内心必需单枪匹马,沉着应战。
有时候真想躲起来,把手机关闭,断了所有的联系,可是,那又怎样,该面对的问题,依旧要面对。
与其逃避,不如接纳;与其怨天尤人,不如积极主动去解决。
岁月告诉我:美好的人生,一半要争,一半要随。
有时候想拼命的攀登,但总是力不从心。
可是,每个人境况是不同的,不要拿别人的标准,来塑造自己的人生。
太多的失望,太多的落空,纯属生活的常态。
岁月告诉我:挫败,总会袭人,并且,让你承受,但也,负责让你成长。
人生漫长,却又苦短,幽长的路途充满险阻,谁不曾迷失,谁不曾茫然,谁不曾煎熬?多少美好,毁在了一意孤行的偏执。
好也罢,坏也罢,人生的路,必须自己走过,才能感觉脚上的泡和踏过的坑。
因为懂得,知分寸;因为珍惜,懂进退。
最重要的是,与世界言和,不再为难自己和别人。
《整式的乘法》第1课时 教学设计【初中数学人教版八年级上册】
![《整式的乘法》第1课时 教学设计【初中数学人教版八年级上册】](https://img.taocdn.com/s3/m/2fb16473b4daa58da0114aeb.png)
《整式的乘法》 教学设计第1课时一、教学目标1.通过探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则.2.会利用法则进行单项式的乘法运算.二、教学重点及难点重点:单项式乘法法则及其应用.难点:理解运算法则及其探索过程.三、教学用具电脑、多媒体、课件四、相关资源微课,图片.五、教学过程(一)复习旧知回忆我们前面学过的正整数幂的运算性质:(1)同底数幂相乘:同底数幂相乘,底数不变,指数相加.即:m n m n a a a +⋅=(m ,n 均为正整数).(2)幂的乘方:幂的乘方,底数不变,指数相乘.即:m n mn a a =()(m ,n 均为正整数).(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即:n n n ab a b =()(n 为正整数).设计意图:通过复习,让学生进一步熟悉正整数幂的三个运算性质,澄清学习中存在的一些模糊认识,为后续学习铺平道路.(二)探究新知本图片是微课的首页截图,本微课资源讲解了单项式乘以单项式法则,并通过讲解实例与练习,巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】单项式乘以单项式.1.单项式乘单项式(1)问题:光的速度约为5310⨯ km/s ,太阳光照射到地球上需要的时间大约是2510⨯ s ,你知道地球到太阳的距离约是多少吗?学生思考列出式子:523510()()10⨯⨯⨯.(2)这个式子怎样计算?你能说说每步运算的依据吗?师生共同得出结果: 525252783510351010151015101510 ()()()().10.+⨯⨯⨯=⨯⨯⨯=⨯=⨯=⨯在上面的运算过程中用到了哪些运算定律及运算性质?(乘法交换律、结合律及同底数幂的运算性质)(3)填空: 52ac bc ()()._________________________________________⋅=⋅==结合上面的计算过程,先请学生用自己的语言概括单项式乘单项式法则,最后师生共同用精炼的文字概括表述单项式乘单项式法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(三)例题解析【例1】计算:(1)253a b a --()();(2)3225x xy -()(). []223153 53 15 a b a a a b a b --=-⨯-⋅⋅=解:()()()()()();[]32323242225 85 85 40x xy x xy x x y x y -=⋅-=⨯-⋅⋅=-()()()()()().通过例1的解析,师生共同总结单项式乘单项式计算时的注意事项:(1)积的系数等于各系数的积,这部分是有理数的乘法运算,应先确定符号,再计算绝对值;(2)同底数幂的乘法运算,要按照“底数不变,指数相加”进行计算;(3)只在一个单项式里含有的字母,要连同他的指数写在积里,注意不要把这个因式丢掉.设计意图:巩固单项式乘单项式法则的同时让学生总结单项式乘单项式计算时的注意事项.(四)课堂练习(1)计算的结果是( ). A . B .C .D .设计意图:考查单项式乘单项式法则.(2)计算的结果为( ).A .B .C .D .(3)已知:,求代数式的值. 学生独立完成。
《整式的乘法》第一课时参考教案
![《整式的乘法》第一课时参考教案](https://img.taocdn.com/s3/m/ea778760011ca300a6c3904b.png)
1.6 整式的乘法(1)教学目标:经历探索单项式与单项式相乘的运算方法,较熟练地进行整式的乘法运算,并学会解决有关问题.教学关键:(1)单项式与单项式相乘的方法的探索.(2)单项式与单项式相乘的方法的理解.(3)体会单项式与单项式相乘时,需转化为系数相乘、同底数幂相乘.教学过程:一.问题引入问题一:如图,有6个小正方形组成的长方形.①若小正方形的边长为a ,则长方形的长与宽分别是多少?②长方形的面积可表示成什么?方法1: 方法2:③由此可见,2623a a a =⨯.你能用乘法的运算律来说明相等的原因吗?问题二:教材上“宣传画”的面积分别是多少?()mx x ⋅ ()⎪⎭⎫ ⎝⎛⋅x mx 43“想一想”:如何使结果表达得更简单些?二.算法探索1.思考:将下列各式的结果表达得更简单些?(1) 3223ab b a ⋅ (2)()()z y xyz 2⋅2.讨论:如何进行单项式与单项式相乘的运算?单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.如:4a 2x 5·(-3a 3bx) =[4×(-3)](a 2·a 3)·b ·(x 5·x) =-12a 5bx 6.系数相乘 相同字母相乘(有理数的乘法) (同底数幂的乘法)注: 只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.三.例题学习1.计算:(1)()⎪⎭⎫ ⎝⎛⋅xy xy 3122 (2)()()a b a 3232-⋅- (3))()45105104⨯⨯ (4)()()n m mn m 526325-⎪⎭⎫ ⎝⎛⋅- 解:(1)()()()322232312312y x y y x x xy xy =⋅⋅⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛⋅ (2)()()()()[]()33323263232b a b a a a b a =⋅--=-⋅-(3)()()()()10945451021020101054105104⨯=⨯=⨯⨯=⨯⨯(4)()()()()()()3725522063256325n m n n m m m n m mn m =⋅⋅⋅⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⋅- 2.巩固练习:P.23 随堂练习1、2P.24 习题1.8 1同学交流、互学.如: (1)单项式相乘的结果仍是单项式.(2)不论几个单项式相乘,都可以用这个法则. 等等.四.应用举例1.窗户的形状如图,其上部是半圆形,下部是边长相同的四个小正方形.已知小正方形的边长为a,求窗户的面积是多少?解:()()22222142142122a a a a a a ⎪⎭⎫ ⎝⎛+=+=+πππ 2.练习: (1)P.24 习题1.8 2(2)一种电子计算机每秒可作108次运算,它工作5×102秒可作多少次运算?五.小结作业1.小结: (1)单项式与单项式相乘,如何运算?(2)你还有什么体会?2.作业: 另见配套练习.。
人教版数学八年级上册14.1.4 整式的乘法 (1) 教案
![人教版数学八年级上册14.1.4 整式的乘法 (1) 教案](https://img.taocdn.com/s3/m/22199c39a517866fb84ae45c3b3567ec102ddcd0.png)
14.1.4 整式的乘法(1)一、教材分析本节课是整式乘法的第一课时主要研究单项式乘以单项式的运算,它是进一步学习整式乘法其他运算的基础.为渗透类比的数学思想提供了很好的素材.这节课在整个教材中起承上启下的作用.二、学情分析本节课的学生是八年级一班的学生,共有53人,共分9组,每组有一半的数学优秀学生,能够指导组里中下学生进行自学,有一定合作探究意识,在知识方面已经学习了同底数幂相乘、幂的乘方、积的乘方等乘法公式性质。
这些都为自主探究单项式乘以单项式打下了良好的基础。
三、教法分析,教学手段的选择:为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测---直观验证 ---得出结论。
在知识的发生发展中渗透类比数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.四、教学任务在本节课教学中,我依据《新课程标准》和教材的要求,根据学生的知识结构特点,本着可接受性的教学原则,制定此教学目标。
教学目标1.感受整式乘法的现实意义。
2.掌握单项式与单项式相乘的法则。
并能应用法则进行计算。
3.在整式乘法法则的探究过程中体会转化思想。
教学重点单项式与单项式相乘的法则教学难点结果中项的符号和字母的指数课时数一课时教学准备课件、投影和微课视频问题1 光的速度约为3×102千米/秒,太阳光照到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少吗?(独立完成) 学生口述教师板书:思考:如何计算?说出每一步的依据是什么?乘法交换律与结合律同底数幂乘法学生活动:让一学生上黑板板演,其他同学在下面计算。
预测:1.学生解得答案是对的,但是没有必要的文字说明。
对策:教师引导学生给出每一步骤的名称,并且说出每一步骤的依据,关注学生的语言表达,及时给予纠正和补充。
()()25105103⨯⨯⨯())1010(5325⨯⨯⨯=71015⨯=8105.1⨯=)2为了能直观地显现知识的脉络,精当的突出教学重点,加深学生对知识的理解和记忆,培养学生思维的连贯性。
《整式的乘法》第一课时教案
![《整式的乘法》第一课时教案](https://img.taocdn.com/s3/m/4b2ca4f259f5f61fb7360b4c2e3f5727a5e924aa.png)
《整式的乘法》第一课时教案《《整式的乘法》第一课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.教学内容(1)单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.地位与作用单项式乘单项式综合用到有理数的乘法、幂的运算性质等知识,它是学习多项式乘法的基础,在整式乘法中,它有承前启后的作用,是整式乘法的关键.单项式乘多项式是研究多项式与多项式相乘、整式的除法和因式分解的基础,同时也是学习物理、化学等学科不可缺少的工具.本节课的教学效果将直接影响后续课程的教学.3.教学重点(1)单项式与单项式相乘法则的概括过程和运用.(2)单项式与多项式相乘法则的概括过程和运用.二、目标解析1.目标(1)理解单项式乘单项式、单项式乘多项式法则.(2)能够运用单项式乘单项式、单项式乘多项式法则进行运算.(3)在探索单项式与多项式相乘法则中,发展学生的运算能力,体会转化思想和数形结合的思想.2.目标解析(1)学生能理解并掌握单项式与单项式相乘、单项式与多项式相乘法则.(2)学生能运用单项式与单项式、单项式与多项式相乘法则.(3)结合具体的实例,让学生体会从特殊到一般的数学思想及类比的学习方法.三、学情诊断八年级学生已经掌握了有理数的乘法,并对幂的运算性质有一定的认知水平,再利用单项式与单项式相乘法则过程中,符号是计算过程中极易出错的问题.单项式与多项式相乘是利用乘法分配律展开,结果是一个多项式,其项数与多项式中的项数相同,学生往往出现漏乘现象.四、教学策略1.教学手段利用多媒体和导学案辅助教学,提高课堂效率和学生的积极性.2.教学工具电脑和投影仪.五、教学过程本节课以教材为蓝本,以学生为主体,以高效为目标,以多媒体和导学案为手段,我将整个教学过程设计为以下8个环节:1.观看视频,激发热情首先让学生欣赏一段天宫二号起飞的视频,再提出问题:“天宫二号飞行的高度怎么求?”,由于学生已经学过路程问题,他们很快能说出“速度乘时间”.【设计意图】由天宫二号起飞视频入手,提高学生的学习积极性,既能让学生体会到数学来源于生活,也能服务于生活,更能激发学生的爱国热情.2.引入问题,探索新知新课标指出,教师是课堂教学的组织者、引导者、合作者,学生才是学习的主体.因此在这一环节,我引导学生探索,设置了问题1.问题1“天宫二号”垂直起飞的平均的速度约7×103m/s,垂直飞行的时间约2×102s,你知道“天宫二号”垂直飞行路程约是多少吗?问题1是由学生观看的视频抽象出来数学问题,并提出问题:“天宫二号”的垂直飞行的路程是多少呢?学生根据已经学过的知识,很容易的得出结论(7×103)×(2×102)m.我接着问:“那么(7×103)×(2×102)等于多少呢”,学生根据整数与整数的乘法和科学记数法等知识,能求出结果是1.4×106.肯定学生的回答后,再次追问了一个问题:在计算(7×103)×(2×102)的过程中,运用了哪些运算律和运算性质?这个问题不是很难,学生能够回答,结论是:乘法交换律、乘法结合律以及幂的运算性质.为了进一步引导,我追问了两个问题.追问1如果将数据7×103改为7c3,2×102改为2c2,怎样计算7c3·2c2这个式子?追问2如果将数据7c3改为ac3,那怎样计ac3·2c2这个式子?追问1是将问题1中物理问题转化为纯数学问题,把数据10换成c.追问2是将思考题1中的7换成了a.通过追问1和追问2,我把“数”的运算转化为“式”的运算,并在此基础上,让小组合作讨论、归纳和总结出“式”的运算规律,即单项式与单项式相乘法则.【设计意图】第一个环节,是为探索单项式与单项式相乘法则做知识铺垫,第二个环节通过由特殊到一般,由具体到抽象,通过类比得出单项式与单项式相乘法则,同时也培养学生了探索新知的方法3.总结新知,应用新知通过问题1探究,归纳提炼出单项式与单项式相乘法则,即:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.在这个运算法则里,要强调三个方面的内容,即系数、同底数幂和只在一个单项式里含有的字母.为了引导学生使用这个法则,我设置了例题1.例1计算:(1)(-5a2b)(-3a)(2) (2x)3(-5xy2)运用法则解决问题时,首先要认清式子的结构,即是否单项式与单项式相乘.显然例1第一题符合这样的结构,而例1第二题不符合这样的结构,式子里面有一个积的乘方运算,所以先运算积乘方,然后转化为单项式与单项式相乘.【设计意图】引导学生使用法则,加深学生对法则的理解.4.应用新知提高能力为了突出难点1,我设置了练习1和练习2.练习1口算下列各题,看谁算得又对又快:(1) 6x2·3xy(2) 4y·(-2xy2)(3) (-3ab)·2ab2(4) (-3x)2·5x3练习2计算:(1) (-3x)2·4x2(2) (-2a)3·(-3a)2练习1是一个抢答题,不但提高了学生的积极性,也活跃了课堂气氛,更让学生加强了对法则的理解和应用.练习2由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,适时提醒学生注意符号问题.练习1、练习2加强了单项式与单项式相乘法则的应用.【设计意图】第一个环节是为了激发学生的积极性,活跃课堂氛围,初步检查了部分学生的掌握情况.第二个环节是检验全体学生的掌握情况.5.引入问题再探新知为了突破重点2,我引入了问题2,把实验中学的“思源广场”花坛抽象成为数学问题.问题2为了扩大绿地面积,实验中学把“思源广场”的一块长pm,宽bm的长方形绿地,向两边分别加宽am和cm,你能用几种方法表示扩大后的整个绿地面积?学生根据数形结合思想,用两种不同方式表示花坛的面积,利用面积不变这一条件,得到一个单项式乘多项式等于多项式,并由小组合作探究单项式与多项式相乘的规律.【设计意图】由校园内的“思源广场”引出新知,可以增加学生的学习兴趣.在推导法则过程中,体会转换和数形结合的思想的应用.6.归纳新知应用新知根据小组探究结果,由小组代表总结出单项式与多项式相乘法则,即:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.在得出单项式与多项式相乘法则后,引导学生发现,单项式与多项式相乘,实质是利用乘法分配律转化为单项式与单项式相乘,再把所得的积相加.这一过程体现了转化的数学思想.为了突破难点2,我设置了例题2.例2计算:(1)(-4x)·(3x+1)(2)【设计意图】加强对法则的理解,由老师根据法则完成例题2,并适时提醒学生避免出现“漏乘”现象,并注意符号问题.7.训练新知拓展提升第一个环节,为了突破难点2,我设置了练习3.练习3计算:(1)3a(5a-2b)(2)(x-3y)(-6x)练习3由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,并了解下面学生掌握情况,适时提醒可能出现的问题.【设计意图】由学生独立完成,学生代表板书,可以检验学生对法则的掌握情况为了培养学生的发散思维,第二个环节设置了一个拓展提升题:如图是改造后的“思源广场”花坛,你能求出它的整个面积吗?在这个环节中,小组内再次合作交流,从不同角度看待这个问题,通过一题多思,一题多解培养学生的探索精神和创新意识.通过学生发言讲解,体现学生是课堂的主体,把课堂真正还给学生.【设计意图】用不同方法求面积,培养学生的发散思维.8.总结收获课后反思为了让学生能清晰的理出本节课所学的知识,我引导学生从两个方面进行总结:(1)本节课在数学知识上你有哪些收获?(2)本节课体现出了哪些数学思想?【设计意图】通过归纳总结,优化知识结构,完善知识体系,体会数学思想,提高认知水平,同时培养了学生的归纳能力、语言表达能力.本节课同学们共同探讨了单项式与单项式相乘、单项式与多项式相乘法则,知识点都是学生通过探索、归纳发现的.对知识的理解步步深入,达到了各层次的目标要求,并且本节课注重了知识的拓展延伸,使课堂效益达到最佳状态.《整式的乘法》第一课时教案这篇文章共10120字。
整式的乘法(一)教案
![整式的乘法(一)教案](https://img.taocdn.com/s3/m/1e2743110912a21614792977.png)
1.6整式的乘法(一)教学目标:知识与技能1、在具体情境中了解单项式乘法的意义;2、理解单项式乘法法则;3、会利用法则进行单项式的乘法运算。
过程与方法1、验算探索单项式乘法运算法则的过程,理解算理,体会乘法交换律和结合律的作用和转化的思想;2、发展学生有条理的思考能力和语言表达能力。
情感、态度与价值观体验探求数学问题的过程,体验转化的思想方法,获得成就感,提升学习动力源。
教学重点:单项式乘法法则及其应用。
教学观点:理解运算法则及其探索过程。
教学过程:一、问题引入:1、现有长为 x 米,宽为 a 米的矩形,其面积为平方米。
2、长为 x 米,宽为 2a 米的矩形,面积为平方米。
3、长为 2x 米,宽为 3a 米的矩形,面积为平方米。
教师活动学生活动在这里,求矩形的面积, 会遇到因式都是单项式, 它们相乘,a x, x 2a,2x 3a, 这是什么运算呢?是单项式与单项式相乘。
二、探索单项式乘单项式的运算法则:对于引例中的问题,我们可以借助于图示帮助得出结果。
(1) a x ax (2)x 2a 2ax(3)2x 3a6ax三、过手训练: 例 1:计算:(1)(2xy 2) ( 1xy)3(2)( 2a 2b 3) ( 3a)(3)(4 10)5(5 104)(4)( 3a 2b 2 ) ( a 3b 2 )5(5)( 2a 2bc 3) ( 3 c 5 ) (1ab 2c)34 3教师活动 学生活动(写出完整解答)运用单项式乘以单项式的运一、点评:算法则,完成解答。
1 、先确定结果的符号;2、系数对系数,指数对指数,系数相乘,指数相加。
3、每个单项式相乘,法则仍适用,结果必为单项式。
课堂练习:1 、计算: (1) 3a 3 (4ab 2)2( 2)( 3x 2y)2( 2xyz)3(3) 1ab 2c ( 3ac ) ( 4a 2bc 3)38 5 2、一个长方体形储货仓长为4×103 ㎝,宽为 3×103㎝,高为 5×102㎝,求这个货仓的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法(1)
(一)教学目标 知识与技能目标:
掌握单项式与单项式相乘的法则. 过程与方法目标:
理解单项式的乘法运算的算理,体会乘法的交换律、结合律的作用,发展有条理的思考及语言表达能力. 情感态度与价值观:
通过学生板算、讨论、争论等方法培养学生归纳、概括能力,以及运算能力. 教学重点:单项式与单项式相乘的法则. 教学难点:对单项式的乘法运算的算理的理解. 教学用具: (二)教学程序 教学过程
师生活动
设计意图
一、
复习导入
1.下列单项式各是几次单项式?它们的系数各是什么? 7x, -2a²bc, -t²,
103ab , 7
4
ut³, -10xy³z². 2.下列代数式中,哪些是单项式?哪些不是? -2x³, ab, 1+y,
5
4
ab³, -y, 6x²-x+5, 3.利用乘法的交换律、结合律计算6×4×13×25. 4.前面学习了哪三种幂的运算性质?内容是什么? 5.计算: (2)x².x³.x³, (2)-x.(-x)² ,(3) (a²)³ , (4)(-2x³y)²
复习回顾式导入新课有助于让学生回顾所学知识,为本节课的学习做好铺垫.
二、
新知讲解
探究1: (1)2x²y.3xy²; (2)4a 2x 5 ·(-3a 3bx),这是什么运算?如何进行运算?
让学生召开讨论研究所提的问题.引出课题并板书 方法提示:
利用乘法交换律、结合律以及前面所学的幂的运算性质,来
计算这两个单项式乘以单项式问题. (1)2x 2y·3xy 2
=(2×3)(x 2·x)(y·y 2) (利用乘法交换律、结合律将系数与系数,
= 6x 3y 3; 相同字母分别结合,有理数的乘法、同
底数幂的乘法)
(2)4a 2x 5 ·(-3a 3bx)
=[4×(-3)](a 2· a 3)· b·(x 5· x) (字母b 只在一个单项式中出现,
= -12a 5bx 6. 这个字母及其指数不变) 总结出单项式的乘法法则:
单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
教师进一步分析单项式乘以单项式的法则
(1)①系数相乘—有理数的乘法,先确定符号,再计算绝对值; ②相同字母相乘—同底数幂的乘法,底数不变,指数相加; ③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.
(2)不论几个单项式相乘,都可以用这个法则. (3)单项式相乘的结果仍是单项式 教师对单项式乘以
单项式的法则的阐述,有助于学生更深层的理解此法则.
例题讲解: 例题1 :计算
(1)(-5a 2b 3)(-3a); (2)(2x)3(-5x 2y); (3)
32x³y².(-2
3
xy²)²; (4)(-3ab).(-ac).6ab(c ²)³ 参考答案:
解:(1)(-5a 2b 3)(-3a)=[(-5)(- 3)](a 2·a)·b 3 = 15a 3b 3; (2)(2x)3(-5x 2y)= 8x 3·(-5x 2y)=[8×(-5)](x 3 ·x 2)·y= - 40x 5y ; (3)
32x³y².(-23xy²)²=32x³y².4
9x²y 4 通过例题让学生学会运用所学知识解决问题,特别是要注意总结单项式乘以单项式运算中会出现的问题以便今后能有所注意.
=(
32×49)(x³.x²)(y².y 4)=2
3x 5y 6 (4)(-3ab)(-a 2c)2· 6ab(c 2)3 =(-3ab)·a 4c 2·6abc 6 =[(-3)×6]a 6b 2c 8 = -18a 6b 2c 8.
例题2: 下面的计算对不对?如果不对,应怎样改正? (1)4a³. 2a²=8a 6 (2)2x 4. 3x 4=6x 8 (3)3x² 4x²=12x² (4)3y³. 4y 4=12y 12 参考答案:
(1)4a³. 2a²=8a 6×, 改:4a³. 2a²=8a 5 (2)∨,
(3)3x² 4x²=12x²×,改: 3x² 4x²=12x4 (4)3y³. 4y 4=12y 12×,改: 3y³. 4y 4=12y 7 例题3: 选择:
(1)下列计算正确的是( ) A.(-3x³).(-2x²)²=-12x 12 B(-3ab)(-2ab)²=12a³b³ C.(-0.1x).(-10x²)²=x 5 D.(2⨯10n )(
2
1
⨯10n )=10n 2 (2)(-1.2⨯ 10²)²⨯ ( 5⨯10³)⨯ (2 ⨯!04)³的值等于( )
⨯1019 ⨯1020
⨯ 1019 ⨯1020
参考答案: (1)D, (2)B 四、达标训练
1.计算:(1)3x 5·5x 3 ; (2)4y·(- 2xy 3); 2.计算:(1)(3x 2y)3·(- 4xy 2); (2)(-xy 2z 3)4·(-x 2y)3 3.光的速度每秒约为3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?
帮助学生及时巩固、运用所学知识.并且体验到成功的快乐.
4.一种电子计算机每秒可作108次运算,它工作5×102 秒可作多少次运算?
5.计算:
(1) (2x²)(31xy²z )(-6yz) (2) -2a.(-a²bc)².2
1a(bc)³
参考答案:
1.15x 8, -8xy 4, 10x³,
8
1
x³y 4z 2.-108x 7y 5 ,-x 10y 11z 12, , 4. 5×10
5.(1) -4x³y³z² (2) -a 6b 5c 5 五、点评与小结
让学生小结本节课所学内容,应注意的地方.
激发学生主动参与的意识,为每一位学生创造在数学学习活动中获得成功的体验机会.
六、作业
由学生根据自己学习能力,恰当选做,既面向全体学生,又满足不同学生的学习需要.
15.1.4 整式的乘法(1)
单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.。