系统校正设计:根轨迹法超前校正
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
基本概念两种常用校正装置设计方法频率法2
第六章1. 基本概念2. 两种常用校正装置3. 设计方法(1)频率法(2)根轨迹法(3)复合校正 6—1 校正的基本概念一、性能指标的提法:1.稳态误差:Ess 或v Kp Kz Kv 2.动态品质:(1) 时域指标:δ% ts (2)开环频域指标:Wc ν(3)闭环频域指标:Mr Wr 或Wb 如何改变性能的问题?1. 改变系统参数:增大开环传递函数K →ess ↓→h ↘v ↘→σ(改善很有限,且稳态与动态有些矛盾)2. 改变系统结构:增加辅助装置定义:利用增加辅助装置改变系统性能方法称为— 辅助装置包括:校正装置 、控制器、调节器二、校正方式:1. 串联校正:图P36 2. 反馈校正:图 3. 复合校正:(1)按给定输入的 图 目的:理论上可以做到:C (S )=R (S )即C (t )=R (t )(2)按扰动输入的 图 目的:理论上完全消除N (s )对输入影响Cr (s )=0工程上一般采用近似补偿 三、设计方法 (频域法) 1. 试探法(分析法)首先根据检验选定校正装置的基本形式→算出校正装置的参数→检验校正后的性能指标→是否符合; 如果符合则完成设计 ;否从新设计2.综合法(数学法)首先由要求的性能指标→画出希望的开环L(w)曲线→再与原系统的L (W )想比较→得到校正装置的Lc(w)→反写出校正装置的传函6—2常用的校正装置分类:讨论电的校正装置1。
无源校正装置(RC 网络)2。
有源校正装置(运放器)调节器一、无源超前校正装置(RC 网络 传函 伯德图) 电路:U2U1CR2R1传函:(复阻抗法)Gc(s)=1+Tas/a(1+Ts) a 衰减系数 T 时间常数必须补偿a 的衰减:把原K 增加a 倍或再串一个放大器(a 倍) 补偿后:aGc(s)=1+TaS/1+TS (a>1) 二、无源迟后校正装置 电路;6—3一、超前校正问题的提出 例:系统如图所示,要求1. 在单位斜坡输入下稳态误差ess<0.1;2. 开环剪切频率3. 相角裕度 幅值裕度问是否需要校正,怎样校正?解:首先进行稳态计算K=10可以满足稳态误差要求。
61-1 2 系统校正概述及超前校正
26
(ω) arctanTω arctanTω
根据两角和的三角函数公式,可得
(ω)
arctan
(1- α)Tω 1 αT2ω2
将上式求导并令其为零,得最大超前角频率
d 0
d
ωm
1 Tα
13
得最大超前相角 或写为
m
arctan
1- α 2α
m
arcsin 1- α 1 α
自身无放大能力,通常由RC网络组成,在信号 传递中,会产生幅值衰减,且输入阻抗低,输出阻抗 高,常需要引入附加的放大器,补偿幅值衰减和进 行阻抗匹配。
无源串联校正装置通常被安置在前向通道中能 量较低的部位上 。 有源校正装置:
常由运算放大器和RC网络共同组成,该装置自身 具有能量放大与补偿能力,且易于进行阻抗匹配, 所以使用范围与无源校正装置相比要广泛得多。
为了提高抗高频干扰的能力,开环幅频特性高频段应 有较大的斜率。高频段特性是由小时间常数的环节决定 的,由于其转折频率远离ωc,所以对的系统动态响应影 响不大。但从系统的抗干扰能力来看,则需引起重视。
8
6-2 超前校正
三个频段的概念
L() dB
15
15 低频段
c
中频段
高频段
9
控制系统的校正方法通常有两种:
;
1 sin(m )
(4)计算校正后系统剪切频率
10lg( 1 )
(5)确定 (6)验证。
1 T
c
, 1 c T
23
通过超前校正分析可知:
(1)提高了控制系统的相对稳定性——超前校正利用 超前校正装置的相位超前特性对系统校正,使系统的稳 定裕量增加,超调量下降。
根轨迹的超前校正
学号:1109141002 2013 - 2014学年第1学期《MATLAB应用设计》题目:基于根轨迹的相位超前校正专业:电气工程学院班级:电气工程及自动化(1)姓名:操勇指导教师:***成绩:电气工程系基于根轨迹的相位超前校正摘要:根轨迹法是一种直观的图解方法,它显示了当系统某一参数(通常为增益)从零变化到无穷大时,如何根据开环极点和零点的位置确定全部闭环极点位置。
从根轨迹图可以看出,只调整增益往往不能获得所希望的性能。
事实上,在某些情况下,对于所有的增益,系统可能都是不稳定的。
因此,必须改造系统的根轨迹,使其满足性能指标。
利用根轨迹法对系统进行超前校正的基本前提是:假设校正后的控制系统有一对闭环主导极点,这样系统的动态性能就可以近似地用这对主导极点所描述的二阶系统来表征。
因此在设计校正装置之前,必须先把系统时域性能的指标转化为一对希望的闭环主导极点。
通过校正装置的引入,使校正后的系统工作在这对希望的闭环主导极点处,而闭环系统的其它极点或靠近某一个闭环零点,或远离s平面的虚轴,使它们对校正后系统动态性能的影响最小。
借助MATLAB,通过编写函数和程序,可以容易地设计出超前校正器,避免了繁琐的计算和绘图过程,从而为线性控制系统的设计提供了一种简单有效的途径。
本文将基于根轨迹法设计超前校正器,并给出它的MATLAB实现。
关键词:根轨迹,超前校正,闭环零点,MATLAB一、根据轨迹法根据轨迹法进行超前校正的一般步骤为:1)根据对系统静态性能指标和动态性能指标的要求,分析确定希望的开环增益和闭环主导极点的位置。
2)画出校正前系统的根轨迹,判断希望的主导极点位于原系统的根轨迹左侧,以确定是否应加超前校正装置。
3)根据题目要求解出超前校正网络在闭环主导极点处应提供的相位超前角。
根据图解法求得Gc(s)的零点和极点,进而求出校正装置的参数。
5)画出校正后系统的根轨迹,校核闭环主导极点是否符合设计要求。
二、超前校正的原理和方法2、1前校正的原理所谓校正,就是在调整放大器增益后仍然不能全面满足设计要求的性能指标的情况下,加入一些参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,达到设计要求。
单位负反馈系统校正——自动控制原理课程设计
目录1.设计题目...................................................................... 错误!未定义书签。
2. 摘要 (2)3、未校正系统的分析 (3)3.1.系统分析 (3)3.2.单位阶跃信号下系统输出响应 (4)4、系统校正设计 (7)4.1.校正方法 (7)4.2.设计总体思路 (7)4.3.参数确定 (8)4.4.校正装置 (9)4.5.校正后系统 (10)4.6.验算结果 (11)5、结果 (13)5.1.校正前后阶跃响应对比图 (13)5.2.结果分析 (14)6、总结体会 (15)7、参考文献 (16)1.设计题目设单位负反馈系统的开环传递函数为:))101.0)(1(/()(++=sssKsG用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能:1)相角裕度45≥γ;2)在单位斜坡输入下的稳态误差为0625.0≥sse;3)系统的穿越频率大于2rad/s。
要求:1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后- 超前校正);2)详细设计(包括的图形有:校正结构图,校正前系统的Bode图,校正装置的Bode图,校正后系统的Bode图);3)用Matlab编程代码及运行结果(包括图形、运算结果);4)校正前后系统的单位阶跃响应图。
2.摘要用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。
为此,要求校正网络的最大相位超前角出现在系统的截止频率处。
只要正确地将超前网络的交接频率1/aT和1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能指标要求,从而改善系统的动态性能。
串联超前校正主要是对未校正系统在中频段的频率特性进行校正。
确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。
用根轨迹法设计相位超前校正网络.
10
例:有一单位反馈控制系统的开环传函为 G( s) 足下列性能指标;
2500k ,要求满 s( s 25)
(1)当输入是一个1 rad s的单位速度函数时,输出的速度函数
与输入速度函数的最终稳态误差不大于0.01rad;
R( s)
Kr s ( s 2)
C (s)
3
解: 2 (1).由 p 20% ,由式 p e 1 可求得 0.46 ,取 0.5 由 ts 3 得 n 6 rad s ; n 得闭环主导极点 A1,2 n jn 1 2 3 j 3 3
(3)根据稳态指标求出系统所需要的误差系数 K(即开环增益 K0); 0 (4)求出系统为了满足稳态性能指标,误差系数需要增加的倍数
1 K0 ,这 个需要增加的倍数由滞后网络的这一对偶极子提 b K
供;
9
(5)选择滞后校正网络的零点 Z c 及极点 Pc ,使满足 Z c Pc 1 ,
原系统的开环传函为:
根轨迹增益为:
Kr
m
G( s) H ( s)
v n
sv (s p j )
j v 1
i 1 n
s
s pj j v 1
m
s zi i 1
开环增益为: K Kr
7
zi
pj j v 1
i 1 n
1 K ( s z ) ( s )b rc i 校正后系统的开环传函为: bT i 1 Gc ( s)G( s) H ( s) n 1 v s (s p j ) (s ) 校正后在A点的根轨迹增益 T j v 1
21 , 3.画水平线 A1B ,作角平分线 AC ,再作 CA D EAC A1D 1 2
自动控制原理 第3章习题解答
系统的 Bode 图为图 6-2-1(b)。
图 6-2-1(b)
6-2
2( s + 1) 时,则校正后系统的开环传递函数为: (10 s + 1) 10 2( s + 1) 20( s + 1) G" ( s ) = G ( s )Gc ( s ) = ⋅ = s (0.2s + 1) (10 s + 1) s (0.2 s + 1)(10 s + 1) ∴ 系统的 Bode 图为图 6-2-2。
ϕ c = ±(2k + 1)π − ∠G0 ( s1 ) = −180° − [−∠s1 − ∠( s1 + 1)] = 72.6° (4)由校正后系统的幅值条件,求校正装置的零极点位置及参数 α 和 T
由 K v = lim sG0 ( s ) = lim
s →0 s →0
K = K = 2即K = 2 s +1
该网络为一个比例微分环节,为超前网络。 (2)由题:
U N = U p = 0 i1 + i2 = 0
R1 //
∴U i + U 0 =0 1 R3 R1 // sC
∴ G ( s) =
U 0 ( s) =− U i ( s)
R3
1 sC = −
R1 R3 ( R1Cs + 1)
U0 1 1 R1 + ( + R 4 ) //( R 2 // ) sC 1 sC 2 =0
第 6 章 控制系统的设计和校正习题及解答
6-1 试求题 6-1 图有源网络的传递函数,并说明其网络特性。
题 6-1 图 解(1)由题:
U N = U p = 0 i1 + i2 = 0
基于根轨迹法的串联超前校正器的设计
基于根轨迹法的串联超前校正器的设计
张白莉
【期刊名称】《长春师范学院学报(自然科学版)》
【年(卷),期】2012(031)003
【摘要】本文提出了用几何法与根轨迹法结合起来设计串联超前校正装置的计算方法。
利用该方法直接可以得到比较精确的校正装置参数,而不需要经过多次凑试,简便有效。
在MATLAB环境下进行实例仿真,验证了该方法的准确性。
%In this paper, a calculation method of series leading corrector that combine geometric method with root locus is proposed. Precise parameters could be obtained by the method without repeated trying. The simulation result in MATLAB showed that the method was effective and utility.
【总页数】4页(P63-66)
【作者】张白莉
【作者单位】忻州师范学院物理电子系,山西忻州034000
【正文语种】中文
【中图分类】TN713
【相关文献】
1.基于根轨迹法的滞后-超前补偿器的计算机辅助设计 [J], 李钟慎
2.基于根轨迹法与串联PID法的激光操作控制系统设计 [J], 吴剑威;唐立新
3.基于MATLAB的串联超前校正器设计 [J], 刘姜涛
4.超前校正器的根轨迹法设计及其MATLAB实现 [J], 李钟慎
5.基于根轨迹法的串联超前校正器的设计 [J], 张白莉;
因版权原因,仅展示原文概要,查看原文内容请购买。
单位负反馈系统校正——自动控制原理课程设计
目录1.设计题目 ............................................................ 错误!未定义书签。
2.摘要 (2)3、未校正系统的分析 (3)3.1.系统分析 (3)3.2.单位阶跃信号下系统输出响应 (4)4、系统校正设计 (7)4.1.校正方法 (7)4.2.设计总体思路 (7)4.3.参数确定 (8)4.4.校正装置 (9)4.5.校正后系统 (10)4.6.验算结果 (11)5、结果 (13)5.1.校正前后阶跃响应对比图 (13)5.2.结果分析 (14)6、总结体会 (15)7、参考文献 (16)1.设计题目设单位负反馈系统的开环传递函数为:))101.0)(1(/()(++=s s s K s G用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能:1)相角裕度045≥γ;2)在单位斜坡输入下的稳态误差为0625.0≥ss e ; 3)系统的穿越频率大于2rad/s 。
要求:1)分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后-超前校正);2)详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校正装置的Bode 图,校正后系统的Bode 图);3)用Matlab 编程代码及运行结果(包括图形、运算结果);4)校正前后系统的单位阶跃响应图。
2.摘要用频率法对系统进行超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。
为此,要求校正网络的最大相位超前角出现在系统的截止频率处。
只要正确地将超前网络的交接频率1/aT和1/T设置在待校正系统截止频率Wc的两边,就可以使已校正系统的截止频率Wc和相裕量满足性能指标要求,从而改善系统的动态性能。
串联超前校正主要是对未校正系统在中频段的频率特性进行校正。
确保校正后系统中频段斜率等于-20dB/dec,使系统具有45°~60°的相角裕量。
控制工程基础第五章——校正
三 系统常用校正方法(2)
前馈校正 (复合控制)
对输入的
对扰动的
系统校正的基本思路
系统的设计问题通常归结为适当地设计串 联或反馈校正装置。究竟是选择串联校正还是 反馈校正,这取决于系统中信号的性质、系统 中各点功率的大小、可供采用的元件、设计者 的经验以及经济条件等等。
一般来说,串联校正可能比反馈校正简单, 但是串联校正常需要附加放大器和(或)提供隔离。 串联校正装置通常安装在前向通道中能量最低的地方。 反馈校正需要的元件数目比串联校正少,因为反馈校 正时,信号是从能量较高的点传向能量较低的点,不 需要附加放大器。
显然不满足要求。
令 20lgG(j0)0 或 G0(j0) 1 可求得ω0,再求得γ。
☆ 超前校正设计的伯德图
☆ 超前校正设计⑵
☆ 超前校正设计⑶
⒊确定超前校正装置的最大超前相位角
m4 52 75 23
⒋确定校正装置的传递函数
①确定参数α ②确定ωm
1 1 s sii n n m m1 1 s sii2 2n n 3 32.28
PID 传递 函数
G c(s)U E ((s s))K PK I1 sK D s
Gc(s)KP(1T1IsTDs)
KP——比例系数;TI——积分时间常数; TD——微分时间常数
二 PID控制器各环节的作用
比例环节 积分环节 微分环节
即时成比例地反映控制系统的偏差 信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。
为了充分利用超前装置的最大超前相位角,一般取校正后系统的
开环截止频率为 0 m 。故有 Lc(m)L(0 ' )0d B
于是可求得校正装置在ωm处的幅值为
2 lG 0 g c (jm ) 1 l0 g 1 l2 0 g .2 3 8 .5 d8 B最后得校正装置
一种基于根轨迹串联超前校正的计算方法
统 的动态性能指标 可 由靠 近虚轴 的一对共 轭闭环 主导极点 来表征 , 因此 , 可把对 系统提 出的时域 性能 指标 的要 求转化 为一对期望闭环 主导极 点。 定这 对 闭环 主导极 点 的位置 确 后, 首先根据绘制根轨迹的相 角条件判 断一下它们是否位于
故据是要估算和试凑的。而在根轨迹法 校正 当中, 献 虽 文
凑 出了系统闭环主导极 点到所 附加 负实数 开环零 点和到 算 厅村加负实数开环极点 两直线 间的夹角 , _I 但夹 角定 了, 上述 酉 直线 的具体 位置 还是 不能 唯一确 定 , 仍要 进行 试凑 和核
。
u
:
I
:
:
l
: 、 /, \
一
一
∞
1
“
Ⅱ
能否给出一种完全不用试凑的定量计算方法呢? 本文把解析几何与根轨迹法相结合 , 出了一种实现串 给
图 l 超 前 校 正 装 置 对 数 频 率特 性
示。 因为 n>l 所以超前校正装置的负实数极点 P , =一1 T / 总在负实数零点 =一ln / 之左 , 两者之 间的距离 由分度系 数 n决定 , 改变参数 n和 , 其零极点 可在 平 面的负实 轴上
维普资讯
第3 l卷第 6期
20 0 7年 l 2月
南昌大学学报 ( 理科版 )
Jun l f a c a gU i r t ( a rl c n e o r a o N n h n nv sy N t a S i c ) ei u e
摘
要: 提出了一种把解析几何与根轨迹法结合起来实现 串联超前校正 计算方法 , 无需精确绘 图和繁琐 的试 凑运
用matlab实现超前系统的校正设计
我从中学到的不仅是些知识,还有一些对系统分析的思维方法。这两周给我的收获很大。
参考文献
[1]胡寿松.自动控制原理(第四版).北京:科学出版社,2001
rlocus(num1,den1)
grid
图6校正后系统的根轨迹
4系统校正前后的性能比较
控制信号系统中的信号可以表示为不同频率信号合成。控制系统频率特性反映正弦信号作用下系统响应的性能。
用Matlab软件作系统校正前的奈奎斯特曲线的程序为:
num=[6];
den=[conv([0.05 1],[0.5 1]) 0];
频率特性法设计校正装置主要是通过对数频率特性(Bode图)来进行。开环对数频率特性的低频段决定系统的稳态误差,根据稳态性能指标确定低频段的斜率和高度。为保证系统具有足够的稳定裕量,开环对数频率特性在剪切频率ωc附近的斜率应为-20dB/dec,而且应具有足够的中频宽度,为抑制高频干扰的影响,高频段应尽可能迅速衰减。
由图7可以看出来,系统开环传递函数无右极点,其奈奎斯特曲线都不包括(-1,0j)点,所以闭环系统是稳定的。校正后使开环系统截止频率增大,从而闭环系统带宽也增大,使响应速度加快。
系统校正前闭环传递函数为:
校正后系统的闭环传递函数为:
运用matlab软件作系统校正前后的响应曲线比较,程序为:
num=[6]
den1=conv([0.108 1 0],conv([0.05 1],[0.5 1]));
bode(num1,den1)
grid
图5校正后系统的伯德图
用MATLAB进行控制系统的滞后_ 超前校正设计说明
课程设计任务书学生姓名: 专业班级:指导教师: 程 平 工作单位: 自动化学院 题 目: 用MATLAB 进行控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是)102.0)(11.0()(++=s s s Ks G要求系统的静态速度误差系数150-≥S v K , 40≥γ,s rad w c /10≥。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 MATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。
2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名: 年月日系主任(或责任教师)签名: 年月日摘要串联滞后-超前校正兼有滞后校正和超前校正的优点,即已校正系统的响应速度较快,超调量较小,抑制高频噪声的性能也较好。
当校正系统不稳定,且要求校正后系统的响应速度,相角裕度和稳态精度较高时,以采用串联滞后-超前校正为宜。
其基本原理是利用滞后-超前网络的超前部分来增大系统的相角裕度,同时利用滞后部分来改善系统的稳态性能。
此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。
通过运用MATLAB的相关功能,绘制系统校正前后的伯德图、根轨迹和阶跃响应曲线,并计算校正后系统的时域性能指标。
关键字:超前-滞后校正MATLAB 伯德图时域性能指标目录1 滞后-超前校正设计目的和原理 (1)1.1 滞后-超前校正设计目的 (1)1.2 滞后-超前校正设计原理 (1)2 滞后-超前校正的设计过程 (3)2.1 校正前系统的参数 (3)2.1.1 用MATLAB绘制校正前系统的伯德图 (4)2.1.2 用MATLAB求校正前系统的幅值裕量和相位裕量 (4)2.1.3 用MATLAB绘制校正前系统的根轨迹 (5)2.1.4 对校正前系统进行仿真分析 (6)2.2 滞后-超前校正设计参数计算 (7)2.2.1 选择校正后的截止频率 (8)c2.2.2 确定校正参数 (8)2.3 滞后-超前校正后的验证 (9)2.3.1 用MATLAB求校正后系统的幅值裕量和相位裕量 (9)2.3.2 用MATLAB绘制校正后系统的伯德图 (11)2.3.3 用MATLAB绘制校正后系统的根轨迹 (11)2.3.4 用MATLAB对校正前后的系统进行仿真分析 (12)3 心得体会 (14)参考文献 (16)用MATLAB进行控制系统的滞后-超前校正设计1 滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
线性系统的校正 实验报告
线性系统的校正实验报告(滞后校正) (超前校正)超前校正:已知单位负反馈系统被控对象的传递函数为:()(1)(4)KG s S S S =++,使用根轨迹解析法对系统进行超前串联校正设计,使之满足: 1)阶跃响应的超调量%20%σ=2)阶跃响应的调节时间不超过4(0.02)s t s =∆=±一、基于根轨迹法的串联超前校正的校正原理:当系统的性能指标以时域形式提出时,通常用根轨迹法对系统进行校正。
基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。
确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。
如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一超前校正装置1()(1)1C aTsG s a Ts+=>+,通过引入新的开环零点z c =-1/aT 和新的开环极点p c =-1/T 来改变系统原根轨迹的走向,使校正后系统的根轨迹经过这对期望闭环主导极点。
二、超前校正装置及其特性:典型超前校正装置的传递函数可写为1()(0)1C aTs G s a Ts+=>+式中a 为分度系数,T 为时间常数其频率响应1()1C jaT G j jTs ωωω+=+幅频特性:()c A ω=相频特性:11122(1)()1a T tg aT tg T tg aT ωφωωωω----=-=+由于a>1,()φω始终大于0,即超前校正装置始终提供超前相角。
超前装置提供一个极点和一个零点三、校正过程1)做出校正前系统的根轨迹和阶跃响应,如下图MATLAB代码:num=[1];den=[1 5 4 0];G0=tf(num,den) figure(1);rlocus(G0);sys=feedback(G0,1);figure(2);t=0:0.01:30;step(sys,t)grid2)根据21%100%e πςςσ--=⨯,可算出0.4559ς=,考虑到非主导极点和零点对超调量的影响,取0.5ς=又因为0.02∆=时, 4.44.4s nt ςωσ==,可得 2.2, 1.1n ωσ==期望闭环极点的纵坐标为21d ωως=- 1.9053d ω= 综上可得系统的一对希望的闭环主导极点为:1,2 1.1 1.9n d s j ςωω=-±=-±3)根据求得的主导极点,计算超前校正网络在1s 处应提供的超前角:1()(atan(1.9/2.9)*180/pi+180-atan(1.9/0.1)*180/pi+180-atan(1.9/1.1)*180/pi)o G s ∠=-得1()246.3131o G s ∠=-1180()o G s φ=--∠可得:66.3131φ=把()c G s 的零点设置在期望极点的正下方,即 1.1c z =-,从期望极点向左作角60φ=的负实轴交点上,可求得 5.5c p =- 4)校正后系统的开环传递函数为( 1.1)()(1)(4)( 5.5)K s G s s s s s +=+++由根轨迹的幅值条件,求得系统工作于期望极点处的K 值为36.2。
自动控制原理—第六章
jT 1 jT 1
相角位移:()=arctanT-arctan(T)
伯德图 滞后校正装置伯德图的 特点: 1)转折频率与之间渐 近 线 斜 率 为 -20dB/dec , 起积分作用; 2) ()在整个频率范 围 内 都 <0 , 具 有 相 位 滞后作用; 3) ()有滞后最大值 m; 4) 此装置对输入信号 有低通滤波作用。
图中的m为校正装置出现最大滞后相角的频率,它位于两个 转折频率
1 T
1 和T
的几何中点,m为最大滞后相角,它们分别为
1 T
m
1 2
m arct an
为了避免对系统的相位裕量产生不良影响,应尽量使最大滞后 相角对应的频率远离校正后系统新的幅值穿越频率 ’ c ,一般 ’c远大于第二个转折频率2,即有 ' 1 ' 2 c ~ c
比例—积分调节器主要用于在基本保证闭环系统 稳定性的前提下改善系统的稳态性能。
四、比例、积分、微分控制 (PID控制器)
d 1.时域方程: m(t ) K p e(t ) 0 e(t )dt K p d dt e(t ) Ti
t
Kp
2.传递函数:
1 Gc ( s) K p 1 d s Ts i
第6章——控制系统的校正
6.1 控制系统校正的基本概念 6.2 控制系统的基本控制规律 6.3 超前校正装置及其参数的确定 6.4 滞后校正装置及其参数的确定 6.5 滞后-超前校正装置 6.6 期望对数频率特性设计法
6.1 控制系统校正的基本概念
一、校正的一般概念
系统校正方法有时域法、根轨迹法、频域法 (也称频率法)。系统校正的实质可以认为是在 系统中引入新的环节,改变系统的传递函数(时 域法),改变系统的零极点分布(根轨迹法), 改变系统的开环波德图形状(频域法),使系统 具有满意的性能指标。这三种方法互为补充,且 以频率法应用较为普遍。
控制系统的设计与校正
(c)r18 0
γ—为要求达到的相角裕度。 —是为补偿滞后网络的副作用而提供的相角裕度的修正量,一般取
5°~12°。
原系统中对应 处的频率即为(校c正r)后系统的剪切频率ω。
(4)求滞后网络的β值。 未校正系统在ω的对数幅频值为L0(ω)应满足
L 0(c)r2l0 g)(0 由此式求出β值。
了平系稳统性的将截有止所频下率降,获还得会足降够低的系快统速抗性高。频干扰的能力。
Ts 1
Xo s
Gs Ts 1
L
20 40
20lg Kg
20
11
11
c1 c2
T2 T
20lg
T1 T
60
90 180
80
二、滞后校正 1、滞后网络
Xi s
R1 R2 C
Gc
s
Xos Xi s
Phase Margin (deg): 18
At frequency (rad/sec): 8.91
Delay Margin (sec): 0.0508
Closed Loop Stable? Yes
-135
At frequency (rad/sec): 6.17
Closed Loop Stable? Yes
用希望对数频率特性进行校正装置的设计
G *(S)G 0(S)G c(S)
只要求得希望对数幅频特性与原系统固有开环对数幅频 特性之差即为校正装置的对数幅频特性曲线,从而可 以确定(s),进而确定校正参数和电路
G* (S )为希望的开环传递函数 Gc (S)为校正装置的传递函数 G0 (S)为系统固有的传递函数
各种校正装置的比较:
超前校正通过相位超前特性获得所需要的结果;滞后校正则是通过高频衰减特性获得所需要的结 果;而在某些问题中,只有同时采用滞后校正和超前校正才能获得所需要的结果。
根轨迹
其设计目标是设计一个校正器, 其设计目标是设计一个校正器,使得该被控对象在 设定值为零时保持稳定, 设定值为零时保持稳定,并具备一定的抗干扰能 其系统框图如下所示: 力。其系统框图如下所示:
single inverted pendulum
s − zc C (s) = K s − pc
arg(s1 − zc ) − arg(s1 − pc ) − arg(s1 − 5.114) − arg(s1 + 5.114) = −π
A Im
× S1
10 5 14 0
×
PC
B
ZC
× -5.114
.5
× O
5.114
×
.7
Re
arg ( s1 − z c ) − a rg ( s1 − p c ) = 6 6 .2 o
问题: 问题:为什么例子中将零点配置在开环实极点左侧
近旁? 1、可以避免改变预期主导极点的主导特性。 如果在右侧,在网络零点的作用下,校正后的系 统将具有一个比预期极点更靠近远点的闭环极点, 从而影响主导极点的主导特性。 2、可以使反馈控制系统的闭环实极点和闭环实零 点更加靠近,从而减小实极点对系统响应的影响, 进一步保证了主导极点的主导特性。
ϕ
B ZC -5.114
×
PC
×
O
×
×
5.114
Re
控制器的参数优化
目前已经有多种方法进行控制器参数优化, 比如单纯形法、动态规划、遗传算法、蚁群 算法等。
通过两个例子,我们发现设计校正器的一些 关键步骤: 立足于被控对象本身的特性 仔细分析设计要求和性能指标 合理选用控制器和设计工具。 设计过程需要反复的验算和校正。 根轨迹图是工具,而不是目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统校正设计:根轨迹法超前校正 一.校正原理
如果原系统的动态性能不好,可以采用微分校正,来改善系统的超调量p M 和调节时间s t ,满足系统动态响应的快速性与平稳性的定量值。
微分校正的计算步骤如下。
(1)作原系统根轨迹图;
(2)根据动态性能指标,确定主导极点i s 在S 平面上的正确位置; 如果主导极点位于原系统根轨迹的左边,可确定采用微分校正,使原系统根轨迹左移,过主导极点。
(3)在新的主导极点上,由幅角条件计算所需补偿的相角差φ; 计算公式为:
i
s s
=︒±=(s)][G arg -180o ϕ (1-1)
此相角差φ表明原根轨迹不过主导极点。
为了使得根轨迹能够通过该点,必须校正装置,使补偿后的系统满足幅角条件
(4)根据相角差φ,确定微分校正装置的零极点位置;
注意满足相角差φ的零极点位置的解有许多组,可任意选定。
在这里给出一种用几何作图法来确定零极点位置的方法如下 ○1过主导极点i s 与原点作直线OA , ○2过主导极点i s 作水平线,
○3平分两线夹角作直线AB 交负实轴于B 点, ○4由直线AB 两边各分
ϕ2
1
识作射线交负实轴,左边交点为D P -,右边交点为
为D Z -,如图1-1所示。
微分校正装置的传递函数为
D D c P s Z s (s)++=
G
(1-2)
图1-1 零极点位置的确定
(5)由幅值条件计算根轨迹过主导极点时相应的根轨迹增益gc K 的值,计算公式为
1(s)(s)G G o c ==i s s
(1-3)
(6)确定网络参数。
(有源网络或者无源网络);
(7)校核幅值条件(s)(s)o c G G 、幅角条件(s)](s)G [G arg o c 、动态性能指标
p M 和s t 等。
二.校正实例
已知系统的开环传递函数为)2s(s 4
(s)o +=
G ,要求s t s 2%,20M p <<,试用
根轨迹法作微分校正。
解:(1)作原系统的根轨迹图如图1-3所示 ○1 原系统的结构图如图1-2所示
图1-2 原系统的结构图○2仿真原系统的根轨迹
程序如下:
k=4; %零极点模型的增益值
z=[]; %零点
p=[0,-2]; %极点
sys=zpk(z,p,k);
rlocus(sys);
图1-3 原系统的根轨迹图
(2)计算原系统性能指标
042s 2=++s
(1-4)
闭环极点为 31-s j ±=
核算系统的动态性能
o 60=β,5.0=ζ,2n =ω
%20%3.16%1002
-1_
p <=⨯=π
ζζ
e M (1-5)
原系统的超调量满足要求。
s s s 244
t n
>==
ζω
(1-6)
调节时间不满足要求,所以在原系统根轨迹上找不到满足性能指标的主导极点,需作校正。
(3) 计算新的主导极点
因为原系统的超调量p M 满足给定要求,所以设原系统的阻尼角o 60=β不变,则阻尼比为 5.0=ζ
令调节时间为给定值 n
4
t ζω=s =2 (1-7)
解出
4n =ω
得新的主导极点为
322--s 2
-1n
n j j ±=±=ζωζω
计算所得希望的主导极点,因为位于原系统根轨迹的左边,确定采用微分校正。
(4)计算微分校正补偿角φ
将新的主导极点值322-s j +=代入开环传递函数求得幅角值为 ︒=︒︒=+=+=+=210-90-120-2]arg[s --arg[s]]2)
s(s 4
arg[
(s)]arg[G 322-s o j (1-8)
不满足幅角条件。
应该增加微分校正装置,使得幅角条件为
︒±=+180(s)][G arg (s)][G arg o c (1-9)
所以,微分校正装置的补偿角为
︒=︒±==30(s)][G arg -180(s)][G arg o c ϕ (1-10)
(5)由作图法确定校正装置的零、极点位置为 4.5-,-9.2--==D D P Z 所以,校正装置的传递函数为
5.4
s 2.9s K (s)G gc c ++= (1-11)
其中,gc K 为待定补偿增益值,用于补偿新的根轨迹过主导极点时的幅值条件。
这样,带有串联微分校正装置的新的开环传递函数成为 5.4)
2)(s s(s 2.9)
(s 4(s)(s)gc o c +++=
K G G
(1-12)
(6)由幅值条件计算增益补偿值gc K
将主导极点值代入幅值条件
15.4)
2)(s s(s 2.9)
(s 4K 322-gc =++++=j s
(1-13)
求得增益补偿值gc K 为
7.184K gc =
.684K gc =
(7)设计网络参数。
加有串联微分校正装置的系统如图1-4所示
图1-4 微分校正系统的结构
三.仿真验证
校正后根轨迹如图1-5所示。
作为比较,以利于对根轨迹法微分校正作用的理解,将校正前后系统仿真曲线作出如图1-6所示。
1.校正后的系统根轨迹如图1-5所示 程序如下:
k=4; %零极点模型的增益值 z=[]; %零点
p=[0,-2]; %极点
sys=zpk(z,p,k);
rlocus(sys);
图1-5 校正后的根轨迹图
2.作原系统和校正后的系统阶跃相应仿真图如图1-6所示程序如下:
num1=[4];
den1=[1 2 4];
sys1=tf(num1,den1);
num2=[18.72 54.288];
den2=[1 7.4 29.52 54.288];
sys2=tf(num2,den2);
step(sys1,sys2);
图1-6 系统校正前后单位阶跃响应曲线比较
由校正前后的系统根轨迹及原系统和校正后的系统阶跃相应仿真图易知,在超调量不变条件下,系统的快速性得到了较大的改善
四.校正感悟
通过本次校正的设计,我在实践中加深了对系统性能指标,根轨迹法及根轨迹法校正等理论知识的理解,同时在校正过程中锻炼了自己的动手能力,收获颇多。