自动控制原理-5-1 频率特性及其表示法

合集下载

经典自控第5章 频率特性.ppt

经典自控第5章 频率特性.ppt
() ~ 为系统的相频特性。
A() 1 / 1 2T 2 , () arctgT
RC网络的幅频特性和相频特性
A() 1 / 1 2T 2 , () arctgT
G( j)
G(s)
s j
1
Tj 1
1
e j tan 1 (T )
(T )2 1
RC网络的幅相特性曲线
2、对数频率特性
1
j2
n
(o) 180
( )
arctg
1
2 (
/ n /n )
2
arctg
2 1 (
/ n / n )2
,
0
-180
非最小相位
0.1 1
10 ω/ωn
振荡环节的对数坐标图
L( ) 20lg (1 2 / n2 )2 4 2 ( / n )2
二阶微分环节
非最小相位二阶微分环节
G(s)
1、各典型环节频率特性图概览
(1)幅相曲线
j
j
· -k
0Байду номын сангаас
·k
比例环节K的幅相曲线
0 ω
积分环节的幅相曲线
23
j ω
0 ω=0
微分环节幅相曲线 j
T>0 ω
ω=0
0
1
T<0
一阶微分环节的幅相曲线
j
T<0
ω=∞
1
-45o 0
ω=0
T>0
ω=1/T
惯性环节的幅相曲线
24
0 -0.5
j
ζ=0.2—0.8
10 ω/ωn
,G( j ) 0 180o
二阶振荡、微分环节的渐近线

自动控制原理与系统控制系统的频率特性

自动控制原理与系统控制系统的频率特性

如图4-6所示。
12
四、惯性环节 传递函数 : G(s) C(s) 1
R(s) Ts 1
频率特性 : G( j) C( j) 1
R( j) jT 1
对数频率特性 : L() 20lg
1
20lg
(T)2 1
(T)2 1
Bode图 : arctanT
▪对数幅频特性L(ω)是一条曲线,逐点描绘很烦琐,通常采用近似的 绘制方法,用两条渐进线近似表示.
(极坐标表示法)
U () jV ()
(直角坐标表示法)
(A指(数表)e示j法 ())
图4-2
A() G(j) U 2 () V 2 ()
() G( j) arctan 1 V () U ()
6
例4-1 写出惯性环节的幅频特性、相频特性和频率特性。
解:惯性环节的传递函数为
G(s) 1 Ts 1
2
• 系统(或环节)输出量与输入量幅值之比为幅值频率特性, 简称幅频特性,它随角频率ω变化,常用M(ω)表示。
A()
A c
A r
• 输出量与输入量的相位差为相位频率特性,简称相频特性,它 也随角频率ω变化,常用φ(ω)表示,
c r
幅频特性和相频特性统称为频率特性,用G( jω)表示
3
频率特性就是线性系统(或环节)在正弦输入信号 作用下稳态时输出相量与输入相量之比。
G (j) G(j) G(j)
A() G(j)
() G(j)
幅频特性是输出量与输入量幅值之比M(ω),描述系统 对不同频率正弦输入信号在稳态时的放大(或衰减) 特性。
相频特性是输出稳态相对于正弦输入信号的相位差 φ(ω),描述系统稳态输出时对不同频率正弦输入信号 在相位上产生的相角迟后(或超前)的特性。

自动控制原理课件2第二节频率特性的几种表示方法

自动控制原理课件2第二节频率特性的几种表示方法
Sunday, April 15, 2012
6
Sunday, April 15, 2012
2
一、极坐标频率特性曲线(又称奈魁斯特曲线) 它是在复平面上用一条曲线表示ω 由 0 → ∞ 时的频率特性。 即用矢量 G ( jω ) 的端点轨迹形成的图形。 ω 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 ω Q(ω ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
第二节 频率特性的几种表示方法
Sunday, April 15, 2012
1
频率特性可以写成复数形式: ( jω ) = P(ω ) + jQ(ω ) ,也可 G 以写成指数形式:G ( jω ) =| G ( jω ) | ∠G ( jω )。其中,P(ω ) 为实 频特性, (ω ) 为虚频特性; G ( jω ) |为幅频特性, G ( jω ) 为相频 Q | ∠ 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
A(ω )
增益 0
Sunday, April 15, 2012
5
使用对数坐标图的优点: 可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。 三、 对数幅相特性曲线(又称尼柯尔斯图) 尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成 一条曲线。横坐标为相角特性,单位度或弧度。纵坐标为对数 幅频特性,单位分贝。横、纵坐标都是线性分度。

自动控制系统—— 第5章-1 频率特性及其表示法

自动控制系统—— 第5章-1 频率特性及其表示法
Mod5_1_1.mdl Mod5_1_1Prg.m
7
(1)输入为 ui (t) sin t 相对输入,输出有相位差,幅度不同
8
(2)输入为 ui (t) sin 2t 输出有相位差,峰值衰减,输入峰值不变
9
(3)输入为 ui (t) sin 3t 输出有相位差,初始段峰值衰减,之后峰值稳定
2
引言
频域分析法:应用频率特性研究线性系统的经典 方法称为频域分析法 引入频域模型:频率特性函数
线性定常系统的数学模型: 时域模型: 常微分方程
复数域模型: 传递函数 频域模型: 频率特性函数
3
频域分析的内容: 1.频率特性及其表示:幅相曲线,Bode图 2.典型环节的频率特性:一阶环节,二阶环节 3.Nyquist稳定判据:基于幅相曲线、Bode图 4.稳定裕度:幅值稳定裕度,相位稳定裕度 5.频域指标:带宽、谐振频率、谐振峰值等
cs (t) Kce jt K ce jt
K c 和 K c 可以由留数计算得到
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
22
由于 G( j) A()e j()
G( j) 与 G( j) 是共轭的
所以 G( j) A()e j()
Kc
G( j,) A
2j
A 2j
A()e j()
Kc
G( j)A
2j
A 2j
A()e
j ( )
代入 cs (t) Kce jt K ce jt

自动控制原理--第五章-频率特性法

自动控制原理--第五章-频率特性法
2.频率特性反映系统本身性能,取决于系统结构、参数,与外 界因素无关。
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出

自动控制原理第5章_线性控制系统的频率特性分析法

自动控制原理第5章_线性控制系统的频率特性分析法

5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处

自动控制原理 第五章(第一次课)

自动控制原理 第五章(第一次课)

autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )

自动控制原理第五章-1

自动控制原理第五章-1

积分环节:G(s)=1/s
微分环节:G(s)=s 惯性环节:G(s)=1/(Ts+1) 一阶微分环节:G(s)=Ts+1 振荡环节 1/(s 2 / n2 2s / n 1)
二阶微分环节 s 2 / 2 2s / 1 n n
比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(1-Ts)
系统开环传函由多个典型环节相串联 :
G(s) H (s) G1 (s)G2 (s)Gr (s)
那么,系统幅相特性为:
G ( jw) H ( jw) G1 ( jw)G2 ( jw) Gr ( jw) A1 ( w)e
j1 ( w )
A2 ( w)e k ( w )
k 1 r
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) ( s j )(s j ) 2j s2 2
a G( s)
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) s2 2 ( s j )(s j ) 2j
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号, 其输出与输入的幅值比为 输出与输入的相位差
A() G( j)
( )
G ( j )
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的 频率响应, 记为css(t)
(2)、频率特性
幅频特性A(): 稳态输出信号的幅值与输入信号的幅值之比: Ac A( ) G ( j ) A 相频特性(): 稳态输出信号的相角与输入信号相角之差: ( ) G ( j ) 幅相频率特性G(j) : G(j) 的幅值和相位均随输入正弦信 号角频率的变化而变化。 G( j ) A(w)e j ( ) 在系统闭环传递函数G(s)中,令s= j,即可得到系统的频率 特性。

自动控制原理第五章

自动控制原理第五章

第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。

掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。

本章的难点是Nyquist 稳定性分析。

[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。

[难点]:时域性能指标与频域性能指标之间的相互转换。

闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。

准确理解概念,把握各种图形表示法的相互联系。

与时域法进行对比,以加深理解。

§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。

它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。

2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。

3) 对工程中普遍存在的高频噪声干扰的研究无能为力。

4) 在定性分析上存在明显的不足。

5) 属于以“点”为工作方式的分析方法。

2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。

自动控制原理 第五章 频率法

自动控制原理 第五章 频率法

斜率:-20db/dec (每十倍频程 -20db)
转折频率:1/T 对数相频:
W 0
υ (w) 0 -45° -90°
υ (w) =∠G(jw) =∠[1/ (1+jTw)] = 自动控制原理
tg-1Tw
1/T ∞
蒋大明
惯性环节
1/T处误差最大: 误差 = 实际值 - 近似值 = -20lg (1+T2w2)1/2︱w=1/T - 0
jυ (w)
lg G(jw) = lg A(w) + jυ (w)lg e
= lg A(w) + j0.434υ (w) 两张图:对数幅频特性, 对数相频特性
自动控制原理
蒋大明
对数频率特性
对数幅频特性图 纵坐标:L(w) = 20lg | G(jw) | = 20 lg A(w) 单位:分贝(db)
自动控制原理 蒋大明
幅相频率特性
绘制方法: 1. G(jw) = A(w) e 计算幅值,
jυ (w)
幅角相对简单,
但计算幅角时有时会遇到多值性的问题.
2. G(jw) = P(w) + 计算实部, jQ(w)
虚部相对复杂.
自动控制原理
蒋大明
二、对数频率特性(Bode图)
通过半对数坐标分别表示幅频特性和相频特性的图形— —对数频率特,也称Bode图。 G(jw) = A(w) e
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10

(a )
( )
0o

自动控制原理第五章

自动控制原理第五章

第五章 频域分析法目的:①直观,对高频干扰的抑制能力。

对快(高频)、慢(低频)信号的跟踪能力。

②便于系统的分析与设计。

③易于用实验法定传函。

§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。

其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。

自动控制原理 第五章 第一讲 典型环节和开环频率特性

自动控制原理 第五章 第一讲 典型环节和开环频率特性

对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 尼柯尔斯曲线): 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
5.2 典型环节和开环频率特性
• 典型环节 • 典型环节的频率特性 • 最小相角系统和非最小相角系统
L(ω ) = −20 lg 1 + ω 2T 2
ω<<1/T, L(ω)≈-20lg1=0 ω>>1/T, L(ω)≈-20lgωT =-20(lgω-lg1/T)
(dB) 20 0 0.1 1/T -20 (o) 90 0 0.1 -90 1 10 ω 1 20dB/dec 10 ω -20dB/dec
幅频特性相同, 幅频特性相同,但相频特性符号相反 。 •最小相角系统的幅频特性和相频特性一一对应,只要根据其对 最小相角系统的幅频特性和相频特性一一对应, 数幅频曲线就能写出系统的传递函数 。 L(dB)
L(dB) 20 10 -20 ω L(dB) -20 100 50 -40 ω -40 -20 ω 2 ω1 ωc ω -40
典型环节
•比例环节:G(s)= K 比例环节: ( ) •惯性环节: G(s)= 1/(Ts+1),式中T>0 惯性环节: ( ) ,式中 •一阶微分环节: G(s)= (Ts+1),式中 一阶微分环节: ( ) ,式中T>0 •积分环节: G(s)= 1/s 积分环节: ( ) 微分环节: ( ) •微分环节: G(s)= s •振荡环节: G(s)= 1/[(s/ωn)2+2ζs/ωn+1]; 振荡环节: ( ) 式中ω , 式中 n>0,0<ζ<1 二阶微分环节: ( ) •二阶微分环节: G(s)= (s/ωn)2+2ζs/ωn+1; 式中ω , 式中 n>0,0<ζ<1

5第五章自动控制原理(胡寿松)第五版(共179张)

5第五章自动控制原理(胡寿松)第五版(共179张)

EXIT 第9页,共179页。
第5章第9页
在零初始条件下,当输入信号为一正弦信号,即
ui(t)=Uisin t
Ui与分别为输入信号的振幅与角频率,可以(kěyǐ)运用时域法 求电路的输出。
输出的拉氏变换为:
Uo(s)=
1 Uiω Ts +1 s2 + ω2
对上式进行拉氏反变换可得输出的时域表达式:
2021年12月25日
EXIT 第5页,共179页。
第5章第5页
③具有(jùyǒu)明确的物理意义,它可以通过实验的方法,借助频率特性 分析仪等测试手段直接求得元件或系统的频率特性,建立数学模型作 为分析与设计系统的依据,这对难于用理论分析的方法去建立数学模 型的系统尤其有利。
④频率分析法使得控制系统的分析十分方便、直观,并且可 以拓展应用到某些非线性系统中。
系统的输出分为两部分,第一部分为瞬态分量,对应特征根; 第二部分为稳态分量,它取决于输入信号的形式。对于一个稳定 系统,系统所有的特征根的实部均为负,瞬态分量必将随时间趋 于无穷大而衰减到零。因此,系统响应正弦信号的稳态分量必为 同频率的正弦信号。
2021年12月25日
EXIT 第21页,共179页。
sint
线性定常 系统
Asin(ωt+)
r(t) Css(t)
t
线性系统及频率响应示意图
2021年12月25日
EXIT 第12页,共179页。
第5章第12页
5.1.2 频率特性
1、基本概念
对系统的频率响应作进一步的分析,稳态输出与输入的幅值比A与相位差 只与系统的结构、参数及输入正弦信号的频率ω有关。在系统结构、参数给定的
= K1 + K2 + ...+ Kn + Kc + K-c

胡寿松《自动控制原理》(第7版)笔记和课后习题(含考研真题)详解(第5~6章)【圣才出品】

胡寿松《自动控制原理》(第7版)笔记和课后习题(含考研真题)详解(第5~6章)【圣才出品】

第5章线性系统的频域分析法5.1复习笔记本章考点:幅相特性曲线、伯德图的绘制,奈奎斯特稳定判据,稳定裕度计算。

一、频率特性1.定义幅频特性:稳态响应的幅值与输入信号的幅值之比A(ω)。

相频特性:稳态响应与正弦输入信号的相位差φ(ω)。

频率特性:幅频特性和相频特性在复平面上构成的一个完整向量G(jω)=A(ω)e jφ(ω)。

2.频率特性的几何表示法(重点)(1)幅相频率特性曲线(幅相曲线或极坐标图),横坐标为开环频率特性的实部,纵坐标为虚部, 为参变量。

(2)对数频率特性曲线(伯德图),由对数幅频特性曲线、对数幅相频特性曲线两幅图组成:①对数幅频特性曲线的纵坐标表示L(ω)=20lgA(ω),单位是分贝,记作dB;②对数相频特性曲线的纵坐标为φ(ω),单位为度“°”。

(3)对数幅相曲线(尼科尔斯图),横坐标表示频率特性的相角φ(ω),纵坐标表示频率特性的幅值的分贝数L(ω)=20lgA(ω)。

二、典型环节与开环系统的频率特性1.典型环节的频率特性一些主要典型环节的频率特性曲线总结如表5-1-1所示。

表5-1-1典型环节频率特性曲线总结2.开环幅相曲线绘制步骤(1)确定开环幅相曲线的起点(ω=0+)和终点(ω=∞),确定幅值变化与相角变化。

(2)计算开环幅相曲线与实轴的交点。

令Im[G(jωx)H(jωx)]=0或φ(ωx)=∠G(jωx)H(jωx)=kπ(k=0,±1,…)称ωx为穿越频率,而开环频率特性曲线与实轴交点的坐标值为Re[G(jωx)H(jωx)]=G(jωx)H(jωx)。

(3)分析开环幅相曲线的变化范围(象限、单调性)。

3.开环对数频率特性曲线绘制步骤(1)开环传递函数典型环节分解并确定一阶环节、二阶环节的交接频率;(2)绘制低频段渐近特性线:在ω<ωmin频段内,直线斜率为-20vdB/dec;(3)作ω≥ωmin频段渐近特性线,交接频率点处斜率变化表如表5-1-2所示。

自动控制原理2第二节频率特性的几种表示方法

自动控制原理2第二节频率特性的几种表示方法

幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
8
3.16
10
5.62
15
10.0
20
增益 0
Saturday, November 05, 2016
5
使用对数坐标图的优点:

可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
...
0
2
1
0.01
0 .1
0 1
1
10
2 100
log

以对数分度,所以零频率线在 处。 由于
Saturday, November 05, 2016
4
纵坐标分度:幅频特性曲线的纵坐标是以log A( )或20log A( ) 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A( ) 或 20log A( ) 值标注在纵坐标上。 相频特性曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。 当幅制特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20log(幅值)

自动控制原理 第5章

自动控制原理 第5章
2 2

X 2 − X +Y 2 = 0
(下半圆) 下半圆)
Y = −ω T X
§5.2 典型环节与开环系统的频率特性
1 G( s) = 不稳定惯性环节 Ts − 1 1 G ( jω ) = − 1 + jω T 1 G = 1 + ω 2T 2 ωT ∠ G = − arctan = − ( 180° − arctan ω T ) = −180° + arctan ω T -1
ω ω ⑹ G ( jω ) = 1 1 − 2 + j 2ξ ωn 2 ωn ω ω ⑺ G ( jω ) = 1 − 2 + j 2ξ ωn ωn ω2 ω 1 − 2 − j 2ξ ωn ωn ⑻ G ( jω ) = e − jτ ω
2

ω ω2 1 − 2 + j 2ξ ωn ωn
建 模
§5.1
频率特性
cs (t ) = A
2
r ( t ) = A sin ω t
1+ω T
2
§5.1.2 频率特性 G(jω) 的定义 ω 定义一: 定义一: G ( jω ) = G ( jω ) ∠G ( jω )
G ( jω ) = cs (t ) 1 = r (t ) 1 + ω 2T 2
∠ c s (t ) = − 63.4° + 30° = − 33.4°
ω =2
cs (t ) =
3 sin( 2t − 33.4° ) 5
s Φ e ( s) = s+1
ω =2 2 es (t ) ω jω Φ e ( jω ) = = = = 2 1 + jω 3 5 1+ω

自动控制原理与系统__课件第四章控制系统的频率特性

自动控制原理与系统__课件第四章控制系统的频率特性

图4-3
4.2 典型环节的Bode图
一 、 比例环节 传递函数 :
G( s) C ( s) K R( s)
频率特性 :
G ( j )
C ( j ) K R ( j )
对数频率特性 : L 20 lg K dB 0 图4-4 Bode图 : 对数幅频特性L(ω)为水平直线,其高度为20lgK。 对数相频特性φ(ω)为与横轴重合的水平直线。 如图4-4所示。 比例环节放大倍数K变化,系统的L(ω)上下平移,但φ(ω)不变。
12
四、惯性环节
C (s) 1 R( s) Ts 1 C ( j ) 1 G( j ) 频率特性 : R( j ) jT 1
传递函数 : G ( s)
对数频率特性 : L( ) 20lg Bode图 :
1 (T ) 2 1
20lg (T ) 2 1
11
三、 理想微分环节
传递函数 : C ( s)
G(s) R( s ) s
频率特性 : C ( j ) G( j ) j R( j ) 对数频率特性 :
L 20 lg dB 90
图4-6 Bode图 : 对数幅频特性L(ω)为过点(1/τ,0)、斜率为20dB/dec的 一条直线。 对数相频特性φ(ω) φ(ω)为一条90o 的水平直线。 如图4-6所示。
图4-8
16
六、振荡环节
1. 传递函数 2. 频率特性
2 n 1 G( s) 2 2 2 2 s 2 s 1 s 2n s n
jarctan 1 1 1 2 2 G ( j ) 2 e ( j ) 2 2 ( j ) 1 (1 2 2 ) 2 (2 ) 2

自动控制原理--频率特性及其表示法 ppt课件

自动控制原理--频率特性及其表示法  ppt课件

由复阻抗的概念求得
图5.3 RC串联电路
Uo ( j) G( j) 1 1
Ui ( j)
1 RCj 1 jT
式中: T RC
自动控制原理
ppt课件
9
1 频率特性的基本概念
RC电路的频率特性 G( j) G( j) e j()
由该电路的结构和参数决定,与输入信号的幅
幅值衰减。
频率特性可应用到某些非线性系统的分析中去
自动控制原理
ppt课件
13
1 频率特性的基本概念
频率特性的求取
根据定义求取 对已知系统的微分方程,把正弦输入函数代
入,求出其稳态解,取输出稳态分量与输入正弦 量的复数比即可得到。
根据传递函数求取 用s=j代入系统的传递函数即可得到。
通过实验的方法直接测得
幅相频率特性
幅相频率特性的图示 也称为奈奎斯特曲线(奈氏图)或极坐标图。
极点
坐标轴
(i )
A(i )
(a)
jI() R(i)
jI ( )
I (i )
(i) R()
A(i )
(2)
A(2 )

(1) A(1)
R()
G( j1)
G( j2)
(b)
(c)
图5.4 幅相频率特性表示法
系统频率特性能间接地揭示系统的动态特性和 稳态特性,可简单迅速地判断某些环节或参数对系 统性能的影响,指出系统改进方向。
频率特性可以由实验确定,这对于难以建立动 态模型的系统来说,很有用处。
自动控制原理
ppt课件
2
5.1 频率特性及其表示法
1 频率特性的基本概念 2 频率特性的表示
自动控制原理

自动控制原理第五章--频率法

自动控制原理第五章--频率法
G(s) s G(s) 1 Ts
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac

自动控制原理(胡寿松) 第五章

自动控制原理(胡寿松) 第五章
26
27
(2)相频特性
()arct1a 2T n T2 2
可知,当ω=0时,()=0;ω=1/T时,()=-90°;ω→∞时,()→ -
180°。与惯性环节相似,振荡环节的对数相频特性曲线将对应于ω=1/T及
() =-90°这一点斜对称。
振荡环节具有 相位滞后的作用, 输出滞后于输入的 范围为0º→-180º;
10
5.1 频率特性的基本概念
G(jω)C R • • A Acr 1 2 A(ω) (ω)
R 表示输入正弦量的相量 C 表示输出正弦量的相量
G(jω)称为系统的频率特性,它表示了系统在正弦作用下, 稳态输出的振幅,相位随频率变化的关系。
A()AcG(j) 称为系统的幅频特性
Ar
φ(ω)= ∠G(jω) 称为系统的相频特性
=0+3=3dB。
24
6.二阶振荡环节
1
T2s2 2Ts 1
(1)对数幅频特性
L
20lg
T2
j2
1
j2T
1
20lg 12T2 2 2T2
1.低频段
T<<1(或<<1/T)时,L() 20lg1=0dB,低频渐近线与0dB线
重合。 0≤≤1
25
L 2 0 l g1 2 T 22 2T 2
13
Bode图
5.1 频率特性的基本概念
也称对数频率特性,就是将A(ω)和φ(ω)分别表示在两 个图上,横坐标采用对数刻度。
L(ω)
对数频率特性定义为:
L(ω)=20lgA(ω) dB L(ω)的图形就是Bode图
G(s) 1 Ts1
Bode图
对数相频特 性:纵轴均 匀刻度,标 以φ(ω)值 (单位为度); 横轴刻度及 标值方法与 幅频特性相 同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L() 20lg A()
例如 A( ) 10时,L( ) 20dB
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
20
对数频率特性
对数频率特性图示 对数幅频特性表示在半对数坐标中。 横坐标为角频率 ,采用对数比例尺标度, 但标注角频率的真值, 每变化10倍,横坐标就增加一个单位长度。 这个单位长度代表10倍频的距离,称之为 “十倍频”或“十倍频程”。 纵坐标用普通比例尺标度。
G ( j )
式中:
R ( ) I ( )e
2 2
j ( )
A( )e
j ( )
A( ) R 2 ( ) I 2 ( ) -复数频率特性的模,即幅频特性
I ( ) ( ) arctan -复数频率特性的相位移,即相频特性 R( )
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
11
1 频率特性的基本概念

频率特性的性质
频率特性也是一种数学模型 与传递函数一样,它描述了系统的内在特性, 与外界因素无关。决定于系统结构和参数。
频率特性描述的是一种稳态响应特性 可以用频率特性来分析系统的稳定性、动态 性能、稳态性能。
自动控制原理
图5.5 半对数坐标 昆明理工大学信息工程与自动化学院自动化系


1
lg (十倍频程)
22
对数频率特性
(2) 对数相频特性 对数相频特性一般不考虑0.434这个系数,而只 用相角位移 ( ) 本身 。 对数相频特性的横坐标与对数幅频特性的横坐标 相同,其纵坐标表示相角位移,单位为“度”, 采用普通比例尺标度。 由对数幅频特性和相频特性组成的对数频率 特性图,常称为波德(Bode)图。
昆明理工大学信息工程与自动化学院自动化系
12
1 频率特性的基本概念 系统的稳态输出量与输入量具有相同的频率 频率特性(幅频、相频)是频率的函数 ,这是 系统中的储能元件引起的。 实际系统具有“低通”滤波器特性 实际系统的输出量都随频率的升高而出现失真, 幅值衰减。 频率特性可应用到某些非线性系统的分析中去
m m1
其中:
R ( )是频率特性的实部,称为实频特性
I ( ) 是频率特性的虚部,称为虚频特性
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
17
幅相频率特性
幅相频率特性的图示 也称为奈奎斯特曲线(奈氏图)或极坐标图。
极点 坐标轴Leabharlann jI ( )R(i )
(i )
(b)
jI ( )
23
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
对数频率特性
对数频率特性表示法的优点 能在很宽广的频率范围表示频率特性 在一张图上,可画出频率特性的低、中、高 频率段,有利于分析和设计系统。 简化绘制系统频率特性的工作 系统通常由许多环节串联构成。系统的对数 频率特性即为各环节的对数频率特性叠加。 简明展现各环节对整个系统的影响 给分析和设计控制系统带来了很大的方便。
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
15
2 频率特性的表示

幅相频率特性 可以表示成代数形式或极坐标形式。 设系统或环节的传递函数为
bm s m bm1 s m1 .... b0 G( s ) n n 1 an s an1 s ... a0
自动控制原理
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
24
2 频率特性的表示法

对数幅相频率特性 是将对数幅频特性和对数相频特性绘在 一个平面上,分别以对数幅值作纵坐标(单 位为分贝),以相位移作横坐标(单位为 度),以频率为参变量得到的图。
这个图称为尼柯尔斯(Nichols)图或尼氏图。
自动控制原理
第5章 频域分析法
频率特性是控制系统在频域中的一种数学模 型,是研究自动控制系统的一种工程方法。 系统频率特性能间接地揭示系统的动态特性和 稳态特性,可简单迅速地判断某些环节或参数对系 统性能的影响,指出系统改进方向。
频率特性可以由实验确定,这对于难以建立动 态模型的系统来说,很有用处。
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
16
幅相频率特性
令 s j ,可得系统或环节的频率特性 代数形式:
bm ( j) bm1 ( j ) ... b0 G( j) R() jI ( ) n n 1 an ( j) an1 ( j ) ... a0

自动控制原理
昆明理工大学信息工程与自动化学院自动化系
21
对数频率特性
A()
100
A 增 加 10 倍
L()
40 20 0

10 1

L 增加 20 dB
0.1 0.01
_ 20 _ 40 0.1 1
增加10倍
1 0 10 100 1000 2 3
(1/s)
lg 增加一个倍频程
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
14
5.1 频率特性及其表示法
2 频率特性的表示
频率特性的三种图示法

幅相频率特性
极坐标图—Nyquist图(奈奎斯特图、简称奈氏图)。
对数频率特性
对数坐标图—Bode图(伯德图,简称伯氏图)
对数幅相频率特性
复合坐标图—Nichocls图(尼柯尔斯图,简称尼氏 图);一般常用于闭环系统的频率特性分析。
U o ( s) 1 G( s) U i ( s) 1 RCs
输入 : ui (t ) A sin(t ) 由复阻抗的概念求得
ui (t )
R
C
uo (t )
图5.3 RC串联电路
U o ( j ) 1 1 G( j ) U i ( j ) 1 RCj 1 jT
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
7
1 频率特性的基本概念

三种数学模型之间的关系
微分方程
d s dt
系 统
d j dt
传递函数
频率特性
图5.2 三种数学模型之间的关系
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
8
s j
1 频率特性的基本概念
例5.1 对于图5.3所示的RC串联电路,说明频率特 性的物理意义。 解: RC电路的传递函数为
昆明理工大学信息工程与自动化学院自动化系
6
1 频率特性的基本概念
系统的幅频特性
C ( j ) | G( j ) || | R( j )
反映了输出量与输入量幅值之比与频率 的关系。
系统的相频特性
( ) C ( j ) R( j )
反映了输出量与输入量相位之差与频率的关系。
R( )
A(i )
(i )
A(i )
(a)
I (i )
(1 ) R( ) (2 ) A(1) G( j1 ) A(2 ) G( j2 )
(c)
图5.4 幅相频率特性表示法
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
18
幅相频率特性
系统或环节的频率特性的指数形式 :
式中: T RC
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
9
1 频率特性的基本概念
RC电路的频率特性
G( j ) G( j ) e j ( )
由该电路的结构和参数决定,与输入信号的幅 值与相位无关。 1 幅频特性 G( j ) 1 T 2 2
表示在稳态时,电路的输出与输入的幅值比。 相频特性 ( ) arctanT 表示在稳态时,输出信号与输入信号的相差。
19
2 频率特性的表示法

对数频率特性 对频率特性指数形式的两边取对数,得
lg G( j) lg A()e j ( ) lg A() j () lg e lg A() 0.434 ()


(1) 对数幅频特性 频率特性幅值的对数值常用分贝(dB)表示,称 为增益。关系式为
第5章 频域分析法
5.1 5.2 5.3 5.4 5.5 5.6 5.7 频率特性及其表示法 典型环节的频率特性 系统开环频率特性的绘制 用频率特性分析控制系统的稳定性 系统瞬态特性和开环频率特性的关系 闭环系统频率特性 系统瞬态特性和闭环频率特性的关系
昆明理工大学信息工程与自动化学院自动化系
1
自动控制原理
c (t ) C sin( t )
t
系统
C

t
即: G ( j )
自动控制原理
C ( j ) R ( j )
昆明理工大学信息工程与自动化学院自动化系
5
1 频率特性的基本概念
系统的频率特性
C ( j ) C ( s) G( j ) R( j ) R( s)
s j
系统
c(t ) C sin(t )
图5.1 线性时不变系统的正弦稳态响应
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
4
1 频率特性的基本概念
频率特性的定义
在正弦输入下,系统的输出稳态分量与输入量 的复数之比。一般用 G ( j )表示。
R
r (t ) R sin t
自动控制原理
昆明理工大学信息工程与自动化学院自动化系
13
1 频率特性的基本概念

频率特性的求取
根据定义求取 对已知系统的微分方程,把正弦输入函数代 入,求出其稳态解,取输出稳态分量与输入正弦 量的复数比即可得到。
相关文档
最新文档