开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

合集下载

开关电源电容选择计算方法

开关电源电容选择计算方法

开关电源电容选择计算方法选择开关电源的电容时,需要考虑以下几个因素:工作频率、负载要求、稳压要求、体积和成本。

第一步:确定工作频率工作频率对电容的选择非常重要,因为电容器的容性会随频率的变化而变化。

通常,电容的容性与频率成反比,因此在高频范围内选择合适的电容值非常关键。

第二步:计算负载要求负载要求包括负载电流和纹波电流两个方面。

负载电流是指电容器需要提供给负载的电流,而纹波电流是指从电容器流过的交流电流。

负载电流通常可以从电路图或负载手册中获取,纹波电流则可以通过计算或测量获得。

根据负载电流和纹波电流的数值,可以计算所需的最小电容值。

一般来说,较大的负载电流和纹波电流需要更大的电容值才能满足系统要求,而较小的负载电流和纹波电流则可以选择相对较小的电容值。

一般的经验法则是,选择的电容值应该大于所需电容值的两倍。

第三步:考虑稳压要求稳压要求是指在负载变化或输入电压变化时,输出电压的稳定性。

稳压要求一般通过纹波电压来衡量,即输出电压的波动幅度。

如果稳压要求较高,则需要选择较大容值的电容器。

一般来说,电容器的容值越大,输出电压的稳定性越好。

但是,较大的电容值通常会增加系统的体积和成本,因此需要在稳压要求和系统成本之间进行权衡。

第四步:考虑体积和成本电容器的体积和成本是选择电容值时需要考虑的重要因素。

较大的电容值通常会增加系统的体积和成本,因此需要根据系统的要求和预算来选择合适的电容值。

此外,还需要考虑电容器的封装形式和温度特性,因为这些因素也会影响系统的体积和成本。

总之,选择开关电源的电容时需要考虑工作频率、负载要求、稳压要求、体积和成本等因素。

根据这些因素的要求和约束,可以计算出所需的最小电容值,并在此基础上进行合理的选择。

在选择电容器时,还需要考虑电容器的封装形式、温度特性和可靠性等因素,以确保系统的性能和可靠性。

开关电源电容选择计算方法

开关电源电容选择计算方法

开关电源电容选择计算方法开关电源的寿命很大程度受到电解电容的制约,而电解电容的寿命取决于其内核温升。

本文从纹波电流计算、纹波电流实测、电解电容选型、温度测试方法、寿命估算等方面,对电解电容作了全面的分析。

纹波电流产生的热量引起电容的内部温升,加速电解液的蒸发,当容值下降20%或损耗角增大为初始值的2~3倍时,预示着电解电容寿命的终结。

通过检查电容器上的纹波电流,可预测电容器的寿命。

本文以连续工作模式的反激变换器输出电容分析为例,重点从纹波电流角度全面分析电解电容的选型与寿命。

1、纹波电流计算假设已知连续工作模式的反激变换器,其输出电流Io 为1.25A,纹波率r为1.1,占空比D为0.62,开关频率为60kHz,由此可以计算次级纹波电流ΔIo和有效值电流Io.rms。

次级纹波电流ΔIo:有效值电流Io.rms:最终得到流过输出电容的纹波电流:图1直观的显示了该电容的纹波电流波形:图1 纹波电流波形2、电解电容选型由上述计算分析得到流过电容的纹波电流为1.72A,综合考虑体积和成本,选择了纹波电流为1.655A的电解电容。

该纹波电流需在电源开关频率下选择,如下列图某厂家电容手册的纹波电流有频率因子,不同频率下的纹波电流不同。

高频低阻电容均会给出100kHz下的纹波电流,本设计开关频率为60kHz,频率因子为0.96~1之间,在此取1即可。

图2 电容纹波电流频率因子注:纹波电流还有一个温度系数,例如105℃电容,在85℃环境温度下,允许的最大纹波电流约为额定最大纹波电流的1.73倍,该参数一般不在电容手册中表达。

3、纹波电流实测测试电解电容纹波电流时,需将电容引脚穿入电流探头中,通过示波器可读得交流有效值。

本设计实例的纹波电流测试结果如图3所示,示波器读得有效纹波电流为1.64A,与理论设计接近。

因此理论计算具有较大的工程指导意义。

图3 实测电容纹波电流4、温度测试方法测量容体表面温度Ts:需在电容器侧面的中间位置开展,如果由于外部影响导致电容器表面温度不均匀、不稳定,需综合测量电容器表面4个点的温度,再取平均值。

(精品word)推挽式开关电源设计(节选)

(精品word)推挽式开关电源设计(节选)

陶显芳开关电源原理与设计1-8.双激式变压器开关电源所谓双激式变压器开关电源,就是指在一个工作周期之内,变压器的初级线圈分别被直流电压正、反激励两次。

与单激式变压器开关电源不同,双激式变压器开关电源一般在整个工作周期之内,都向负载提供功率输出。

双激式变压器开关电源输出功率一般都很大,因此,双激式变压器开关电源在一些中、大型电子设备中应用很广泛。

这种大功率双激式变压器开关电源最大输出功率可以达300瓦以上,甚至可以超过1000瓦。

推挽式、半桥式、全桥式等变压器开关电源都属于双激式变压器开关电源.推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。

1—8—1.推挽式变压器开关电源的工作原理在双激式变压器开关电源中,推挽式变压器开关电源是最常用的开关电源。

由于推挽式变压器开关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性也很好。

推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于DC/AC逆变器,或DC/DC转换器电路中。

1-8—1-1.交流输出推挽式变压器开关电源一般的DC/AC逆变器,如交流不间断电源(简称UPS),大多数都是采用推挽式变压器开关电源电路.这种DC/AC逆变器工作频率很高,所以体积可以做得非常小;由于这个特点,推挽式变压器开关电源也经常用于AC/AC转换电路中,以减小电源变压器的体积。

开关电源滤波电感计算

开关电源滤波电感计算

为开关电源选择合适的电感电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。

电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。

电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。

换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。

电感为磁性元件,自然有磁饱和的问题。

有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。

大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。

但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。

杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。

如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。

当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:1. 当电感L中有电流I流过时,电感储存的能量为:E=0.5×L×I2 (1)2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:V=(L×di)/dt (2)由此可看出,纹波电流的大小跟电感值有关。

3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。

电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。

只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。

计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。

从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。

开关电源设计中最常用的几大计算公式汇总

开关电源设计中最常用的几大计算公式汇总

开关电源设计中最常用的几大计算公式汇总在开关电源设计中,有几个常用的计算公式可以帮助工程师进行准确的设计,以下是几个常用的计算公式的汇总:1.电容选择计算公式:开关电源中的电容主要用于滤波和储能,电容的选择需要考虑到输出的纹波电压、负载变化和效率等因素。

常见的电容选择公式如下:C=(ΔV×I)/(f×δV)其中,C是所需的电容容值,ΔV是允许的输出纹波电压,I是负载电流,f是开关频率,δV是峰值纹波电压。

2.电感选择计算公式:电感主要用于存储能量和滤波,选择适当的电感能够提高开关电源的效率。

电感选择的计算公式如下:L = ((Vin - Vout) × D × τ) / (Vout × Iout)其中,L是所需的电感值,Vin是输入电压,Vout是输出电压,D是占空比,τ是瞬态时间,Iout是负载电流。

3.开关频率计算公式:开关频率是开关电源设计中重要的参数,可以影响到效率、尺寸和成本等因素。

开关频率的计算公式如下:f = (Vin - Vout) / (Vout × L × Iout)其中,f是所需的开关频率,Vin是输入电压,Vout是输出电压,L是选择的电感值,Iout是负载电流。

4.整流二极管选择计算公式:整流二极管用于将开关电源的交流输出转换为直流输出,选择适当的整流二极管可以减少功耗和散热。

整流二极管选择的计算公式如下:Iavg = (Iout × η) / (1 - η)其中,Iavg是整流二极管的平均电流,Iout是负载电流,η是开关电源的效率。

5.功率开关管选择计算公式:功率开关管主要用于开关转换和功率调节,选择适当的功率开关管可以提高效率和可靠性。

功率开关管选择的计算公式如下:Pd = (Vin - Vout) × Iout / η - Vout × Iout其中,Pd是功率开关管的功耗,Vin是输入电压,Vout是输出电压,Iout是负载电流,η是开关电源的效率。

推挽式开关电源变压器参数的计算

推挽式开关电源变压器参数的计算

0.4.推挽式开关电源变压器参数的计算推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。

1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。

推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。

推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。

对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。

关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。

根据(1-95)式:(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。

式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = T on,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F 和τ取值要预留20%左右的余量。

推挽式开关电源变压器参数的计算

推挽式开关电源变压器参数的计算

推挽式开关电源变压器参数的计算
变压器参数包括额定电压、额定电流、变比和功率损耗等。

下面将分别介绍这些参数的计算方法。

1.额定电压
额定电压是指变压器在正常工作状态下允许的最大电压值。

通常根据需要的输出电压来确定额定电压。

2.额定电流
额定电流是指变压器在额定电压下所能承受的最大电流值。

计算额定电流的方法如下:
首先,根据输入电压和输出电压之间的变比关系计算输出电流。

输出电流=输入电压/输出电压
然后,根据该输出电流的数值来选择变压器的额定电流。

3.变比
变比是指变压器的输入电压与输出电压之间的比例关系。

推挽式开关电源变压器通常用于降低电压,因此变比小于1、计算变比的方法如下:变比=输出电压/输入电压
4.功率损耗
功率损耗是指变压器在工作过程中因内部电阻和磁损耗而产生的能量损失。

它通常以功率因数的形式表示。

计算功率损耗的方法如下:
首先,根据变压器额定电流和额定电压,计算输入功率和输出功率。

输入功率=输入电流*输入电压
输出功率=输出电流*输出电压
然后,计算功率损耗。

功率损耗=输入功率-输出功率
5.磁链
首先,根据输入电压和输入电流计算原边磁链。

原边磁链=输入电流/输入电压
然后,根据原边磁链和变比计算副边磁链。

副边磁链=原边磁链/变比
以上是推挽式开关电源变压器参数的计算方法。

根据实际需求,可以按照上述方法来计算并选择合适的参数,以确保变压器在工作过程中能够稳定可靠地运行。

开关电源电感、输入输出电容、二极管参数计算

开关电源电感、输入输出电容、二极管参数计算

开关电源电感、输⼊输出电容、⼆极管参数计算
本⽂是结合《精通开关电源设计》第⼆版第⼀、⼆章及⽹上看到的部分资料的整理,因为开关电源是⼀个很专业的领域,本⼈也不是很了解,本⽂的整理也只是可以快速的计算各元件可⽤的参数,当然开关电源芯⽚⼿册中也会给出相应的计算公式,这⾥整理的公式可能和芯⽚⼿册中有所不⼀样,但我想应该也差别不⼤,应该也可以达到可⽤的⽬的。

⼀、开关电源的基本拓扑
⼆、三种拓扑直流传递函数
三、参数的确定
1. 电感参数确认
电感参数确认使⽤L*I和负载缩放⽅法。

应⽤L*IL = Et/r计算得出电感值,应⽤IPK = IL*(1 + r/2)得出电感必须满⾜的峰值电流说明:
L-----------电感值
IL-----------电感平均电流
Et-----------伏秒积
r----------电流纹波率,r = ΔI/IL ≡ 2*IAC/IDC,r⼀般取0.4,⽆量纲
IPK-------流过电⼯那的峰值电流
2. 续流⼆极管参数选择
3. 输⼊输出电容选择
四、其他补充说明
针对BUCK电源:
1. 为了增强稳定性,可在电感的左边增加RC串接到低
2. 为了增强稳定性,可将续流⼆极管更换为开关管控制,使之成为同步BUCK电源
3. 为了更⼩的纹波,可在输出后级继续增加LC滤波电路,并且也可增加电感值,此适⽤所有拓扑。

陶显芳老师的《开关电源设计技巧》连载

陶显芳老师的《开关电源设计技巧》连载

连载一:开关电源的基本工作原理1-1.几种基本类型的开关电源顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。

开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。

前一种工作模式多用于DC/AC逆变电源,或 DC/DC电压变换;后两种工作模式多用于开关稳压电源。

另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。

同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。

根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。

其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。

下面我们先对串联式、并联式、变压器式等三种最基本的开关电源工作原理进行简单介绍,其它种类的开关电源也将逐步进行详细分析。

1-2.串联式开关电源1-2-1.串联式开关电源的工作原理此主题相关图片如下:图1-1.jpg图 1-1-a是串联式开关电源的最简单工作原理图,图1-1-a中Ui是开关电源的工作电压,即:直流输入电压;K是控制开关,R是负载。

当控制开关K接通的时候,开关电源就向负载R 输出一个脉冲宽度为Ton,幅度为Ui的脉冲电压Up;当控制开关K关断的时候,又相当于开关电源向负载R输出一个脉冲宽度为 Toff,幅度为0的脉冲电压。

这样,控制开关K不停地“接通”和“关断”,在负载两端就可以得到一个脉冲调制的输出电压uo 。

开关电源设计常用公式

开关电源设计常用公式

开关电源设计常用公式Pin(av):额定输入功率.fac(min):交流最小频率(40-75Hz)输入电容:Cin=0.3Pin(av)/fac(min)*Vin(min)*V²ripple(p-p)功率电阻:Rsc=Vsc(max)/Ipk输出电容:Cout=Iout(max)*(1-Dmin)/f*Vripple(pk-pk)库仑定律:I=V*C/△T=>V=I*△T/C波行周期:Ts=1/f频率:f=1/Ts占空比:D=ton/Ts储能电感:L=Eout*toff/0.25*Iout;L=(Vin(max)-Vo)*Ton/1.4*Io(min);L=AL*N²;EL=LI²磁感应强度增量:△B=V*D/N*Ae*f反激匝比:n=Ns/Np=(Vo+Vd/Vs(min))*Ts/ton(max)反激输出功率:Po=1/2*Lp*Ipk²*f输入峰值电流:Ipk=2Po/Vs*Dmax反激原边电感量:Lp=Vs(min)*Dmax*Ts/Ipk反激原边匝数:Np=Lp*Ipk/△B*Ae[Lp-原边电感量﹑]反激副边匝数:Ns=(Vo+Vd)*(1-Dmax)*Np/Vs(min)*Dmax[Vd-输出二极管压降﹑Dmax-占空比﹐Vs(min)-输入最低电压]正激原边电流:Ic=Pi/Dmax*Vs(min)正激原边有效值电流:Ip=Pin/Vs(min)*0.71导线直径:Dwp=1/Rp√4sp/π(Sp=Ip/j(mm²);Is=Io/1.414;Ss=Is/j)单管正激原边匝数:Np=Vs(max)*ton/△B*Ae;△Bmax=△Bac*Vs(max)/Vs正激匝比:n=Ns/Np=(Vo+Vd/Vs(min))*toff/ton单管正激副边匝数:Ns=Vo*Np*Ts/Vs(min)*ton双管正激副边匝数:Np=Vs(max)*ton/△B*Ae;△Bmax=△Bac*Vs(max)/Vs双管正激副边匝数:Ns=1.1(Vout+Vfwd)/Np*Vin(min)*Dmax(0.95);推挽式输出电压:Vo=(Vs*ton/(ton+toff))*(Ns/Np)推挽式原边匝数:Np=Vs(min)*N/V;N/V=ton/△B*Ae=ton/φ推挽式,半桥,全桥式匝比:n=Ns/Np=(2(Vo+Vdf)/Vs(min))*Ts/ton(max)半桥,全桥式输出电压:Vo=(1/2*Vs*2D)/2n=Vs*ton*Ns/Np*2Ts半桥,全桥式原边匝数:Np=Vs(max)*ton/△B*Ae;△Bmax=△Bac*Vs(max)/Vs电感电流连续时需要的电感量:L=Vo*toff/2*Io(min)电感电流断续时需要的电感量:L=(vi-vo)*ton/0.2*Io=5(vi-vo)*vo/vi*Io*f正激类和Buck电流连续时需要的电感量:L≧Vo*toff/△I;断续时:L≦Vo*toff/△IBoot,Buck/Boot电感电流连续时需要的电感量:L≧Vi*ton/△I;断续时::L≦Vi*ton/△I通常Ipk值算法还有:Ipk=K*Po/Vin(min):反激:K=5.5;正激,半桥:K=2.8;推挽,全桥:K=1.4。

开关电源设计思路及计算方法

开关电源设计思路及计算方法

本文开关电源工作原理是电子发烧友网开关电源工程师全力整理的原理分析,以丰富的开关电源案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40% -50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85% 以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

开关电源参数计算

开关电源参数计算

开关电源参数计算
开关电源参数的计算主要涉及到输入输出电压、电流、功率等参数的计算。

以下是一些基本的计算方法:
1. 输入电压和电流的计算:
* 输入电压(Vin):通常根据电源的额定电压和输入电压范围来确定。

* 输入电流(Iin):根据电源的额定功率和输入电压来计算。

公式为:Iin = P/Vin。

2. 输出电压和电流的计算:
* 输出电压(Vout):通常根据电源的额定输出电压和输出电压范围来确定。

* 输出电流(Iout):根据电源的额定功率和输出电压来计算。

公式为:Iout = P/Vout。

3. 功率计算的参数包括:
* 输入功率(Pin):Pin = Vin * Iin
* 输出功率(Pout):Pout = Vout * Iout
* 电源效率(η):η = Pout / Pin
4. 纹波电流和纹波电压的计算:
* 纹波电流(△I):△I = (Iout * Dmax) / (Ton / T)
* 纹波电压(△V):△V =(△I * R) / (Vin * Dmax)
5. 电感量的计算:
* 电感量(Lp):Lp = (Vin * Dmax) / (Ipeak * Fsw)
6. 饱和电流的计算:
* 饱和电流(Imax):Imax = 1.2 * Iout
7. 电感饱和电流取值的考虑因素:在计算得到的饱和电流基础上,乘以1.5或1.2倍,留有余量。

8. 开关频率的选择:纹波电流与开关频率有关,需要根据具体应用选择合适的开关频
率。

请注意,以上计算方法仅供参考,实际应用中可能需要根据具体的设计要求和电路情况进行调整。

推挽式开关电源变压器参数的计算【最新版】

推挽式开关电源变压器参数的计算【最新版】

推挽式开关电源变压器参数的计算推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。

1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。

推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。

推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。

对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm 变化到正的最大值+Bm。

关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。

根据(1-95)式:(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。

式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui 为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ= Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。

推挽式高频变压器设计

推挽式高频变压器设计

供一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)磁通密度磁通密度是磁感应强度的一个别名。

垂直穿过单位面积的磁力线叫做磁通量密度,简称磁通密度,测量主机侧板底部磁通密度它从数量上反映磁力线的疏密程度。

磁场的强弱通常用磁感应强度“B”来表示,哪里磁场越强,哪里B的数值越大,磁力线就越密。

按照国际单位制磁感应强度的单位是特斯拉,其符号为T:磁感应强度还有一个过时的单位:高斯,其符号为G:1 T = 10000 G。

这个符号在技术设施中还广泛使用。

通常条形磁铁两极附近的磁感应强度大约是几十到几百高斯。

在处理与磁性有关问题时,除了要用到磁感应强度外,常常还要讨论穿过一块面积的磁力线数目,称做磁CPU附近磁通密度通量,简称磁通,有Φ 示。

磁通量的单位是韦伯,用Wb表示,以前还有麦克斯韦有Mx表示。

如果磁场中某处的磁感应强度为B,在该处有一块与磁通垂直的面,它的面积为S,则穿过它的磁通量就是Φ = BS式中磁感应强度B的单位是高斯(Gs);面积S的单位是平方厘米;磁通量的单位是麦克斯韦(Mx)。

磁通量的简介公式:Φ=BS,适用条件是B与S平面垂直。

当B与S存在夹角θ时,Φ=B*S*cosθ。

Φ读“fai”四声。

单位:在国际单位制中,磁通量的单位是韦伯,符号是Wb,1Wb=1T*m^2;=1V*S,是标量,但有正负,正负仅代表穿向。

意义:磁通量的意义可以用磁感线形象地加以说明.我们知道在同一磁场的图示中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B 越大.因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大.B与S平面不垂直的情况磁通量通过某一平面的磁通量的大小,可以用通过这个平面的磁感线的条数的多少来形象地说明。

开关电源课程设计:反激式开关电源变压器参数的计算

开关电源课程设计:反激式开关电源变压器参数的计算

《开关电源设计》与《变压器工程与设计》课程期末考查报告报告名称:反激式开关电源变压器参数的计算学生姓名:学号:专业班级:指导教师:二0一七年十二月二十日反激式开关电源变压器参数的计算储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压器开关电源储能滤波电容两端电压的充、放电波形画成了锯齿波,这也相当于用曲率的平均值来取代曲线的曲率,如图1-26所示。

图1-26中,uo是变压器次级线圈输出波形,Up是变压器次级线圈输出电压正半周波形的峰值,Up-是变压器次级线圈输出电压负半周波形的峰值,Upa是变压器次级线圈输出电压波形的半波平均值,uc 是储能滤波电容两端的电压波形,Uo 是反激式变压器开关电源输出电压的平均值,i1是流过变压器初级线圈的电流,i2是流过变压器次级线圈的电流,Io是流过负载两端的平均电流。

电容参数的计算方法完全相同。

反激式变压器开关电源储能滤波电容参数的计算,除了参考图1-7以外,还可以参考前面串联式开关电源或反转式串联开关电源中储能滤波电容参数的计算方法,同时还可以参考图1-6中储能滤波电容C的充、放电过程。

从图1-26可以看出,反激式变压器开关电源储能滤波电容充、放电波形与图1-7反转式串联开关电源储能滤波电容充、放电波形(图1-8 -b))基本相同,只是极性正好相反。

因此,图1-19反激式变压器开关电源储能滤波电容参数的计算方法与图1-7反转式串联开关电源储能滤波图1-26从图1-26中可以看出,反激式变压器开关电源与反转式串联开关电源中的储能电感一样,仅在控制开关K关断期间才产生反电动势向负载提供能量,因此,即使是在占空比D等于0.5的情况下,储能滤波电容器充电的时间与放电的时间也不相等,电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。

开关电源参数计算

开关电源参数计算

开关电源参数计算
摘要:
1.开关电源参数计算概述
2.开关电源参数计算的基本原理
3.开关电源参数计算的具体方法
4.开关电源参数计算的实际应用
5.总结
正文:
一、开关电源参数计算概述
开关电源参数计算是电子工程领域的重要内容,开关电源的性能和稳定性在很大程度上取决于参数的正确选取。

参数计算主要包括开关频率、输出滤波电容、输入滤波电容、开关电流等关键参数的选取。

二、开关电源参数计算的基本原理
开关电源参数计算的基本原理是基于开关电源的工作原理和特性,通过分析开关电源的电路模型和控制方法,确定各个参数对开关电源性能的影响,从而进行参数的优化选取。

三、开关电源参数计算的具体方法
1.开关频率的计算:开关频率是开关电源的关键参数,其选取直接影响到开关电源的效率和稳定性。

通常采用稳态分析法或频率扫描法进行计算。

2.输出滤波电容的计算:输出滤波电容主要用于滤除开关电源输出电压的高频分量,其选取需要考虑输出电压的纹波和负载电流。

3.输入滤波电容的计算:输入滤波电容主要用于滤除输入电压的高频分量,其选取需要考虑输入电压的波动和电源的响应速度。

4.开关电流的计算:开关电流是开关电源的工作电流,其选取需要考虑开关器件的耐压和耐流能力。

四、开关电源参数计算的实际应用
在实际应用中,开关电源参数的计算需要根据具体的电源需求和条件进行,例如输入电压、输出电压、输出电流、负载特性等。

五、总结
开关电源参数计算是开关电源设计中的重要环节,正确的参数选取可以提高开关电源的性能和稳定性。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。

根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。

图1-35-a)是整流输出电压uo的波形图。

实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。

Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。

图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。

Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为:式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。

在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。

对(1-136)式进行积分得:式中i(0)为初始电流(t = 0时刻流过电感L的电流),即:控制开关K1刚接通瞬间,流过电感L的电流,或称流过电感L的初始电流。

(连载30)推挽式变压器开关电源储能滤波电容参数的计算

(连载30)推挽式变压器开关电源储能滤波电容参数的计算

(连载30)推挽式变压器开关电源储能滤波电容参数的计算我们学电源电源看这里电源界第一大公众平台38000+电源工程师关注【新朋友】点击标题下面蓝字“电源研发精英圈”快速关注【老朋友】点击右上角按钮,将本文分享到您的朋友圈电源研发精英圈1群:301105645电源研发精英圈2群:334695051开关电源视频教程购买请加小编微信号:gcj5055查看电源工程师各地工资水平,请关注本公众号然后回复:工资最新通知【通知】跳槽季电源企业怎么快速招到电源工程师?各地招聘电源工程师(点击下面蓝色标题直接查看)【东莞】诚聘开关电源技术人才,管理人才!【上海】爱立信招聘电源工程师,磁性元器件工程师,电源验证工程师......(连载30)推挽式变压器开关电源储能滤波电容参数的计算(连载01)开关电源的基本工作原理(连载02)串联式开关电源输出电压滤波电路(连载03)串联式开关电源储能滤波电感的计算(连载04)串联式开关电源储能滤波电容的计算(2)(连载05)反转式串联开关电源(连载06)反转式串联开关电源储能电感的计算(连载07)反转式串联开关电源储能滤波电容的计算(连载08)并联式开关电源的工作原理(连载09)并联式开关电源输出电压滤波电路(连载10)并联开关电源储能电感的计算(连载11)单激式变压器开关电源(连载12)单激式变压器开关电源工作原理(连载13)正激式变压器开关电源(连载14)正激式变压器开关电源的优缺点(连载15)正激式变压器开关电源电路参数的计算(连载16)正激式开关电源变压器参数的计算(连载17)正激式开关电源变压器初、次级线圈匝数比的计算(连载18)反激式变压器开关电源part1(连载19)反激式变压器开关电源part2(连载20)开关电源电路的过渡过程part1 (连载21)开关电源电路的过渡过程part2 (连载22)反激式变压器开关电源电路参数计算(连载23)反激式开关电源变压器参数的计算(连载24)反激式开关电源变压器初级线圈电感量的计算(连载25)反激式变压器开关电源的优缺点(连载26)双激式变压器开关电源part1(连载27)双激式变压器开关电源part2(连载28)整流输出推挽式变压器开关电源(连载29)推挽式变压器开关电源储能滤波电感、电容参数的计算1-8-1-3-2.推挽式变压器开关电源储能滤波电容参数的计算由图1-35可以看出,在两个控制开关的占空比D分别等于0.25的情况下,电容器充、放电的电荷以及充、放电的时间和正、负电压纹波值均应该相等,并且电容器充电流的平均值也正好等于流过负载的电流Io与流过储能电感最小电流Ix的差。

开关电源中输出滤波电感的设计计算

开关电源中输出滤波电感的设计计算

开关电源中输出滤波电感的设计计算(图一)(图二)(图三)开关电源次级线圈上的输出电压Uo是脉冲状态(图一),要使脉冲方波变成可供电路使用的直流电,还需要对它进行平滑处理,常用的平滑电路由整流二极管、滤波电容、滤波电感构成。

(图二)㈠. 平滑处理原理(图二)中电感L在电路中既有储能作用,且对交流成分呈高阻抗,能阻止交流成分通过。

电容C1—C4对交流信号呈低阻抗,允许交流成分通过,而对直流呈高阻抗,而阻止直流通过。

感抗:XL=2πfL电感对高频成分呈高阻抗,感抗越大,对高频信号的电抗电压越大,阻止高频成分通过的能力越强。

容抗:XC=1/2πfC电容对直流呈高阻抗,能阻止直流通过,对交流成分呈低阻抗,容抗越小,交流成分就越容易通过。

(图二)中LC的乘积越大对高频成分的平滑作用越好。

为求得最佳电感量,可按下节进行设计计算。

㈡. 开关稳压电源输出的纹波噪声平滑滤波后开关电源输出波形(图三),不难看出,经过(图二)电路平滑后的直流输出中包含了一定的纹波噪声。

它分两部分:纹波:与初级输入工频频率和开关频率同步的波形即为纹波。

噪声:在纹波上的针状毛刺就是噪声。

两类波合在一起称为:纹波噪声。

㈢输出平滑处理电路中电感L的设计计算电感L的计算有如下一些公式:流过电感L的纹波电流△Il为输出电流Io的2%~5%,即:△Il=(0.02~0.05)Io ①△Il=Ton max(Umin-Vf-Vo)/L ②L= DTonmax(Umin-Vf-Vo)/ △Il ③Uo min= T(Vo max+Vf+Vl)/D ④D=Tonmax /T ⑤㈣计算实例输出电压Vo=5V 10%±输出电流Io=开关频率F=200KHz占空比D=0.42次级线圈上的最小电压:开关周期:T=1/F=1/200×103=5μs最大导通时间:Ton max=TD=5×0.42=2.1μS输出最大直流电压: Vo max=5×10%=5.5 V次级线圈上的最小电压:Umin=5×(5.5+0.2+0.4)/2.1=14.5V在一般情况下,滤波电感中通过的电流△Il的值是Io的2%~5%本例取5%根据式②L△Il= Ton max(Umin -Vf-Vomax)/ △Il=2.1(14.5-0.4-5.5)/1=18.06μH取整L=18μH通过的电流为20A。

开关电源设计技巧连载十:正激式变压器开关电源电路参数的计算

开关电源设计技巧连载十:正激式变压器开关电源电路参数的计算

开关电源设计技巧连载十:正激式变压器开关电源电路参数的计算正激式变压器开关电源电路参数计算主要对储能滤波电感、储能滤波电容,以及开关变压器的参数进行计算。

0.1.正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算图1-17中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法基本相同,因此,我们可以直接引用(1-14)式和(1-18)式,即:式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍控制开关的接通时间Ton ;ΔUP-P为输出电压的波纹电压,波纹电压ΔUP-P 一般取峰-峰值,所以波纹电压等于电容器充电或放电时的电压增量,即:ΔUP-P = 2ΔUc 。

同理,(1-90)式和(1-91)式的计算结果,只给出了计算正激式变压器开关电源储能滤波电感L和滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。

关于电压平均值输出滤波电路的详细工作原理与参数计算,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容,这里不再赘述。

1-6-3-2.正激式开关变压器参数的计算正激式开关变压器参数的计算主要从这几个方面来考虑。

一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。

关于开关变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。

1-6-3-2-1.正激式开关变压器初级线圈匝数的计算图1-17中,当输入电压Ui加于开关变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。

当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算
1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算
图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。

根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。

图1-35-a)是整流输出电压uo的波形图。

实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。

Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。

图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。

Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算
在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为:
式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。

在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。

对(1-136)式进行积分得:
式中i(0)为初始电流(t = 0时刻流过电感L的电流),即:控制开关K1刚接通瞬间,流过电感L的电流,或称流过电感L的初始电流。

从图1-35中可以看出i(0)= Ix 。

当控制开关K由接通期间Ton突然转换到关断期间Toff的瞬间,流过电感L的电流iL达到最大值:
从图1-35中还可以看出Im = Io + Ix ,Ua = ,Uo = Ua ,即:
根据(1-78)式(1-139)还可进一步求得:
(1-139)和(1-140)式就是计算推挽式变压器开关电源输出电压的表达式。

式中,Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,Up为推挽式变压器开关电源开关变压器次级线圈N3绕组的正激输出电压,Up-为推挽式变压器开关电源开关变压器次级线圈N3绕组的反激输出电压,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。

根据上面分析结果,(1-138)式可以写为:
或:
由(1-75)式可知,当控制开关K1、K2的占空比均为0.5时,Upa与Upa-基本相等,由此我们也可以认为Up与Up-基本相等。

相关文档
最新文档