9空间向量及其运算
9.5空间向量及其运算第一课时空间向量及其加减与数乘运算-PPT课件
瀚海书业
瞻前顾后
要点突破
典例精析
演练广场
首页
上一页
下一页
末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后
要点突破
典例精析
演练广场
想一想: 1.空间向量的概念及表示方法 如同平面向量一样,在空间,我们把具有大小和方向的量叫做向量. 与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向 量或相等的向量. 2.空间向量的加法、减法与数乘运算的定义 (1)与平面向量一样,我们定义空间向量的加法、减法与数乘向量,运算如下: OB― →= OA― →+ AB― → =a+b; CA― →= OA―→- OC― → = a- b; OP― →= λa(λ∈ R).
法二:用三角形法则求:作 MN― →= a, NP― →=b,则有如图(2)所示 MP― →= a+ b. 2.向量的减法运算结果仍是向量,它可以看作是加法运算即 a- b=a+ (-b),例如上 面图(2)中 MP― →- MN― →= NP― →,图 (1)中 AB―→- AD―→= DB― →.
首页
上一页
下一页
末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后
要点突破
典例精析
演练广场
做一做: 1.两个向量 (非零向量)的模相等是两个向量相等的 ( B (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件
)
解析:两个向量相等,则其模也相等,反之,则不一定正确.应选 B.
首页
上一页
下一页
末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后
要点突破
典例精析
空间向量及其运算(经典)
§8.5 空间向量及其运算1.空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b相反向量 方向相反且模相等的向量 a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 推论 如图所示,点P 在l 上的充要条件是 OP →=OA →+t a①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →= OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z =__1__. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及应用 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × )(3)对于非零向量b ,由a ·b =b ·c ,则a =c . ( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( √ ) (6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的 交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A.x =1,y =1B.x =1,y =12C.x =12,y =12D.x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________________. 答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点, E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c .题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →. 思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →. (2)OC 1→=OC →+CC 1→ =12AB →+12AD →+AA 1→. 题型二 共线定理、共面定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、 DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示. 证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分.故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底,易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF ⊄平面A 1B 1CD ,DB 1⊂平面A 1B 1CD , 所以EF ∥平面A 1B 1CD . 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于 a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b |a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →.即MN ⊥AB .同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a .(3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值; (2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4), 且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反. 解析 由题意知a ∥b ,所以x 1=x 2+y -22=y 3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ② 把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3. 答案 1,3温馨提醒 (1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a ,b 满足a =λb (b ≠0)且λ>0则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例.方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题. 失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b =b·a ,a ·(b +c )=a·b +a·c 成立,(a·b )·c =a·(b·c )不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练 (时间:40分钟)一、选择题1.空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A.垂直B.平行C.异面D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点. ∴AB ∥CD .2.已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则 ( ) A.O ,A ,B ,C 四点不共线 B.O ,A ,B ,C 四点共面,但不共线 C.O ,A ,B ,C 四点中任意三点不共线 D.O ,A ,B ,C 四点不共面 答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A.2,12B.-13,12C.-3,2D.2,2答案 A解析 由题意知:⎩⎪⎨⎪⎧ λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.4.空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( ) A.共线B.共面C.不共面D.无法确定 答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4).假设四点共面,由共面向量定理得,存在实数x ,y ,使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧ 2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾.∴假设不成立,故四点不共面.5.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( ) A.0 B.12 C.32 D.22 答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b , ∴OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos π3-|a ||b |cos π3=0, ∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12, ∴〈b ,c 〉=120°,∴两直线的夹角为60°.7.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95,∴当t =15时,|b -a |取得最小值355.8.如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9.已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2.(2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E(λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25), ∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b . 10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12. (1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6, ∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b)=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴AC 与BD 1夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A.c ∥dB.c ⊥dC.c 不平行于d ,c 也不垂直于dD.以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2.以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A.1B.2C.3D.4答案 B解析 由共线向量知a 与b 所在直线可能重合知①错;若a +b ,b +c ,c +a 共面,则存在实数x ,y ,使a +b =x (b +c )+y (c +a )=y a +x b +(x +y )c , ∵a ,b ,c 不共面,∴y =1,x =1,x +y =0,∴x ,y 无解,∴{a +b ,b +c ,c +a }能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x +y +z =1时,P ,A ,B ,C 四点共面,∴④不正确.故选B.3.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12), ∴AM →=(0,12,1), CN →=(1,0,12), ∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC→|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010.。
空间向量及其运算(内容详细,题目典型,适合新授课)
即: (a b) a b ( ) a a a ( )a ( )a
四、空间向量加法与数乘向量运算律
化简( AB CD) ( AC BD)
解: 方法一: 将减法转化为加法进行 化简 AB CD AB DC ( AB CD ) ( AC BD) AB DC AC BD AB DC CA BD AB BD DC CA AD DA 0
五、共线向量: 1.空间共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.空间共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
由此可判断空间中两直线平行或三点共线问题
你能对(3)(4)结论进行推广吗?
四、空间向量加法与数乘向量运算律
A1 A2 A2 A3 An 1 An _____ A1 An
(3) A1 A2 A2 A3 A3 A4 A1 A4
A1 An A2 A3
An-1
…
A 4 首尾相接的若干向量之和,等于由起始向量的起 点指向末尾向量的终点的向量.
B
b
a
O
A
O′
结论:空间任意两个向量都可以平移到同一个平面内, 内,成为同一平面内的两个向量。
一、空间向量的基本概念
说明 ⒈空间向量的运算就是平面向量运算的推广.
2.凡是只涉及空间任意两个向量的问题,平面向量 中有关结论仍适用于它们。
一、空间向量的基本概念
空间向量及其运算
空间向量及其运算知识梳理1.空间向量在空间中,具有大小和方向的量叫做空间向量,其大小叫做向量的长度或模.2.空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组{x,y,z}使得p=x a+y b+z c.3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos<a,b>.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b).②交换律:a·b=b·a.③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).例题精讲例1、下面向量中,与向量=(0,1,1),=(1,0,1)共面的向量是(B)A.=(1,1,0)B.=(1,﹣1,0)C.=(1,0,0)D.=(1,0,﹣1)例2、已知=(1,m,2),=(n,1,﹣2),若=λ,则实数m,n的值分别为(A)A.﹣1,﹣1B.1,﹣1C.﹣1,1D.1,1例3、如图,在棱长均相等的四面体O﹣ABC中,点D为AB的中点,,设,,,则向量用向量表示为(D)A.B.C.D.例4、长方体ABCD﹣A1B1C1D1的底面是边长为1的正方形,高为2,M,N分别是四边形BB1C1C和正方形A1B1C1D1的中心,则向量与的夹角的余弦值是(B)A.B.C.D.例5、如图,正四面体ABCD的棱长为1,点E是棱CD的中点,则•=练习:1、已知空间向量=(0,1,﹣1),=(1,﹣3,1),则|+|等于()A.B.2C.D.12、已知=(2,﹣1,2),=(﹣4,2,x),且∥,则x=()A.5B.4C.﹣4D.﹣53、已知A(﹣4,2,3)关于xOz平面的对称点为A1,若B(6,﹣4,﹣1),线段AB的中点为M,则|A1M|等于()A.B.3C.2D.64、如图,M,N分别是四面体OABC的边OA,BC的中点,P是MN的中点,设=,=,=,用,,表示,则()A.=++B.=++C.=++D.=++5、如图,M,N分别是四面体OABC的边OA,BC的中点,P,Q是MN的三等分点(Q靠近点M),则用向量,,表示,正确的是()A.=B.=+C.=+D.=+6、若向量=(3,2,x),=(1,0,2),=(1,﹣1,4)满足条件(﹣)⊥,则实数x的值为()A.﹣1B.2C.3D.47、对于空间任意一点O和不共线得三点A、B、C,有如下关系:=,则()A.四点O、A、B、C必共面B.四点P、A、B、C必共面C.四点O、P、B、C必共面D.五点O、P、A、B,C必共面8、若向量,,,则实数z的值为()A.B.2C.D.±29、已知向量=(2,4,5),=(3,x,y),分别是直线l1、l2的方向向量,若l1∥l2,则()A.x=6,y=15B.x=3,y=15C.x=,y=D.x=6,y=10、如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1,B1D1的交点.若=,=,=,则向量=()A.﹣++B.C.﹣﹣+D.﹣+ 11、已知空间向量,如=(2x+1,3x,0),=(1,y,y﹣3)(x,y∈R)果存在实数λ使得=λ成立,则x+y=.12、已知=(,﹣1,0),=(k,0,1),,的夹角为60°,则k=.13、在空间直角坐标系中,已知点A(1,2,0),B(x,3,﹣1),C(4,y,2),若A,B,C三点共线,则x+y=.14、已知向量=(1,1,0),=(﹣1,0,2),=(x,﹣1,2),若,,是共面向量,则x=.15、在正方体ABCD﹣A1B1C1D1中,若点O是底面正方形A1B1C1D1的中心,且,则x+y+z=.16、点A(1,2,1),B(3,3,2),C(λ+1,4,3),若的夹角为锐角,则λ的取值范围为.答案:1、A 2、C 3、A 4、D 5、A 6、C 7、B 8、C 9、D 10、A 11、2 12、﹣14、-2 15、2 16、(﹣2,4)13、∪(4,+∞)。
空间向量及其运算(共22张PPT)
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS
教案)空间向量及其运算
教案)空间向量及其运算一、教学目标1. 理解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的表示方法,能够熟练地在坐标系中表示和计算空间向量。
3. 理解空间向量的运算规则,包括加法、减法、数乘和点乘。
4. 能够运用空间向量的运算解决实际问题。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向。
2. 空间向量的表示方法:坐标表示、图形表示。
3. 空间向量的运算规则:a. 加法:三角形法则、平行四边形法则。
b. 减法:向量的减法等于加法的相反向量。
c. 数乘:数乘向量的概念、运算规则。
d. 点乘:点乘的定义、运算规则、几何意义。
三、教学重点与难点1. 教学重点:a. 空间向量的概念及其基本性质。
b. 空间向量的表示方法。
c. 空间向量的运算规则。
2. 教学难点:a. 空间向量的运算规则的理解与应用。
b. 空间向量在实际问题中的应用。
四、教学方法与手段1. 教学方法:a. 采用讲授法,讲解空间向量的概念、性质和运算规则。
b. 采用示例法,展示空间向量的运算过程和应用实例。
c. 采用练习法,让学生通过练习巩固空间向量的知识。
2. 教学手段:a. 使用多媒体课件,展示空间向量的图形和运算过程。
b. 使用黑板和粉笔,绘图和演算空间向量的运算。
五、教学安排1课时教案)空间向量及其运算六、教学过程1. 导入:通过简单的二维向量例子,引导学生思考空间向量的概念。
2. 新课:讲解空间向量的定义、性质,以及各种表示方法。
3. 示范:展示空间向量的加法、减法、数乘和点乘运算,并用多媒体课件演示运算过程。
4. 练习:让学生在多媒体课件上进行空间向量的运算练习,巩固所学知识。
5. 应用:举例说明空间向量在实际问题中的应用,如物体运动、空间几何等。
七、教学反思课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、教学内容的掌握程度等。
针对存在的问题,调整教学方法,为下一节课的教学做好准备。
八、课后作业1. 复习空间向量的概念、性质和运算规则。
空间向量及其运算和空间位置关系(含解析)
归纳与技巧:空间向量及其运算和空间位置关系基础知识归纳一、空间向量及其有关概念OP=x OA+y OB+z OC且x+二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一的.基础题必做1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是()A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对解析:选C∵c=(-4,-6,2)=2a,∴a∥c.又a·b=0,故a⊥b.2.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}解析:选C若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.3.(教材习题改编)下列命题:①若A、B、C、D是空间任意四点,则有AB+BC+CD+DA=0;②若MB=x MA+y MB,则M、P、A、B共面;③若p=x a+y b,则p与a,b共面.其中正确的个数为()A.0B.1C.2 D.3解析:选D可判断①②③正确.4.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=________(用a,b,c表示).解析:如图,OE=12OA+12OD=12OA +14OB +14OC =12a +14b +14c . 答案:12a +14b +14c5.已知ABCD -A 1B 1C 1D 1为正方体,①(1A A +11A D +11A B )2=311A B 2;②1A C ·(11A B -1A A )=0;③向量1AD 与向量1A B 的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB ·1AA ·AD |.其中正确命题的序号是________.解析:设正方体的棱长为1,①中(1A A +11A D +11A B )2=311A B 2=3,故①正确;②中11A B -1A A =1AB ,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但1AD 与1A B 的夹角为120°,故③不正确;④中|AB ·1AA ·AD |=0.故④也不正确.答案:①②解题方法归纳1.用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.2.直线的方向向量与平面的法向量的确定:(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB 为直线l 的方向向量,与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.空间向量的线性运算典题导入[例1] 如图,在平行六面体ABCD -A 1B 1C 1D 1中G 为△A 1BD 的重心,设AB =a ,AD =b ,1AA =c ,试用a ,b ,c 表示1AC ,AG .[自主解答] 1AC =AB +BC +1CC =AB +AD +1AA =a +b +c .AG =1AA +1A G=1AA +13(1A D +1A B )=1AA +13(AD -1AA )+13(AB -1AA )=131AA +13AD +13AB =13a +13b +13c .本例条件不变,设A 1C 1与B 1D 1交点为M ,试用a ,b ,c 表示MG . 解:如图,MG =1MA +1A G=-12(11A B +11A D )+13(1A D +1A B )=-12a -12b +13(AD -1AA )+13(AB -1AA )=-12a -12b +13b -13c +13a -13c=-16a -16b -23c解题方法归纳用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键,要正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则.以题试法1.如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N分别为OA 、BC 的中点,点G 在线段MN 上,且MG =2GN ,若OG =x OA +y OB +z OC ,则x ,y ,z 的值分别为________.解析:∵OG =OM +MG =12OA +23MN=12OA +23(ON -OM ) =12OA +23ON -23OM =12OA +23×12(OB +OC )-23×12OA =16OA +13OB +13OC ∴x ,y ,z 的值分别为16,13,13.答案:16,13,13共线、共面向量定理的应用典题导入[例2] 如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面.[自主解答] 取ED '=a ,EF =b ,EH =c ,则HG =HB +BC +CG =D F '+2ED '+12AA '=b -a +2a +12(AH +HE +EA ')=b +a +12(b -a -c -a )=32b -12c ,∴HG 与b 、c 共面.即E 、F 、G 、H 四点共面. 解题方法归纳应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA =λPB 且同过点P MP =x MA +y MB对空间任一点O,OP=OA→+t AB对空间任一点O,OP=OM+x MA+y MB对空间任一点O,OP=x OA+(1-x)OB对空间任一点O,OP=x OM+y OA+(1-x-y)OB以题试法2.已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,用向量方法,求证:(1)E、F、G、H四点共面;(2)BD∥平面EFGH.证明:(1)连接BG,则EG=EB+BG=EB+12(BC+BD)=EB+BF+EH=EF+EH,由共面向量定理知:E、F、G、H四点共面.(2)因为EH=AH-AE=1 2AD-12AB=12(AD-AB)=12BD,又因为E、H、B、D四点不共线,所以EH∥BD.又EH⊂平面EFGH,BD⊄平面EFGH,所以BD∥平面EFGH.利用空间向量证明平行或垂直典题导入[例3]已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,边长为2a,AD=DE=2AB,F为CD的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[自主解答] 依题意,以AC 所在的直线为x 轴,AB 所在的直线为z 轴,过点A 且垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝⎛⎭⎫32a ,32a ,0.(1)易知,AF =⎝⎛⎭⎫32a ,32a ,0,BE =(a ,3a ,a ),BC =(2a,0,-a ),∵AF =12(BE +BC ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF =⎝⎛⎭⎫32a ,32a ,0,CD =(-a ,3a,0),ED =(0,0,-2a ),∴AF ·CD =0,AF ·ED =0, ∴AF ⊥CD ,AF ⊥ED ,即AF ⊥CD ,AF ⊥ED . 又CD ∩ED =D ,∴AF ⊥平面CDE . 又AF ∥平面BCE ,∴平面BCE ⊥平面CDE .解题方法归纳利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ). l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.以题试法3. 如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C .证明:(1)建立如图所示的空间直角坐标系,则点O (1,1,0)、D 1(0,0,2), ∴1OD =(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM =(-1,-1,2), ∴1OD =BM , 又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1.∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0,∴1OD ⊥1OB ,1OD ⊥AC , 即OD 1⊥OB 1,OD 1⊥AC ,又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .1. 若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0.而A 中a ·n =-2, B 中a ·n =1+5=6,C 中a ·n =-1, 只有D 选项中a ·n =-3+3=0.2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607D.657解析:选D 由题意得c =t a +μ b =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB =a ,AD =b ,1AA =c ,则下列向量中与BM 相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A BM =1BB +1B M =1AA +12(AD -AB )=c +12(b -a )=-12a +12b +c .4. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA ,BC 〉的值为( ) A .0 B.12 C.32D.22解析:选A 设OA =a ,OB =b ,OC =c , 由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ·BC =a ·(c -b )=a ·c -a ·b=12|a ||c |-12|a ||b |=0,∴cos 〈OA ,BC 〉=0. 5. 平行六面体ABCD -A 1B 1C 1D 1中,向量AB 、AD 、1AA 两两的夹角均为60°,且|AB |=1,|AD |=2,|1AA |=3,则|1AC |等于( )A .5B .6C .4D .8解析:选A 设AB =a ,AD =b ,1AA =c ,则1AC =a +b +c , 1AC 2=a 2+b 2+c 2+2a ·c +2b ·c +2c ·a =25, 因此|1AC |=5.6.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ =λMN 的实数λ的值有( )A .0个B .1个C .2个D .3个解析:选C 建立如图所示的坐标系,设正方体的棱长为2, 则P (x ,y,2),O (1,1,0), ∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0), 而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.7.在下列条件中,使M 与A 、B 、C 一定共面的是________.①OM =2OA -OB -OC ;②OM =15OA +13OB +12OC ;③MA +MB +MC =0;④OM +OA +OB +OC =0.解析:∵MA +MB +MC =0,∴MA =-MB -MC ,则MA 、MB 、MC 为共面向量,即M 、A 、B 、C 四点共面.答案:③8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析:以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴1B E =(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB =(1,1,y ),由于AB ⊥B 1E ,故若B 1E ⊥平面ABF ,只需PB ―→·1B E =(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案:19.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB的中点,cos 〈DP ,AE 〉=33,若以DA 、DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.解析:设PD =a ,则A (2,0,0),B (2,2,0),P (0,0,a ),E ⎝⎛⎭⎫1,1,a 2. ∴DP =(0,0,a ),AE =⎝⎛⎭⎫-1,1,a 2. 由cos 〈DP ,AE 〉=33, ∴a 22=a 2+a 24·33,∴a =2. ∴E 的坐标为(1,1,1).答案:(1,1,1)10.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明:AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1).(1)∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝⎛⎭⎫12,32,0,E ⎝⎛⎭⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC ·CD =0, 即y =233,则D ⎝⎛⎭⎫0,233,0, ∴CD =⎝⎛⎭⎫-12,36,0.又AE =⎝⎛⎭⎫14,34,12, ∴AE ·CD =-12×14+36×34=0, ∴AE ⊥CD ,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD =⎝⎛⎭⎫0,233,-1. 又AE ·PD =34×233+12×(-1)=0, ∴PD ⊥AE ,即PD ⊥AE .∵AB =(1,0,0),∴PD ·AB =0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB .法二:AB =(1,0,0),AE =⎝⎛⎭⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD =⎝⎛⎭⎫0,233,-1,显然PD =33n . ∵PD ∥n ,∴PD ⊥平面ABE ,即PD ⊥平面ABE .11.已知矩形ABCD 中,AB =6,BC =62,E 为AD 的中点(图甲).沿BE 将△ABE 折起,使二面角A -BE -C 为直二面角(图乙),且F 为AC 的中点.(1)求证:FD∥平面ABE;(2)求证:AC⊥BE.证明:(1)如图1,设M为BC的中点,连接DM、MF.∵F为AC的中点,M为BC的中点,∴MF∥AB.又∵BM綊DE,∴四边形BMDE为平行四边形,∴MD∥BE.∵MF∩MD=M,AB∩BE=B,∴平面DFM∥平面ABE.又∵PD⊂平面DFM,FD⊄平面ABE,∴FD∥平面ABE.(2)在矩形ABCD(如图2)中,连接AC,交BE于G.BE·AC=(BA+AE)·(AB+BC)=-AB2+AE·BC=-36+36=0.∴AC⊥BE.∴在图3中,AG⊥BE,CG⊥BE.又∵AG∩GC=G,∴BE⊥平面AGC.又∵AC⊂平面AGC,∴AC⊥BE.12.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.解:(1)证明:如图,在平面ABCD内过点D作直线DF∥AB,交BC于点F,以D为坐标原点,DA、DF、DP所在的直线分别为x、y、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0).(1)设PD =a ,则P (0,0,a ),BD =(-1,-3,0),PC =(-3,3,-a ),∵BD ·PC =3-3=0,∴BD ⊥PC . (2)由题意知,AB =(0,3,0),DP =(0,0,a ),PA =(1,0,-a ),PC =(-3,3,-a ),∵PE =λPC ,∴PE =(-3λ,3λ,-aλ),DE =DP +PE =(0,0,a )+(-3λ,3λ,-aλ)=(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面P AB 的法向量,则⎩⎪⎨⎪⎧ AB ·n =0,PA ·n =0, 即⎩⎪⎨⎪⎧3y =0,x -az =0.令z =1,得x =a ,∴n =(a,0,1),∵DE ∥平面P AB ,∴DE ·n =0,∴-3aλ+a -aλ=0,即a (1-4λ)=0,∵a ≠0,∴λ=14.1.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4 D .4,407,-15 解析:选B ∵AB ⊥BC ,∴AB ·BC =0, 即3+5-2z =0,得z =4.又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC =(3,1,4),则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎨⎧ x =407,y =-157.2.设空间四点O ,A ,B ,P 满足OP =OA +t AB ,其中0<t <1,则有( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上解析:选A ∵0<t <1,∴P 点在线段AB 上.3.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点.求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明:(1)如图所示,建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)、C (0,2,0)、C 1(0,2,2)、E (2,2,1)、F (0,0,1),所以1FC =(0,2,1),DA =(2,0,0),AE =(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的一个法向量,则n 1⊥DA ,n 1⊥AE , 即⎩⎪⎨⎪⎧ n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0. 解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1. 令z 1=2,则y 1=-1,所以n 1=(0,-1,2).因为1FC ·n 1=-2+2=0,所以1FC ⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)由(1)得B 1(2,2,2),11C B =(2,0,0).设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,则n 2⊥1FC ,n 2⊥11C B , 即⎩⎪⎨⎪⎧ n 2·1FC =2y 2+z 2=0,n 2·11C B =2x 2=0.解得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,则y 2=-1,所以n 2=(0,-1,2).因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .1.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB=4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________.解析:设BD =a ,AB =b ,AC =c ,由已知条件|a |=8,|b |=4,|c |=6,〈a ,b 〉=90°,〈b ,c 〉=90°,〈a ,c 〉=60°,|CD |2=|CA +AB +BD |2=|-c +b +a |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =68,则|CD |=217. 答案:217 cm2.如图所示,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CD =∠C 1CB =∠BCD =60°.(1)求证:C 1C ⊥BD ;(2)当CD CC 1的值是多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 解:(1)证明:设CD =a ,CB =b ,1CC =c ,由已知|a |=|b |,且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,BD =CD -CB =a -b ,1CC ·BD =c ·(a -b )=c ·a -c ·b =12|c ||a |-12|c ||b |=0,∴1C C ⊥BD ,即C 1C ⊥BD . (2)若A 1C ⊥平面C 1BD ,则A 1C ⊥C 1D ,1CA =a +b +c ,1C D =a -c .∴1CA ·1C D =0,即(a +b +c )·(a -c )=0. 整理得:3a 2-|a ||c |-2c 2=0,(3|a |+2|c |)(|a |-|c |)=0,∴|a |-|c |=0,即|a |=|c |. 即当CD CC 1=|a ||c |=1时,A 1C ⊥平面C 1BD . 3.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明:∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB =(2,0,-2),FE =(0,-1,0),FG =(1,1,-1),设PB =s FE +t FG ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB =2FE +2FG ,又∵FE 与FG 不共线,∴PB 、FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .。
空间向量及其运算知识点总结
空间向量及其运算知识点总结空间向量及其运算是一个数学领域的重要知识点,涉及到向量理论在三维空间中的应用,包括向量的表示、运算、分解和向量间的关系等。
以下是对该知识点的总结:一、基本概念1. 向量:在空间中,向量是由大小和方向组成的物理量,可以用有向线段来表示。
2. 向量加法:两个向量和差运算的几何实现是平行四边形。
3. 向量减法:两个向量被同一个向量所连接。
4. 向量数乘:数与向量的乘法是数乘向量的一种方式。
5. 向量的模:向量的长度或大小称为向量的模。
二、基本运算法则1. 平行四边形法则:两个向量的加法可以扩展到多个向量。
2. 三角形法则:对于两个不能直接相加的向量,可以先将其分解为若干个互相平行或垂直的向量,再对这些向量进行加法运算。
3. 数乘结果:数乘向量时,不改变方向。
4. 向量的分解:一个向量可以通过添加一组垂直的单位向量来分解成若干个互相垂直的单位向量。
三、向量的分解与表示对于空间中的每一个点,都存在一组与之垂直的单位向量,可以通过这个单位向量来将该点表示为其他点的线性组合。
对于平面上任意的非零点,都存在唯一的一组平行于坐标轴的单位基底和数量因子,使得点在坐标轴上的投影可以用基底和数量因子的线性组合来表示。
四、空间向量的数量积空间向量的数量积是一个重要的概念,它表示的是两个向量对应坐标的乘积的标量结果。
空间向量的数量积具有一些重要的性质,如它是一个实数,它与向量的方向无关等。
五、空间向量的坐标表示空间向量的坐标表示是空间向量的基本运算之一,可以将空间向量用一组有序实数来表示,从而方便了对空间向量的各种运算和讨论。
以上就是空间向量及其运算的一些基本知识点,理解和掌握这些知识对于解决空间几何问题、向量问题以及更广泛的数学问题都具有重要的意义。
空间向量及其运算
空间向量及其运算1.空间向量(1)定义:空间中既有大小又有方向的量称为空间向量. (2)模(或长度):向量的大小. (3)表示方法:①几何表示法:可以用有向线段来直观的表示向量,如始点为A 终点为B 的向量,记为AB →,模为|AB →|.②字母表示法:可以用字母a ,b ,c ,…表示,模为|a |,|b |,|c |,…. 2.【几类特殊的向量】(1)零向量:始点和终点相同的向量称为零向量,记作0. (2)单位向量:模等于1的向量称为单位向量.(3)相等向量:大小相等、方向相同的向量称为相等向量. (4)相反向量:方向相反,大小相等的向量称为相反向量.(5)平行向量:方向相同或者相反的两个非零向量互相平行,此时表示这两个非零向量的有向线段所在的直线平行或重合.通常规定零向量与任意向量平行. (6)共面向量:一般地,空间中的多个向量,如果表示它们的有向线段通过平移后,都能在同一平面内,则称这些向量共面. 3.空间向量的线性运算类似于平面向量,可以定义空间向量的加法、减法及数乘运算.图1 图2(1)如图1,OB →=OA →+AB →=a +b ,CA →=OA →-OC →=a -b . (2)如图2,DA →+DC →+DD 1→=DB 1→.即三个不共面向量的和,等于以这三个向量为邻边的平行六面体中,与这三个向量有共同始点的对角线所表示的向量.(3)给定一个实数λ与任意一个空间向量a ,则实数λ与空间向量a 相乘的运算称为数乘向量,记作λa .其中:①当λ≠0且a ≠0时,λa 的模为|λ||a |,而且λa 的方向:(ⅰ)当λ>0时,与a 的方向相同;(ⅰ)当λ<0时,与a 的方向相反. ②当λ=0或a =0时,λa =0.(4)空间向量的线性运算满足如下运算律:对于实数λ与μ,向量a 与b ,有①λa +μa =(λ+μ)a ;②λ(a +b )=λa +λb . 4.空间向量的数量积 (1)空间向量的夹角如果〈a ,b 〉=π2,那么向量a ,b 互相垂直,记作a ⊥b . (2)空间向量数量积的定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积(或内积),记作a·b . (3)数量积的几何意义 ①向量的投影如图所示, 过向量a 的始点和终点分别向b 所在的直线作垂线,即可得到向量a 在向量b 上的投影a ′.②数量积的几何意义:a 与b 的数量积等于a 在b 上的投影a ′的数量与b 的长度的乘积,特别地,a 与单位向量e 的数量积等于a 在e 上的投影a ′的数量.规定零向量与任意向量的数量积为0. (4)空间向量数量积的性质:①a ⊥b ⇔a ·b =0;②a ·a =|a |2=a 2;③|a ·b |≤|a ||b |;④(λa )·b =λ(a ·b );⑤a ·b =b ·a (交换律);5.共面向量定理如果两个向量a,b不共线,则向量a,b,c共面的充要条件是存在唯一的实数对(x,y),使c=x a+y b.思考1:平面向量基本定理中对于向量a与b有什么条件,在空间中能成立吗?【名师提醒】平面向量基本定理中要求向量a与b不共线,在空间中仍然成立.【新高二数学专题】考点一概念的辨析【例1】(2020·全国高二课时练习)下列命题中,假命题是()A.同平面向量一样,任意两个空间向量都不能比较大小B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.共线的单位向量都相等【新高二数学专题】1.(2020•龙岩期末)在平行六面体中,与向量相等的向量共有A. 1个B. 2个C. 3个D. 4个2.(2020·全国高二课时练习)在下列命题中:①若向量,a b共线,则,a b所在的直线平行;②若向量,a b所在的直线是异面直线,则,a b一定不共面;③若三个向量,a b c,三个向量一定也共面;,两两共面,则,a b c④已知三个向量,a b c=++.,,则空间任意一个向量p总可以唯一表示为p xa yb zc 其中正确命题的个数为()A.0B.1C.2D.3考点二 空间向量的线性运算【例2】2020·江西赣州.高二期中(理))在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于()A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【新高二数学专题】1.(多选题)已知平行六面体ABCD A B C D ''''-,则下列四式中其中正确的有( ) A .AB CB AC -= B .AC AB B C CC ''''=++ C .AA CC ''=D .AB BB BC C C AC '''+++=2.(2020·宝山.上海交大附中高二期末)在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++B .1122a b c --+C .1122a b c -+D .1122-++a b c3.(2020·张家口市宣化第一中学高二月考)如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD +12(BC -BD )等于( )A .ADB .FAC .AFD .EF 考点三 空间向量的共线、共面问题【例3】如图所示,在空间四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,请判断向量EF 与AD +BC 是否共线?【例4】(2020•珠海期末)已知A ,B ,C 三点不共线,点M 满足.,,三个向量是否共面点M 是否在平面ABC 内【新高二数学专题】1.(2020·全国高二)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =______. 2.(2020•日照期末)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且,.求证:向量,,共面.3.(2020·浙江高二期末)在棱长为1的正方体1111ABCD A BC D -中,,,E F G 分别在棱1,,BB BC BA 上,且满足134BE BB =,12BF BC =,12BG BA =,O 是平面1B GF ,平面ACE 与平面11B BDD 的一个公共点,设BO xBG yBF zBE =++,则x y z ++= A.45B.65C.75D.85考点四 空间向量的数量积【例5】 (2020·山东高二期末(理))在棱长为2的正四面体ABCD 中,E ,F 分别是BC ,AD 的中点,则(AE CF ⋅= ) A .0B .2-C .2D .3-【例6】 (2020·全国高二课时练习)已知平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.。
课时作业9:空间向量及其运算
§8.6 空间向量及其运算A 组 专项基础训练(时间:40分钟)1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ). A .0 B .1 C .2D .32.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .23.(2014·广东)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)4.空间四边形ABCD 的各边和对角线均相等,E 是BC 的中点,那么( ) A.AE →·BC →<AE →·CD → B.AE →·BC →=AE →·CD →C.AE →·BC →>AE →·CD →D.AE →·BC →与AE →·CD →的大小不能比较5.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则异面直线a ,b 所成的角等于( ) A .30° B .45° C .60°D .90°6.在空间四边形ABCD 中,则AB →·CD →+AC →·DB →+AD →·BC →的值为________.7.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形(填锐角、直角、钝角中的一个).8.(2015·晋江一模)设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为______________.9.(2015·天津模拟)已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.10.如图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系Oxyz .(1)写出点E 、F 的坐标; (2)求证:A 1F ⊥C 1E ;(3)若A 1、E 、F 、C 1四点共面,求证:A 1F →=12A 1C 1→+A 1E →.B 组 专项能力提升 (时间:30分钟)11.已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }是空间的另一个基底,一向量p 在基底{a ,b ,c }下的坐标为(4,2,3),则向量p 在基底{a +b ,a -b ,c }下的坐标是( ) A .(4,0,3) B .(3,1,3) C .(1,2,3)D .(2,1,3)12.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确命题的序号是________.13.(2015·浙江)已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=__________,y 0=________,|b |=________.14.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →; (3)EG 的长;(4)异面直线AG 与CE 所成角的余弦值.15.直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.(1)求证:CE⊥A′D;(2)求异面直线CE与AC′所成角的余弦值.答案解析1.A [a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.] 2.D [由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.]3.B [各选项给出的向量的模都是2,|a |= 2.对于选项A ,设b =(-1,1,0),则cos 〈a ,b 〉=a ·b |a ||b |=1×(-1)2×2=-12.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=120°.对于选项B ,设b =(1,-1,0),则cos 〈a ,b 〉=a ·b |a ||b |=1×12×2=12.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=60°,正确.对于选项C ,设b =(0,-1,1),则cos 〈a ,b 〉=a ·b |a ||b |=-1×12×2=-12.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=120°.对于选项D ,设b =(-1,0,1),则cos 〈a ,b 〉=a ·b |a ||b |=-1-12×2=-1.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=180°.故选B.]4.C [取BD 的中点F ,连接EF ,则EF 綊12CD ,因为〈AE →,EF →〉=〈AE →,CD →〉>90°,因为AE →·BC →=0,AE →·CD →<0,所以AE →·BC →>AE →·CD →.]5.C [如图,设AC →=a ,CD →=b ,DB →=c ,则AB →=a +b +c ,所以cos 〈AB →,CD →〉=(a +b +c )·b |a +b +c ||b |=12,所以异面直线a ,b 所成的角等于60°,故选C.]6.0解析 方法一 如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=AB →·(AD →-AC →)+AC →·(AB →-AD →)+AD →·(AC →-AB →) =a ·(c -b )+b ·(a -c )+c ·(b -a ) =a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.方法二 如图,在三棱锥A -BCD 中,不妨令其各棱长都相等,则正四面体的对棱互相垂直.∴AB →·CD →=0,AC →·DB →=0,AD →·BC →=0. ∴AB →·CD →+AC →·DB →+AD →·BC →=0. 7.锐角解析 因为BC →·BD →=(AC →-AB →)·(AD →-AB →) =AC →·AD →-AC →·AB →-AB →·AD →+AB →2 =AB →2>0,所以∠CBD 为锐角.同理∠BCD ,∠BDC 均为锐角. 8.(14,14,14)解析 如图所示,取BC 的中点E ,连接AE .OG →=34OG 1→=34(OA →+AG 1→)=34OA →+12AE → =34OA →+14(AB →+AC →) =34OA →+14(OB →-OA →+OC →-OA →) =14(OA →+OB →+OC →), ∴x =y =z =14.9.解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2).k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直, ∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0,得k =2或k =-52.∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.10.(1)解 E (a ,x,0),F (a -x ,a,0). (2)证明 ∵A 1(a,0,a ),C 1(0,a ,a ),∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ), ∴A 1F →·C 1E →=-ax +a (x -a )+a 2=0, ∴A 1F →⊥C 1E →,∴A 1F ⊥C 1E .(3)证明 ∵A 1、E 、F 、C 1四点共面, ∴A 1E →、A 1C 1→、A 1F →共面.选A 1E →与A 1C 1→为在平面A 1C 1E 上的一组基向量,则存在唯一实数对(λ1,λ2),使A 1F →=λ1A 1C 1→+λ2A 1E →,即(-x ,a ,-a )=λ1(-a ,a,0)+λ2(0,x ,-a ) =(-aλ1,aλ1+xλ2,-aλ2), ∴⎩⎪⎨⎪⎧-x =-aλ1,a =aλ1+xλ2,-a =-aλ2, 解得λ1=12,λ2=1.于是A 1F →=12A 1C 1→+A 1E →.11.B [设p 在基底{a +b ,a -b ,c }下的坐标为x ,y ,z . 则p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c ,①因为p 在{a ,b ,c }下的坐标为(4,2,3) ∴p =4a +2b +3c ,② 由①②得⎩⎪⎨⎪⎧ x +y =4,x -y =2,z =3,∴⎩⎪⎨⎪⎧x =3,y =1,z =3,即p 在{a +b ,a -b ,c }下的坐标为(3,1,3).] 12.①②解析 ①中(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3(A 1B 1→)2,故①正确; ②中A 1B 1→-A 1A →=AB 1→,∵AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确; ④中|AB →·AA 1→·AD 1→|=0,故④也不正确. 13.1 2 22解析 方法一 对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),说明当x =x 0,y =y 0时,|b -(x e 1+y e 2)|取得最小值1.|b -(x e 1+y e 2)|2=|b |2+(x e 1+y e 2)2-2b ·(x e 1+y e 2)=|b |2+x 2+y 2+xy -4x -5y ,要使|b |2+x 2+y 2+xy -4x -5y 取得最小值,需要把x 2+y 2+xy -4x -5y 看成关于x 的二次函数,即f (x )=x 2+(y -4)x +y 2-5y ,其图象是开口向上的抛物线,对称轴方程为x =2-y 2,所以当x =2-y2时,f (x )取得最小值,代入化简得f (x )=34(y -2)2-7,显然当y =2时,f (x )min =-7,此时x =2-y2=1,所以x 0=1,y 0=2.此时|b |2-7=1,可得|b |=2 2. 方法二 ∵e 1·e 2=|e 1|·|e 2|cos 〈e 1,e 2〉=12,∴〈e 1,e 2〉=π3.不妨设e 1=⎝⎛⎭⎫12,32,0,e 2=(1,0,0),b =(m ,n ,t ).由题意知⎩⎨⎧b ·e 1=12m +32n =2,b ·e 2=m =52,解得n =32,m =52, ∴b =⎝⎛⎭⎫52,32,t .∵b -(x e 1+y e 2)=⎝⎛⎭⎫52-12x -y ,32-32x ,t ,∴|b -(x e 1+y e 2)|2=⎝⎛⎭⎫52-x 2-y 2+⎝⎛⎭⎫32-32x 2+t 2=x 2+xy +y 2-4x -5y +t 2+7=⎝⎛⎭⎫x +y -422+34(y -2)2+t 2.由题意知,当x =x 0=1,y =y 0=2时,⎝⎛⎭⎫x +y -422+34(y -2)2+t 2取到最小值.此时t 2=1,故|b |=⎝⎛⎭⎫522+⎝⎛⎭⎫322+t 2=2 2.14.解 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c ,(1)EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a ) =12a 2-12a·c =14. (2)EF →·DC →=12(c -a )·(b -c )=12(b·c -a·b -c 2+a·c )=-14. (3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22.(4)AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是⎝⎛⎦⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.15.(1)证明 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得,|a |=|b |=|c |,且a·b =b·c =c·a =0, ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010.。
空间向量的概念与运算
空间向量的概念与运算空间向量是三维空间中一个重要的概念,它由大小和方向组成,并可以用于解决各种几何和物理问题。
本文将介绍空间向量的定义、表示方法以及相应的运算法则。
一、空间向量的定义空间向量是指在三维空间中的一个有大小和方向的矢量。
它可以用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
通常用字母a、b、c等表示空间向量。
二、空间向量的表示方法空间向量可以用坐标表示法和分量表示法来表示。
1. 坐标表示法:在直角坐标系中,空间向量可以用一个起点和一个终点的坐标来表示。
设向量a的起点坐标为(x1, y1, z1),终点坐标为(x2, y2, z2),则向量a的坐标表示为:a = (x2 - x1, y2 - y1, z2 - z1)2. 分量表示法:将一个向量在坐标轴上的投影称为该向量的分量。
设向量a的分量在x、y、z三个轴上分别为ax, ay, az,则向量a可以表示为:a = axi + ayj + azk这里,i、j、k是三个相互垂直的单位向量,分别沿x、y、z轴正方向。
三、空间向量的运算法则空间向量的运算包括加法、减法和数量乘法三种基本运算法则。
1. 加法:对于两个空间向量a和b,它们的和向量c可以通过将两个向量的对应分量相加得到:c = (ax + bx)i + (ay + by)j + (az + bz)k2. 减法:对于两个空间向量a和b,它们的差向量d可以通过将第一个向量的对应分量减去第二个向量的对应分量得到:d = (ax - bx)i + (ay - by)j + (az - bz)k3. 数量乘法:一个向量与一个实数的乘积等于将该向量的每个分量都乘以该实数:ka = k(axi + ayj + azk) = (kax)i + (kay)j + (kaz)k其中,k为实数。
空间向量的概念与运算对于解决各种几何和物理问题起着重要的作用。
它可以用于求解距离、角度、投影等问题,并且在力学、电磁学等学科中得到广泛应用。
空间向量及其运算
2. 共线向量定理:空间任意两个 向量a、b(b≠0),a//b的充要条件是
存在实数l,使a=lb.
3. 向量与平面平行
4. 共面向量定理:如果两个向量a, b不共线,p与向量a,b共面的充要条 件是存在实数x,y使 p=xa+yb.
三、空间向量基本定理: 如果三个向量a,b,c不共面,那
么对空间任一向量p,存在一个唯一的 有序实数组x,y,z,使p=xa+yb+zc.
四、空间向量数量积:
已知向量a,b,则|a| |b|cosa,b 叫做a,b的数量积,记作a ·b,即 a ·b= _|_a_| |_b_|c_o_s__a_,__b_ . 其中a,b为 向量a与b的夹角,且范围是
____0_<__a_、__b__<_p_.
1.正四棱锥P - ABCD中,O为底
OAB=60°,
O
求OA与BC的夹角的余弦值.
Hale Waihona Puke ACB5、在长方体ABCD-A1B1C1D1中,
AB=BC=4,E为A1C1与B1D1的交点,F
为BC1的交点,
D1
又AFBE,求长方体 A1
的高BB1.
D A
E
C1
B1 F
C B
的模为______2_3___ .
3. 已知线段AB,BD在平面a内, BDAB,线段ACa,若AB=a, BD=b,AC=c,则C、D间的距离
为_____________a_2_. b2 c2
C
cD
a A a Bb
4、在空间四边形OABC中,OA=8,
AB=6,AC=4,BC=5, OAC=45° ,
面中心,设AB i,BC j,OP k, E
空间向量及其运算
关键提示:利用空间向量基本定理将所求向量表示成 已知向量的形式.
立体设计·走进新课堂
第九章 立体几何初步
→ → → → 解:OB′=OA+AB+BB′=a+b+c, → → → → O′B=O′O+OA+AB=-c+a+b=a+b-c, → → → → AC′=AB+BB′+B′C′ → → → =OC+OO′+AO=b+c-a, → → → → → GH=GB+BA+AA′+A′H 1 → → +OO′+1A′C′ → → = C′B+CO 2 2 1 → → +OO′+1AC → → = O′A+CO 2 2 1 → → )+CO+OO′+1(AO+OC) → → → → = (O′O+OA 2 2 1 1 = c- b. 2 2
立体设计·走进新课堂
第九章 立体几何初步
考点一 空间向量基本定理的应用 【案例1】 如图,长方体OABC—O′A′B′C′中, G、H分别是侧面BB′C′C和O′A′B′C′的中心,若 → → → OA =a, OC =b, OO′ =c,用a、b、c表示如下向量: → → → → OB′、O′B、AC′、GH.
立体设计·走进新课堂
第九章 立体几何初步
4.在空间直角坐标系中,若点P的坐标为(x,y,z), → 则向量OP的坐标为(x,y,z). 二、空间向量的坐标运算 1.一条直线的方向向量有无数个. 2.所谓平面的法向量,就是指所在直线与平面垂直的 向量,一个平面的法向量也有无数个. 3.若直线l的方向向量是u=(a1,b1,c1),平面α的法 向量是v=(a2,b2,c2),则有:
立体设计·走进新课堂
第九章 立体几何初步
【即时巩固2】 如图所示,在60°的二面角α-AB-β
中,AC⊂α,BD⊂β,且AC⊥AB,BD⊥AB,垂足分别为A、 B,已知AB=AC=BD=a,求线段CD的长.
空间向量及其运算
2021年新高考数学总复习第八章《立体几何与空间向量》空间向量及其运算1.空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b相反向量 方向相反且模相等的向量a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量 平行于同一个平面的向量2.空间向量中的有关定理 (1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·ba 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编。
空间向量及其运算考点详解及典例解析
空间向量及其运算考点详解及典例解析四川 谭森空间向量引入后,新教材提倡用向量来解决立体几何的有关问题.所以,共线向量、共面向量定理,两个向量的数量积等知识的应用是高考命题的热点.为此,我们现在应掌握本节的以下六个考点,为后面的高考打下扎实的基础.考点1. 共线向量与共面向量定理考点详解:1.共线向量不具备传递性,除去零向量,则共线向量具备传递性. 2. 空间两向量平行与空间两直线平行也是不相同的,直线平行是允许重合的,而两向量平行,它们所在的直线可以平行也可以重合. 3.对于空间中的任意两个向量来说都是共面的,但三个向量不一定共面.典例1.下列命题中,不正确的命题个数是( )①空间任意五边形ABCDE ,则AB +BC +CD +DE +EA = 0;②若a ∥b ,则a 所在直线与b 所在直线平行;③空间任意两非零向量a 、b 共面;④空间向量a 平行于平面α,则a 所在直线平行于平面α.A.1B.2C.3D. 4解析:由向量的加法知①正确;当a ∥b 时,a 与b 所在直线平行或重合,则②是错误的;很明显③是正确的;根据向量与平面平行的定义知,④是错误的;故选B.点评:在空间,单位向量、向量的模、相等向量、相反向量等概念和平面向量中相对的概念完全一样.由于空间向量是平面向量的拓展,因此我们在学习空间向量是,要善于把平面向量的有关结论、解题方法、技巧类比拓展到空间向量中.考点2. 空间向量基本定理考点详解:1.空间任意三个不共面向量都可以作为空间向量的一个基底.2.由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含它们都不是0. 3. 一个基底是一个向量组,一个基向量是指基底中的某一向量,二者是相关联的不同概念. 4. 空间向量基本定理是空间向量分解和空间向量坐标运算的基础.典例2. (2007高考安徽13)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE =(用,,a b c 表示).解析:如图1所示,由题意得,=21(OA +)=21[OA +21(+)]=21[a +21(b +c)]=111244++a b c点评:选定空间不共面的三个向量作基向量;并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需向量,再对照目标,将不符合目标要求的向量作新的调整,如此反复,直到所有向量都符合目标要求.用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键.考点3. 两个向量的数量积考点详解:1.象平面向量一样,空间向量的数量积也不满足结合律,即a cbc b a ∙∙≠∙∙)()(.这是向量的运算与数的运算性质又一个不同之处.2. 对于向量数量积的运算一些结论仍是成立的.如:(a -b )·(a +b )=a 2-b 2;(a ±b )2=a 2±2a ·b +b 2.典例3. (06年开封模拟)设A 、B 、C 、D 是空间不共面的四点,且满足·=0,·=0,·=0,则△BCD 是( )A.钝角三角形B.锐角三角形C.直角三角形D.不确定 解析:·=0⇒AC ⊥AB.同理可得AC ⊥AD,AB ⊥AD.设AB=a ,AC=b ,AD=c.则BC=22b a +,CD=22c b +,BD=22c a +. ∵cos∠BCD=CDBC BD CD BC ∙-+2222>0,故△BCD 为锐角.同理∠CBD 、∠BDC 亦为锐角.则△BCD 为锐角三角形.点评:在求一个向量由其它向量来表示的时候,通常是利用向量的三角形法则,平行四边形法则和共线向量的特点.考点4. 利用向量证明平行与共面问题考点详解:1. 要用共线向量定理证明向量a ,b 所在的直线平行,除证a=λb 外,还需证明某条直线上必有一点在另一条直线外.2.若a 与b 不平行且λa +μb = 0,则λ=μ=0.3.利用空间向量基本定理,结合向量的运算法则,把一个向量用其它向量表示出来,按照这个方法,三个非零实数,使其向量之和为零向量,则这三个向量就共面,从而证明四点共面.典例4. (2007年全国Ⅱ•理•19题)如图2,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是AB 、SC 的中点。
教案)空间向量及其运算
教案)空间向量及其运算教案内容:一、教学目标1. 了解空间向量的概念,理解向量的几何表示和坐标表示。
2. 掌握空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够应用空间向量的运算解决实际问题。
二、教学重点与难点1. 空间向量的概念及其几何表示。
2. 空间向量的坐标表示及其运算。
3. 空间向量的应用问题。
三、教学准备1. 教师准备PPT或黑板,用于展示向量的图形和运算过程。
2. 准备一些实际问题,用于引导学生应用向量知识解决。
四、教学过程1. 引入:通过展示一些实际问题,如物体运动、几何图形等,引导学生思考向量的概念和作用。
2. 讲解:向学生介绍空间向量的概念,讲解向量的几何表示和坐标表示。
通过示例和图形,让学生理解向量的加法、减法、数乘和点乘运算。
3. 练习:让学生通过练习题的方式,巩固对向量运算的理解和掌握。
可以提供一些选择题和填空题,以及一些应用问题。
4. 应用:引导学生将向量知识应用到实际问题中,如物体运动、几何图形等。
可以让学生分组讨论和展示解题过程。
5. 总结:对本节课的主要内容和知识点进行总结,强调重点和难点。
五、作业布置1. 完成课后练习题,包括选择题、填空题和应用问题。
2. 准备下一节课的预习内容,了解空间向量的线性组合和叉乘。
六、教学反思在课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和掌握情况。
根据学生的反馈和表现,调整教学方法和策略,以便更好地进行后续教学。
六、教学评价1. 评价方式:通过课堂讲解、练习题和实际问题解决,评价学生对空间向量的概念理解和运算掌握程度。
2. 评价标准:学生能准确地描述空间向量的概念,理解向量的几何表示和坐标表示;能熟练地进行向量的加法、减法、数乘和点乘运算;能将向量知识应用到实际问题中,解决问题。
七、拓展与延伸1. 向量的线性组合:向学生介绍空间向量的线性组合概念,讲解线性组合的性质和运算规律。
2. 向量的叉乘:向学生介绍空间向量的叉乘概念,讲解叉乘的性质和运算规律。
空间向量的运算
空间向量的运算空间向量是在三维空间中表示的有大小和方向的量。
在数学和物理学中,进行空间向量的运算是一项重要的任务。
本文将介绍空间向量的加法、减法、数量乘法、向量积和标量积等运算。
一、空间向量的加法空间向量的加法是指将两个向量进行相加,得到一个新的向量。
设有两个空间向量A和B,它们的加法运算可以表示为:C=A+B。
其中,向量C的坐标分别等于向量A和向量B对应坐标的和。
例如,设有向量A(1,2,3)和向量B(4,5,6),则它们的和向量C为(5,7,9)。
二、空间向量的减法空间向量的减法是指将一个向量从另一个向量中减去,得到一个新的向量。
设有两个空间向量A和B,它们的减法运算可以表示为:C=A-B。
其中,向量C的坐标分别等于向量A对应坐标减去向量B对应坐标。
例如,设有向量A(1,2,3)和向量B(4,5,6),则它们的差向量C为(-3,-3,-3)。
三、空间向量的数量乘法空间向量的数量乘法是指将一个向量乘以一个实数,得到一个新的向量。
设有一个空间向量A和一个实数k,它们的数量乘法运算可以表示为:C=kA。
其中,向量C的坐标分别等于向量A对应坐标乘以实数k。
例如,设有向量A(1,2,3)和实数k为2,则它们的乘积向量C为(2,4,6)。
四、空间向量的向量积空间向量的向量积,也称为叉乘或矢积,是运算结果为向量的一种运算。
设有两个空间向量A和B,它们的向量积可以表示为:C=A×B。
其中,向量C的坐标可通过以下公式求得:Cx = AyBz - AzByCy = AzBx - AxBzCz = AxBy - AyBx例如,设有向量A(1,2,3)和向量B(4,5,6),则它们的向量积为(-3,6,-3)。
五、空间向量的标量积空间向量的标量积,也称为点乘或数量积,是运算结果为标量的一种运算。
设有两个空间向量A和B,它们的标量积可以表示为:C=AB。
其中,标量C的值可通过以下公式求得:C = |A||B|cosθ其中,|A|和|B|分别代表向量A和B的模,θ代表两个向量之间的夹角。
空间向量的运算法则
空间向量的运算法则1.向量加法:向量加法是将两个向量进行相加。
设有向量A=(x1,y1,z1)和向量B=(x2,y2,z2),则它们的和C=A+B定义为:C=(x1+x2,y1+y2,z1+z2)向量加法有以下性质:-交换律:A+B=B+A-结合律:(A+B)+C=A+(B+C)-存在一个零向量0,使得A+0=A-对于每个向量A,存在一个负向量-B,使得A+(-B)=02.向量减法:向量减法是将一个向量减去另一个向量。
设有向量A=(x1,y1,z1)和向量B=(x2,y2,z2),则它们的差D=A-B定义为:D=(x1-x2,y1-y2,z1-z2)3.数乘:数乘是将一个实数与一个向量相乘。
设有实数k和向量A=(x,y,z),则它们的数乘P=kA定义为:P = (kx, ky, kz)数乘有以下性质:- 结合律:k(lA) = (kl)A-(k+l)A=kA+lA-k(A+B)=kA+kB-1A=A4.数量积(内积):数量积又称为内积,是两个向量的数量乘积的和。
设有向量A=(x1,y1,z1)和向量B=(x2,y2,z2),则它们的数量积记为A·B,定义为:A·B=x1x2+y1y2+z1z2数量积有以下性质:-交换律:A·B=B·A-分配律:(A+B)·C=A·C+B·C-结合律:(kA)·B=A·(kB)=k(A·B)-若A·B=0,则称向量A和向量B垂直或正交,即两个向量的夹角为90度通过数量积可以求得向量的模长(长度):A,=√(A·A)=√(x^2+y^2+z^2)5.向量积(叉积):向量积又称为叉积,是两个向量的乘积的向量积。
设有向量A=(x1,y1,z1)和向量B=(x2,y2,z2),则它们的向量积记为A×B,定义为:A×B=(y1z2-y2z1,z1x2-z2x1,x1y2-x2y1)向量积有以下性质:-反交换律:A×B=-B×A-分配律:A×(B+C)=A×B+A×C-结合律:k(A×B)=(kA)×B=A×(kB)通过向量积可以求得向量的模长(长度):A × B, = ,A,,B,sinθ其中,θ为A和B的夹角。
9.4 空间向量及其运算
空间向量及其运算[高考要求](1)理解空间向量的概念,掌握空间向量的加法,减法,数乘和数量积运算及其性质.(2)理解共线向量定理和共面向量定理及它们的推论;掌握空间向量基本定理及其推论.(3)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。
(4)会用上述知识解决立体几何中有关的问题.[考向指南]高考主要考查空间向量的基本概念及运算,运用空间直线,平面的向量参数方程解决几何问题及空间向量分解定理的运用等,各种题型都有可能考。
[考基要点]1.空间向量的定义及向量的加减法,运算律2. 共线向量定理及应用可以用来证明三点共线或两线平行等例 1 如图,已知□ABCD,从平面AC 外上点O 引向量O E k O =,OF k OB =,OG k OC =,OH k OD =,求证:(1)四点E,F,G,H 共面;(2)平面AC ∥平面EG.HC E F G B ADO链接题:在正方体ABCD-A 1B 1C 1D 1中,M,N,P 分别是CC 1,B 1C 1,C 1D 1的中点,求证: 平面MNP∥平面A 1BD.3. 空间向量基本定理及应用叙述内容;推论的内容及证明(如何证?P290 例4)例2(P290例2)已知两个非零向量e 1,e 2不共线,如果AB =e 1+e 2,AC =2e1+8e2,AD= 3e1-3e2,求证:A,B,C,D共面解题要领:三个非零向量a,b,c ,其中无二者共线,则它们共线的充要条件是存在三个非零实数l,m,n,使l a m b n c0++=;可以采用待定系数法,寻找三个非零实数.4. 空间向量的夹角及数量积(1)空间两向量夹角的定义及其范围(2)数量积及其几何意义,应用:求夹角,证垂直等易错:向量所成角可为钝角例3如图,已知空间四边形ABCD的每条边和对角线的长都等于a,点M,N分别是AB,CD的中点.(1)求证:MN为AB和CD的公垂线;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.链接题:正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为2a,求AC1与侧面ABB1A1所成的角.5.运用公式|a|2 =a.a=a2求线段的长度和两点间的距离例4 平行六面体ABCD-A1B1C1D1中,AB=1, AD=2, AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,求AC1的长.链接题:P290 例1ABCD MNABCA1B1C1[课堂练习](1)如图,已知空间四边形OABC 中,OA=4,AB=3,AC=2,BC=2.5,∠OAC=45°, ∠OAB=60°,求OA与BC 夹角的余弦值.(2)正方体ABCD-A1B1C1D1中,M为AA1的中点,N为A1B1上的点.满足A 1N=13NB1,P为底面正方形A1B1C1D1中心.求证:MN⊥MC,MP⊥B1C. [作业]OABC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B'
E
Bp
b
M a A A'
Pp =x xaa + yybb.. p ME是以MA', MB'为邻
平面向量的基本定理. 边的平形四边形的对角线.
如果e1, e2是同一平面内的两个不共线向量,
那么对于这一平面内的任一向量a, 有且只
共线向量与共面向量
a
O
A
a
α
1.共线向量. 如果表示空间向量的有向线段所在的直线互相 平行或重合,则这些向量叫做共线向量或平行向量. 平面向量共线的充要条件.
定理: 对于空间任意两个向量a、b(b=0),a // b 的充要条件是存在实数λ使a= λb.
向量b与非零向量a共线的充要条件
是有且只有一个实数,使得b a.
另解:
1
B
M
OM OA (OA AB) (OA AC). A
33
3
C
OA 1 AB 1 AC.由共成向量定理的O 3 3 推论得M,A,B,C共面.
练习:已知A、B、C三点不共线,对于平面ABC外 的任意一点O,确定下列各条件下,点M是否与A、
B、C一定共面:(2)OM 2OA OB OC.
例1 对空间任意一点O和不共线的三点A、B、 C,试问满足向量关系式:
OP xOA yOB zOC(其中x y z 1)
的四点P、A、B、C是否共面。
解:原式可变为 OP (1 y z)OA yOB zOC.
OP OA y(OB OA) z(OC OA).
又OP OA AP. OB OA AB. OC OA AC.
推论:如果 l 为经过已知点A且平行于已知非
零向量 a 的直线,那么对任一点O,点P在直
线 l 上的充要条件是存在实数t,满足等式
OP = OA + t a. (1)
其中向量 a 叫做直线l 的方向向量.
P B
a
OP = (1- t)OA + t OB. (2)
A
特征:从一点出发的三个向量.
O
说明: (1),(2)都叫做空间
1 x y 2, x 1, y 1
这个方程组无解,故M与A,B,C不共面。
O
AC AB AD. EG OG OE
kOC kOA k AC k( AB AD)
DC
k(OB OA OD OA)
A
B
H
OF OE OH OE EF EH.
G
所以E、F、G、H共面;
E
F
(2)EF OF OE k(OB OA) k AB.
由(1)知EG k AC故EF // AB,EG // AC.
B解、三C一: 定1共面1:(1)1OM 1,1 OMA , A1 ,OBB,C1共OC面. .
(2)OM 23OA 3OB 3OC. 3
3
3
解:(1)由已知得 3OM OA OB OC.
OA OM (OM OB) (OM OC).
即MA BM CM MB MC.故M 与A, B,C共面.
A
AP y AB z AC.
可作一条
O
P 故点P与A、B、C共面. 性质应用
例2 已知平行四边形ABCD,从平面AC外一点O
引向量 OE kOA,OF kOB,OG kOC,OH kOD 求证:(1)四点E、F、G、H共面;
(所2)以平平面面EEGG////平平面面AACG..
证明: (1)因为四边形ABCD是平行四边形,所以
直线的向量参数表示式.
2.共面向量
定义:平行于同一平面的向
量叫做共面向量.
O
已知平面 与向量a ,如果
向量 a 所在的直线OA平行
于平面 或向量 a 在平面 α
内,那么我们就说向量
于平面 ,记作 /a/
平a 行
.
a A
a
A
思考:
D
空间任意两个向量是否一定共面? B
空间任意三个向量呢?
C
2.共面向量定理:
有一对实数1,2使a 1e1 2 e2
2.共面向量定理:
推论:空间一点E于平面 MAB内的充分必要条件是
B'
E
Bp
b
M a A A'
存在有序实数对x、y,使
O
ME xMA yMB. (第一字母为M)
或对空间任一定点O,有
OE OM xMA yMB.
特征:等式右边含x ,y的项都是以同一点出发的向量.
解: 2 (1) (1) 0 1. M , A, B,C不共面.
另解:若M与A,B,C共面,则存在实数对 (x, y)
使 AM x AB y AC. 对于平面ABC外一点O有
OM OA x AB y AC.
B
M
OM OA x(OB OA) y(OC OA).A C
OM (1 x y)OA xOB yOC. O
练习
1.如图,已知A、B、C三点不共线,就平面ABC 外任一点O作出点P、Q、R、S,使:
1OP OA 2AB 2AC;
2 OQ OA
3AB 2AC;
3 OR OA
3AB 2AC;
Q
Q
C A
B
O
p
P
R
练习:已知A、B、C三点不共线,对于平面ABC外
的任意一点O,确定下列各条件下,点M是否与A、