思维特训(四) 绝对值与分类讨论

合集下载

绝对值分三种情况讨论

绝对值分三种情况讨论

分三种情况讨论在解形如3|x﹣2|=|x﹣2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:解题回顾:本题中2为x﹣2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.知识迁移:(1)运用整体思想先求|x﹣3|的值,再去绝对值符号的方法解方程:|x﹣3|+8=3|x﹣3|;知识应用:(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2﹣x|﹣3|x+1|=x﹣9.提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?适合|2a+7|+|2a﹣1|=8的整数a的值有﹣3,﹣2,﹣1,0.1.(1)若|x+5|=2,则x=﹣3或﹣7;(2)代数式|x﹣1|+|x+3|的最小值为4,当取此最小值时,x的取值范围是﹣3≤x≤1;(3)解方程:|2x+4|﹣|x﹣3|=9.(1)解方程:|2x+3|=8.(2)解方程:|2x+3|﹣|x﹣1|=1.3.解方程:|x+1|+|x﹣3|=4.4.解方程:|x﹣2|+|x﹣1|=3,5.解绝对值方程:|x﹣1|﹣|x﹣2|=x﹣3.6.方程|x+1|﹣2|x﹣2|=1的解为x=或x=4.7.|2x+1|=|x﹣3|8.解绝对值方程:|x﹣4|+|x﹣3|=2.8.解方程:|x|+|2x﹣1|=5.(1)根据上面的解题过程,方程2|x﹣1|﹣x=4的解是x=6或x=﹣.(2)根据上面的解题过程,求解方程:2|x﹣1|﹣|x|=4.(3)方程|x|﹣2|x﹣1|=4无解.(直接在_____上填“有”或“无”)(2)2|x﹣1|﹣|x|=4.(3)|x|﹣2|x﹣1|=49.|x﹣1|+|x﹣3|=310.是否存在有理数x,使得x+1|+|x﹣3|=211.解方程:|2x﹣1|+|x﹣2|=412.解方程:|x+3|+|3﹣x|=|x|+513.求满足|2x+9|+|2x﹣3|=12的整数x的值。

七年级数学绝对值分类讨论重点题型

七年级数学绝对值分类讨论重点题型

七年级数学的绝对值,是一种让很多同学感到头疼的数学概念。

在七年级数学课程中,涉及到绝对值的分类讨论也是一个重要的内容,影响着同学们对数学的理解和学习。

今天,我们就来深入探讨七年级数学中关于绝对值分类讨论的重点题型,帮助同学们更好地掌握这一知识点。

1. 绝对值概念的理解我们需要对绝对值的概念进行深入理解。

在七年级数学中,绝对值代表着一个数距离零点的距离,它是一个非负数。

具体地,对于任意实数a,其绝对值记作|a|,如果a大于等于0,则|a|等于a;如果a小于0,则|a|等于-a。

2. 绝对值分类讨论的基本原理在七年级数学中,针对绝对值的讨论通常涉及到正数、负数以及零的情况。

我们需要明确地理解在各种情况下绝对值的计算方法和特点,从而能够准确地解决问题。

3. 绝对值分类讨论的重点题型在七年级数学中,绝对值分类讨论的重点题型包括但不限于以下几种: - 绝对值不等式的求解- 绝对值方程的解法- 含绝对值的复合运算- 实际问题中的应用4. 绝对值不等式的求解对于绝对值不等式的求解,我们需要分情况讨论。

当|a|小于b时,a 和-b之间的数都满足不等式;当|a|大于b时,求解得到两个区间,分别讨论各区间内的情况。

这种分类讨论的方法在解决绝对值不等式时非常重要。

5. 绝对值方程的解法解决绝对值方程时,我们同样需要进行分类讨论。

针对|a|=b和|a|=-b 两种情况,分别求解得到不同的结果。

同学们需要注意分类讨论方法的灵活运用,才能准确地解决绝对值方程的问题。

6. 含绝对值的复合运算在七年级数学中,我们还会遇到含绝对值的复合运算题型,可能涉及加减乘除等多种运算符号。

这时,同学们需要将复合运算的每一步分类讨论,确保在每一种情况下都能准确地应用绝对值的概念和性质。

7. 实际问题中的应用绝对值的分类讨论在解决实际问题时也非常重要。

同学们需要理解绝对值在表示距离、温度差、误差等方面的应用,从而能够准确地将数学知识应用到实际生活中去。

绝对值与分类讨论

绝对值与分类讨论

2.我们知道:点A,B在数轴上分别表示有理数a,b,A, B两点之间的距离表示为AB,在数轴上A,B两点之间的 距离AB=|a-b|,所以式子|x-3|的几何意义是数轴上 表示有理数3的点与表示有理数x的点之间的距离. 根据上述材料,回答下列问题:
(1)|5-(-2)|的值为________; (2)若|x-3|=1,则x的值为________; (3)若|x-3|=|x+1|,求x的值; (4)若|x-3|+|x+1|=7,求x的值.
绝对值与分类讨论
类型一 以数轴为载体的绝对值的分类讨论
1.已知点A在数轴上对应的数是a,点B在数轴上 对应的数是b,且|a+4|+(b-1)2=0.现将点A,B 之间的距离记作|AB|,定义|AB|=|a-b|. (1)|AB|=________; (2)设点P在数轴上对应的数是x,当|PA|-|PB|= 2时,求x的值.
类型二 与绝对值化简有关的分类讨论问题
(1)三个有理数a,b,c满足abc<0,求 的值;
ab a bc c Nhomakorabea(2)已知|a|=3,|b|=1,且a<b,求a+b的
值.
2.探索研究: (1)比较下列各式的大小(填“<”“>”或“=”): ①|-2|+|3|________|-2+3|; ②|-2|+|-3|________|-2-3|; ③|6|+|-3|________|6-3|; ④|0|+|-8|________|0-8|. (2)通过以上比较,请你分析、归纳出当a,b为有 理数时,|a|+|b|与|a+b|的大小关系.(直接写 出结论即可) (3)根据(2)中得出的结论,解决以下问题:当|x|+ |-2018|=|x-2018|时,求x的取值范围.

绝对值应用(分类讨论)(人教版)(含答案).docx

绝对值应用(分类讨论)(人教版)(含答案).docx

学生做题前请先回答以下问题问题1:什么是绝对值,绝对值法则是什么?问题2: |x|=2表示在数轴上,x所对应的点与 ________ 的距离为_____ ,因此x=问题3:有关绝对值的分类讨论:① ___________ ,分类;②根据 ________ ,筛选排除.绝对值应用(分类讨论)(人教版)一.单选题(共9道,每道□分)1.若卜甘,则X的值为()A.4B.±4C.-4D.0答案:B解题思路:/. |x| = |—x| = 4 •I x的值为±4 故选B・难度:三颗星知识点:绝对值2.若|4-*3,则&的值为()A.l B+1C+7 D.1 或7答案:D解题思路:T |4_a| = 3.*.4-o=± 3 ・・・_e-4±3 即-e_]或P=_7・・y的值为1或7 故选D・试题难度:三颗星知识点:绝对值3.若|x + 2| = 6,则卜*()A.4B.8C.4或8D.4或・8答案:C 解题思路:•/ |x+2| = 6/. x+2 = ±6•I x = 4 或x = -8.・・卜国=闰=4或卜x| =冈=8故选C.试题难度:三颗星知识点:绝对值4 若H=5, 6 = 3,则a^b = {A.8B.±8C.8 或・2 D+2答案:C 解题思路:a = ±5J b=3二o+i=8 或o+i=-2 故选C.试题难度:三颗星知识点:绝对值5.若"2,八5,则“1()A.-3B.-3 或7C.3或・7 D+3或±7答案:D解题思路:丁国=2 ,惻=5・'-x=±2, 3=±5画树状图分析,如图,x 2 -2xrv -3 7-7 3故x一尹=±3 或x-y = ±7 .故选D.试题难度:三颗星知识点:绝对值6.已知同=8, 0日,且ab <0,则a+b的值为(A.±3B+13C.3 或D.-3 或13答案:A 解题思路:V H = 8, \b\ = 5/.o=±8, b=±5根据题意,画树状图分析,如图,a 8-8A Ab 5 - 5 5 -5ab斗0 -40-40 40X Xd+b3_3•/ ab<Q・•・排除图中画X的两种情况/.o+5= ±3 故选A.7.若^一2曰,|卅4,且x”,则x与y的值分别为()x=7 x=7 Jx=7A .V=4m V = -4B.V = 4难度:三颗星知识点:绝对值答案:C 解题思路:/. x-2 = ±5.•・x=7 或 x=-3N=4・•.尸±4根据题意,画树状图分析,如图,・•・排除图中画X 的情况故选c.试题难度:三颗星知识点:绝对值8.已知k 日,I 卅2,且|x+川-"乙则"尹的值为(A.±3B.-3 或・7C.-3 或 7D. ±3 或 ±7答案:B 解题思路: 严7 ly=4 fx = 7 V=-4 Cx = -3|y=-4x = ±5 , y = ±2根据题意,画树状图分析,如图, X 5一厶 y / 2 \ -2/、 \ -2 x+v 73 -3 -7 XX x^v -7 一 3V \X ^y\ = -X -y二 x+yW 0・•・排除图中画x 的两种情况 ・"-歹的值为-3或-7 故选B. 试题难度:三颗星知识点:绝对值A.4个B.3个C.2个D.1个 答案:C 解题思路:9.若必工0, 的取值共有(当a>0时,匸=1;当a<0时,二=一1・ a \a 所以冷二±1・同理可得:二±1・ \b\ 又裔画树状图分析,如图,•衬墙的值为T 和久即取值共有2个 故选C. 试题难度:三颗星知识点:绝对值1 -11 -1 ab s1 -1 -1 a b ab讦+面+两 -1 -1 -11-1。

第二讲 绝对值(分类讨论 整体思想)

第二讲  绝对值(分类讨论 整体思想)

第二讲绝对值(分类讨论整体思想)绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.例2已知x<-3,化简:|3+|2-|1+x|||.例3若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.例5若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.例7 化简:|3x+1|+|2x-1|.例8已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.例9 设a <b <c <d ,求|x -a |+|x -b |+|x -c |+|x -d |的最小值.例10 若2x+|4-5x |+|1-3x |+4的值恒为常数,求x 该满足的条件及此常数值.练习1.x 是什么实数时,下列等式成立:(1)|(x -2)+(x -4)|=|x -2|+|x -4|;(2)|(7x+6)(3x -5)|=(7x+6)(3x -5).2.有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|3.若a +b <0,化简|a+b -1|-|3-a -b |.4.已知有理数a ,b ,c 满足1||||||=++c c b b a a ,求abcabc ||的值5.若c b a 、、为整数,且19919=-+-ac ba ,求cb b a ac -+-+-的值.6.设0=++c b a ,0>abc ,则cba b a c a c b +++++的值是( ). A .-3 B .1 C .3或-1 D .-3或17.有理数c b a 、、均不为零,且0=++c b a ,设ba c ac b cb a x +++++=,试求代数式20029919+-x x的值.8.已知a <b ,求|x -a |+|x -b |的最小值.9.已知y=|x+3|+|x -2|-|3x -9|,求y 的最大值.10、(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?。

聚焦绝对值问题中的分类讨论思想

聚焦绝对值问题中的分类讨论思想
面 了.
了不 少两 位数平方 的运 算 规律. 加练 习后 , 稍 你也 能算
的 比计 算 器 还 快 1 1个 位 为 5的 两 位 数 的 平方 .
如果 一 个 两 位 数 的 十 位 为 , 位 为 5 那 么 你 几 乎 个 , 可 以 瞬 问 说 出 它 的 平 方 来 : 两 位 是 与 十1的 乘 积 , 前
a (



③若 a 6中至少有一个是 0 则 1 , , 0+b =l I I a +… .
故I a+b =I l l l a +I (×) b 例 4 有 理 数 一 2到 有 理 数 一1的 距 离 是 3 有 理 , 数 y +l到 3的 距 离 是 5 且 > ,求 +)和 —Y的值 . , , , ,
+( 0一 =2 0 1 ) 5 0—10 0 0+10 0 x+( 0一 =1 0 1 ) 5 0+
注 意 , 面 的 推 理 并 没 有 限 定 的 大 小 . 就 是 说 , 上 也 这个 运 算 技 巧 对 于两 位 以 上 的 数 也 是 适 用 的 !例 如 , 由
10 0 +( 0一 =10 1 )+( 0一 2 1 ) 0 ( 5+ 1 ). 4 任 意两位数的平方 .
习 中重 视 并 善 于 应 用 分 类 的思 想 , 于 培 养 全 面 周 密 的 对
思 考 习 惯 , 高数 学 能 力 和 素 质 大 有 益 处 . 提
( 转 6 下 9页 )


L U 一 ’。… 。… 。‘ 。一 。。’…
你也 ≤ 能
8 即 Y+1 一 , = 2或 Y+1= 8
解 : 题 意 得 依

2= 一 4或 一2= , 2 Y+1 一 = 2或 Y+1 . :8

3.23中考专题——分类讨论

3.23中考专题——分类讨论

3.23分类讨论当一个数学问题在一定的条件下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。

正确的分类必须是周全的,既不重复、也不遗漏。

近几年广东省中考经常涉及到“分类讨论”,因为这类试题不仅考查我们的数学基本知识与方法,而且考查了我们思维的深刻性。

一.绝对值.平方根的分类讨论:绝对值的三种分类讨论情况,也就是:a(a>0)|a|=0(a =0)-a (a<0)下面请看三个例题。

1.例1、如:若|a|=3,|b|=2,a+b=?分析:由|a|=3,|b|=2可知:a=±3,b=±2,所以a+b 的值有四种情况。

2.例2、如:若a 2=9,b 2=16,求a+b 的值。

分析:此题方法与例1完全相同。

3.例3、化简a a ---32。

分析:此题的关键是判断绝对值符号里面数的正负,因此首先要找到零点,2=a 或3。

然后再分三个区间进行分类讨论。

①2a <;②23a ≤<;③3a ≥。

二.方程与函数中的分类讨论:1.例1.方程kx 2+3x-4=0有几个实数根?分析:此题的核心是k 对方程性质的影响。

首先明确系数k 决定方程的次数,从而分k=0,k≠0两类讨论。

当k≠0时,再分b 2-4ac>0,b 2-4ac=0,b 2-4ac<0三种情况进行讨论。

2.例2.若关于x 的分式方程311x a x x--=-无解,则a 的值为多少?分析:方程两边同乘以(1)x x -,得(2)3a x +=。

接下来,要进行全面分析和考虑。

首先分两大类研究,新的整式方程无解;新的整式方程虽然有解,但原方程无解(即有增根1x =或0),这样确保独立且不重复。

3.例3.比较一次函数12y x =与二次函数2212y x =的函数值1y 与2y 的大小。

①②③分析:此种类型的函数值的大小比较需要借助图形,于是首先要找到两个函数图象的交点,此时1y =2y 。

于是我们就找到了分类讨论的临界点0x =或4,从而确定以下五个分类:0x <;0x =;0<x <4;4x =;4x >。

绝对值的分类讨论

绝对值的分类讨论

绝对值的分类讨论嘿,朋友们!今天咱们来唠唠数学里那个有点小调皮的绝对值。

这绝对值啊,就像是数学世界里的一个魔术师,有时候会把数字变得让你又爱又恨。

咱们先说说简单的情况,就像一个正数在绝对值的魔法棒下,那简直就是纹丝不动,就好比一个超级自信的明星,不管在什么舞台上(也就是绝对值符号里),都保持着自己最闪耀的样子。

比如说5的绝对值就是5,这正数啊,就像个顽固的小老头,坚守着自己的阵地,绝对值对它来说就像是一阵吹过的微风,毫无影响。

可是负数就不一样喽。

负数一进入绝对值的领地,就像是被施了魔法一样,瞬间逆袭。

你想啊,-3就像一个垂头丧气的小可怜,可是一旦套上绝对值这个魔法罩,立马就变成了3,就像从一个灰头土脸的小乞丐变成了趾高气昂的小富翁,整个人(哦不,整个数)都精神焕发了。

然后呢,还有个特殊的家伙,那就是0。

0在绝对值里就像是个淡定的佛系青年,它的绝对值还是0,不管你怎么折腾,我自岿然不动,就像在说“我就是我,是不一样的烟火,不管有没有绝对值这个光环,我还是我”。

当我们遇到含有字母的绝对值的时候,那可就像进入了一个神秘的迷宫。

如果这个字母代表正数,那就按照正数的套路走,就像在平坦大道上溜达。

但要是这个字母代表负数呢,那可就得小心啦,就像是突然掉进了一个陷阱,得赶紧把它变成正数,就像把一只小恶魔变成小天使一样。

要是这个字母不知道是正数还是负数,哎呀,这就像是猜谜语一样,得分类讨论。

就好比你面前有两个盒子,一个盒子里是宝藏(正数的情况),一个盒子里可能是小怪兽(负数的情况),你得小心翼翼地打开两个盒子,看看里面到底是什么,然后再做决定。

绝对值的分类讨论就像是一场充满惊喜(也可能是惊吓)的冒险。

有时候你觉得自己已经掌握了它的规律,可是它又会突然给你来个小变数,就像一个调皮的小精灵,在你面前晃来晃去,逗你玩呢。

不过啊,只要我们摸清了它的脾气,就像驯服了一匹小野马,就能在数学的大草原上自由驰骋啦。

你看,绝对值虽然有点小复杂,但只要我们用这种轻松的心态去对待它,就像和一个有趣的朋友打交道一样,慢慢就会发现它的可爱之处啦。

数学人教新版七年级上册秋:1.2.4《绝对值》四维训练及答案(版)

数学人教新版七年级上册秋:1.2.4《绝对值》四维训练及答案(版)

数学人教新版七年级上册实用资料1.2.4绝对值知识点一:绝对值1.如果一个有理数的绝对值等于它本身,那么这个数一定是(C)A.负数B.负数或零C.正数或零D.正数2.绝对值是10的有理数是(C)A.10B.-10C.±10D.以上都对知识点二:有理数的大小比较3.下列各式中,正确的是(C)A.-|16|>0B.|0.2|>|-0.2|C.->-D.|-6|<04.导学号19054015如图,数轴上A,B两点分别对应实数a,b,则a,b的大小关系为a<b(或b>a).5.比较下列有理数的大小:(1)-和-20;(2)-和-.解(1)∵,|-20|=20,<20,∴->-20.(2)∵,,∴-<-.拓展点一:字母表示的数的绝对值1.若|a|=|b|,则a,b的关系是(C)A.a=bB.a=-bC.a=b或a=-bD.a=0且b=0拓展点二:利用绝对值解决实际问题2.某汽车配件厂生产一批圆形的橡胶垫,从中抽取6件进行检验,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,第一个第二个第三个第四个第五个第六个+0.5-0.3+0.15-0.100.2用绝对值的知识说明哪个零件的质量最好.解因为|+0.5|>|-0.3|>|0.2|>|+0.15|>|-0.1|>|0|,所以第五个零件的质量最好.1.(2016·四川宜宾中考)-5的绝对值是(B)A. B.5 C.- D.-52.(2016·四川德阳中考)|-2|=(A)A.2B.-2C.±2D.3.(2016·湖南娄底中考)已知点M,N,P,Q在数轴上的位置如图所示,则其中表示的数的绝对值最大的点是(D)A.MB.NC.PD.Q4.一个数的绝对值是5,则这个数是(A)A.±5B.5C.-5D.255.(2016·江苏南京中考)数轴上点A,B表示的数分别是5,-3,则它们之间的距离可以表示为(D)A.-3+5B.-3-5C.|-3+5|D.|-3-5|6.导学号19054016(2016·河北中考)点A,B在数轴上的位置如图所示,其表示的数分别是a 和b.有以下结论:①b-a<0;②a+b>0;③|a|<|b|;④>0.其中正确的是(C)A.①②B.③④C.①③D.②④7.(2016·山东新泰市模拟)若x为实数,则|x|-x的值一定是(C)A.正数B.非正数C.非负数D.负数8.(2016·四川成都中考)已知|a+2|=0,则a=-2.9.(2016·四川巴中中考)|-0.3|的相反数等于-0.3.10.(2015·广东英德市校级月考)计算:(1)|-5|+|-10|-|-9|;(2)|-3|×|-6|-|-7|×|+2|.解(1)原式=5+10-9=6.(2)原式=3×6-7×2=18-14=4.11.(2016·四川自贡模拟)若|a|=5,|b|=1,求a和b的值.解因为|a|=5,|b|=1,所以a=±5,b=±1.12.导学号19054017如图,若A是实数a在数轴上对应的点,则对于a,-a,1的大小关系表示正确的是(A)A.a<1<-aB.a<-a<1C.1<-a<aD.-a<a<113.导学号19054018有理数a,b,c在数轴上对应的点分别为A,B,C,其位置如图所示.试化简|a|+|b|+|c|.解根据题意得a>0,c>0,b<0,则|a|+|b|+|c|=a-b+c.。

利用绝对值解决分类讨论问题探讨

利用绝对值解决分类讨论问题探讨

利用绝对值解决分类讨论问题探讨作者:***来源:《中学教学参考·理科版》2024年第04期[摘要]利用绝对值可以有效避免分类讨论的麻烦。

文章结合具体例题,说明如何利用绝对值解决分类讨论问题,以帮助学生学习运用绝对值的方法,提高学生的思维品质。

[关键词]绝对值;分类讨论;坐标系[中图分类号] G633.6 [文献标识码] A [文章编号] 1674-6058(2024)11-0022-03解决平面直角坐标系中有关的问题,时常用分类讨论的方法。

分类讨论有时会比较麻烦,而利用绝对值可以有效避免分类讨论的麻烦。

本文结合具体例题说明如何利用绝对值解决平面直角坐标系中的分类讨论问题。

一、与三角形面积有关的问题计算一次函数图线所在平面的三角形面积问题时,一般需要作平行于[y]轴的直线,这条直线被两条一次函数图线所截得的线段长等于两个函数表达式差的绝对值。

计算二次函数图线所在平面的三角形面积问题时,一般需要过抛物线上一点作[x]轴的垂线,这条垂线段的长就是这点纵坐标的绝对值。

[例1]如图1所示,在平面直角坐标系中,点[A(2 ,2)],点[C0,43],直线[AC]交[x]轴于点[B]。

(1)求直线[AC]的表达式和点[B]的坐标;(2)在直线[OA]上有一点[P],使得△[BCP]的面积为4,求点[P]的坐标。

解析:(1)过程略,答案:直线[AC]的表达式为[y=13x+43],点[B]的坐标为[(-4,0)]。

(2)如图2所示,设直线[OA]的表达式为[y=mx],把[A(2 ,2)]代入得[2m=2],解得[m=1],∴直线[OA]的表达式为[y=x],过点[P]作[PQ]∥[y]轴交直线[BC]于点[Q],设[P(t,t)],则[Qt,13t+43],∴[PQ=t-13t-43=23t-43]。

∵△[BCP]的面积[=△CPQ]的面积+[△BPQ]的面积,而△[CPQ]的面积[=12×PQ×OH],[△BPQ]的面积[=12×PQ×BH],∴[△BCP]的面积[=12PQ×OB],∵△[BCP]的面积为4,∴[12×23t-43×4=4],解得[t=-1]或[t=5],∴点[P]的坐标为(-1,-1)或[(5,5)]。

分类讨论思想解绝对值问题例析

分类讨论思想解绝对值问题例析

樊宏标分类讨论思想解绝对值问题例析分类讨论思想是以概念的划分、集合的分类为基础的思想方法.它是为了解决因各种因素制约着的数学问题,使原本变幻的不定的问题,分解成若干个相对确定的问题,再各个击破,从而获得完整的解答.分类讨论必须遵循三条原则:一是对全体分类对象做到既不重复,也不遗漏,二是每次分类按同一标准进行,三是连续多级分类,要按层次逐级进行,如何分类必须根据问题的具体背景而定.利用分类讨论思想解题在高考中是常见内容,现就绝对值问题作一剖析,希望对同学们有所启发.一、求绝对值函数中参数的取值范围例1若函数f(x)=a|x-b|+2在[0, +)上为增函数,则实数a,b的取值范围是.解:首先对b的值分类讨论:函数f(x)在[0,+)上为增函数,显然应有b0;其次,再对a的值进行讨论:当a=0时,显然不能满足f(x)在[0,+)上为增函数的要求;当a<0时,函数f(x)的图像是从点(b,2)引出的两条射线,且当x b时,函数在[b,+)上为减函数,也不符合要求,舍去;当a>0时,函数f(x)在[b,+)上为增函数.评注:本题是含有绝对值符号和两个参数的分段函数问题,是一个典型的二级讨论问题,它对考生分类讨论思维的缜密性有较高的要求.二、讨论绝对值函数的性质例设为常数,函数f(x)=x+|x|+,x R()讨论f(x)的奇偶性;()求f(x)的最小值.解:()首先讨论f(x)的奇偶性,由于y=x2+1是偶函数,所以f(x)的奇偶性取决于|x-a|.由于y=|x|是偶函数,所以第一次分类应分为a=0及a0讨论.(1)当a=0时,f(x)=x2+|x|+1为偶函数.(2)当a0时,f(x)=x2+|x-a|+1为非奇非偶函数.()再求f(x)的最小值,为此需去掉f(x)解析式中的绝对值符号.就要对x分x a 和x<a讨论.(1)当x a时,f(x)=x2-x+a+1=(x-12)2+a+34,为求x a时f(x)的最小值,要研究f(x)图像的对称轴x=12相对于a 的不同位置.当a12时,f(x)在(-,a]上为减函数,则f(a)最小,即f m i n(x)=f(a)=a2+1.当a>12时,f(x)在(-,12)上是减函数,在(12,a)是增函数,于是f(12)最小,即f m i n(x)=f(12)=a+34.(2)当x a时,f(x)=x2+x-a+1=(x+12)2-a+34.此时,要研究f(x)图像的对称轴x=相对于的不同位置数理化学习(高中版)2a2-a1.-12a.19当a-12,f(x)在[a,-12)是减函数,在(-12,+)上是增函数,则f(-12)最小,即f m i n(x)=f(-12)=34- a.当a>-12时,f(x)在[a,+)是增函数,则f(a)最小,即f m i n(x)=f(a)=a2+1.综合以上,f(x)的最小值是f m i n(x)=34-a,(a-12),a2+1,(-12<a12), 34=a,(a>12)评析:本题经历了三次分类讨论的过程:第一次,为讨论函数f(x)的奇偶性,对a=0,a 0分类;第二次,为去掉绝对值符号,对x a 和x<a分类;第三次,为求函数f(x)的最小值对a12,a>12和a-12,a>-12分类.三、解含绝对值的不等式例3解关于x的不等式:|x-a|x> a.解:因为x0,原不等式同解于:()x>0,|x-a|>ax,或()x<0,|x-a|<ax.(1)当a=0时,化为x>0,|x|>0,或x<0,|x|<0.解集为{x|x>0}.(2)当a>0成立,显然()无解.()化为x>0,x-a>ax或x-a<-a x,即x>,()x>或x<+当a=1时,化为x>0,x<12.解集为:{x|0<x<12}.当a>1时,化为x>0,x<a1-a或x<a1+a,即x>0,x<a1+a.解集为{x|0<x<a1+a}.当0<a<1时,化为x>0,x>a1-a或x<a1+a.因为a1-a>a1+a>0,所以解集为{x|0<x<a1+a或x>a1-a}.(3)当a<0时,由()得x>0.化为x>0或x<0,-ax<x-a<ax,即x>0或x<0,x<a1-a,(1+a)x> a.则x>0或x<a1-a,(1+a)x> a.当a=-1时,化为x>0或x<-12,解集为{x|x>0或x<-12}.当a<-1时,化为x>0或x<a1-a,x<a1+a.因为<<+所以解集为数理化学习(高中版)1-a aa1a.a1-aa1a.20{x|x>0或x<a1-a}.当-1<a<0时,化为x>0或x<a1-a,x>a1+a.因为a1+a<a1-a<0,所以解集为{x|x>0或a1+a<x<a1-a}.评注:本题看似平淡,实则平中见奇,常中见新,题目以简洁的形式出现,把一次不等式、绝对值不等式、分式不等式及含参不等式很自然地结合在一起,很好地体现了新教材对这些不等式的解法的基本要求,并对变量x及参数a 的双重标准进行分类讨论.浙江省绍兴县柯桥中学(312030)赵传义灵活新颖综合交融的数列试题近几年高考数列试题灵活新颖,综合交融,考查了学生一般数学能力.局部不难,但综合起来就有一定的深度.强调知识的交融性,在知识的交汇处命题,要求学生对试题有分解能力,有确认的能力.一、与解几结合例1设P1(x1,y1),P2(x2,y2),,P n(x n,y n)(n3,n N)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,,a n=|OP n|2构成了一个公差为d(d0)的等差数列,其中O是坐标原点.记S n=a1+a2++a n.(1)若C的方程为x2100+y225=1,n=3.点P1(10,0)及S3=255,求点P3的坐标;(只需写出一个)(2)若C的方程为x2a2+y2b2=1(a>b>0).点P1(a,0),对于给定的自然数n,当公差d 变化时,求S n的最小值;(3)请选定一条除椭圆外的二次曲线C及上的一点,对于给定的自然数,写出符合条件的点,,,存在的充要条件,并说明理由.分析:该题的主要条件是长度的平方成等差数列,并且点在二次曲线上,又给出前n项和的记法,在形式上或第一印象给人无法下手的感觉,也就是将条件发散开来后后续手段不多.这时不要慌,要静下心来看看接下来的各小问是将条件向哪个方向发展的.(1)明确了C的方程,给出点P1及S3,求P3.由P1为(10,0),得a1=100.(这里注意!a1=|OP1|2,在条件中给出的不是a1=|OP1|似乎给我们思考带来了一定的方便,但这里又给我们因思维定势犯错误埋下了伏笔,事实上就本题而言a n=|OP n|并不比a n=|OP n|2解决起来困难).又由S3=255=32(a1+a3),得.a3=70即|OP3|2=70.所以x23100+y2325=1,x23+y23=70,得x23=60,y23=10所以3的坐标可以为(5,)数列在这里仅仅起到了由|O|=数理化学习(高中版)C P1nP1P2P n P2110.P1210021。

苏教版初一数学绝对值专题2 绝对值的分类讨论

苏教版初一数学绝对值专题2 绝对值的分类讨论

绝对值的分类讨论【知识概要】我们都知道:一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;零的绝对值是零.即:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或者精简为 ⎩⎨⎧≤-≥=)0()0(a a a a a 这两个列表是对“绝对值”这一概念的代数化概括,在绝对值的计算和化简方面发挥的作用极大.同时,这一概括也包含了初中数学的一个重要思想——分类讨论.下面我们就来看看“分类讨论”思想是如何渗透到与绝对值有关的题目中的,又是如何去解决这一类题目的.【例题讲解】【例1】<考点:化简>(1)如果a ,b 均为非零有理数,则bb a a +可取的值有 个,是 ; (2)如果a ,b ,c 均为非零有理数,那么cc b b a a ++可取的值有 个,是 ; (3)如果有理数0≠n a (n 为非负整数),那么201220122011201122111......a a a a a a a a y ++++=可取的值有 个,是 ;(4)如果有理数0≠n a (n 为非负整数),那么201320132012201222112......a a a a a a a a y ++++=可取的值有 个,是 . 归纳:当相加的代数式有n 个时,它可取的值有)1(+n 个.当n 为奇数时,可取的值是21+n 对相反数;当n 为偶数时,可取的值是0和2n 对相反数. 【例2】<考点:化简取值>a ,b ,c 均为整数,且120132012=-+-a c ba ,试求ac c b b a -+-+-的值.【例3】<考点:零点分段法>(1)化简325-++x x ; (2)化简321++-+-x x x .【例4】<考点:零点分段法结合最值问题>已知14162+--++=x x x y ,求y 的最大值.【例5】<考点:多个绝对值符号化简>解方程:7122=++-x x .【例6】<考点:多重绝对值符号化简>求方程312=+-x x 的不同的解的个数.【例7】<考点:带字母的多重绝对值符号化简> 关于x 的方程a x =--12有三个整数解,求a 的值.【随堂练习】1、若0ab >,求a b ab a b ab++的值.2、三个有理数a ,b ,c 的积为负数,和为正数,且caca bc bc ab ab c c b b a a x +++++=,则代数式321ax bx cx +++的值为多少?3、若a ,b ,c 都是整数,且19919=-+-a c ba ,则a c cb b a -+-+-的值是多少?4、(1)化简1213-++x x ; (2)化简6311---++x x x .5、非零整数m 、n 满足05=-+n m ,那么所有整数组()n m ,共有多少组?分别是哪些?6、求413=+-x x 的解.。

分类讨论法解绝对值方程

分类讨论法解绝对值方程
分类讨论法解绝对值方程
汇报人:
绝对值方程的分类 绝对值方程的解法 绝对值方程的应用 绝对值方程的注意事项
绝对值方程的分类类
按照绝对值符号的位置进 行分类
按照绝对值符号内的表达 式进行分类
按照绝对值符号的解集进 行分类
绝对值方程的分类方法
根据绝对值符号的数量进行分类 根据绝对值符号的位置进行分类 根据绝对值符号内的表达式进行分类 根据绝对值符号的性质进行分类
绝对值方程的应用
绝对值方程在数学中的应用
绝对值方程在解线性方程中的应用 绝对值方程在解二次方程中的应用 绝对值方程在解三次方程中的应用
绝对值方程在解四次方程中的应用 绝对值方程在解五次方程中的应用 绝对值方程在解六次方程中的应用
绝对值方程在实际问题中的应用
物理问题:如距离、速度、加速度 等
工程问题:如长度、宽度、高度等
绝对值方程的解法
一次绝对值方程的解法
定义:方程中含有绝对值符号的方程 解法:分两种情况讨论,一种是绝对值符号内为正,另一种是绝对值符号内为负 举例:例如|x-1|=2,当x-1>=0时,解得x>=1,当x-1<0时,解得x<1 注意事项:在解绝对值方程时,要注意符号的变化,避免漏解或错解
二次绝对值方程的解法
混淆绝对值符号和负号,导致解方 程错误
添加标题
添加标题
添加标题
添加标题
未考虑绝对值符号内的正负情况, 导致解方程不全面
未考虑绝对值符号内的变量取值范 围,导致解方程错误
THANK YOU
汇报人:
• 例题分析:通过例题讲解二次绝对值方程的解法 • 注意事项:在求解过程中需要注意绝对值符号的变换和合并解的合理性
高次绝对值方程的解法

分类讨论思想(初一)

分类讨论思想(初一)

分类讨论思想分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论,分类讨论思想有利于学会完整地考虑问题,化整为零地解决问题.一、因绝对值产生的分类讨论1.数轴上的一个点到原点的距离为5,则这个点表示的数为.变式练习:数a+1到原点的距离为5,求a的值.2.点P(a+1,4)到两坐标轴的距离相等,求a的值和点P的坐标.变式练习:点P(a+2,3a-6)到两坐标轴的距离相等,则点P的坐标为.3.已知A(-4,3),AB∥y轴,且AB=3,则点B的坐标为.4.如图,A(-3,0),B(1,0),点C在y轴上,若S△ABC=6,求点C的坐标.二、因平方根产生的分类讨论1.5的平方根为.2解方程:2.(3)36.x2已知,,求的值3.55.x y x y三、因几何图形的不确定产生的分类讨论1.已知线段AB=6cm,点C在直线AB上,BC=2cm,则AC的长为_________________2.已知∠A0B=120º,∠BOC=30º,则∠AOC=_____________________3.平面上,∠AOB=100 º,∠BOC=40 º,若OM平分∠AOB,ON平分∠BOC,求∠MON的度数.四、因问题的多种可能性产生的分类讨论1.暑假期间,两名家长计划带若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社.经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费乙旅行社的优惠条件是:家长学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?。

七年级绝对值分类讨论

七年级绝对值分类讨论

七年级绝对值分类讨论嘿,朋友们!今天咱们聊聊绝对值这个东西。

听起来好像很高深,但其实它跟我们的生活其实也有很多关系哦。

想象一下,你心情好,买了很多好吃的,结果发现零花钱不够,最后还是得精打细算。

绝对值就有点像你这个小小的经济危机,它告诉你,别管数字是什么,最终都得看“绝对”值,也就是钱的绝对数量,不是负数也不是正数。

想象一下,咱们在数轴上走。

数轴上有个零点,零点左边是负数,右边是正数。

绝对值就像一个指路牌,告诉你,无论你是从哪个方向出发,最后得的结果都是“正数”,那种正能量满满的感觉!比如说,你和朋友约好一起去玩,结果你迟到了半个小时,这时候你就得算一下,迟到的绝对值就是30分钟。

哦,想想,朋友等得那个心急啊,简直能把一只蚂蚁给急死。

绝对值让你明白,时间是多么宝贵,别让别人等得心里急。

再说说绝对值的分类讨论,这可有意思了。

咱们有正数和负数两种情况。

正数嘛,大家都知道,像你爸妈给你的零花钱,一看就是心里美滋滋的,咱们直接把它拿过来就行了。

可一说到负数,哎呀,真是让人心头一紧。

就好比你借了朋友的钱,结果没能按时还上,这时候绝对值就让你反思一下,欠债总是要还的,不能只顾着花钱。

负数的绝对值其实就是把这个负号去掉,让你知道,自己还得面对现实。

有时候绝对值还会给你带来一些意外的惊喜。

你知道吗?就像考试的时候,题目让你求一个数的绝对值,结果你算出来发现自己做对了,心里那个乐呀,简直比中了彩票还开心。

没错,这种小确幸就是绝对值带来的。

它告诉你,虽然有时候你可能在负数那边挣扎,但只要你努力,总能找到正数的一面。

再聊聊实际应用,绝对值可不仅仅是在课堂上用的。

比如说,打游戏的时候,你的角色遇到了敌人,你的血量下降,绝对值就可以告诉你,你还剩多少血,得赶紧回血。

这时候你要明白,不管血量是多少,最终要面对的都是血量的绝对值。

生命之可贵呀,千万不能让自己处于“负”的状态,要努力回血。

有些小伙伴可能觉得,绝对值听上去那么简单,生活中有什么值得探讨的?其实啊,绝对值的背后隐藏着很多深刻的道理。

2024-2025学年北师大版七年级数学上册阶段拔尖专训4 绝对值的常见应用

2024-2025学年北师大版七年级数学上册阶段拔尖专训4 绝对值的常见应用

阶段拔尖专训4 绝对值的常见应用|高分秘师|运用绝对值解决问题,在初中代数中具有重要的意义,利用绝对值的知识一般可以将问题化归,结合分类讨论思想、数形结合思想解决问题,从而达到化难为易、化繁为简的目的.应用1 绝对值在比较大小中的应用1.比较−|−734|和一(-4)的大小.应用2 绝对值在数轴中的应用2.我们知道,|x|表示x在数轴上对应的点到原点的距离,|x|我们可以看成|x-0|.所以|x-a|就表示x与a在数轴上对应的两点之间的距离.若|x+3|=5,则x=.3.[2024济南市中区月考]已知在数轴上A,B两点分别表示的数是a和b,|a|=2,|b|=4,|a-b|=a--b,点P 在数轴上且与点A,点B 的距离相等,则点P 表示的数为.应用3 绝对值的非负性在求字母值或取值范围中的应用4.若|a-1|=a-1,则a的取值范围是( )A. a≥1B. a≤1C. a<1D. a>15.如果|x-2|=2-x,那么x的取值范围是.6.[2024天津和平区模拟]已知|x-3|+|y+5|=0,求|x+y|的值.应用4 绝对值在化简中的应用7. 新考法零点分段法化简:|x--1|+|x-3|.8. 新考法分类讨论法已知a,b,c均不为零,求a|a|+b|b|+c|c|+abc|abc|的值.应用5 绝对值的几何意义在求字母值或最值中的应用9. 母题教材P73复习题T17绝对值不大于a(a>0,且a为整数)的所有整数共有5个,则( a=.10. 新视角学习探究题/同学们都知道,|5-1|表示5与1的差的绝对值,也可以表示数轴上5 和1这两点间的距离;|3--(-2)|表示3与-2的差的绝对值,实际上也可理解为3与--2在数轴上所对的两点之间的距离;自然地,对|3-(-2)|进行变形得|3+2|,同样可以表示3与-2在数轴上所对的两点之间的距离.试探索:(1)|3--(-2)|= ;(2)|x-2|表示x与之间的距离;|x+3|表示x与之间的距离;(3)当|x-2|+|x+3|=5时,x可取整数.(写出一个符合条件的整数x即可)(4)由以上探索,结合数轴猜想:对于任何有理数x,|x+4|+5的最小值为.(5)由以上探索,结合数轴猜想:对于任何有理数x,|x+4|+|x-6|的最小值为.(6)解决问题:一条笔直的公路边有三个代工厂A,B,C和城区O,代工厂A,B,C分别位于城区左侧5km,右侧1km,右侧3km. A代工厂需要芯片1000个,B代工厂需要芯片2 000个,C代工厂需要芯片3 000 个.现需要在该公路边建一个芯片研发实验室P,为这3个代工厂输送芯片.若芯片的运输成本为每千米1元/千个,那么实验室P 建在何处才能使总运输成本最低,最低成本是多少? (实验室不能建在代工厂及城区处)阶段拔尖专训4 绝对值的常见应用1.【解】因为−|−734|=−734,−(−4)=4,m−734<4,所以−|−734|<−(−4).2.-8或2 【点拨】因为|x+3|=5,所以数轴上表示数x的点到表示数-3的点的距离为5.所以x的值为-8或2.3.-1或-3 【点拨】因为|a|=2,|b|=4,所以a=±2,b=±4.因为|a-b|=a-b,所以a-b≥0.所以a≥b.所以a=2,b=-4或a=-2,b=-4.当a=2,b=-4时,因为点P在数轴上且与点A,点B的距离相等,所以点P 表示的数为2−42=−1;当a=-2,b=-4时,因为点P在数轴上且与点A,点B的距离相等,所以点P表示的数为−2−42=−3.所以点P 表示的数为-1或-3.4. A5. x≤26.【解】因为|x-3|+ lg+5|=0,|x-3|≥0,|y+5|≥0,所以x-3=0,y+5=0.所以x=3,y=-5.所以|x+y|=|3+(-5)|=2.7. 【解】当x≥3时,原式=(x-1)+(x-3)=2x-4;当1<x<3时,原式=(x-1)+(3-x)=2;当x≤1时,原式=(1-x)+(3-x)=4-2x.【点拨】要去掉两个绝对值的符号,就要同时确定两个绝对值里的式子的正负号,可以使用零点分段法,用分类讨论的思想方法来解.8. 【解】(1)当a,b,c均为正数时, a|a|+b|b|+c|c|+abc|abc|=1+1+1+1=4;(2)当a,b,c中,有两个正数,一个负数时,不妨设a,b为正,c为负. a|a|+b|b|+c|c|+abc|abc|=1+1+(−1)+(--1)=0;(3)当a,b,c中,有一个正数,两个负数时,不妨设a为正,b,c为负. a|a|+b|b|+c|c|+abc|abc|=1+(−1)+(−1)+1=0;(4)当a,b,c均为负数时, a|a|+b|b|+c|c|+abc|abc|=(−1)+(--1)+(-1)+(-1)=-4.综上,原式的值为-4或0 或4.【点拨】当a为正数时,a|a|=aa=1;当a为负数时,a|a|=a−a=−1.b,的情况类似.本题应根据a,b,c所有可能,出现的符号情况进行讨论.9.210. 【解】(1)5 (2)2;-3(3)2(答案不唯一) 【点拨】因为|x-2|+|x+3|=5 表示数轴上有理数x所对应的点到2 和-3所对应的点的距离之和为5,所以x在-3与2之间的线段上(即-3≤x≤2).所以x可取整数-3,-2,-1,0,1,2.(4)5(5)10 【点拨】因为|x+4|+|x-6|可理解为在数轴上表示x的点到表示一4 和6 的点的距离之和,所以当x在-4与6之间的线段上(即-4≤x≤6)时,|x+4|+|x-6|的值有最小值,最小值为10.(6)以城区O为原点,原点右侧为正方向,1km为1个单位长度,建立数轴,设实验室P 所对应的数为x.根据题意可得,x≠-5,0,1,3,芯片的运输成本为|x+5|+2|x-1|+3|x-3|=(|x+5|+|x-3|)+2(|x-1|+|x-3|)(元).(|x+5|+|x-3|)+2(|x--1|+|x-3|)可表示x到-5的距离与x到3的距离之和,和x到1的距离与x到3的距离之和的2倍的总和,则当1<x<3时,|x+5|+2|x--1|+3|x-3|取得最小值,此时|x+5|+2|x-1|+3|x-3|=x+5+2(x-1)-3(x-3)=12.所以实验室P建在B 代工厂和C代工厂之间,才能使总运输成本最低,最低成本是12 元.。

思维特训(四) 绝对值与分类讨论

思维特训(四) 绝对值与分类讨论

思维特训(四) 绝对值与分类讨论 方法点津 ·1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论.用符号表示这一过程为:||a =⎩⎨⎧a (a >0),0(a =0),-a (a <0).2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论. 用符号表示这个过程为:若||x =a (a >0),则x =±a .3.分类讨论的原则是不重不漏,一般步骤为:①分类;①讨论;①归纳. 典题精练 ·类型一 以数轴为载体的绝对值的分类讨论1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB|,定义|AB|=|a -b|.(1)|AB|=________;(2)设点P 在数轴上对应的数是x ,当|PA|-|PB|=2时,求x 的值.2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b|,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.根据上述材料,回答下列问题:(1)|5-(-2)|的值为________;(2)若|x -3|=1,则x 的值为________;(3)若|x -3|=|x +1|,求x 的值;(4)若|x -3|+|x +1|=7,求x 的值.类型二 与绝对值化简有关的分类讨论问题3.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答下列问题:【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值. 【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a +|b|b +|c|c =a a +b b +c c=1+1+1 =3;①当a ,b ,c 中有一个为正数,另两个为负数时,设a >0,b <0,c <0,则|a|a +|b|b +|c|c=a a +-b b +-c c=1-1-1=-1. 所以|a|a +|b|b +|c|c的值为3或-1. 【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足abc <0,求|a|a +|b|b +|c|c的值; (2)已知|a|=3,|b|=1,且a <b ,求a +b 的值.4.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=________;①|-12+0.8|=________; ①⎪⎪⎪⎪717-718=________.(2)用合理的方法计算:|15-12018|+|12018-12|-|-12|+11009. 5.探索研究:(1)比较下列各式的大小(填“<”“>”或“=”):①|-2|+|3|________|-2+3|;①|-12|+|-13|________|-12-13|;①|6|+|-3|________|6-3|;①|0|+|-8|________|0-8|.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(直接写出结论即可)(3)根据(2)中得出的结论,解决以下问题:当|x|+|-2019|=|x-2019|时,求x的取值范围.详解详析1.解:(1)因为|a+4|+(b-1)2=0,所以a=-4,b=1,所以|AB|=|a-b|=5.(2)当点P在点A左侧时,|P A|-|PB|=-(|PB|-|P A|)=-|AB|=-5≠2,不符合题意;当点P在点B右侧时,|P A|-|PB|=|AB|=5≠2,不符合题意.当点P在点A,B之间时,|P A|=|x-(-4)|=x+4,|PB|=|x-1|=1-x.因为|P A|-|PB|=2,所以x+4-(1-x)=2,解得x=-12.2.解:(1)7(2)因为|x-3|=1,所以x-3=±1,解得x=2或4.故x的值为2或4.(3)根据绝对值的几何意义可知,x必在-1与3之间,故x-3<0,x+1>0,所以原式可化为3-x=x+1,所以x=1.(4)在数轴上表示3和-1的两点之间的距离为4,则满足方程的x的对应点在-1的对应点的左边或3的对应点的右边.若x的对应点在-1的对应点的左边,则原式可化为3-x-x-1=7,解得x=-2.5;若x的对应点在3的对应点的右边,则原式可化为x-3+x+1=7,解得x=4.5.综上可得,x的值为-2.5或4.5.3.解:(1)因为abc<0,所以a ,b ,c 都为负数或其中一个为负数,另两个为正数.①当a ,b ,c 都为负数,即a <0,b <0,c <0时,则|a |a +|b |b +|c |c =-a a +-b b +-c c=-1-1-1=-3; ①当a ,b ,c 中有一个为负数,另两个为正数时,设a <0,b >0,c >0,则|a |a +|b |b +|c |c =-a a +b b +c c=-1+1+1=1. 综上所述,|a |a +|b |b +|c |c的值为-3或1. (2)因为|a |=3,|b |=1,且a <b ,所以a =-3,b =1或-1,则a +b =-2或-4.4.解:(1)①21-7 ①0.8-12 ①717-718(2)原式=15-12018+12-12018-12+11009=15. 5.解:(1)①因为|-2|+|3|=5,|-2+3|=1,所以|-2|+|3|>|-2+3|.①因为|-12|+|-13|=56,|-12-13|=56,所以|-12|+|-13|=|-12-13|. ①因为|6|+|-3|=6+3=9,|6-3|=3,所以|6|+|-3|>|6-3|.①因为|0|+|-8|=8,|0-8|=8,所以|0|+|-8|=|0-8|.(2)当a ,b 异号时,|a |+|b |>|a +b |;当a ,b 同号或a ,b 中有一个为0或两个同时为0时,|a |+|b |=|a +b |,所以|a |+|b |≥|a +b |.(3)由(2)中得出的结论可知,x 与-2019同号或x 为0,所以当|x |+|-2019|=|x -2019|时,x 的取值范围是x ≤0.。

第2讲 绝对值中的分类讨论思想

第2讲  绝对值中的分类讨论思想

第2讲 绝对值中的分类讨论思想(1)【链接方法】1.若x m =(m >0),则x m =±.2.若a >0,则1a a =;若a <0,则1a a=-. 3.灵活运用绝对值基本性质: ①2220;;;a a a a ab a b ===•≥②③④)0(≠=b ba b a ;⑤a b +≤a b +. 4.绝对值的非负性的应用: ①若0a b +=,则0a b ==;②20a b +=,则0a b ==. 【挑战例题】【例1】已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点之间的距离为8,求这两个数.分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。

那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。

若数轴上表示这两数的点位于原点同侧呢?解:设甲数为x ,乙数为y 由题意得:y x 3=,(1)数轴上表示这两数的点位于原点两侧:若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6(2)数轴上表示这两数的点位于原点同侧:若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12【例2】(山东省竞赛题)如果c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能的值为( ). A .0 B . 1或一l C .2或一2 D .0或一2因为a+b+c=0,所以a 、b 、c 、存在两种情况,即两个正数一个负数和一个正数两个负数。

当两个正数一个负数时a/|a|+b/|b|+c/|c|=1,abc/|abc|=-1,所以a/|a|+b/|b|+c/|c|+abc/|abc|=0当一个正数两个负数时a/|a|+b/|b|+c/|c|=-1,abc/|abc|=1,所以a/|a|+b/|b|+c/|c|+abc/|abc|=2【例3】(1)(北京市“迎春杯”竞赛题)已知321===c b a ,,,且c b a >>, 那么c b a -+= .因为a>b>c , a 最大为1, 所以b 只能是-2, c<b 所以只能是-3 , 又因为-1>-2所以a=1或-1 b=-2 c=-3所以a+b+c=-6或-4.(2)(“希望杯”邀请赛试题)已知d c b a 、、、是有理数,169≤-≤-d c b a ,, 且25=+--d c b a ,那么=---c d a b .|a-b |≤9,|c-d |≤16,且 25 = |a-b-c+d| = |(a-b) + (d-c)| ≤ |a-b| + |d-c| ≤ 9 + 16显然,上式中只能“=”成立可见 a-b 与 d-c 同号,且 |a-b| = 9,|d-c| = 16于是 |b-a| - |d-c| = 9 - 16 = -7【例4】(“五羊杯”竞赛题)已知12--b •ab 与互为相反数,试求代数式:1111(1)(1)(2)(2)(2012)(2012)ab a b a b a b ++++++++++的值. 思路点拨 运用相反数、绝对值、非负数的概念与性质,先求出b a 、的值.根据已知|ab-2|与|b-1|互为相反数,可得b=1,a=2把a ,b 的值代入原式=1/2+1/(2×3)+1/(3×4)+…+1/(2013×2014)=1-1/2+1/2-1/3+1/3-1/4+…+1/2013-1/2014=1-1/2014=2013/2014【例5】有3个x 的值使等式21x a --=成立,则a 的值为 .解:①若|x-2|-1=a ,当x≥2时,x-2-1=a ,解得:x=a+3,a≥-1;当x <2时,2-x-1=a ,解得:x=1-a ;a >-1;②若|x-2|-1=-a ,当x≥2时,x-2-1=-a ,解得:x=-a+3,a≤1;当x <2时,2-x-1=-a ,解得:x=a+1,a <1;又∵方程有三个整数解,∴可得:a=-1或1,根据绝对值的非负性可得:a≥0. 即a 只能取1.故答案为1. 变式:关于x 的方程||x+3|-1|=a 有三个解,则a 的值为 1解:①若|x+3|-1=a ,当x≥-3时,x+3-1=a ,解得:x=a-2,a≥-1;当x <-3时,-x-3-1=a ,解得:x=-a-4;a >-1;②若|x+3|-1=-a ,当x≥-3时,x+3-1=-a ,解得:x=-a-2,a≤1;当x <-3时,-x-3-1=-a ,解得:x=a-4,a <1;又∵方程有三个解,∴可得:a=-1或1,而根据绝对值的非负性可得a≥0,故答案为:1.【提升能力】1.x =3,y =2,且x>y ,则x+y 的值为( )A 、5B 、1C 、5或1D 、—5或—1解:∵|x|=3,|y|=2, ∴x=±3,y=±2,又∵x >y , ∴x=3,y=±2, ∴x+y=5或x+y=1, 故答案为D .2.若ab ab =,则必有( D )A 、a>0,b<0B 、a<0,b<0C 、ab>0D 、0≥ab3.设0=++c b a ,0>abc ,则cb a b ac a c b +++++的值是( ). A .-3 B .1 C .3或-1 D .-3或1原式= -a/|a| - b/|b| - c/|c| = -(a/|a|+ b/|b| + c/|c|)因为a+b+c=0,abc >0 所以a 、 b 、 c 中一定有两个是负数,一个是正数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思维特训(四) 绝对值与分类讨论 方法点津 ·
1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论.
用符号表示这一过程为:||a =⎩⎨⎧a (a >0),
0(a =0),-a (a <0).
2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论. 用符号表示这个过程为:若||x =a (a >0),则x =±a .
3.分类讨论的原则是不重不漏,一般步骤为:①分类;①讨论;①归纳. 典题精练 ·
类型一 以数轴为载体的绝对值的分类讨论
1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB|,定义|AB|=|a -b|.
(1)|AB|=________;
(2)设点P 在数轴上对应的数是x ,当|PA|-|PB|=2时,求x 的值.
2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b|,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.
根据上述材料,回答下列问题:
(1)|5-(-2)|的值为________;
(2)若|x -3|=1,则x 的值为________;
(3)若|x -3|=|x +1|,求x 的值;
(4)若|x -3|+|x +1|=7,求x 的值.
类型二 与绝对值化简有关的分类讨论问题
3.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答下列问题:
【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c
的值. 【解决问题】
解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.
①当a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a +|b|b +|c|c =a a +b b +c c
=1+1+1 =3;①当a ,b ,c 中有一个为正数,另两个为负数时,设a >0,b <0,c <0,则|a|a +|b|b +|c|c
=a a +-b b +-c c
=1-1-1=-1. 所以|a|a +|b|b +|c|c
的值为3或-1. 【探究】请根据上面的解题思路解答下面的问题:
(1)三个有理数a ,b ,c 满足abc <0,求|a|a +|b|b +|c|c
的值; (2)已知|a|=3,|b|=1,且a <b ,求a +b 的值.
4.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:
|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.
(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:
①|7-21|=________;
①|-12
+0.8|=________; ①⎪⎪⎪⎪717-718=________.
(2)用合理的方法计算:|15-12018|+|12018-12|-|-12|+11009
. 5.探索研究:
(1)比较下列各式的大小(填“<”“>”或“=”):
①|-2|+|3|________|-2+3|;
①|-1
2|+|-
1
3|________|-
1
2
-1
3|;
①|6|+|-3|________|6-3|;
①|0|+|-8|________|0-8|.
(2)通过以上比较,请你分析、归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(直接写出结论即可)
(3)根据(2)中得出的结论,解决以下问题:当|x|+|-2019|=|x-2019|时,求x的取值范围.
详解详析
1.解:(1)因为|a+4|+(b-1)2=0,所以a=-4,b=1,所以|AB|=|a-b|=5.
(2)当点P在点A左侧时,|P A|-|PB|=-(|PB|-|P A|)=-|AB|=-5≠2,不符合题意;
当点P在点B右侧时,|P A|-|PB|=|AB|=5≠2,不符合题意.
当点P在点A,B之间时,|P A|=|x-(-4)|=x+4,|PB|=|x-1|=1-x.
因为|P A|-|PB|=2,所以x+4-(1-x)=2,
解得x=-1
2.
2.解:(1)7
(2)因为|x-3|=1,所以x-3=±1,解得x=2或4.故x的值为2或4.
(3)根据绝对值的几何意义可知,x必在-1与3之间,故x-3<0,x+1>0,
所以原式可化为3-x=x+1,所以x=1.
(4)在数轴上表示3和-1的两点之间的距离为4,则满足方程的x的对应点在-1的对应点的左边或3的对应点的右边.
若x的对应点在-1的对应点的左边,则原式可化为3-x-x-1=7,解得x=-2.5;
若x的对应点在3的对应点的右边,则原式可化为x-3+x+1=7,解得x=4.5.
综上可得,x的值为-2.5或4.5.
3.解:(1)因为abc<0,
所以a ,b ,c 都为负数或其中一个为负数,另两个为正数.
①当a ,b ,c 都为负数,即a <0,b <0,c <0时,
则|a |a +|b |b +|c |c =-a a +-b b +-c c
=-1-1-1=-3; ①当a ,b ,c 中有一个为负数,另两个为正数时,设a <0,b >0,c >0,
则|a |a +|b |b +|c |c =-a a +b b +c c
=-1+1+1=1. 综上所述,|a |a +|b |b +|c |c
的值为-3或1. (2)因为|a |=3,|b |=1,且a <b ,
所以a =-3,b =1或-1,则a +b =-2或-4.
4.解:(1)①21-7 ①0.8-12 ①717-718
(2)原式=15-12018+12-12018-12+11009=15
. 5.解:(1)①因为|-2|+|3|=5,|-2+3|=1,所以|-2|+|3|>|-2+3|.
①因为|-12|+|-13|=56,|-12-13|=56,所以|-12|+|-13|=|-12-13
|. ①因为|6|+|-3|=6+3=9,|6-3|=3,
所以|6|+|-3|>|6-3|.
①因为|0|+|-8|=8,|0-8|=8,
所以|0|+|-8|=|0-8|.
(2)当a ,b 异号时,|a |+|b |>|a +b |;当a ,b 同号或a ,b 中有一个为0或两个同时为0时,|a |+|b |=|a +b |,
所以|a |+|b |≥|a +b |.
(3)由(2)中得出的结论可知,x 与-2019同号或x 为0,所以当|x |+|-2019|=|x -2019|时,x 的取值范围是x ≤0.。

相关文档
最新文档