变频器在自动分条机上的张力控制

合集下载

应用变频器中心卷绕功能精确控制张力

应用变频器中心卷绕功能精确控制张力

应用变频器中心卷绕功能精确控制张力文章链接:中国纺织服装机械网/news/Detail/9910.html纺织生产过程中的半成品或成品,如纱线、布匹需要卷绕在轴或辊上,例如:分批整经机将成片纱卷绕在经轴上;浆纱机和浆染联合机将成片浆过的纱卷绕在织轴上;卷染机和轧卷染色机将布卷绕在收放辊上。

这些设备在卷绕过程中都有一个共性问题,即需要恒张力控制,卷绕直径从最小直径到最大直径,要求纱和布的张力保持不变。

利用变频器或交流伺服的中心卷绕功能可以较好解决卷绕恒张力控制。

常见的卷绕方式有两种,即摩擦卷绕和中心卷绕。

摩擦卷绕的效果受摩擦辊的影响很大,如:分批整经机的经轴卷绕,传统的机构采用摩擦辊卷绕方式,由于摩擦传动易使纱线增加毛羽,影响产品质量,且不利于后道工序生产,特别是在升速和降速过程,影响会更大,也限制了整经机向高速发展。

所以新型的高速整经机多数采用中心卷绕方式。

浆纱机和染浆联合机的织轴卷绕,传统的机构采用机械式无级变速器(PIV)作为中心卷绕方式。

经过长期生产实践,PIV机械故障频繁,维修保养复杂,同时随着无梭织机的发展,要求织轴大卷装,PIV很难满足大卷装织轴恒张力卷绕的要求。

卷染机和轧卷染色机的织物卷绕,传统的卷绕机构较多采用直流电动机控制系统,作为中心卷绕方式,直流控制系统技术成熟,控制方便,能较好地满足生产要求。

但直流电动机有整流子和碳刷,需经常维护,特别在印染企业环境恶劣,直流电动机故障率高,企业不大欢迎。

自从变频器技术问世以来,人们考虑将变频调速技术应用到中心卷绕机构,可以发挥交流电动机固有的优点,结构简单、坚固耐用、经济可靠。

经过多年的实践证明,变频调速技术可以满足中心卷绕的要求,国内外的整经机、浆纱机、卷染机等同类设备已大量采用变频器中心卷绕技术。

在张力控制要求更高的场合,采用交流伺服中心卷绕技术。

经轴卷绕、织轴卷绕、布辊卷绕采用中心卷绕方式,当卷绕直径从小直径向大直径变化时(浆纱机织轴最小卷径为100mm,最大卷径为1000mm;卷染机卷布辊最小卷径为200mm,最大卷径为1500mm)为了使纱或布的表面张力保持不变,必须保证转速的变化与卷径成反比,转矩的变化与卷径成正比,若没有转矩补偿,随着卷径的增大,则纱或布的张力会逐渐减少。

艾默生TD3300变频器在张力控制中的应用

艾默生TD3300变频器在张力控制中的应用

经过扩散风 道牵伸 , 然后在铺 网机上成 网以后 , 用预 压
辊进行第一 次成 型 , 用 热轧 机进 行第 二 次成 型。第 再 二次成 型热 轧机 可 以根 据 用 户 的要 求 轧 出不 同 的花
纹 。第二 次成型 的无纺 布再 通过几道扩 幅辊 、 冷却 辊 、 张力辊 等等 , 最后用 收卷机 收卷 , 图 1 示 。收卷 效 如 所
模式 ; 闭环 张力控 制 速度模 式 。开环 张力 控制模 二是
在张力表上显示 , 供工艺人员监测。其具体连接如 图
3所示
式不需要张力反馈 , 系统配置少 , 但张力控制精度略

3 一 8
P C・ L 变频器 ・ 计算机——艾默生 T 3 0 D 3 0变频器在 张力控制 中的应用
张力 给定 。把 热轧 机 变 频器 输 出来 的 同步 频 率 接 在
PD运算 , I 最后输出模 拟量信号给变频器作 为 主令信 号 去驱 动负载 。在这种 张力控制系统 中, 不仅对 张力 控制 器要求相 当高 , 而且 对变频 器 的要 求也很 高 , 变频器 不 仅要有很快 的响应时间 , 还要对模拟量有很好 调节 的滤
机床 电器 2 1 . 0 16
T 30 变频器 D30
T 3 0 变频器 D 00
F .2= , v 0 0 反馈选择 ; 7
F .3=1 , 70 0 比例增益 1 ; F .4=1 积分时 间 1 70 , ;
手动给定/ 面板给定/ 通讯给定 l 张力给定 l l l l I l l
张力控制器上设定 工艺所 需要 的张力 , 为张力 给定 ; 作 然后 张力控制器把 给定 的张力 和反馈 过来 的张力进 行
图 2 张 力反 馈 示 意 图

张力控制——精选推荐

张力控制——精选推荐

张力控制系统往往是张力传感器和张力控制器的一种系统集成,目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。

这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。

即使在紧急停车情况下,也应有能力保证被分切物不破损。

张力控制的稳定与否直接关系到分切产品的质量。

若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。

一、标准变频器与收放卷变频器型号介绍尤尼康收放卷行业专用变频器,可以进行卷径计算。

AF201仅仅支持速度控制模式,AF202不仅支持速度控制模式,还支持转矩控制模式。

AF200标准产品不能进行卷径计算,收放卷行业专用变频器系列包括了标准产品的主要功能,还有行业特定的功能,可以进行卷径计算,有相应卷径计算功能码做相关设置,比如H0.00、H1.00、H1.24等等功能码。

AF201标准产品仅仅能做一个无速度编码器反馈的矢量控制,比如木工机械、音乐喷泉、扶梯、陶瓷机械、离心机、塑料吹塑机、细微拉丝机、磨床、雕铣机、跑步机、大圆机等等行业应用中。

AF202可以做有速度编码器反馈的闭环矢量速度控制,还能做转矩控制,设置PD.00=1变频器由速度控制模式变为转矩控制模式,这里可以设置P6.21作转矩给定或者张力给定及速度限定。

主要应用有:替换力矩电机、皮革机、鱼网编织机、浸胶机等等。

AF201收放卷行业专用变频器只能实现有位置摆杆或者浮动辊的速度控制,比较典型的行业应用是拉丝机速度控制。

AF201收放卷行业专用变频器可实现卷径计算、进行PID调节的复合控制模式实现恒定线速度收放卷控制。

应用行业主要有:双变频拉丝机、直进式拉丝机、层绕机、动力放线架、复卷机等等。

AF202收放卷行业专用变频器包含了AF201收放卷行业专用变频器的主要功能,不仅能做速度控制,还能做转矩控制,可以实现恒定转矩控制或者恒定张力控制。

张力控制原理教程

张力控制原理教程

10本文从应用的角度阐述了当前技术条件下,矢量变频技术在卷取传动中运用和设计的方法和思路。

有较强的实用性和理论指导性。

关键词:张力变频矢量转矩卷径引言:在工业生产的很多行业,都要进行精确的张力控制,保持张力的恒定,以提高产品的质量。

诸如造纸、印刷印染、包装、电线电缆、光纤电缆、纺织、皮革、金属箔加工、纤维、橡胶、冶金等行业都被广泛应用。

在变频技术还没有成熟以前,通常采用直流控制,以获得良好的控制性能。

随着变频技术的日趋成熟,出现了矢量控制变频器、张力控制专用变频器等一些高性能的变频器。

其控制性能已能和直流控制性能相媲美。

由于交流电动机的结构、性价比、使用、维护等很多方面都优于直流电动机,矢量变频控制正在这些行业被越来越广泛的应用,有取代直流控制的趋势。

张力控制的目的就是保持线材或带材上的张力恒定,矢量控制变频器可以通过两种途径达到目的:一、通过控制电机的转速来实现;另一种是通过控制电机输出转矩来实现。

速度模式下的张力闭环控制速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。

首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。

同步匹配频率指令的公式如下:F=(V×p×i)/(π×D)其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比D 卷筒的卷径变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。

这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。

这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。

若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。

张力控制原理介绍

张力控制原理介绍

第二章张力控制原理介绍2.1 典型收卷张力控制示意图浮动辊F牵引辊收卷图2 带浮动辊张力反馈收卷F牵引辊图1 无张力反馈32.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330 设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F 为材料张力,T 为收卷轴的扭矩,R 为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD 系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩4擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。

汇川变频器张力控制功能参数说明

汇川变频器张力控制功能参数说明

卷曲张力控制专用变频器MD330用户手册第一章概述本手册需与《MD320用户手册》配合使用。

本手册仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考《MD320用户手册》。

当张力控制模式选为无效时,变频器的功能与MD320完全相同。

MD330用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。

在没有卷径变化的场合实现恒转矩控制,建议使用MD320变频器。

选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,F0组中频率源的选择将不起作用。

第二章张力控制原理介绍一、典型收卷张力控制示意图二、张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

A、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

与开环转矩模式有关的功能模块:1、张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2、卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3、转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

速度控制与张力控制

速度控制与张力控制

精心整理张力控制1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。

反应到电机轴即能控制电机的输出转距。

2.3.2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。

而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。

肯定会影响生产出产品的质量。

4.5.用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。

对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。

同时在不同的操作过程,要进行相应的转距补偿。

即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。

6.7.二.张力控制变频收卷在纺织行业的应用及工艺要求8.9.1.传统收卷装置的弊端10.纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。

传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。

而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。

尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。

在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。

11.12.2.张力控制变频收卷的工艺要求13.*在收卷的整个过程中都保持恒定的张力。

张力的单位为:牛顿或公斤力。

14.*在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。

15.*在加速、减速、停止的状态下也不能有上述情况出现。

16.*要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。

17.18.3.张力控制变频收卷的优点19.*张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿.20.*使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;21.张力锥度计算公式的应用;转矩补偿的动态调整等等.22.*卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。

张力变频器的控制方式

张力变频器的控制方式

张力变频器的控制方式张力变频器有两种控制方式:开环转矩控制方式和闭环速度控制方式。

一、开环转矩控制方式:开环是指不需要张力反馈信号,变频器直接控制电机的输出转矩,输出频率跟随工材料的线速度自动变化。

如果加装脉冲编码器,可以更精确控制电机的输出转矩。

张力设定:直接设定张力值。

实际使用中的,由使用者根据所用材料、卷曲成型要求设定。

张力锥度设定:可以设定随卷径增加,电机输出转矩增大或减小,保证张力恒定或改善收卷成型效果。

卷径计算:根据现场使用情况,输入几个基本参数,自动计算卷径。

转矩补偿:电机的输出转矩,在加减速时,有一部分要用来克服收(放)卷辊的转动惯量,通过参数设置,根据加减速速率,自动补偿电机输出转矩,使系统在加减速过程仍然获得稳定的张力。

二、闭环速度控制方式:闭环是指需要张力或位置反馈信号,由内置复合PID调节器,构成闭环调节,控制电机转速,使张力反馈稳定在PID调节器的给定值上,达到张力恒定目的。

在这种模式下,张力设定无效,张力由张力摆杆或浮动辊的配重确定。

线速度输入:复合PID调节器的输入变量,卷径计算参数。

卷径计算:适时卷径自动计算,调节转速。

张力变频器的优点(1)收放卷张力调整简便,张力与同步控制均在变频器中完成,可靠性与稳定性大大提高;(2)采用矢量控制,动态响应快、控制精度高,加减速时张力恒定,避免出现套色错位;(3)张力变频器的使用寿命长,系统使用与维护十分简便。

(4)可通过变频的脉冲传送数据,可省掉在plc控制场合所需的模拟量模块,节省成本。

张力变频器的参数1、允许额定电压的+/-15%的波动范围,适应中国电网的现况;2、输入输出三相电压:220V、380V、660V、1140V;输出频率范围:0-400Hz可调;3、优化的SVPWM控制技术:输出电流波形平稳,抑制电流能力强,负载大范围波动时,仍能稳定运行;4、完美的静音控制,16KHz在线可调,保证扭距合理输出,同时有效降低电动机的噪音和发热;5、完善的电机保护,具有过载、过流、过压、欠压、短路等保护及软起、软停功能等;6、丰富可编程输入、输出端子,2路可编程模拟量输入端口,并可互相切换,结合丰富的软件逻辑功能,可满足不同行业的应用要求;7、通用型160KW以上内置直流电抗器,输入功率因素高,减少了大功率机器对电网的干扰;8、具备完善的软件、硬件保护功能。

张力控制原理介绍

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩3擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。

张力控制器在变频器中的应用

张力控制器在变频器中的应用

张力控制器在变频器中的应用在丙纶纺粘无纺布后处理联合机中,无纺布首先经过扩散风道牵伸,然后在铺网机上成网以后,用预压辊进行第一次成型,再用热轧机进行第二次成型,第二次成型热轧机可以根据用户的要求轧出不同的花纹,来满足市场的需要,第二次成型的无纺布再通过几道扩幅辊,冷却辊,张力辊等等,最后用收卷机收卷。

收卷效果的好坏,往往处决于热轧机和收卷机之间的张力的恒定,张力控制的稳定,收卷的效果肯定令人满意。

在传统的张力控制方案中,一般都是使用张力控制器,把张力传感器接到张力控器上,作为张力反馈;在张力控制器上设定工艺所需要的张力,作为张力给定;然后张力控制器把给定的张力和反馈过来的张力进行PID运算,最后输出模拟量信号给变频器作为主令信号去驱动负载。

在这种张力控制系统中,不但张力控制器要求相当高,而且对变频器的要求也很高,变频器不仅要有很快的响应时间,还要对模拟量有很好调节的滤波时间。

因此控制成本不但偏高,而且在现场调试时很不方便,所以提出一种用变频器来取代张力控制器对此进行张力控制的方案。

变频器做张力控制方案时比较常见而成熟的有两种选择方式:一是开环张力控制转矩模式;二是闭环张力控制速度模式。

开环张力控制模式不需要张力反馈,系统配置少,但张力控制精度略低,加减速时张力控制效果没有稳速时好。

闭环张力控制模式需要张力反馈,但在整个加减速及稳速运行中都能够保持张力恒定。

鉴于此,我们决定采用张力控制变频器的闭环张力控制模式。

变频器闭环张力控制速度模式时,变频器参数中必须先择F3.06=1。

变频器有三个模拟量输入端子,且每个端子都有各自独立的滤波时间,同时还可以通过功能码设置端子接收的信号类型(电压,电流等)。

张力传感器检测出来的实际张力信号,接在一个张力显示表上,张力表可以把传感器信号转换成不同类型的模拟量信号(0-5V,0-10V,±10V等),然后送给变频器作为张力反馈信号。

假定收卷机实际运行的频率设为F,实际的运行中F=F1+ FPID,F1:为同步频率,在此方案中来源于热轧机变频器的模拟量输出,经过机械传动比,前后压辊,卷筒等参数计算后作为同步频率;FPID 是变频器经过PID运算后得到的计算频率。

基于变频器的张力控制及应用研究

基于变频器的张力控制及应用研究

基于变频器的张力控制及应用研究发布时间:2022-12-05T07:05:43.965Z 来源:《福光技术》2022年23期作者:何佳胜[导读] 本文对变频器的张力控制要点进行分析,包括调节辊与同步控制两个方面,然后分析变频器中张力控制器的具体应用。

以板线材生产为例,对传统张力控制方案进行优化,提出闭环张力控制速度模式,使联合装置内的收卷机得到新的变频驱动,工作状态稳定,调试便捷,取得了良好的收卷效果。

中铜华中铜业有限公司湖北省黄石市 435005摘要:本文对变频器的张力控制要点进行分析,包括调节辊与同步控制两个方面,然后分析变频器中张力控制器的具体应用。

以板线材生产为例,对传统张力控制方案进行优化,提出闭环张力控制速度模式,使联合装置内的收卷机得到新的变频驱动,工作状态稳定,调试便捷,取得了良好的收卷效果。

关键词:变频器;张力控制;同步控制引言在板线材生产期间,为使产品质量均匀,部分材料加工设备都设置了张力控制器,使牵引力始终处于恒定状态。

通常情况下,张力测量利用传感器上的滚轴完成,在空间允许情况下,还可利用张力调节臂,使张力控制更加灵活高效,在加速、减速或者稳速状态下,均可保障力度均匀,生产出优质产品,在提高生产效率的同时,还具备节能效用。

1变频器的张力控制要点1.1调节辊控制以西门子变频器为例,调节辊的作用在于带材张力调节,将可移动的惰轮(A)安装在两个固定惰轮中间(B和C),当A与BC相距较远时,在轮与轮之间便会积存较长的带材。

受机械力影响,惰轮可处于拉紧或松弛两种状态下,在带材上形成张力,A轮便是调节辊。

通常用一个电位计进行位置检测,其优势在于可存储带材,发挥着蓄力器的功效。

在张力控制方面,可利用气压、弹簧等在轴类辊上施加压力,对辊的位置进行调节,进而影响带材内张力值[1]。

当调节辊未处于平衡点位时,张力便会发生改变,依靠连杆使电位器旋转,由此调节电位器滑动点位,采集前后两个单元间的速度差,获取相应的同步信号。

张力控制系统中的张力控制与变频

张力控制系统中的张力控制与变频

张力控制系统中的张力控制与变频1.力控制原理。

以造纸机的张力控制为例,在图1a)所示的张力控制示意图中,传动电动机M的张力实际值是位于它前面的张力传感器的实际值。

通过检测该处的张力情况,来控制传动电动机M的速度,从而形成一个张力闭环。

电动机M的速度加快,则纸幅拉紧,张力的实际值就会上升;相反,速度降低,则纸幅松垂,张力的实际值就下降。

在这里,纸幅张力的设定值为T设定,实际值为T实际,经过张力控制器(T-控制)的PID调节器后,再乘以3%的偏移量,作为该传动点速度设定值的一个组成部分。

原来传动的速度设定值(V设定)加上该组成部分,就是速度环(V-控制)的输入值,然后即可进行速度控制。

在这里设置3%偏移量的目的就是通过传动速度的改变而使张力得到有效的控制。

图1 张力控制示意图在图1b)所示的张力控制原理中,T-控制就是张力控制模块的实现,包括自动和手动两种方式。

张力控制模块投运前需先检测判定现在的张力实际值是否在可投运的范围之内,否则就不能投运,此时按手动投运按钮或当自动投运信号为“1”时,即进入张力控制模块的循环中。

张力PID模块的退出,它的条件为相关部位检测到断纸信号或按手动退出按钮。

2.力控制软件流程。

这里以某一点的张力控制为例,采用plc语言编程进行张力软件的设计,其示意如图2示。

由此可以推广到多点张力控制中去。

①读取张力设定值。

张力设定值的输入可从工艺控制台上进行,并可通过脉冲开关的动作对设定值微调,以符合实际纸幅稳定运行的需要。

②读取张力实际值。

张力实际值的产生是从PLC的模拟量板中获取的,调用相应的功能块程序。

本过程读取张力的模拟量值后,在输出端得到标准化的量值,并可通过“高限”和“低限”参数来设置量程。

从模拟量输入板读出的模拟量值首先变换为右边对齐的定点数(以标称范围为基础)。

③张力控制投入判断。

张力控制是否投入取决于工艺的需要和纸幅是否已经上卷,纸幅是否断裂,在其他逻辑块中进行手动按钮投入或自动信号投入的设定,以及自动退出。

张力控制变频收卷的控制原理1

张力控制变频收卷的控制原理1

张力控制变频收卷的控制原理本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。

一.前言:用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。

对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。

同时在不同的操作过程,要进行相应的转距补偿。

即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。

二.张力控制变频收卷在纺织行业的应用及工艺要求2.1传统收卷装置的弊端纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。

传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。

而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。

尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。

在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。

2.2张力控制变频收卷的工艺要求1)在收卷的整个过程中都保持恒定的张力。

张力的单位为:牛顿或公斤力。

(2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。

(3)在加速、减速、停止的状态下也不能有上述情况出现。

(4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。

2.3张力控制变频收卷的优点(1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。

(2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。

(3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。

并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。

张力控制典型应用

张力控制典型应用

张力控制典型应用一、张力控制对于张力控制精度要求较高的场合,可以构成直接张力闭环控制系统。

采用艾默生TD3300变频器的张力闭环速度模式,这种控制方式要求主拉引电机的线速度与收卷电机在空卷时刻(此时转速最高)基本保持一致。

这样可以大大减少PID的调节器节量,对系统的高速稳定非常有利。

二、张力闭环控制方案:由系统的线速度和卷筒的卷径实时计算出同步转速作为变频器的主设定指令,通过张力检测装置反馈张力信号构成PID闭环,在主设定的基础上调整变频器的输出频率。

此方案中,保证比较准确的主设定指令可以减少PID的调节量,使系统在速度变化时仍然张力平稳。

张力摆杆的问题。

对配重的理解仅仅认为配重可以改变收取的松紧程度,对控制的影响认识不足。

但是,当张力摆杆上配重比较轻时,开机的时候因为摆杆在下限位置,此进主给定与PID共同作用使卷绕电机加速,纸张张紧,摆杆上移比较快,移动到平衡位置以上时,PID 运算的结果使得卷绕电机减速,摆杆又下坠。

这样在启动过程中,摆杆将不易平衡。

合适的配重对系统的正常运行是极其重要的。

而且生产不同的产品时,要移动配重到合适的位置,以保证合适的张力。

收卷变频器的加减速。

TD3300变频器的加减速度时间设置的较小为好,最好不要大于3S,而且要配置刹车电阻。

如果卷筒变化率比较小的话(满卷与空卷比小于1.2),也可以不加刹车电阻,但要适当延长加减速时间。

三、TD3300张力控制变频器具有以下特点:1. 多样的张力控制方式,满足用户各种工艺要求。

2.具有收卷模式/放卷模式切换功能。

3.可数字设定张力锥度,实现卷取过程中张力的精确控制。

4. 丰富的卷径计算功能。

a.由模拟量输入端口直接输入卷径。

适用于具有卷径传感器(超声波传感器、摆杆)的应用场合。

b.由输入的线速度计算卷径。

线速度可以是外部模拟输入,也可以通过X8端子输入的脉冲计算。

c.厚度累积法计算卷径。

通过输入卷取材料的厚度,卷绕次数等参数自动计算卷径。

张力控制变频仿真实验系统操作流程

张力控制变频仿真实验系统操作流程

张力控制变频仿真实验系统操作流程变频器张力控制有两种方式,一种是控制电机的输出扭矩,另一种是控制电机的转速。

变频器的开环控制模式符合第一种方式,它不需要张力反馈。

所谓"开环",是指没有张力反馈信号给变频器,变频器控制输出频率或转矩来达到控制目的,与是否有编码器没有关系。

扭矩控制模式是指变频器控制电机扭矩而不是频率,输出频率根据速度自动改变。

如果卷轴的扭矩根据卷径的变化而变化,就可以控制材料的张力,这就是开环张力控制的基本模式。

变频器在闭环矢量控制模式下可以精确控制申机输出扭矩,在这种控制模式下,VED必须安装编码器(变频器带PG卡)。

闭环张力控制模式在开环的基础上增加了张力反馈调节器。

利用张力反馈信号和张力设定值形成PID闭环控制,来调整VFD输出的扭矩指令,实现更高精度的张力控制。

大多数公司的变频器都有标准的张力控制算法。

它们有适合数字半径计算类型或线速随动装置-直径反馈类型或线速随动装置张力调节或线速随动装置舞动辊位置调节等的内置块,以乃更多的配置。

在机器上适应的材料和工艺以及最终的输出要求将决定选择的配置和适应的机械,以及最后配置和调整的控制块。

变频器张力控制的典型应用:申线申缆、光纤申缆、纸张加工、印染、纺织、皮革、金属箔加工等。

变频器在分切机上的控制应用

变频器在分切机上的控制应用

书山有路勤为径;学海无涯苦作舟
变频器在分切机上的控制应用
近几年我国的造纸业及印刷包装行业取得了飞速的发展,面临着前所未有的巨大机遇,但相对于世界先进的设备,也面临着巨大的挑战。

生产设备的生产能力非常强大,但我们的产品基本处于中低端市场。

主要的原因是技术条件的限制。

目前为止,大量的分切机上仍旧使用磁粉制动器来进行收放卷张力控制,限制了设备的运行速度,也浪费了能源,而且由于磁粉本身使用寿命的原因,造成了故障率较高的情况。

汇川公司推出的MD330张力控制变频器,可以进行恒张力控制,并且可以控制张力锥度,保证收卷后各层形状均匀,而且极大地提高了分切机的运行速度。

一、分切机介绍
分切机的传统控制方案是利用一台大电机来驱动收放卷的轴,在收
放卷轴上加有磁粉离合器,通过调节磁粉离合器的电流来控制其所产生的阻力,来控制材料表面的张力。

磁粉离合器及制动器是一种特殊的自动化执行元件,它是通过填充
于工作间隙的磁粉传递扭矩,改变励磁电流从而改变磁粉的磁性状态,进而调节传递的扭矩。

可用于从零开始到同步速度的无级调速,适用于高速段微调及中小功率的调速系统。

还用于通过调节电流的方法调节转矩以保证卷绕过程中张力保持恒定的开卷或复卷张力控制系统。

专注下一代成长,为了孩子。

变频器实现分条机张力控制的原理及应用

变频器实现分条机张力控制的原理及应用

3调试过程及参数设定
3.1 V系列变频器电机参数的自整定
1将驱动器的所有参数恢复成出厂值。
2将电机轴与负载脱开。
3将电机额定电压01-02、电机额定频率参数01-01、分别正确填入数值。
4将参数05-00设定为1,然后按Keypad RUN的命令,此时立即执行电机的自动整定。执行约2min的时间(功率越大,要将加减速时间设定长一些)。
01-01----------50 最大电压频率
00-12----------1 第一加速时间
00-13----------1 第一减速时间
03-00----------4 AVI上限频率限定
03-02----------1 转距给定
03-09----------110 模拟量输入增益(AVI)
03-05-----------3 频率指令输出
2收放卷VFD037V43A参数设定。
00-04----------40 观察上限频率
00-20----------2 频率指令来源(外部模拟量输入)
00-21----------1 运转指令来源(外部端子启动)
01-00----------50 最大操作频率
变频器实现分条机张力控制的原理及应用
摘 要:本文主要介绍了分条机的用途、工艺要求、控制方式、控制难点以及实现的方法、调试过程。重点介绍了如何用台达V系列的变频器实现张力控制。应用V系列变频器实现转矩控制时应该注意的调试步骤、过程及参数的设定。
关 键 字:台达机电 分条机 张力控制 变频器
(f1-为额定频率、p-为极对数、n1-同步转速)
3.限速运行。
当达到最大卷径时,可以求出收卷整个过程中运行的最低速:

变频系统张力控制应用

变频系统张力控制应用

变频调速系统的张力设计1 引言在工业生产的很多行业中,都需要进行精确的张力控制,保持张力的恒定,以提高产品质量。

这些行业如造纸、包装、印刷、染整、线缆、纤维、橡胶等片材、线材和带材的加工和制造。

从行业的发展趋势看,张力系统在很多应用领域中是控制产品质量和生产效率的重要因素,并将得到越来越多的重视。

2 典型的张力控制系统图1所示为典型的张力控制收卷和放卷示意图。

1:电机 2:磁粉离合器 3:收卷芯 4:传动轮 5:张力检测辊6:张力传感器 7:放卷芯 8:磁粉制动器 9:自动张力控制仪 10:控制器图1 张力控制收卷和放卷示意图张力控制系统,其基本元件包括张力控制器,离合器及制动器。

张力控制可以分成手动控制和自动控制。

手动控制器即稳流,电流是依收料或出料的变化而分阶段手动调整离合器或制动器的激磁电流,从而获得一致的张力。

自动张力控制器由张力传感器检测张力,控制器把张力数据处理后再去自动调整离合器或制动器的激磁电流从而控制卷绕物的张力。

在放卷端,放料的张力是依设于放料组的磁粉制动器的扭矩而定。

在收卷端,收料张力由磁粉离合器的传递扭矩来决定,为要保持固定的张力,须按卷径的大小来加大或减少传递扭矩。

自动张力控制器是以单片机为核心的一种新型智能张力控制器,其响应速度快,控制精度高,led数字显示张力值,手动/自动两种状态能缓冲无断点切换,使运转更加平滑;在自动状态下如卷绕物意外断裂或整机停机,该控制器能自动保持断点时的张力。

自动张力控制器启动后自动进入手动状态,而后如果触发手动/自动键,则自动灯亮,控制器进入自动状态。

再触发则又返回到手动状态。

在手动状态下,可以在额定范围内调节输出电流的大小,同时可以观察到实际张力的大小的变化。

同时可以调节设定张力的张力值,当有加调节键或减调节键按下时,设定张力将改变。

无论在手动状态或自动状态,如果按下存储键,则把当前的设定张力值和加载电流值保存,即使断电后,仍被存储。

当系统复位或重新启动时,设定张力和输出电流将自动恢复成存储值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器在自动分条机上的张力控制
摘要:本文主要介绍了分条机的用途、工艺要求、控制方式、控制难点以及实现的方法、调试过程。

重点介绍了如何用台达V系列的变频器实现张力控制。

应用V系列变频器实现转矩控制时应该注意的调试步骤、过程及参数的设定。

关键字:台达机电分条机张力控制变频器
1引言
胶带、保护膜生产设备主要包括各种胶粘制品及无胶纸类、布类、皮革类、多种塑料制品类物料的上胶、多层贴合、分条、复卷、分切、冲型机械等。

其中分条机在生产过程中根据不同需要对材料进行切边、分切等。

其中分条机(图1)主要用于将宽幅卷材分切成窄幅卷材。

分条工艺包括放卷和收卷两个过程。

放卷和收卷的张力控制是分条机的关键自动化环节。

本案例的方案特点是在原有电控系统的基础上选用变频器实现收放卷转矩控制,达到了理想的效果,在原来的基础上提高机器工作性能,使机器在高速运转中更趋稳定,操作方便,安全可靠,耐用性强,减轻了劳动强度。

二.系统构成
1.硬件组成
2.系统框图
(1).设备图片
多功能贴合复卷分条机
(2).系统控制框图
图1
三.工艺要求及控制原理
1.工艺要求:
(1). 恒张力控制:张力的给定通过张力控制器。

张力控制器控制的原理是通过检测收卷的线速度计算卷径,负载转距=F*D/2(F为设定张力,D为当前卷径),因此当设定了张力的大小,因为当前卷径通过计算已得知,所以负载转距就算出来了。

张力控制器能够输出标准的0~10V的模拟量信号,对应异步电机的额定转距。

所以我们用该模拟量信号接入变频器,选择转距给定。

这样在整个收卷的动态过程中,能够保证张力的恒定。

(2).转距模式下,对速度进行限制。

在张力控制模式下,不论直流电机、交流电机还是伺服电机都要进行速度限制,否则当电机产生的转距能够克服负载转距而运行时,会产生转动加速度,而使转速不断增加,最终升速到最高速,就是所谓的飞车。

如图1所示,收放卷的速度是通过主轴B系列变频器的模拟量输出AFM而限定的,也就是将主轴B系列的变频器上3—05(模拟信号输出选择)参数设
定为03(频率指令输出),如下图所示。

将该信号分别接到收放卷变频器的模拟量输入端口上,作
为频率给定和上限频率的设定信号。

(3).零速张力,当收放卷以0Hz运行时,电机的输出轴上有一定的张力输出,而且可调。

该要求主要是防止当收放卷运转当中停车,再起动时能够保证收放卷的盘头不会松掉。

在该控制系统中,可以通过调整张力控制器上的初始张力设定而达到要求。

2.控制原理
(1).恒张力控制的原理
对于收放卷过程中恒张力控制的实质是需要知道负载在运行当中卷径的变化,因为卷径的变化,导致为了维持负载的运行,需要电机的输出转矩要跟随着卷径的变化而变化。

对与V系列变频器而言,因为能够做转矩控制,因此能够完成收卷恒张力的控制。

V系列变频器提供了三路模拟量输入端口,AUI、AVI、ACI。

这三路模拟量输入口能够定义为多种功能,因此,可以任选一路作为转矩给定,另外一路作为速度限制。

0~10V对应变频器输出0~电机额定转矩,这样通过调整0~10V的电压就能够完成恒张力的控制。

而对于分条机,计算卷径的部分是通过张力控制器来计算的,当然用PLC架构来实现也是没有问题的。

也就是说,可以通过在人机或文本上设定张力,通过PLC计算卷径,T=F*D/2,所以可以算出需要电机输出的转矩大小,通过模拟量输出接到V系列变频器的转矩给定端就可以了。

已知空芯卷径Dmin=200mm,满卷卷径Dmax=1200mm;线速度的最大值Vmax=90m/min,张力设定最大值Fmax=50kg(约等于500牛);减速比i=9;速度的限制如下:因为:V=π*D*n/i(V—线速度、D—卷径、n—转速,对于收卷电机)→收卷电机在空芯卷径时的转速最快。

所以:90=3.14*0.2*n/9→n=1290r/min。

(2).同步转速计算
因为我们知道变频器工作在低频时,交流异步电机的特性不好,激活转矩低而且非线性。

因此在收卷的整个过程中要尽量避免收卷电机工作在2HZ以下.因此:收卷电机有最低速度的限制.计算如下:对四极电机而言,其同步转速计算如下:
n1=60f1/p→n1=1500r/min→2HZ/50HZ=N/1500→n=60r/min
(f1—为额定频率、p—为极对数、n1—同步转速)
(3)限速运行
当达到最大卷径时,可以求出收卷整个过程中运行的最低速:
V=π*D*n/i→Vmin=3.14*1.2*60/9=25.12m/min。

张力控制时,要对速度进行限制,否则会出现飞车。

因此要限速。

(4).张力及转矩的计算如下:
如果F*D/2=T/i(F—张力、D—卷径、T—转距、i—减速比)→F=2*T*i/D,对于3.7kW的交流电机,其额定转矩的计算如下:T=9550*P/n→T=24.88N.m(T—电机的额定转距、P—电机的额定功率、n—为电机的额定转速),所以Fmax=2*24.88*9/0.6=74.64N。

四.调试过程及参数设定
1.PG04的接线
2.调试过程
(1).电机的自整定
1. 将驱动器的所有参数恢复成出厂值。

2. 将电机轴与负载脱开。

3. 将电机额定电压01—02、电机额定频率参数01—01、分别正确填入数值。

4. 将参数05—00设定为1,然后按Keypad RUN的命令,此时立即执行电机的自动整定。

执行约2min的时间(功率越大,要将加减速时间设定长一些)。

5. 执行后检查05—02、05—06~05—09、05—12、05—16~19参数是否已自动将测量的数据填入,若没有请再次设定05—00参数,RUN一次。

(2).闭环矢量试运行
将运行方式设定为面板起动,频率给定方式为面板给定。

运行方式为V/F+PG将频率设定成10Hz,然后运行,观察变频器是否会报PG报警,如果报PG报警,则将10—01设定为1(原来为0,反之设定为0),然后断电重新上电。

再次按运行按钮,确保变频器不再报警,同时按Mode键,切换置显示运行频率,观察运行频率是否在10Hz上下波动,确保闭环矢量运行调试完成。

(3).转距控制参数设定
主轴VFD037B43A参数设定:
01—00——————50 最大操作频率
01—01——————50 最大电压频率
02—00——————1 第一频率来源(AVI)
02—01——————1 第一运转指令来源(外部端子起动)
03—05——————3 频率指令输出
收放卷VFD037V43A参数设定
00—04—————40 观察上限频率
00—20—————2 频率指令来源(外部模拟量输入)
00—21—————1 运转指令来源(外部端子起动)
01—00—————50 最大操作频率
01—01—————50 最大电压频率
00—12—————1 第一加速时间
00—13—————1 第一减速时间
03—00—————4 AVI上限频率限定
03—02—————1 转距给定
03—09—————110 模拟量输入增益(AVI)
03—11—————200 模拟量输入增益(AUI)
10—00—————1024 编码器线数
10—01—————1 编码器方向
五.结论
当应用V系列变频器做张力控制时,一定要考量控制介质能承受的张力范围,保证张力控制的范围不能太小。

一般张力范围在几百牛顿甚至更大时,用变频器做张力控制是能满足客户的需要的。

如果张力范围太小,是无法用变频器进行张力控制的。

所以在做类似应用时,还是要了解清楚客户的要求,以免无法达到客户的要求。

相关文档
最新文档