1渗流基本理论
地下水动力学(第一章 渗流理论基础-2-专)
∂2H ∂2ψ ∂2H ∂2ψ −K = ; −K =− 2 ∂x∂y ∂y2 ∂y∂x ∂x
二、流网及其性质
流网:在渗流场内,取一组流线和一组等势线 组成的网格。 流网的性质: 流网的性质: 1. 在各向同性介质中,流线与等势线处处垂直, 故流网为正交网格。 证明:等水头线和流线的梯度为:
gradH = ∇H = ∂H ∂H i+ j ∂x ∂y
一般地下水流都为Darcy流。 思考题
§1—3 岩层透水特征分类和渗透系数张量 一、岩层透水特征分类 据岩层透水性随空间坐标的变化情况,将岩层 分为均质的和非均质的两类。 均质岩层:在渗流场中,所有点都具有相同的 渗透系数。 非均质岩层:在渗流场中,不同点具有不同的 渗透系数。 非均质岩层有两种类型:一类透水性是渐变的, 另一类透水性是突变的。 均质、非均质:指 与空间坐标的关系 与空间坐标的关系, 均质、非均质 指K与空间坐标的关系,即不同位 是否相同; 置K是否相同; 是否相同
K1M1 + K2M2 M1 + M2 Kp − Kv = − M1 M2 M1 + M2 + K1 K2 M1M2 = >0 (K1M1 + K2M2 )(M1 + M2 )
(K1 − K2 )
2
地下水动力学习题及答案(1)
《地下水动力学》习题集第一章渗流理论基础一、解释术语1. 渗透速度2. 实际速度3. 水力坡度4. 贮水系数5. 贮水率6. 渗透系数7. 渗透率8. 尺度效应9. 导水系数二、填空题1.地下水动力学是研究地下水在孔隙岩石、裂隙岩石和岩溶岩石中运动规律的科学。
通常把具有连通性的孔隙岩石称为多孔介质,而其中的岩石颗粒称为骨架。
多孔介质的特点是多相性、孔隙性、连通性和压缩性。
2.地下水在多孔介质中存在的主要形式有吸着水、薄膜水、毛管水和重力水,而地下水动力学主要研究 重力水的运动规律。
3.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是无效的,但对贮水来说却是 有效的。
4. 地下水过水断面包括_空隙_和_固体颗粒_所占据的面积.渗透流速是_过水断面_上的平均速度,而实际速度是_空隙面积上的平均速度。
在渗流中,水头一般是指 测压管水头 ,不同数值的等水头面(线)永远 不会相交。
5. 在渗流场中,把大小等于_水头梯度值_,方向沿着_等水头面_的法线,并指向水头_降低_方向的矢量,称为水力坡度。
水力坡度在空间直角坐标系中的三个分量分别为H x ∂-∂、H y ∂-∂_和Hz ∂-∂。
6. 渗流运动要素包括_流量、_渗流速度、_压强和_水头等等。
7. 根据地下水渗透速度_矢量方向_与_空间坐标轴的关系,将地下水运动分为一维、二维和三维运动。
8. 达西定律反映了渗流场中的_能量守恒与转换_定律。
9. 渗透率只取决于多孔介质的性质,而与液体的性质无关,渗透率的单位为2或。
10. 渗透率是表征岩石渗透性能的参数,而渗透系数是表征岩层透水能力的参数,影响渗透系数大小的主要是岩层颗粒大小以及水的物理性质,随着地下水温度的升高,渗透系数增大。
11. 导水系数是描述含水层出水能力的参数,它是定义在平面一、二维流中的水文地质参数。
12. 均质与非均质岩层是根据_岩石透水性与空间坐标_的关系划分的,各向同性和各向异性岩层是根据岩石透水性与水流方向关系划分的。
1地下水渗流基本概念与基本定律
(4)实际平均流速(Mean actual velocity)是多孔介质中地下水通过空隙面积 的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断 面上的空隙面积,量纲为L/T。记为。它描述地下水锋面在单位时间内运移的距离
,是渗流场空间坐标的离散函数。表示为:
渗流速度 = n 实际平均流速
包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙 岩溶水的特点。 (1) 第一类为地下水在多孔介质的孔隙或遍布于介质中的裂 隙运动,具有统一的流场,运动方向基本一致; (2) 另一类为地下水沿大裂隙和管道的运动,方向没有规律 ,分属不同的地下水流动系统。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch1 地下水渗流基本概念与基本定律
(2) 连通性:封闭和畅通,有效和无效。
(3) 压缩性:固体颗粒和孔隙的骨架具有压缩性。 (4) 多相性:固、液、气三相可共存。其中固相的成为骨架,气相主要分
布在非饱和带中,地下水可以吸着水、薄膜水、毛管水和重力水等形式
存在。 固相—骨架 matrix
气相—空气,非饱和带中
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch1 地下水渗流基本概念与基本定律
2、水力坡度[水力梯度](hydraulic gradient):在渗流场中大小等于梯 度值,方向沿等水头面的法线并指向水头下降方向的矢量,用J表示。
式中 分别为:
——法线方向单位矢量。在空间直角坐标系中,其三个分量
2、层流与紊流 层流(laminar flow):水流流束彼此不相混杂、运动迹线呈近似 平行的流动。 紊流(turbulent flow):水流流束相互混杂、运动迹线呈不规则 的流动。
地下水动力学第一章(xiu)
J = Av + Bv 2
2. 1912年克拉斯诺波里斯基提出紊流公式:
v = KJ
1 2
四、达西定律的微分形式
微分形式: 微分形式:
五、渗透系数(hydraulic conductivity) 渗透系数( )
是重要的水文地质参数, 是重要的水文地质参数,它表征在一般正常条 件下对某种流体而言岩层的渗透能力 (permeability) v=KJ; ; 当J=1时,K=v 时
渗透率k 渗透率 (intrinsic permeability)
表征反映介质几何特性
γ K =k µ
γ: 比重;µ:动力粘滞性系数; 比重; 动力粘滞性系数; 渗透率k 反映介质几何特性,量纲[L ; 渗透率 :反映介质几何特性,量纲 2];
常用单位:cm2; 石油地质中用达西: 1 达西=9.8697*10-9cm2.
1 v( P) = V0
∫
V0 v
u ' dVv
渗透流速与实际流速关系
vA = uAv = Q Av v=u = une A v = neu
渗透流速与实际流速关系
三、水头与水力坡度
u2 总水头H = z + + γ 2g p p u2 Q 《z + = H p 测压水头; 2g γ ∴H p ≈ H
典型体元的定义
称为典型体元。 把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续 引进REV后就可以把多孔介质处理为连续 REV 这样多孔介质就处处有孔隙度 处处有孔隙度了 体,这样多孔介质就处处有孔隙度了。 REV究竟有多大? REV究竟有多大? 究竟有多大 REV相对于单个孔隙是相当大的, REV相对于单个孔隙是相当大的,但相对 相对于单个孔隙是相当大的 于渗流场又是非常小的。 于渗流场又是非常小的。
渗流力学 第一章 渗流基本概念和定律
3)相对渗透率Krw、Kro:多相同时流动时,相渗透率与绝对 渗透率的比值。
3、大的比面
多孔介质比面很大,使得流体流动时粘滞阻力很大。
多孔介质的分类:
1)单纯介质:由孔隙或纯裂缝组成,渗流形式简单。
1、孔隙性
储层岩石具有孔隙性,并被流体所充满,孔隙性大小用孔隙
度表示:
a
Vt V
Φa—绝对孔隙度;Φ—有效孔隙度;
V0 V
V—岩石视体积;Vt—岩石总孔隙体积; V0—岩石有效孔隙体积。
2、渗透性
多孔介质让流体通过的性质,叫渗透性。渗透性的大小用渗透 率表示。
1)绝对渗透率K:岩石孔隙中液体为一相时,岩石允许流体 通过的能力。绝对渗透率只与岩石本身性质有关。
二、渗流的分类
1)地下渗流:存在于地层中,如油气水在地层中的流动; 2)工程渗流:化工、冶金、环保中的渗流问题; 3)生物渗流:动物和植物中的渗流问题。
三、渗流力学的发展(地下渗流)
1、古典渗流力学: 1920年以前 动因:开发利用地下水; 代表:法国水利工程师达西(Darcy); 定律:达西定律(Darcy’s Law,1856)。
F—内摩擦力(粘滞力),N; μ—粘滞系数(又称绝对粘度),Pa·s。
• 粘度单位通常用mPa·s表示: 1Pa·s=103mPa·s
• 粘度单位以g/(cm·S)表示时称为“泊”: 1泊=100厘泊(cP)
• cP与mPa·s的换算关系为: 1mPa·s=lcP
• 在渗流中,粘滞力为阻力,且动力消耗主要用于渗流 时克服流体粘滞阻力。
1.2 渗流中的力学分析及驱动类型
第一章 弹性多孔介质渗流理论1讲解
1.1.1 多孔介质的孔隙性
反映多孔介质的孔隙性,采用孔隙率或孔隙比。用以下的 方法定义多孔介质在一点 x (xl, x2 , x3 )的“孔隙率”n(x)
量或参数,例如水头、浓度、孔隙率、渗透系数等也相应成为空 间中的连续甚至可微的函数,从而避免了弄清多孔介质微观结构 的困难。基于这一尺度研究多孔介质中发生的现象称为宏观水平 上的方法。
为简单起见,我们来考虑饱和流体,此时多孔介质的孔隙空间 全部为所考虑的流体所充满。设a是对孔隙空间中流体所定义的 一种微观水平上的量(数量或向量),在表征体元[U0(x)]的孔隙空 间[U0,v(x)]上量a的积分平均值为
基本上保持为常数,因而可以把它确定为点 x 处的孔隙率。另一 方面, [U0(x)]又是足够小,以致和整个渗流区域相比可近似看 作一个点。这样定义的多孔介质质点也称为多孔介质的表征体元;
让渗流区域中的每个数学点都联系着一个多孔介质质点,则 本来是由固体颗粒和孔隙所构成的多孔介质,就可以近似看成是 由完全充满空间的多孔介质质点所构成的连续介质,各种有关的
设V为位于点x的流体质点速度
V ( x ) ? u( x)i ? v( x ) j ? w( x)k
(1-14)
若用Va表示组分a的速度,则整个流体体系,可以定义以下两个 平均速度,即质量平均速度
和体积平均速度
N
? V ? ? aV a a?1
N
? V ?? vaVa a ?1
(1-15) (1-16)
下面考虑处于静止状态下,承压含水层的受力情况 (见图11)。为简化讨论,假设含水砂层的颗粒之间没有粘聚力。在含水 层中切一水平的横截面,面积为A。若设A=1,按Terzaghi 一维 固结理论,作用在该平面上的上冠荷载分别由颗粒 (固体骨架)和 水承担,即
地下水动力学习题1-1
高等学校教材地质出版社第一章渗流理论基础习题1-1一、填空题:1.地下水动力学是研究地下水_________、_________和_________中运动规律的科学,通常把____________称为多孔介质,而其中的岩石颗粒称为_________;多孔介质的特点是________、________、________和________。
2.地下水在多孔介质中存在的主要形式有_________、_________、_________和_________,而地下水动力学主要研究的_________的运动规律。
3.在多孔介质中,不连续的或一端封闭的孔隙对地下水运动来说是_________,但对贮存水来说却是________。
4.假想水流的_________、_________、_________以及_________都与真实水流相同,假想水流充满_________。
5.地下水过水断面包括_________和_________所占据的面积;渗透速度是_________上的平均速度,而实际流速是_________的平均速度。
6.在渗流中,水头一般是指_________,不同数值的等水头面(线)永远_________。
7.在渗流场中,把大小等于_________方向沿着_________的法线,并指向水头_________方向的矢量,称为水力坡度;水力坡度在空间直角坐标系中的三个分量分别为_________、_________和_________。
8.渗流运动要素包括_________、_________、_________和_________等等。
9.根据地下水速度_________与_________的关系,将地下水运动分为一维、二维和三维运动。
二、判断题:10.地下水在多孔介质中运动,因此可以说多孔介质就是含水层。
()11.地下水运动时的有效孔隙度等于排水(贮水)时的有效孔隙度。
()12.对含水层来说其压缩性主要表现在空隙和水的压缩上。
第一章渗流的基本概念和基本规律
第⼀章渗流的基本概念和基本规律第⼀章渗流的基本概念和基本规律内容概要:油⽓渗流是在地下油层中进⾏的,因此学习渗流⼒学⾸先需了解油⽓储集层和多孔介质的概念;流体在地下渗流需要⾥的作⽤,故还要了解流体受到哪些⼒的作⽤、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了⾮达西渗流或称⾮线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做⼀简单介绍。
渗流的基本规律和渗流⽅式内容概要:地层流体渗流规律复杂,但⼀般情况下符合渗流的基本规律,即达西定律;渗流的⽅式也是多种多样的,我们可以对各种渗流⽅式进⾏归类、化简,变成三种基本的渗流⽅式,复杂渗流再由这三种⽅式进⾏组合。
本节应牢固掌握达西定律,真实流速与渗流速度的概念及其关系,掌握三种基本渗流的⽅式。
课程讲解:讲解ppt教材⾃学:第三节渗流的基本规律和渗流⽅式本节导学地层流体渗流规律复杂,但⼀般情况下符合渗流的基本规律,即达西定律;渗流的⽅式也是多种多样的,我们可以对各种渗流⽅式进⾏归类、化简,变成三种基本的渗流⽅式,复杂渗流再由这三种⽅式进⾏组合。
本节重点1、达西定律★★★★★2、真实流速与渗流速度的关系★★★★★3、单向流★★★4、平⾯径向流★★★5、球⾯向⼼流★★★⼀、渗流的基本规律—达西定律多孔介质组成复杂,流体渗流规律复杂。
⼈们最初研究渗流规律是以实验为基础的宏观研究⽅法。
1.达西定律实验步骤:(1)、调节⼊⽔阀,保持⼀定的进⽔⽔位(2)、调节出⽔阀门,得⼀流量Q ;(3)、流动稳定后测流量和压差。
a:出⽔⼝(稳定⽔位) b:滤⽹E:阀门,控制流量和⽔头压差 D:量杯,测流量达西实验装置图做多组实验:不同砂层横截⾯积、L 、流量、砂粒⼤⼩、液体、压差。
1-1截⾯总⽔头⾼度2-2截⾯总⽔头两截⾯⽔头差其折算压差为⼤量实验研究表明,流量Q 与折算压⼒差△Pr 、岩⼼截⾯积A 成正⽐,与液体粘度µ、测压管两截⾯距离△L 成反⽐,其⽐例常数与填砂粒径有关,砂粒粒径越⼤,流量越⼤,反之流量越⼩。
渗流力学第一章 渗流的几个基本概念
折算 压力
目前 地层 压力
简写
P0、 Pi
Pe Pw Pr P
例:已知一油藏中的两点,如图,h=10m,pA=9.35MPa, pB=9.5MPa,原油重率γ=0.85,问油的运移方向如何?
解:以B点所处的水平面为参考面
则: prB=pB=9.5MPa
prA=pA+γh=9.35+(0.85×103×9.8×10)/106
超毛微
粒杂 晶 纹 裂 溶 毛 细 毛 次
间基 体 理 缝 蚀 细 管 细 生
孔内 次 及 孔 孔 管 孔 管 孔
隙微 生 层 隙 隙 孔 隙 孔 隙
孔晶理
隙
隙
隙间缝
孔
隙
原喉 生道 孔
隙
孔 道
连 通 孔
死 孔 隙
隙
<0.0002 0.5~0.0002
>0.5
2.孔隙度的定义
指岩石的孔隙体积与岩石外观体积的比值,
3 达西定律的讨论
v w ①渗流速度 与真实速度
v Q A
w Q
A •
v•w
渗流流量 渗流面积 孔隙度
②达西定律的适用条件
ⅰ:流体为牛顿流体. ⅱ:渗流速度必须在适当的范围内(即当流体为层流 时). ⅲ:流体不与岩石发生任何物理化学反应. ⅳ:岩石被某一相流体饱和.
③渗流阻力
达西定律
Q P L
1-1截面总水头高度:
H1
Z1
P1
g
2-2截面总水头:
H2
Z2
P2
g
两截面水头差: 其折算压差为:
HZ1Pg 1 Z2Pg 2
Pr gH
达西分析了大量实验资料,发现土中渗透的渗流量 q 与圆筒断面积 A 及水头损失 △h 成正比,与断面 间距 l 成反比,即:
地下水动力学第一章
px = pxxnx + pyxny + pzxnz py = pxynx + pyyny + pzynz pz = pxznx + pyzny + pzznz
7
地下水动力学
第一章 渗流理论基础
⎧ px⎫ ⎧ pxx pyx pzx⎫⎧nx⎫
⎪ ⎨
py
⎪ ⎬
=
⎪ ⎨
渗透系数不仅取决于岩石的性质 (如粒度、成分、颗粒排列、充填状况、裂隙性质及其发育程度等), 而且与渗透液体的物理性质(容重、粘滞性等)有关。 理论分析表明,空隙大小对K值起主要作用
地下水动力学
第一章 渗流理论基础
通常采用的单位是cm2 或D
D是这样定义的:在液体的动力粘度为0.001Pa·s,压强差为 101325Pa的情况下,通过面积为1 cm2 、长度为1cm岩样的
pxy
pyy
pzy⎪⎬⎪⎨ny来自⎪ ⎬⎪⎩ pz⎪⎭ ⎪⎩ pxz pyz pzz⎪⎭⎪⎩nz⎪⎭
⎡ pxx pxy pxz⎤
p
=
⎢ ⎢
pyx
pyy
pyz
⎥ ⎥
⎢⎣ pzx pzy pzz⎥⎦
地下水动力学
第一章 渗流理论基础
三维
二维
地下水动力学
第一章 渗流理论基础
渗透系数张量是对称张量
虽然总的说来,在各向异性介质中的水力坡度和渗流速度的方向是不一致 的,但在三个方向上两者是平行的,而且这三个方向是相互正交的。这三个 方向称为主方向。
dσ ' = −d p
d (Δz) = Δzα dp dn = (1− n)α dp
地下水动力学简介
第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。
它包括孔隙介质和裂隙介质。
一般来说,具有以下特点的物质就称为多孔介质。
(1)该物体为多相体:固体相-骨架,流体相-空隙;(2)固体相的分布遍及整个多相体所占据的区域;(3)空隙空间具有连通性。
多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒0v ∆的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。
图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。
由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。
渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。
因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。
vv p n v v v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。
1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。
由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性;2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。
3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。
第一章 渗流理论基础
第一章渗流理论基础一、名词解释1. 渗透速度:表示水流在过水断面上的平均流速,不能代表任何真实水流的速度。
2. 实际速度:表示地下水在孔隙中的真实速度。
3. 水力坡度:把大小等于梯度值,方向沿着等水头面的法线,指向水头降低方向的矢量称为水力坡度。
4. 贮水系数:当水头变化1m时,从单位水平面积,高度为承压含水层厚度的柱体中释放或贮存的水量。
5. 贮水率:当水头下降1m时,单位体积承压含水层释放出来的水量。
6. 渗透系数:也称水力传导系数,当水力坡度J=1时,渗透系数在数值上等于渗透速度。
7. 渗透率:表示多孔介质能使气体或液体通过介质本身的能力,只与岩石性质有关,与液体性质无关。
8. 导水系数:T=KM,是一个水文地质参数,即水力坡度J=1时,通过整个含水层厚度上的单宽流量。
二、填空题1.地下水动力学是研究地下水在、、和中运动规律的科学。
(孔隙岩石、裂隙岩石、岩溶岩石)2.通常把具有连通性的孔隙岩石称为多孔介质,而其中的岩石颗粒称为。
(骨架)3.地下水在多孔介质中存在的主要形式有、薄膜水、毛管水和重力水,而地下水动力学主要研究的运动规律。
(吸着水、重力水)4.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是,但对贮水来说却是。
(无效、有效)5.地下水的过水断面包括空隙和固体颗粒所占据的面积,渗透流速是上的平均速度,而实际速度是的平均速度。
(过水断面、空隙面积)6.在渗流场中,把大小等于,方向沿着的法线,并指向水头降低方向的矢量,称为水力坡度。
(梯度值、等水头面)7.渗流运动要素包括流量Q、、压强p和等。
(渗流速度v、水头H)8.根据地下水与的关系,将地下水运动分为一维、二维和三维运动。
(运动方向、空间坐标轴)9.渗透率是表征的参数,而渗透系数是表征岩层的参数。
(岩层渗透性能、透水能力)10.影响渗透系数大小的主要因素是以及。
(岩石性质、渗透液体的物理性质)11.导水系数是描述含水层的参数,它是定义维流中的水文地质参数。
第1章渗流理论基础
25
1.1 渗流的基本概念
1.1.5 渗流速度
渗流是充满整个岩石截面的假想水流。在垂直于 渗流方向取的一个岩石截面,称为过水断面。 地下水的过水断面是整个岩石截面,既包括空隙 面积也包括固体颗粒所占据的面积。
当渗流平行流动时,过水断面为平面,弯曲流动
时则为曲面(图1-6 )。
26
1.1 渗流的基本概念
22
1.1 渗流的基本概念
实际的地下水流仅存在于空隙空间。为了便于研
究,用一种假想水流来代替真实的地下水流。这 种假想水流的性质(如密度、粘滞性等)和真实 地下水相同;但它充满了既包括含水层空隙的空 间,也包括岩石颗粒所占据的空间。
23
1.1 渗流的基本概念
假想水流运动时,满足以下条件:
3
1.1 渗流的基本概念
1.1.1 地下水在含水岩石中的运动
在地下水动力学中,把具有孔隙的岩石称为多孔介质。 含有孔隙水的岩层,如砂层或疏松砂岩等称为孔隙介质, 也称多孔介质。 含裂隙水的岩石,如裂隙发育的石英岩、花岗岩等称为裂 隙介质。 广义地说,可以把孔隙介质、裂隙介质和某些岩溶不十分 发育的由石灰岩和白云岩组成的介质都称为多孔介质。
渗透速度,比流量)为:
Q A
渗流速度代表渗流在过水断面上的平均流速。它不代表任 何真实水流的速度,只是一种假想速度。假设整个过水断
面都被水充满时,地下水就以这种速度流动。
28
1.1 渗流的基本概念
实际上,地下水仅仅在空隙中流动。在空隙中的不
同地点,地下水运动的方向和速度都可能不同,平 均速度 称为实际平均流速。速度v 和地下水的实际
1)地下水的状态方程 在等温条件下,水的压缩系数为:
1渗流基本理论-7
§6 渗流基本微分方程
§6 渗流基本微分方程
2、假设 除与承压含水层基本微分方程有相同假设条件外: (1)当弱透水层的渗透系数K1比主含水层的渗透系数 K小很多时,近似认为水基本上是垂直地通过弱透水 层,折射90º 后在主含水层中基本上是水平流动的。 (如K1与K相差较小时,用等效渗透系数,非越流) (2)主含水层中水头看作是整个含水层厚度上水头的 平均值,即: 1 M H H ( x, y , t ) H ( x, y, z , t )dz M 0 (3)和主含水层释放的水及相邻含水层的越流量相比 ,弱透水层本身释放的水量小到可以忽略不计。
§6 渗流基本微分方程
(2)渗流场中任何一个局部,都必须满足质量守恒和 能量守恒。 4、数学意义 表示渗流空间内任一点任一时刻的渗流规律。 5、讨论 (1)各向同性介质
∂ ∂H ∂ ∂H ∂ ∂H ∂H ( K )+ ( K )+ ( K ) =μ s ∂x ∂x ∂y ∂y ∂z ∂z ∂t
§6 渗流基本微分方程
上次课复习
1、渗流连续性方程—地下水质量守恒定律 (1)表达式
ρ v y ) ∂( ∂( ρ v x ) ∂( ρ vz ) ∂ [ + + ] Δ xΔ yΔ z = ( ρ nΔ xΔ yΔ z ) ∂x ∂y ∂z ∂t
(2)物理含义 某一渗流场中,流入流出单元体的质量差等于单元 体内液体质量的变化。 (3)实质(机理) 水头变化引起含水层弹性释水(贮水)
§6 渗流基本微分方程
3、微分方程的物理意义
∂ ∂H ∂ ∂H ∂ ∂H ∂H ( K xx )+ ( K yy )+ ( K zz ) =μ s ∂x ∂x ∂y ∂y ∂z ∂z ∂t
第一章渗流理论基础
绪 论地下水动力学:是研究地下水在孔隙岩石、裂隙岩石和岩溶岩石中运动规律的科学。
它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量上和质量上进行定量评价和合理开发利用,以及兴利防害的理论基础。
第一章 渗流理论基础§1—1 渗流的基本概念一、地下水在含水岩石中的运动1 多孔介质:具有孔隙的岩石。
含水介质一般分为三类:孔隙介质:含有孔隙水的岩层。
裂隙介质:含裂隙水的岩层。
岩溶(Karst )介质:含岩溶水的岩层。
二、地下水和多孔介质的性质1 地下水的状态方程地下水的状态方程:实际上是地下水的体积和密度随压力变化的方程。
等温条件下,水的压缩系数为:设初始压强p 0时,水的体积为V 0,当压强变到p 时,体积变为V ,由上式得:用Taylor 级数展开,舍去高次项,得到如下的状态方程:V = V 0[1-β(p-p 0)]ρ=ρ0[1-β(p-p 0)]2 多孔介质的某些性质(1)多孔介质的孔隙性孔隙度:指孔隙体积和多孔介质总体积之比。
有效孔隙:互相连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度:指有效孔隙体积和多孔介质总体积之比。
死端孔隙:一端与其它孔隙连通,另一端是封闭的,其中的地下水是相对停滞的。
(2)多孔介质的压缩性天然条件下,一定深度处的多孔介质,要受到上覆岩层荷重的压力。
荷重增加,将引起多孔介质的压缩。
多孔介质的压缩系数:dp dV V 1-=βdpd ρρβ1-=()()000000p p p p p p VV e V V e V V dp VdV ----==-=⎰⎰βββ多孔介质的压缩包括固体颗粒的压缩和孔隙的压缩。
即:V b =V s +V v 上式令上式变为:α=(1-n )αs +n αp固体骨架的压缩性比孔隙的压缩性小的多,上式变为:α=n αp 三、贮水率和贮水系数1. 水位变化对含水层厚度的影响有效应力地下水位下降,水压力减小,有效应力增大,多孔介质被压缩。
1渗流基本理论-7
§6 渗流基本微分方程
3、 Boussinesq方程—潜水基本微分方程 (1)假设条件 ①符合Dupuit假设; ②忽略水的压缩和骨架的压缩—不符合弹性释(贮)水 规律。原因:潜水面是个自由面,相对压强为0; ③潜水含水层隔水底板水平; ④潜水面存在水量的垂向交换W( W为潜水面处单位水 平面积、单位时间的入渗量, W> 0 ,入渗;W< 0 , 蒸发) 。
(6)各向同性柱坐标系(x = rcosθ、y = rsin θ) 1 H 1 2 H 2 H s H (r ) 2 2 2 r r r r K t z 2 H 1 H 1 2 H 2 H s H 或 2 2 2 2 K t r r r r z
导压系数(a)—压力传导系数 描述含水层水头变化的传导速度的参数,其数值等 于含水层的导水系数与贮水系数之比或渗透系数与贮 水率之比。
a=
T
μ
*
=
K
μs
(2)均质各向同性介质
∂2H ∂2H ∂2H μ s ∂H 1 ∂H + 2 + 2 = = 2 K ∂t a ∂t ∂x ∂y ∂z
§6 渗流基本微分方程
§6 渗流基本微分方程
(7)有源(流入)汇(流出)项W或 一般指垂向补给或排泄。 和W分别为三维流和平面二维流的源汇。分别定义 为单位体积含水层和单位水平面积含水层柱体中,单 位时间内产生(为正值)或消耗(为负值)的水量。
∂ ∂H ∂ ∂H ∂ ∂H ∂H ( xx K )+ ( yy K )+ ( zz K )+W =μ s ∂x ∂x ∂y ∂y ∂z ∂z ∂t
流体力学讲义 第十二章 渗流
流体力学讲义第十二章渗流第十二章渗流概述一、概念1.渗流(Seepage Flow):是指流体在孔隙介质中的流动。
2.地下水流动:在土建工程中,渗流主要是指水在地表以下的土壤和岩石层中的流动,简称为地下水流动。
判断:地下水的流动与明渠流都是具有自由液面的流动。
错二、渗流理论的应用1.生产建设部门;如水利、化工、地质、采掘等部门。
2.土建方面的应用给水方面排灌工程方面水工建筑物建筑施工方面三、渗流问题确定渗流量:如确定通过闸坝地基或井等的渗流流量。
确定渗流浸润线的位置:如确定土坝坝体内的浸润线以及从井中抽水所形成的地下水面线的位置。
确定渗流压力:如确定渗流作用于闸坝底面上的压力。
估计渗流对土壤的破坏作用:计算渗流流速,估计发生渗流破坏的可能性,以便采取防止渗流破坏的措施。
四、土壤的水力特性不均匀系数:(12-1)式中:d60,d10——土壤颗粒经过筛分时分别有60%,10%重的颗粒能通过筛孔直径。
孔隙率n:是指单位总体积中孔隙所占的体积,。
沙质土:n=0.35~0.45;天然粘土、淤泥:n=0.4-0.6。
1.透水性透水性(hydraulic permeability):是指土或岩石允许水透过本身的性能。
通常用渗透系数k来衡量,k值越大,表示透水性能越强。
均质土壤(homogeneous soil):是指渗流中在同一方向上各处透水性能都一样的土壤。
非均质土壤(heterogeneous soil):是指渗流中在同一方向上各处透水性能不一样的土壤。
1各向同性土壤(isotropic soil):是指各个方向透水性都一样的土壤。
各向异性土壤(anisotropic soil):是指各个方向透水性不一样的土壤。
2.容水度容水度(storativity):是指土壤能容纳的最大水体积与土壤总体积之比,数值与土壤孔隙率相等。
3.持水度持水度(retention capacity):是指在重力作用下仍能保持的水体积与土的总体积之比。
第一章 渗流的基本概念和基本规律.渗流力学.中国石油大学(华东)
层状油藏
储层厚度<含油高度(边水油藏)
块状油藏
储层厚度>含油高度(底水油藏)
5
第一节 油气藏及其简化
层状油藏
分布 -常存在于海相和内陆盆地沉积中,厚度较小,分布面积大 几何特征 - 具有多油层、多旋回的特点
- 纵向上按韵律可分为多个层组
- 层组内可分为几个油层 - 油层内可划分成若干小层 - 小层间有泥岩类隔夹层存在 渗流特征 - 只考虑层内平面流动,可忽略垂向层间交换 6
油气储集层是以岩石颗粒为骨架并含有大量微毛细
管孔隙的介质,所以,多孔介质也定义为:由大量毛细 管或微毛细管结构组成的固体介质
8
第二节 多孔介质及连续介质场
一、多孔介质的储容性
多孔介质的孔隙具有储集和容纳流体的能力
(1)孔隙(pore) 介质中未被固体物质占据的部分 骨架颗粒之间的空间 孔隙是多孔介质的储集空间 有效孔隙,死孔隙 孔径 ~ m
油气藏是一个孔隙连通体!
特征 高温、高压
2
第一节 油气藏及其简化 二、油气藏的分类
根据圈闭形成条件不同可分为三类:
• 构造油气藏
• 地层油气藏
• 岩性油气藏
3
第一节 油气藏及其简化 三、油气藏的“边界”
如果油藏外围有天然露头并与天然水源相通,称为“定压边界 油藏” ,如果外围封闭(断层遮挡或尖灭作用),无水源,则称为 “封闭边界油藏”。
32
第三节
渗流过程中的力学分析及驱动类型
2、驱动类型
驱动类型:依靠何种能量 把原油驱入井底。驱动类 型不同,采收率大小不同 气顶中压缩气体的弹性能 原油中溶解气的弹性能 原油本身的重力 水压驱动 弹性驱动
1、天然驱动能量
渗流力学第一章笔记
1.渗流:流体在多孔介质中流动叫做渗流。
渗透率为压力梯度为1时,动力黏滞系数为l的液体在介质中的渗透速度。
是表征土或岩石本身传导液体能力的参数。
其大小与孔隙度、液体渗透方向上空隙的几何形状、颗粒大小以及排列方向等因素有关,而与在介质中运动的液体性质无关。
渗透率(k)用来表示渗透性的大小。
在一定压差下,岩石允许流体通过的性质称为渗透性;在一定压差下,岩石允许流体通过的能力叫渗透率。
2.开敞式油藏:如果油气藏外围与天然水源相连通,可向油气藏供液就是开敞式油气藏。
如果外围封闭且边缘高程与油水界面高程一致则称为封闭式油藏。
3.原始地层压力:油气藏开发以前,一般处于平衡状态,此时油层的流体所承受的压力叫原始地层压力。
4.供给压力:油气藏中存在液源供给区时,在供给边缘上的压力称为供给压力。
5.驱动方式可分为:水压驱动,弹性驱动,溶解气驱动和重力驱动。
6.在渗流过程中,如果运动的各主要元素只随位置变化而与时间没有关系,则称为稳定流。
反之,若各主要元素之一与时间有关,则称为非定常渗流或者不稳定渗流。
7.渗流的基本方式:平面一维渗流,平面径向渗流,和球面渗流。
8.绘制渗流图时规定这样的原则:任何相邻两条等压线之间的压差必须相等,同时,任何两条流线之间的流量必须相等。
9.井底结构和井底附近地区油层性质发生变化的井称为渗流不完善井。
不完善井可以分为打开程度不完善,打开性质不完善,双重不完善井。
10.试井:直接从实测的产量压力数据反求地层参数,然后用求得的地层参数来预测新的工作制度下的产量。
11.井间干扰:油水井工作制度的变化以及新井的投产会使原来的压力分布状态遭受到破坏引起整个渗流场发生变化,自然会影响到邻井的产量,这种井间相互影响的现象称为井间干扰。
12.压降叠加原理:多井同时工作时,地层中任一点外的压降等于各井以各自不变的产量单独工作时在该点处造成的压降代数和。
13.势的叠加原理:如果均质等厚不可压缩无限大底层上有许多点源,点汇同时工作,我们自然会想到地层上任一点的势应该等于每个点源点汇单独工作时在该点所引起的势的代数和,这就是势的叠加原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 渗流的基本概念
3、多孔介质中地下水的运动 比较复杂(源于多孔介质的广义性),包括两大类, 运动特点各不相同。 (1)第一类为地下水在孔隙、细小裂隙或发育微弱、 分布均匀的溶隙中运动,具有统一的流场,运动方 向基本一致,符合达西定律,称为达西流。 (2)第二类为地下水沿较大裂隙和溶隙的运动,仍 具有统一的流场,运动方向基本一致,但已不符合 达西定律,流态仍为层流。
§1 渗流的基本概念
根据岩石空隙的性质及其成因,含水介质可划分为: ①孔隙介质:含有孔隙的岩石松散沉积物(黄土:特 殊的孔隙—裂隙介质)。 ②裂隙介质:含有裂隙的坚硬岩石(碎屑岩、火成 岩)。 ③溶隙(岩溶)介质:含有溶隙(穴)的可溶性岩石 (石灰岩、白云岩)。
§1 渗流的基本概念
(3)多孔介质 狭义:孔隙介质 广义:包括孔隙介质、裂隙介质(细小裂隙)和某些 岩溶不十分发育(溶隙分布较均匀)的由石灰岩和 白云岩组成的岩溶介质,都称为多孔介质。 2、多孔介质的特征 (1)空(孔)隙性 ①有效孔隙(Effective pores) 多孔介质中相互连通的,不为结合水所占据的 那部分孔隙。 有效孔隙中存在的是重力水和少量毛细水。
§1 渗流的基本概念 一、地下水在多孔介质中的运动
1、什么是多孔介质? (1)介质 一种物质存在于另一种物质的内部时,后者就 是前者的介质。 《辞海》中的解释:“物体系统在其间存在或物理 过程(力、能量的传递)在其间进行的物质”。 (2)含水介质 地下水存在并运动于岩土空隙中,具有空隙的 岩土称之为含水介质。
§1 渗流的基本概念
4、一点异议 还有一种运动形式:地下水沿大裂隙和发育良好的 岩溶管道的运动,方向没有规律,分属不同的地下 水流动系统,流态为紊流。 属于非多孔介质中地下 水的运动。 地下水在多孔介质和非多孔介质中地下水的运动形 式不同—流态不同(根据雷诺数Re可判断流态)。 @教材上一直将多孔介质中的运动分为: (1)在孔隙和裂隙中运动 (2)大裂隙和管道(岩溶发育好)中运动 我个人认为不妥:多孔介质而非含水介质。
s (1 ) p
然状态下,图2(a)处于平衡状态。
§1 渗流的基本概念
1、有效应力原理
§1 渗流的基本概念
Terzaghi(1883~1963)有效应力原理: 式中:σ—总应力-上覆荷载; σs—作用在固体颗粒上的粒间应力 (垂直分量); λ—横截面面积中颗粒与颗粒接触面积所占的水平 面积比; p—水的压强(孔隙水压力)。
' s ,称为有效应力。 很小 Terzaghi令 ' ,(1 ) p p 因此有: p ,即:天
§1 渗流的基本概念 二、地下水的状态方程
地下水的状态方程也称为地下水的压缩性方程, 实际上是地下水的体积和密度随压力变化的方程, 即:V、ρ-p关系 1、地下水状态方程的表达式 (p p ) V 0 ( 1) 式中:β—地下水的压缩系数, e V 0 β=1/E (2) V V0 [1 ( p p0 )] V0、ρ0、p0分别为 初始值 (3) 0 [1 ( p p0 )]
§1 渗流的基本概念
有效孔隙度ne(Effective Porosity):指有效 孔隙体积和多孔介质总体积之比。 即:ne=Ve/V *地下动力学中讲到的孔隙度,若没有特别说明, 一律指“有效孔隙度”。 ②死端孔隙(Dead-end pores ):多孔介质中一 端与其它孔隙连通,另一端是封闭的孔隙。 死端孔隙对地下水运动是无效的,其中的地下水是 相对停滞的。但对给排水是有意义的。 *有效孔隙度<给水度
Ch1 渗流基本理论
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 §1.7 渗流的基本概念 渗流基本定律 岩层透水特征及水流折射定律 流网及其应用 渗流连续方程 渗流基本微分方程 数学模型的建立及求解
我们在水文地质学中已经简单学习和了 解了有关渗流的基本概念和基本定律,那只 是一种初步认识,在《地下水动力学》这门 课中,我们要详细和系统地学习地下水渗流 的基本概念和基本理论。 学习的方式是:从基本概念入手,从机 制、机理层面揭示渗流定律的实质,以及渗 流定律的有关应用等问题。
§1 渗流的基本概念
( 3) 式中: —多孔介质压缩系数; VS—多孔介质中骨架(颗粒)的体积; VV—多孔介质中孔隙的体积; Vb—多孔介质的总体积,Vb=VS+VV; e —孔隙比, e=VV/VS; m—假设多孔介质为柱体,柱体的高度。 2、多孔介质压缩方程的建立 上面叙述的弹性变形规律.都是以水压p来描 写的,而地下水动力学通常用水头H来描写渗流场, 为此还要建立它们之间的关系。
§1 渗流的基本概念
§1 渗流的基本概念
(2)压缩性 多孔介质处在一定深度,受到上覆荷载(压力)的 影响,当压力增加时,引起多孔介质压缩。(压缩 有一定规律,压缩方程后面讲) (3)连通性 封闭和畅通,有效和无效。 (4)多相性:固、液、气三相可共存。其中固相的 成为骨架(或颗粒),气相主要分布在非饱和带中 (空气、水蒸气),液相的地下水可以吸着水、薄 膜水、毛细水和重力水等形式存在。
§1 渗流的基本概念
我们后面再详细讲。
四、地下水的弹性释水和弹性储存
赋存有地下水的多孔介质及其中的地下水称为含水 系统,该多孔介质称为含水层(体)。 地下水和多孔介质(含水层)都是可以变形的(如: 压缩),正常情况下,地下水在含水层中以天然状 态存在,当地下水开发利用时,含水层中的水将会 发生变化。
§1 渗流的基本概念
2、地下水状态方程的建立
三、多孔介质的压缩方程
压缩性:体积随压力(压强)的增大而减小。
天然条件下,一定深度处的多孔介质,要受到 上覆岩层荷重的压力。荷重增加,将引起多孔介质 的压缩。 b
1 de (2) dp 1 e