控制系统的状态空间描述
控制系统的状态空间表达式
第一章 控制系统的状态空间表达式Chapter 1 State space representation of control systems本章内容• 状态变量及状态空间表达式 • 状态空间表达式的模拟结构图 • 状态空间表达式的建立(1) • 状态空间表达式的建立(2) • 状态矢量的线性变换 • 由传递函数求状态方程• 由状态空间表达式求传递函数阵 • 离散系统的状态空间表达式• 时变系统和非线性系统的状态空间表达式系统的动态特性由状态变量构成的一阶微分方程组来描述,能同时给出系统全部独立变量的响应,因而能同时确定系统的全部内部运动状态。
1.1 状态变量及状态空间表达式1.1 State space representation of control systems 状态变量 (State variables)状态:表征系统运动的信息和行为状态变量:能完全表示系统运动状态的最小个数的一组变量x 1(t ), x 2(t ), …, x n (t ) 状态向量(State vectors)由状态变量构成的向量 x (t )T 123()(),(),()...()n x t x t x t x t x t =⎡⎤⎣⎦状态空间 (State space) • 以各状态变量x 1(t ),x 2(t ),…… x n (t )为坐标轴组的几维空间。
•状态轨迹:在特定时刻t ,状态向量可用状态空间的一个点来表示,随着时间的推移,x (t )将在状态空间描绘出一条轨迹线。
状态方程 (State equations)• 由系统的状态变量与输入变量之间的关系构成的一阶微分方程组。
例1.1 设有一质量弹簧阻尼系统。
试确定其状态变量和状态方程。
解:系统动态方程2()().()().()()()d yF t ky t f yt m dt my t f yt ky t F t ⎧--=⎪⎨⎪++=⎩ 设1()()y t x t =,2()()yt x t = 12()()............................................(1)1()()()()........(2)x t y t f k x t y t y t F t m m m =⎧⎪⎨=--+⎪⎩12212()()1()()()()xt x t k f x t x t x t F t m m m =⎧⎪⎨=--+⎪⎩1122010()()()1()()xt x t F t f k x t x t m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ = 状态方程的标准形式:()()()xt Ax t Bu t =+ (A :系统矩阵 B :输入矩阵) 输出方程 (O u t p u t e q u a t i o n )系统的输出量与状态变量之间的关系[]112()()()10 ()x t y t x t x t ⎡⎤==⎢⎥⎣⎦()()y t Cx t =(C:输出矩阵)状态方程和输出方程的总和即称为状态空间表达式。
控制系统状态空间法
控制系统状态空间法控制系统状态空间法是现代控制理论中常用的一种方法,它描述了控制系统的动态行为,并通过状态变量来表示系统的内部状态。
在这篇文章中,我们将详细介绍控制系统状态空间法的基本概念、理论原理以及应用。
一、控制系统状态空间法的基本概念状态空间法是一种描述动态系统的方法,通过一组一阶微分方程来表示系统的动态行为。
在这个方法中,我们将控制系统看作是一个黑盒子,输入和输出之间的关系可以用状态方程和输出方程来描述。
1. 状态方程状态方程描述了系统的内部状态随时间的演化规律。
它是一个一阶微分方程组,通常用向量形式表示:ẋ(t) = Ax(t) + Bu(t)其中,x(t)表示系统的状态向量,A是状态转移矩阵,B是输入矩阵,u(t)是输入向量。
2. 输出方程输出方程描述了系统的输出与内部状态之间的关系。
它通常用线性方程表示:y(t) = Cx(t) + Du(t)其中,y(t)表示系统的输出向量,C是输出矩阵,D是直接传递矩阵。
3. 状态空间表示将状态方程和输出方程合并,可以得到系统的状态空间表示:ẋ(t) = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)在状态空间表示中,状态向量x(t)包含了系统的所有内部状态信息,它决定了系统的行为和性能。
二、控制系统状态空间法的理论原理控制系统状态空间法基于线性时不变系统理论,通过分析系统的状态方程和输出方程,可以得到系统的稳定性、可控性和可观测性等性质。
1. 系统稳定性系统稳定性是判断系统是否能够在有限时间内达到稳定状态的重要指标。
对于线性时不变系统,当且仅当系统的所有状态变量都是稳定的,系统才是稳定的。
通过分析状态方程的特征值,可以判断系统的稳定性。
2. 系统可控性系统可控性表示是否可以通过选择合适的输入来控制系统的状态。
一个系统是可控的,当且仅当存在一组输入矩阵B的列向量线性组合可以使得系统的状态从任意初始条件变为目标状态。
通过分析状态转移矩阵的秩,可以判断系统的可控性。
现代控制理论状态空间法
根据系统微分方程建立状态空间表达式.
1.输入项中不含输入导数项的线性系统空间状态 表达式
• 系统描述为:
y (n ) a1 y (n1) an1 y an y u
(1)
讨论:状态如何选择
y(t) C (t)x(t) D(t)u(t)
2)线性时不变系统: x Ax Bu y Cx Du
在通常情况下,大多数还是研究线性时不变 系 统,即线性定常系统,因此本课程的主要研究对 象是线性定常系统。
4.状态空间描述的结构图(或称状态变量图)
• 例:根据上例画出结构图. • 解:先将例子写成下述形式
现代控制理论
第一章 状态空间法
控制系统的状态空间描述
一.问题的引出 1 --古典控制理论的局限性 1、仅适用于SISO的线性定常系统(外部描述,
时不变系统) 2、古典控制理论本质上是复频域的方法.(理论) 3、设计是建立在试探的基础上的.(应用) 4、系统在初始条件为零,或初始松驰条件下,才
能采用传递函数.
定义2.状态变量
状态变量是确定系统状态的最小一组变量,如果以最
少的n个变量 x1 (t ), x2 (t ), , xn (t ) 可以完全描述系
统的行为 (即当t≥ 时输入和
t0
在t= t0初始状态给定后,系统的状态完全可以确定),那 么
x1 (t ), x2 (t ), 是一, xn组(t )状态变量.
(2)状态变量选取不唯一,有时选取状态变量仅为数 学描述所需,而非明确的物理意义。
(3)状态变量是系统的内部变量,一般情况下输出是 状态的函数,但输出总是希望可量测的。
(4)仅讨论有限个状态变量的系统。 (5)有限个数的状态变量的集合,称为状态向量。 (6)状态向量的取值空间称为状态空间。
控制系统的状态空间分析与设计
控制系统的状态空间分析与设计控制系统的状态空间分析与设计是现代控制理论的重要内容之一,它提供了一种描述和分析控制系统动态行为的数学模型。
状态空间方法是一种广泛应用于系统建模和控制设计的理论工具,其基本思想是通过描述系统内部状态的变化来揭示系统的特性。
一、状态空间模型的基本概念状态空间模型描述了系统在不同时间点的状态,包括系统的状态变量和输入输出关系。
在控制系统中,状态变量是指影响系统行为的内部变量,如电压、速度、位置等。
通过状态空间模型,可以将系统行为转化为线性代数方程组,从而进行分析和设计。
1. 状态方程控制系统的状态方程是描述系统状态演化的数学表达式。
一般形式的状态方程可以表示为:x(t) = Ax(t-1) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)是系统在时刻t的状态向量,A是系统的状态转移矩阵,B是控制输入矩阵,u(t)是系统的控制输入,y(t)是系统的输出,C是输出矩阵,D是直接传递矩阵。
2. 状态空间矩阵状态空间矩阵包括系统的状态转移矩阵A、控制输入矩阵B、输出矩阵C和直接传递矩阵D。
通过这些矩阵,可以准确描述系统的状态变化与输入输出之间的关系。
3. 系统的可控性和可观性在状态空间分析中,可控性和可观性是评估系统控制性能和观测性能的重要指标。
可控性是指通过调节控制输入u(t),系统的状态可以在有限时间内从任意初始状态x(0)到达任意预期状态x(t)。
可控性可以通过系统的状态转移矩阵A和控制输入矩阵B来判定。
可观性是指通过系统的输出y(t)可以完全确定系统的状态。
可观性可以通过系统的状态转移矩阵A和输出矩阵C来判定。
二、状态空间分析方法状态空间分析方法包括了系统响应分析、系统稳定性分析和系统性能指标分析。
1. 系统响应分析系统的响应分析可以通过状态方程进行。
主要分析包括零输入响应和零状态响应。
零输入响应是指当控制输入u(t)为零时,系统的输出y(t)变化情况。
现代控制理论课后题及答案
第2章 “控制系统的状态空间描述”习题解答2.1有电路如图P2.1所示,设输入为1u ,输出为2u ,试自选状态变量并列写出其状态空间表达式。
图P2.1解 此题可采样机理分析法,首先根据电路定律列写微分方程,再选择状态变量,求得相应的系统状态空间表达式。
也可以先由电路图求得系统传递函数,再由传递函数求得系统状态空间表达式。
这里采样机理分析法。
设1C 两端电压为1c u ,2C 两端的电压为2c u ,则212221c c c du u C R u u dt++= (1) 112121c c c du u duC C dt R dt+= (2) 选择状态变量为11c x u =,22c x u =,由式(1)和(2)得:1121121121212111c c c du R R C u u u dt R R C R C R C +=--+ 2121222222111c c c du u u u dt R C R C R C =--+ 状态空间表达式为:12111211212121212122222221111111R R C x x x u R R C R C R C x x x u R C R C R C y u u x +⎧=--+⎪⎪⎪=--+⎨⎪⎪==-⎪⎩即: 12121121211112222222211111R R C R C R R C R C x x u x x R C R C R C +⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦[]11210x y u x ⎡⎤=-+⎢⎥⎣⎦2.2 建立图P22所示系统的状态空间表达式。
1图P2.2解 这是一个物理系统,采用机理分析法求状态空间表达式会更为方便。
令()f t 为输入量,即u f =,1M ,2M 的位移量1y ,2y 为输出量, 选择状态变量1x =1y ,2x = 2y ,3x =1dy dt,24dyx dt =。
控制系统的状态空间描述
03
方法二、根据传递函数求解
状态方程的标准形式
状态方程的定义 状态方程 所谓状态方程,就是描述系统的状态之间以及输入和状态之间动态关系的一阶微分方程组。
3.2.2 状态空间表达式
向量矩阵形式为
状态向量
输入向量
维的函数向量
3、线性定常系统的状态方程
向量矩阵形式为
维的系数矩阵
维的系数矩阵
输出方程
输出方程的标准形式
解:列写回路的电压方程和节点的电流方程
选取 为状态变量,输出 ,得系统的状态空间表达式为
消去 并整理得
设初始条件为零,对上式两端进行拉普拉斯变换,得
写成向量矩阵形式为
其中
输入变量的Laplace变换象函数
2)数目最小的含义:是指这个变量组中的每个变量都是相互独立的。
二、状态向量
若一个系统有n个状态变量: ,用这n个状态变量作为分量所构成的向量 ,就称为该系统的状态向量,用 表示。
例 试建立下图所示电路网络的状态方程和输出方程。
01
考虑标量的一阶微分方程
02
用拉氏变换解有:
3.2.2 状态微分方程的解
定义矩阵指数函数为:
上式也经常写做状态转移矩阵的形式
系统的零输入响应为:
1.3 传递函数矩阵
例:系统如下图所示,输入为 和 ,输出为 。
较之传递函数,状态空间描述的优点有:
3、状态空间分析是一种时域分析方法,可用计算机直接在时域中进行数值计算。
2、由前面的分析可以看出,对于不同维数的系统,可以采用同一表达方式来进行描述,由此可见从低维系统得到的结论可以方便地推广到高维系统,只是计算复杂一些而已。
第9章 控制系统的状态空间描述
第9章 控制系统的状态空间描述
2.状态变量 能够完全表征系统运动状态的最小变量组中的每个变量 xi(t)(i=1,2,…,n)称为状态变量。 3.状态向量 系统有n 个状态变量x1(t),…,xn(t),用这n 个状态变量作为 分量所构成的向量(通常以列向量表示)称为系统的状态向 量:x(t)=(x1(t)…xn(t))T。
第9章 控制系统的状态空间描述 和
第9章 控制系统的状态空间描述
将上两式用矩 阵方程的形式表示, 可得出线性时变系 统的状态空间表达 式为
第9章 控制系统的状态空间描述 或者,状态空间表达式也可以表示为
式中,A(t)为n×n 系统矩阵,即
第9章 控制系统的状态空间描述 B(t)为n×r 输入矩阵,即
第9章 控制系统的状态空间描述
图9-3 系统结构图
第9章 控制系统的状态空间描述 (1)输入引起系统内部状态发生变化,其变化方程式称为
状态方程,其一般形式为
(2)系统内部状态及输入变化引起系统输出的变化,其变 化方程式称为输出方程,其一般形式为
第9章 控制系统的状态空间描述
பைடு நூலகம்
第9章 控制系统的状态空间描述
第9章 控制系统的状态空间描述
第9章 控制系统的状态空间描述
9.1 控制系统中状态的基本概念 9.2控制系统的状态空间表达式 9.3根据系统的物理机理建立状态空间表达式 9.4根据系统的微分方程建立状态空间表达式 9.5根据系统的方框图或传递函数建立状态空 间表达式 9.6从状态空间表达式求取传递函数矩阵 9.7系统状态空间表达式的特征标准型
状态方程和输出方程组合起来,构成对系统动态行为的 完整描述,称为系统的状态空间表达式,又称动态方程,其一般 形式为
现代控制理论知识点汇总
1.状态空间表达式n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯:r n B ⨯:n m C ⨯:rm D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3.模拟结构图(积分器加法器比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4.状态空间表达式的建立1由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
2由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。
实现是非唯一的。
方法:微分方程→系统函数→模拟结构图→状态空间表达式。
现代控制理论-第二章 控制系统的状态空间描述
DgXu
2.2.1.由物理机理直接建立状态空间表达式: 例2.2.1 系统如图所示
L
R2
u
iL
R1
uc
选择状态变量:
x1 iL , x2 uC ,
13 中南大C diL 1 iL (u L ) C dt R1 dt duC diL L uC C R2 u dt dt
y(s) [C(sI A) B D]U (s)
1
1
得
9
G(s) C (sI A) B D
命题得证
中南大学信息学院自动化系
1
DgXu
例2.1.3
已知系统的状态空间描述为
x1 0 1 0 x1 0 x 0 1 1 x 1 u 2 2 x3 0 0 3 x3 1
28 中南大学信息学院自动化系
DgXu
故有(n-1) 个状态方程:
对xl求导数且考虑式 (2.3.12),经整理有:
则式 (2.3.12) bn=0 时的动态方程为:
(2.3.16)
式中:
29 中南大学信息学院自动化系
DgXu
30 中南大学信息学院自动化系
DgXu
3)
化输入-输出描述为状态空间描述
11 中南大学信息学院自动化系
DgXu
2.3. 线性定常连续系统状态空间表达式的建立
建立状态空间表达式的方法主要有两种: 一是直接根据系统的机理建立相应的微分方程或差分方 程,继而选择有关的物理量作为状态变量,从而导出其状态 空间表达式; 二是由已知的系统其它数学模型经过转化而得到状态达 式。由于微分方程和传递函数是描述线性定常连续系统常用 的数学模型,故我们将介绍已知 n 阶系统微分方程或传递函 数时导出状态空间表达式的一般方法,以便建立统一的研究 理论,揭示系统内部固有的重要结构特性。
2第一章 控制系统的状态空间描述
第一章 控制系统的状态空间描述
第一章
控制系统的状态空间描述
■状态空间表达式建立 ■状态向量的线性变换 ■离散系统的空间状态描述
现代控制理论
第一章 控制系统的状态空间描述
§1.1 控制系统状态空间表达形式
现代控制理论
第一章 Байду номын сангаас制系统的状态空间描述
一、 控制一个动态系统的基本步骤
•建模:基于物理规律建立数学模型。在控制理论中,问题的关键
由传感器测量得到的 又称为观测 由传感器测量得到的,又称为观测。 在现代理论当中,由于引入了状态变量,从而形成了一 整套新的理论 。它的数学模型就是状态空间表达式。
状态:系统过去、现在和将来的状况。
现代控制理论
第一章 控制系统的状态空间描述
状态变量:能够完全描述系统时域行为的一个最小变量组,
称为系统的状态,而上述这个最小变量组中的每个变量称为 系统的状态变量。
m维向量函数。 维向量函数
现代控制理论
第一章 控制系统的状态空间描述
状态空间表达式(动态方程):它是一组一阶微分方
程组和代数方程组成,分别表示系统内部和外部行为,是 状态的一种完全描述。
(t ) f [ x(t ) ), u (t ) ), t ] x 连续时间系统 连续时间系统: y (t ) g[ x(t ), u (t ), t ] ) u (k ), ) k] x(k 1) f [ x(k ), 离散时间系统: y (k ) g[ x(k ), u (k ), k ]
现代控制理论
第一章 控制系统的状态空间描述
y1 (t ) c11 (t ) x1 (t ) c12 (t ) x 2 (t ) ... c1n (t ) x n (t ) d 11 (t )u1 (t ) d 12 (t )u 2 (t ) ... d 1r (t )u r (t ) y 2 (t ) c 21 (t ) x1 (t ) c 22 (t ) x 2 (t ) ... c 2 n (t ) x n (t ) d 21 (t )u1 (t ) d 22 (t )u 2 (t ) ... d 2 r (t )u r (t ) : y m (t ) c m1 (t ) x1 (t ) c m 2 (t ) x 2 (t ) ... c mn (t ) x n (t ) d m1 (t )u1 (t ) d m 2 (t )u 2 (t ) ... d mr (t )u r (t ) 1 (t ) a11 (t ) x1 (t ) a12 (t ) x 2 (t ) ... a1n (t ) x n (t ) x b11 (t )u1 (t ) b12 (t )u 2 (t ) ... b1r (t )u r (t ) 2 (t ) a 21 (t ) x1 (t ) a 22 (t ) x 2 (t ) ... a 2 n (t ) x n (t ) x b21 (t )u1 (t ) b22 (t )u 2 (t ) ... b2 r (t )u r (t ) : n (t ) a n1 (t ) x1 (t ) a n 2 (t ) x 2 (t ) ... a nn (t ) x n (t ) x bn1 (t )u1 (t ) bn 2 (t )u 2 (t ) ... bnr (t )u r (t )
现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版
(2-18)
解之,得向量-矩阵形式的状态方程
(2-19)
输出方程为
(2-20)
(5) 列写状态空间表达式
将式(2-19)和式(2-20)合起来即为状态空间表达式,若令
则可得状态空间表达式的一般式,即
(2-21)
例2.2 系统如图
取状态变量:
得:
系统输出方程为:
写成矩阵形式的状态空间表达式为:
1.非线性系统
用状态空间表达式描述非线性系统的动态特性,其状态方程是一组一阶非线性微分方程,输出方程是一组非线性代数方程,即
(2-7)
2. 线性系统的状态空间描述
若向量方程中 和 的所有组成元都是变量 和 的线性函数,则称相应的系统为线性系统。而线性系统的状态空间描述可表示为如下形式: (2-8) 式中,各个系数矩阵分别为 (2-9)
4.线性定常系统的状态空间描述
式中的各个系数矩阵为常数矩阵
当系统的输出与输入无直接关系(即 )时,称为惯性系统;相反,系统的输出与输入有直接关系(即 )时,称为非惯性系统。大多数控制系统为惯性系统,所以,它们的动态方程为
(2-11)
1.系统的基本概念 2. 动态系统的两类数学描述 3. 状态的基本概念
2.2 状态空间模型
2.2.1状态空间的基本概念
1.系统的基本概念
■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。 ■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。 ■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。
控制系统的状态空间分析
第八章 控制系统的状态空间分析一、状态空间的基本概念1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。
2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻这组变量的值())()()(00201t x t x t x n 和0t t ≥时输入的时间函数)(t u ,则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。
3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。
4. 状态空间 以状态变量())()()(21t x t x t x n 为坐标的n 维空间。
系统在某时刻的状态,可用状态空间上的点来表示。
5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。
6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。
二、状态空间描述(状态空间表达式)1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状态空间描述一般用矩阵形式表示,对于线性定常连续系统有⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1)对于线性定常离散系统有⎩⎨⎧+=+=+)()()()()()1(k Du k Cx k y k Hu k Gx k x (8-2)2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。
3. 状态空间描述的线性变换及规范化(标准型)系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。
利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。
三、传递函数矩阵及其实现1. 传递矩阵)(s G :多输入多输出系统的输出向量的拉氏变换与输入向量的拉氏变换之间的传递关系,称为传递矩阵)(s G ,即)()()(s U s Y s G =(8-3) 式中:)(s U ——系统的输入向量 )(s Y ——系统的输出向量传递函数矩阵与多输入多输出系统状态空间描述的关系是:D B A I C G +-=-1)()(s s (8-4)上式中的A ,B ,C ,D 即为状态空间描述{}D C,B,A,中的矩阵A,B,C,D 。
线性控制系统的状态空间描述
§3.3 Matlab 实验
1. 状态空间模型脉冲响应、阶跃响应和任意输入响
应
(1) [y,x,t]=impulse(a,b,c,d)
(2) [y,x,t]=step(a,b,c,d),其中y、x 和t 是输出、
状态向量和仿真时间。
(3) [y,x]=lsim(a,b,c,d,u,t,x0)。
例求管亠[0* x c£,为
u(t) =sint的状态输出值。
解程序和结果如下
-0.2
-0.4
2. 离散系统的脉冲响应、阶跃响应、任意输入响应
⑴[y, x]=dimpulse(sys);
(2) [y, x] = dstep( nu m,de n);
(3) [y, x]=dlsim(sys,u); 47y、x 和u 分别为输出、
状态和输入,sys可以是num,den或a,b,c,d,不绘图,当无y, x时直接绘图。
3 •连续和离散状态模型的零输入响应(只对初态x0 响应)
(1) [y,x,t]=i nitial(a,b,c,d,xO)
⑵[y,x,t]=dinitial(a,b,c,d,x0) ,y 为输出,x 为状态,
t为指定输出时间。
当不带y、x和t时,直接绘图。
4 •连续系统离散化
(1) [da,db,dc,dd]=c2dm(a,b,c,d,Ts)
⑵[dnum,dden]=c2d(num,den,Ts) , Ts 是采样周期。
5.矩阵指数
expm(a*t),其中t可为符号变量,也可为实值。
0 1
例如设A = 0',则求e At的命令和结果如下:
||-4 -4。
现代控制理论-控制系统的状态空间表达式
1.4 状态空间表达式的建立
• 注意的问题
– 实现条件是m≤n,否则是不可实现的
– 当m<n时,d=0
– 当m=n时,d=bn≠0 此时,系统的传递函数可写为
W
(s)
bnsn bn1sn1 b1s b0 sn an1sn1 a1s a0
bn
bn1 bnan1 sn1 bn2 bnan2 sn2 sn an1sn1 a1s a0
u
L2 C
di2
dt duc
dt
R1i2 i2
R1i1
R2i2
uc
0
C
uc
R2
1.3 状态空间表达式的建立
考虑到 三个变量是独立的,故可确定为系统的状态 变量,经整理上式变为
di1
dt
R1 L1
i1
R1 L1
i2
1 L1
u
di2 dt
R1 L2
i1
R1 R2 L2
i2
uc L2
duc dt
1 C
i2
现在令状态 x1 i1 x2 i2 x3 uc 将上式写成矩阵形式即为状态方程
1.3 状态空间表达式的建立
x1
x2
x3
RRL1 11
L2
0
R1
L1 R1 R2
L2 1
C
0 1
L2 0
x1 x2 x3
第1章 控制系统的状态空间表达式
系统动态过程的两类数学描述
• 系统的外部描述
外部描述常被称作输出—输入描述
例如,对SISO线性定常系统 u
y
时间域的外部描述:
y(n) an1 y(n1) a1 y(1) a0 y bn1u(n1) b1u (1) b0u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)数目最小的含义:是指这个变量组中的每个变量都是相互独立的。
二、状态向量
若一个系统有n个状态变量:x1(t)x ,2(t) , ,xn(t),用这n个状
态变量作为分量所构成的向量 x (t ) ,就称为该系统的状态向量,用 x (t )
表示。
x1(t)
x (t)
x
2
(
t
)
x
n
(
t
)
三、状态空间
状态空间:所有n维状态向量的全体便构成了实数域上的n维状态空间。
状态轨迹:在状态空间中,时间t是一个参变量,某一时间t的状态是状 态空间中的一个点,而一段时间下状态的集合称为系统在这一时间段的状 态轨迹,有时也称作相轨迹。
四、输入向量和输出向量
向量矩阵形式为
y(t)C(tx )D(tu )
c11 c12 c1n
C
c21
c22
c2
n
cm1 cm2
cmn
mn维的系数矩阵
d11 d12
D
d
21
d 22
dm1 dm2
d1l
d2l
d
ml
ml 维的系数矩阵
三、状态空间表达式(状态空间模型)
线性定常系统的状态空间模型:将状态方程和输出方程合在一起,即
x(t)Ax(t)Bu(t) y(t)Cx(t)Du(t)
或
A B
C D
四、状态空间模型与传递函数的比较
U(s)
Y(s)
G(s)
传递函数只能描述系统外部的输入输出关系,并不能反映系统内部状态的 变化,我们称之为外部描述。
状 态
x1
x
2
输 出
方 方
程
x
n
程
状态空间表达式将输入输出间的信息传递分为两段来描述。第一段是输入 引起系统内部状态发生变化,用状态方程描述;第二段是系统内部的状态 变化引起系统输出的变化,用输出方程描述。由此可见,状态空间表达式 在一定程度上描述了系统内部变量的变化,所以我们称之为内部描述。
2、系统的状态和系统的输出是两个不同的概念。 系统的输出通常有明确的物理含义,是可以测量的; 系统的状态不一定有物理含义,不一定可以测量; 在线性系统中,输出是系统状态变量中某一个或某几个的线性组合。
1.2 状态空间表达式
一、状态方程
1、状态方程的定义
所谓状态方程,就是描述系统的状态之间以及输入和状态之间动态关系的 一阶微分方程组。
五、状态空间模型的结构图
u
x
x
y
B
C
A
D 是我们为某一系统选定的两组不同状态变量, 和 x * 之间有
一一对应的变换关系即可逆变换关系,对于线性系统而言,这种关系就是
线性非奇异变换,既 x与 x *之间必有关系
xPx*
其中P为非奇异常数矩阵
x 设以 为状态向量时系统的状态空间表达式为
向量矩阵形式为
x (t)A(tx )B(tu )
a11 a12 a1n
A a21 a22
a
2
n
an1
an2
ann
nn维的系数矩阵
b11 b12 b1l
B b21 b22
b2
l
bn1 bn2
bnl
nl 维的系数矩阵
二、输出方程
1、输出方程的定义 所谓输出方程,就是描述系统输出量与状态和输入量之间相互关系的代数 方程组。
y
2
(
t
)
y
m
(
t
)
输出向量
g 1 ()
g ()
:
g ()
g
2
(
)
g
n
(
)
m1维的函数向量
3、线性定常系统的输出方程
y1c1x11c12x2c1nxnd1u11d1u 22d1lul y2c2x11c22x2c2nxnd2u11d2u 22d2lul ymcm1x1cm2x2cmxnndm1u1dm2u2dmull
较之传递函数,状态空间描述的优点有:
1、可以方便地描述多输入—多输出系统;
2、由前面的分析可以看出,对于不同维数的系统,可以采用同一表达方 式来进行描述,由此可见从低维系统得到的结论可以方便地推广到高维系 统,只是计算复杂一些而已。
3、状态空间分析是一种时域分析方法,可用计算机直接在时域中进行数 值计算。
第一章 控制系统的状态空间描述
1.1 状态向量与状态空间
一、状态的定义
1、定义 所谓系统状态,是指在描述对象运动的所有变量中,必定可以找到数目最 小的一组变量,它们足以描述对象的全部运动。 状态变量: 该变量组中的每个变量称为状态变量。
2、有关定义的两点说明 1)足以描述系统全部运动的含义:只要确定了这组变量在某一初始时刻
2、状态方程的标准形式
dx1 dt
x1
f1(x1, x2 ,
, xn ; u1, u2 ,
,ul )
dx2 dt
x2
f2 (x1, x2 ,
, xn ; u1, u2 ,
,ul )
dxn dt
xn
fn (x1, x2 ,
, xn ; u1, u2 ,
,ul )
向量矩阵形式为
x (t)f(x(t)u ,(t))
2、输出方程的标准形式
y1 g1(x1, x2, , xn;u1,u2, ,ul ) y2 g2(x1, x2, , xn;u1,u2, ,ul ) ym gm(x1, x2, , xn;u1,u2, ,ul )
向量矩阵形式为
y(t)g(x(t)u ,(t))
y1(t)
y (t )
:
y (t )
输入向量:将系统的各个输入量看成一个列向量 u (t ) 。
u1 (t )
u (t)
u
2
(
t
)
u
l
(
t
)
l :输入量的个数
输出向量:将系统的各个输出量看成一个列向量 y (t ) 。
y1(t)
y (t )
y
2
(
t
)
y
m
(
t
)
m:输出量的个数
1、系统状态变量的选取不是唯一的,但状态的数目是一定的;
x(t) :
x1 (t)
x (t )
x
2
(
t
)
x
n
(
t
)
状态向量
u1
u(t) :
u (t )
u
2
u
l
f1 ()
f () :
f
()
f
2
()
f
n
()
输入向量
n 1 维的函数向量
3、线性定常系统的状态方程
x 1a11x1a12x2a1nxnb11u1b12u2b1lul x 2a21x1a22x2a2nxnb21u1b22u2b2lul x n an1x1an2x2an nxnbn1u1bn2u2bnul l