深基坑边坡计算
深基坑、高边坡工程之四
![深基坑、高边坡工程之四](https://img.taocdn.com/s3/m/2010b133ccbff121dd3683c8.png)
点作与破裂面平行的线与围护结构墙面的交点范围来确定。 对于基坑外侧的地面施工荷载, 一般按照大面积荷载计算土压力, 荷载值取 20kPa。 按地基承载力的大小计算, 而且是大面积的计算, 确实是偏大了。
您说的第 2 条,原理自己明白一点。 可是, 我主要的问题在于, 这个建筑物的基底压力该如何估算? 在实际计算中该如何快速准确的取值? 答复: 如果是筏形基础的基底压力, 按每平方米每层 1 吨半考虑, 但只 考虑基础面积范围的,不能按无限大的范围来考虑。
2、如果是因为考虑到应力的扩散,那按道理也应该是有一个公式 来考虑多远的距离内按集中荷载, 多远的距离按均布荷载吧。 如果是 因为考虑到挡土墙分段长度内的整体性, 那伸缩缝的位置岂不是很危 险? 答复: 在桥台或挡土墙设计时, 《公路桥涵设计通用规范》 (JTG D60-2004) 对车辆荷载(包括汽车、履带车和挂车)引起的土压力计算方法,作 出了具体规定。 其计算原理是按照库仑土压力理论, 把填土破坏棱体 (即滑动土楔)范围内的车辆荷载,用均布荷载(或换算成等代均布 土层)来代替,然后用库仑土压力公式计算。这个等代土层厚度换算 仅是为了计算土压力, 所以没有考虑重轮作用下的局部接触压力的承 压强度验算。 实际上, 车辆轮子只接触路面而不会接触挡土墙的顶部。 在多远距离内考虑车辆的荷载?只计算破坏棱体范围内的车辆。 对挡土墙按内侧道路横向的破坏棱体范围内布置的车辆计算; 对桥台 按后方道路纵向的破坏棱体范围内布置的车辆计算。 破坏棱体的长度 l0 如图 6.3.2-1 所示,由下式计算:
M≤
2 sin 3 πα sin πα + sin πα t f c Ar + f y As rs π π 3
sin 2πα + (α − α t ) f y As = 0 2πα
完整版深基坑与边坡支护工程课程设计
![完整版深基坑与边坡支护工程课程设计](https://img.taocdn.com/s3/m/b562cbfb7fd5360cbb1adb4b.png)
完整版深基坑与边坡支护工程课程设计目录第一章原始资料第二章支护方案比选第三章围护结构内力计算第四章基坑稳定性验算第五章基坑施工方案设计第六章施工图绘制参考文献第一章原始资料1.1工程概况某建筑物的场地条件如图2所示,基坑左侧距离道路边缘距离为8.5m,基坑长度69.0m,基坑宽度为23.0m,距基坑右侧4.6m处有两栋6层工商局宿舍。
图2 基坑平面图1.2岩土层分布特征根据地质勘察资料,在A-B-C-D段主要分布的土层如下:(1)杂填土(Q m1):褐灰至褐红色,以粘性土为主,含大量砖块及碎石生活垃圾,人工填积,结构松散,不含地下水,湿。
埋深1.00~1.11m,层厚1.20~4.00m,层底标高66.70~66.80m。
(2)素填土2(Q m1):褐红色,以粘性土为主,含少量砖块及碎石。
人工新近填积,未完成自重固结,结构松散,不含地下水,湿。
埋深0.00~1.10m,层厚1.20~4.00m,层底标高63.10~66.70m。
(3)淤泥质杂填土3(Q a1):褐灰至灰黑色,含大量碎石及生活垃圾腐烂物,具臭味,含地下水,软塑状,易变形,很湿。
埋深1.80~4.00m,层厚0.70~2.90m,层底标高63.10~64.10m。
(4)粉质粘土4(Q a1):褐黄至褐红色,含少量灰白色团状高岭土及铁锰氧化物,裂隙发育,摇震无反应。
土状光泽,干强度一般,顶部受水浸泡严重。
硬塑,中密,稍湿。
埋深0.00~4.70m,层厚2.10~6.70m,层底标高60.30~62.00m。
(5)圆砾5(Q a1):黄至黄褐色,以石英硅质岩碎屑为主。
含少量砂粒及粘性土,胶结一般。
粗颗粒呈圆状,中风化。
粒径Ø>20mm 占35%,5~20mm占25%,粘性土占5%,富含地下水,中密饱和。
埋深5.00~7.60m,层厚4.50~5.30m,层底标高55.80~56.70m。
(6)粘土6(Q a1):紫红色,由下伏基岩风化残积而成,含少量斑状灰白色高岭土及石英粉砂、云母碎屑,裂隙发育,土状光泽,摇震无反应。
深基坑 高边坡工程之四
![深基坑 高边坡工程之四](https://img.taocdn.com/s3/m/fac9c1b9fab069dc502201ef.png)
α —对应于受压区混凝土截面面积的圆心角(rad)与 2π 的比
值;
fy—纵向钢筋的抗压强度设计值(kN/m2);
As—全部纵向钢筋的截面积(m);
rs—纵向钢筋重心所在圆周的半径(m);
αt —纵向受拉钢筋截面面积与全部纵向钢筋截面积的比值,当 α>0.625 时,取αt =0。 附录 B.0.2 的内容为沿受拉区和受压区周边局部均匀配置纵向钢 筋的圆形截面支护桩,其正截面受弯承截力计算。
这样,就存在矛盾,比方一个 2 层小楼: 按照 15kPa/层考虑,2 层楼的超载才 30kPa;
而 2 层楼基础持力层承载力是 120 kPa 的话,按第 2 种意见,则 坡顶超荷应该取不大于 120kPa 才对。
如果按以上两种不同的外超载取值,计算出的支护结构强度(尺 寸及配筋等)相差甚远?到底该如何取值呢?
还有一个问题我们在理正计算时,弯矩值一般最大不大于 2000kN.m,现在这个工程悬臂桩理正软件弯矩值为 2800~3300kN.m, 是不是偏大,采取纯悬臂桩有什么风险!?因为哪个专家对弯矩值与 悬臂桩配筋有什么可以实际现实操作的方法,进行预估的,或者图表, 快速进行初估! 答复:
在行业标准《建筑基坑支护技术规程》JGJ 120-2012 的第 4.3 节 和附录 B 提供了“混凝土支护结构圆形截面承载力设计”的简化方法, 可供参考。
生的。在水头的作用下,水流通过裂隙、软弱破碎带而产生的向上的 静水压力。
12.1 这两本规范关于重度的规定为什么不同? 首先祝高老身体健康,新年快乐! 建筑地基基础设计规范(GB5007-2011)附录 W (180 页) 基
自己愚昧的想法,不知对否,望斧正: 1、如果基坑周边建筑物是多层楼,采用独基或条基的,就按不大于 建筑物基础埋深处的地基承载力特征值取值; 2、如果是高层,采用筏板基础的,那就按 15-20kPa/层考虑,但最大 值以不大于筏板持力层的地基承载力为准? 答复:
基坑土方量计算公式
![基坑土方量计算公式](https://img.taocdn.com/s3/m/fc962a4903020740be1e650e52ea551810a6c9ac.png)
基坑土方量计算公式
1.截面法计算公式:
截面法根据基坑的不同截面形状,采用不同的计算公式。
矩形基坑的土方量计算公式为:
土方量=(底面积+顶面积)×坑深÷2
圆形基坑的土方量计算公式为:
土方量=(底面积+顶面积)×坑深÷3
梯形基坑的土方量计算公式为:
土方量=(底面积+顶面积)×坑深÷2
2.边坡法计算公式:
边坡法是基于坑壁的边坡形状来计算土方量的方法。
边坡法的计算公式为:
土方量=(底面积+上半边坡面积+下半边坡面积)×坑深
其中,上半边坡面积和下半边坡面积可以根据基坑的边坡坡度和高度来计算。
3.三角形法计算公式:
三角形法是基于基坑的深度和宽度来计算土方量的方法。
三角形法的计算公式为:
土方量=基坑底面积×坑深×宽度÷2
其中,宽度是指基坑底面宽度。
以上是一些常见的基坑土方量计算公式。
根据具体的基坑形状和尺寸,可以选择合适的计算方法来计算土方量。
在实际应用过程中,还需要考虑
土质的不均匀性、岩石的存在以及对挖掘方式的适应性等因素。
2019管道基坑边坡稳定计算书.doc
![2019管道基坑边坡稳定计算书.doc](https://img.taocdn.com/s3/m/805382e6240c844769eaee69.png)
基坑边坡稳定性计算根据基槽路段统计表,槽深最深处不超过7.5m。
本工程按照三种槽深 2.5m、5.0m、7.5m分别进行边坡稳定计算。
开挖坡度1:1,平台设置宽度1.5m。
采用软件:理正岩土边坡稳定系统6.0采用规范: 建筑边坡工程技术规范(50330--2002)一、2.5m深基坑稳定计算计算项目:复杂土层土坡稳定计算 1------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 建筑边坡工程技术规范(50330--2002)计算目标: 安全系数计算滑裂面形状: 圆弧滑动法[坡面信息]坡面线段数 2坡面线号水平投影(m) 竖直投影(m) 超载数1 2.500 2.500 02 2.000 0.000 1超载1 距离0.010(m) 宽2.000(m) 荷载(20.00--20.00kPa) 270.00(度)[土层信息]坡面节点数 3编号 X(m) Y(m)0 0.000 0.000-1 2.500 2.500-2 4.500 2.500附加节点数 7编号 X(m) Y(m)1 -6.000 -5.0002 9.000 -6.0003 8.000 2.0004 20.000 -6.0005 15.000 3.0006 25.000 5.0007 -8.000 0.000不同土性区域数 3区号重度饱和重度粘结强度孔隙水压节点(kN/m3) (kN/m3) (kpa) 力系数编号1 18.000 20.000 120.000 --- ( 0,7,1,2,3,)2 18.000 20.000 120.000 --- ( 2,4,5,3,)3 18.000 20.000 120.000 --- ( 0,3,-1,)区号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 15.000 13.000 10.000 25.0002 17.000 17.000 10.000 25.0003 17.000 17.000 10.000 25.000区号十字板τ强度增十字板τ水强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---2 --- --- --- ---3 --- --- --- ---[水面信息]采用有效应力法孔隙水压力采用近似方法计算考虑渗透力作用不考虑边坡外侧静水压力水面线段数 1 水面线起始点坐标: (0.000,-0.500)水面线号水平投影(m) 竖直投影(m)1 1.000 0.500[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 1.000(m)搜索时的圆心步长: 1.000(m)搜索时的半径步长: 0.500(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------[计算结果图]最不利滑动面:滑动圆心 = (0.740,3.900)(m)滑动半径 = 3.970(m)滑动安全系数 = 1.693起始x 终止x α li Ci Φi 条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力超载竖向地震力地震力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)--------------------------------------------------------------------------------------------------------------------0.000 0.865 -4.471 0.869 15.000 13.00 7.26 0.00 0.00 0.00 0.00 0.00 -0.57 14.71 0.00 0.000.865 1.000 2.778 0.135 10.000 25.00 2.43 0.04 0.00 0.01 0.000.00 0.13 2.47 0.00 0.001.000 1.480 7.250 0.484 10.000 25.00 11.01 0.15 0.00 0.00 0.000.00 1.37 9.87 0.00 0.001.480 1.990 14.549 0.527 15.000 13.00 15.32 0.00 0.00 0.00 0.000.00 3.85 11.33 0.00 0.001.9902.500 22.337 0.552 15.000 13.00 18.43 0.00 0.00 0.00 0.00 0.00 7.01 12.21 0.00 0.002.5003.228 32.568 0.866 15.000 13.00 25.24 0.00 0.00 0.00 0.00 14.36 21.32 20.69 0.00 0.003.228 3.807 44.701 0.815 17.000 17.00 14.65 0.00 0.00 0.00 0.0011.57 18.44 19.56 0.00 0.003.8074.385 58.633 1.115 17.000 17.00 6.73 0.00 0.00 0.00 0.00 11.57 15.62 21.87 0.00 0.004.385 4.455 68.015 0.185 17.000 17.00 0.11 0.00 0.00 0.00 0.00 1.38 1.38 3.31 0.00 0.00总的下滑力 = 68.551(kN)总的抗滑力 = 116.024(kN)土体部分下滑力 = 68.551(kN)土体部分抗滑力 = 116.024(kN)二、5.0m深基坑稳定计算计算项目:复杂土层土坡稳定计算 2------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 建筑边坡工程技术规范(50330--2002)计算目标: 安全系数计算滑裂面形状: 圆弧滑动法[坡面信息]坡面线段数 4坡面线号水平投影(m) 竖直投影(m) 超载数1 2.500 2.500 02 1.500 0.000 03 2.500 2.500 04 2.000 0.000 1超载1 距离0.010(m) 宽2.000(m) 荷载(20.00--20.00kPa) 270.00(度)[土层信息]坡面节点数 5编号 X(m) Y(m)0 0.000 0.000-1 2.500 2.500-2 4.000 2.500-3 6.500 5.000-4 8.500 5.000附加节点数 7编号 X(m) Y(m)1 -6.000 -5.0002 9.000 -6.0003 8.000 2.0004 20.000 -6.0005 15.000 3.0006 25.000 5.0007 -8.000 0.000不同土性区域数 3区号重度饱和重度粘结强度孔隙水压节点(kN/m3) (kN/m3) (kpa) 力系数编号1 18.000 20.000 120.000 --- ( 0,7,1,2,3,)2 18.000 20.000 120.000 --- ( 2,4,5,3,)3 18.000 20.000 120.000 --- ( 0,3,-1,)区号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 15.000 13.000 10.000 25.0002 17.000 17.000 10.000 25.0003 17.000 17.000 10.000 25.000区号十字板τ强度增十字板τ水强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---2 --- --- --- ---3 --- --- --- ---[水面信息]采用有效应力法孔隙水压力采用近似方法计算考虑渗透力作用不考虑边坡外侧静水压力水面线段数 1 水面线起始点坐标: (0.000,-0.500)水面线号水平投影(m) 竖直投影(m)1 1.000 0.500[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 1.000(m)搜索时的圆心步长: 1.000(m)搜索时的半径步长: 0.500(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------[计算结果图]最不利滑动面:滑动圆心 = (1.507,6.840)(m)滑动半径 = 6.989(m)滑动安全系数 = 1.485起始x 终止x α li Ci Φi 条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力超载竖向地震力地震力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)--------------------------------------------------------------------------------------------------------------------0.013 0.033 -12.259 0.021 17.000 17.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.35 0.00 0.000.033 0.778 -9.079 0.755 15.000 13.00 6.13 0.00 0.00 0.00 0.00 0.00 -0.97 12.73 0.00 0.000.778 1.000 -5.070 0.223 10.000 25.00 4.06 0.14 0.00 0.03 0.000.00 -0.32 4.05 0.00 0.001.000 1.750 -1.081 0.750 10.000 25.00 20.63 1.03 0.00 0.00 0.000.00 -0.37 16.64 0.00 0.001.7502.500 5.083 0.753 10.000 25.00 30.36 0.84 0.00 0.00 0.00 0.00 2.62 21.25 0.00 0.002.500 2.942 10.011 0.449 10.000 25.00 20.23 0.17 0.00 0.00 0.00 0.003.49 13.70 0.00 0.002.9423.471 14.087 0.546 15.000 13.00 23.17 0.00 0.00 0.00 0.00 0.00 5.64 13.37 0.00 0.003.4714.000 18.612 0.558 15.000 13.00 21.69 0.00 0.00 0.00 0.00 0.006.92 13.12 0.00 0.004.000 4.500 23.130 0.544 15.000 13.00 20.99 0.00 0.00 0.00 0.00 0.00 8.25 12.61 0.00 0.004.5005.261 28.926 0.870 15.000 13.00 36.24 0.00 0.00 0.00 0.00 0.00 17.53 20.38 0.00 0.005.2616.022 36.369 0.946 15.000 13.00 39.95 0.00 0.00 0.00 0.00 0.00 23.69 21.61 0.00 0.006.022 6.500 42.923 0.653 17.000 17.00 26.09 0.00 0.00 0.00 0.00 0.00 17.77 16.94 0.00 0.006.500 6.662 46.568 0.236 17.000 17.008.67 0.00 0.00 0.00 0.00 3.05 8.51 6.48 0.00 0.006.6627.346 52.104 1.114 17.000 17.00 30.02 0.00 0.00 0.00 0.00 13.67 34.48 27.15 0.00 0.007.346 8.249 65.704 2.203 17.000 17.00 16.25 0.00 0.00 0.00 0.00 18.06 31.27 41.78 0.00 0.008.250 8.496 82.382 1.858 17.000 17.00 0.00 0.00 0.00 0.00 0.00 4.91 4.87 31.79 0.00 0.00总的下滑力 = 163.377(kN)总的抗滑力 = 242.676(kN)土体部分下滑力 = 163.377(kN)土体部分抗滑力 = 242.676(kN)三、7.5m深基坑稳定计算计算项目:复杂土层土坡稳定计算 3------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 建筑边坡工程技术规范(50330--2002)计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 6坡面线号水平投影(m) 竖直投影(m) 超载数1 2.500 2.500 02 1.500 0.000 03 2.500 2.500 04 1.500 0.000 05 2.500 2.500 06 2.000 0.000 1超载1 距离0.010(m) 宽2.000(m) 荷载(20.00--20.00kPa) 270.00(度)[土层信息]坡面节点数 7编号 X(m) Y(m)0 0.000 0.000-1 2.500 2.500-2 4.000 2.500-3 6.500 5.000-4 8.000 5.000-5 10.500 7.500-6 12.500 7.500附加节点数 7编号 X(m) Y(m)1 -6.000 -5.0002 9.000 -6.0003 8.000 2.0004 20.000 -6.0005 15.000 3.0006 25.000 5.0007 -8.000 0.000不同土性区域数 3区号重度饱和重度粘结强度孔隙水压节点(kN/m3) (kN/m3) (kpa) 力系数编号1 18.000 20.000 120.000 --- ( 0,7,1,2,3,)2 18.000 20.000 120.000 --- ( 2,4,5,3,)3 18.000 20.000 120.000 --- ( 0,3,-1,)区号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 15.000 13.000 10.000 25.0002 17.000 17.000 10.000 25.0003 17.000 17.000 10.000 25.000区号十字板τ强度增十字板τ水强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---2 --- --- --- ---3 --- --- --- ---[水面信息]采用有效应力法孔隙水压力采用近似方法计算考虑渗透力作用不考虑边坡外侧静水压力水面线段数 1 水面线起始点坐标: (0.000,-0.500)水面线号水平投影(m) 竖直投影(m)1 1.000 0.500[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 自动搜索最危险滑裂面条分法的土条宽度: 1.000(m)搜索时的圆心步长: 1.000(m)搜索时的半径步长: 0.500(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------[计算结果图]最不利滑动面:滑动圆心 = (1.880,11.360)(m)滑动半径 = 11.360(m)滑动安全系数 = 1.309起始x 终止x α li Ci Φi 条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力超载竖向地震力地震力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)--------------------------------------------------------------------------------------------------------------------0.135 0.393 -8.179 0.260 17.000 17.00 0.68 0.00 0.00 0.00 0.00 0.00 -0.10 4.63 0.00 0.000.393 1.095 -5.742 0.706 15.000 13.00 8.61 0.00 0.00 0.00 0.000.00 -0.86 12.57 0.00 0.001.095 1.798 -2.188 0.703 15.000 13.00 18.11 0.00 0.00 0.00 0.000.00 -0.69 14.72 0.00 0.001.7982.500 1.357 0.703 15.000 13.00 27.05 0.00 0.00 0.00 0.00天津市津水建筑工程公司0.00 0.64 16.78 0.00 0.002.5003.250 5.028 0.753 15.000 13.00 33.07 0.00 0.00 0.00 0.00 0.00 2.90 18.90 0.00 0.003.2504.000 8.841 0.759 15.000 13.00 31.84 0.00 0.00 0.00 0.00 0.00 4.89 18.65 0.00 0.004.000 4.500 12.046 0.511 15.000 13.00 22.47 0.00 0.00 0.00 0.00 0.00 4.69 12.74 0.00 0.004.5005.500 15.959 1.040 15.000 13.00 54.90 0.00 0.00 0.00 0.00 0.00 15.10 27.79 0.00 0.005.5006.500 21.291 1.074 15.000 13.00 66.82 0.00 0.00 0.00 0.00 0.00 24.26 30.48 0.00 0.006.5007.250 26.105 0.835 15.000 13.00 51.76 0.00 0.00 0.00 0.00 0.00 22.77 23.26 0.00 0.007.250 8.000 30.405 0.870 15.000 13.00 46.31 0.00 0.00 0.00 0.00 0.00 23.44 22.27 0.00 0.008.000 8.024 32.672 0.029 15.000 13.00 1.41 0.00 0.00 0.00 0.00 0.00 0.76 0.71 0.00 0.008.024 8.250 33.427 0.270 17.000 17.00 13.23 0.00 0.00 0.00 0.00 0.00 7.29 7.97 0.00 0.008.250 8.399 34.564 0.180 17.000 17.00 8.87 0.00 0.00 0.00 0.00 0.00 5.03 5.30 0.00 0.008.399 8.985 36.867 0.733 17.000 17.00 36.03 0.00 0.00 0.00 0.00 0.00 21.62 21.27 0.00 0.008.985 9.571 40.664 0.773 17.000 17.00 37.24 0.00 0.00 0.00 0.00 0.00 24.27 21.78 0.00 0.009.571 10.500 45.987 1.338 17.000 17.00 59.45 0.00 0.00 0.00 0.00 0.00 42.75 35.37 0.00 0.0010.500 11.500 53.617 1.687 17.000 17.00 51.47 0.00 0.00 0.00 0.00 19.80 57.38 41.61 0.00 0.0011.500 12.500 63.542 2.248 17.000 17.00 21.17 0.00 0.00 0.00 0.00 20.00 36.86 43.83 0.00 0.0012.500 12.564 69.673 0.183 17.000 17.00 0.10 0.00 0.00 0.00 0.00 0.00 0.09 3.12 0.00 0.00总的下滑力 = 293.092(kN)总的抗滑力 = 383.762(kN)土体部分下滑力 = 293.092(kN)土体部分抗滑力 = 383.762(kN)综上,在三种深度下,滑动安全系数分别为1.693、1.485、1.309,均满足规范大于1.3的要求。
深基坑计算
![深基坑计算](https://img.taocdn.com/s3/m/4906ae63524de518974b7d5b.png)
二、二道支撑设在 –7.0米处,采用采用Φ150锚杆,做锚拉支撑; 1、水平间距: 每延米水平拉力为170KN/M ;水平间距1.4米 则 rNRi = 1.25×170×1.4= 297.5KN 2、计算水泥土桩锚固体长度:
(2)对于土压力的分析和计算采用朗肯理论和库仑 理论。朗肯土压力理论是根据土的应力状态和极限平衡 建立的,分析时假设①墙后填土面水平;②墙背光滑。
各类软件计算依据的规范为《建筑基坑支护技术规 程》 (JGJ120-99)。
深基坑计算书实例
哈西万达广场工程围护结构计算书
工程概况: 哈西万达广场工程基坑开挖深度为8m,采用H 型钢(H350*175*7*11㎜)板桩作围护结构,桩长为12m, 桩顶标高为-0.5m,桩水平间距0.7m。
深基坑计算及安全技术
深基坑支护结构设计计算
深基坑支护计算有传统的手工计算和计算机专 业软件计算。目前较为常用的深基坑支护计算软件 有理正深基坑、同济启明星(FRWS系列) 和PKPM 等深基坑计算软件。其计算理论如下:
(1)对于粘性土边坡稳定性分析采用瑞典条分 法,该方法由瑞典工程师费兰纽斯1922年提出来的, 其基本原理为假定土坡沿着圆弧面滑动,将圆弧滑 动体分成若干竖直的土条,计算各土条力系对圆弧 圆心的抗滑动力矩与滑动力矩,由抗滑力矩与滑动 力矩之比(稳定安全系数)来判别土坡的稳定性。
= 17.1L – 84.78 L = 23.54米 经计算取:L = 22米 设计拉力值为300KN 3、加筋材料的截面积: 每根7丝钢绞线拉力为26.8吨 选择两根7-Φ5钢绞线,满足要求。
8。深基坑、高边坡工程之三
![8。深基坑、高边坡工程之三](https://img.taocdn.com/s3/m/5b58bcd05fbfc77da269b1c8.png)
的失效破坏的案例中, 还没有发现一个是滑移破坏的案例。 也就是说, 所谓抗滑移的验算, 其实并没有工程的实际意义, 但现在谁也没有这 个胆略把这个验算要求去掉, 就糊里糊涂地算吧, 反正也不起控制的 作用。 后来,就把倾覆这个名词也泛化了,如你所举的附录T,按照力 学的概念,实际是静力平衡的验算要求,即满足ΣX=0,ΣM=0 的 静力平衡法, 又不计墙对平衡的作用, 已经没有重力式的那种抗倾覆 问题了。 所谓抗倾覆的验算实际是指验算重力式结构的自重力矩对抵 抗倾覆失稳的平衡作用。 需要对支护结构的定名科学化,对稳定模式的术语也需要科学化。 在《建筑地基基础设计规范》GB50007-2011 附录 V 的 V.0.1 条:桩、 墙式支护结构应按表 V.0.1 的规定进行抗倾覆稳定、隆起稳定和整体 稳定验算。即将表中“带支撑桩的倾覆稳定”的结构类型称为“桩、 墙式支护” 。但不清楚规范这里的“墙”是指重力式的“墙”还是地 下连续墙的 “墙” ?应该按计算原理来科学地区别围护结构的类型, 分别称为墙式和板式围护结构。板式包括排桩和地下连续墙,墙式 是指重力式结构。如果“墙”是指重力式,但规范在倾覆稳定性验 算的公式中,只有主动区与被动区的力矩,而没有由重力式墙的自 重形成的抗倾覆力矩,显然这里并不是指重力式结构。其实,抗倾 覆稳定性主要也是对墙式围护结构而言的,墙的自重是最重要的抗 倾覆因素,最早提出需要验算抗倾覆稳定性的也是墙式围护结构而 非板式结构,特别是有支撑的板式围护结构,除非支撑失效,不然
2、 抗滑移稳定安全系数: 支挡结构底面上的的抗滑力和滑动力的比 值; 3、 抗隆起稳定安全系数: 控制坑底软土隆起的抗力和其作用的对比 程度,比值称抗隆起安全系数; 4、 抗倾覆安全系数: 支护结构绕某点的抗倾覆力矩和倾覆力矩的比 值; 5、 抗渗流稳定安全系数: 由于基坑底以下存在承压水或基坑内外两 侧存在水头差, 导致坑底土在渗流作用下出现稳定性问题, 控制渗流 稳定的坑底土自重与浮力的对比程度, 比值称为抗流土稳定安全系数, 或抗突涌安全系数。 上述 5 个方面要看具体工程情况来确定哪几个是主要验算控制 的内容。 由于历史的原因和当前发展的需要, 当前有不止一本规范对 基坑支护的技术要求做出了规定,难免各有侧重,并有差异。在工程 实践上,要根据具体工程情况正确选择使用规范,并结合当地经验, 最终把工程做到安全、经济,并符合程序、手续要求为根本目标。
深基坑边坡计算(完整资料).doc
![深基坑边坡计算(完整资料).doc](https://img.taocdn.com/s3/m/d189d388240c844768eaee4d.png)
【最新整理,下载后即可编辑】xx项目污水处理装置生活、生产污水(废水)收集池格栅渠(460AB)基坑边坡稳定性验算书(放坡开挖施工)编制:审核:日期:二〇一二年九月十九日目录1.基坑简介 (1)1.1基坑概况 (1)1.2场地土质情况 (1)2.计算依据 (1)3.力学验算法的基本假定 (2)4.判定标准 (2)5.验算过程(泰勒图表法) (2)5.1 公式及字母意义 (2)5.2验算理论及方法 (3)5.3验算计算过程(H=7.8m) (4)5.4验算计算过程(H=3.2m) (5)6.结论 (6)1.基坑简介1.1基坑概况污水处理装置460AB(生活污水收集池格栅渠、生产废水收集池格栅渠)水池池体长度18.60米,宽度18.00米。
基坑底部开挖尺寸长度27.7米,宽度24.14米。
基坑有效工作深度-8.30米(绝对标高378.90m),上部3.2m放坡比1:0.5,下部4.6m放坡比1:0.9。
基坑上部开挖尺寸长度41.98米,宽度38.42米。
1.2场地土质情况根据地勘报告(KC-2012-3-051)(详勘)结果(勘探点号21#,孔顶标高386.780m):场地湿陷等级按Ⅰ级(轻微)设防。
2.计算依据采用力学验算法计算。
场地土质为粘性土,按圆弧滑动面法中表解法规则在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。
基坑周边无其它荷载。
按正常工作状态算:基坑总深度7.8米,正常工作状态基坑深度7.8米,上部3.2m放坡比1:0.5,下部4.6m放坡比1:0.9,错台1.4米。
3.力学验算法的基本假定滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。
再假定几个可能的滑动圆弧,按步骤分别计算相应的稳定系数,在圆心辅助线上绘出稳定系数对应于圆心的关系曲线K=f(o),在该曲线上找出最小的稳定系数Kmin,与Kmin对应的滑动面就是最危险的滑动面。
土方边坡计算
![土方边坡计算](https://img.taocdn.com/s3/m/57f217f16294dd88d0d26b3e.png)
三、挖方安全边坡计算
示意图
θ=55>φ=15° ,为陡坡。 当土体处于极限平衡状态时,挖方边坡的允许最大高度可按下式计算: h=2 × c × sinθ × cosφ/(γ × sin2((θ-φ)/2)) =2 × 8 × 0.819 × 0.966/(20 × 0.342 × 0.342)=5.411m 式中:
土方边坡计算书
一、 计算依据
1、 《建筑基坑支护技术规程》JGJ120-2012 2、 《建筑施工计算手册》 3、 《实用土木工程手册》 4、 《施工现场设施安全设计计算手册》 5、 《建筑深基坑工程施工安全技术规范》JGJ311-2013
二、计算参数
坑壁土类型 坑壁土的内摩擦角φ(°) 边坡的坡度角θ(°) 粉土 15 55 坑壁土的重度γ (kN/m^3) 坑壁土粘聚力c(kN/m^2) 20 8
γ ——土的重度(KN/m³ห้องสมุดไป่ตู้ θ——边坡的坡度角(° ) φ——内摩擦角(° ) c——土粘聚力(kN/m2) 土坡允许最大高度为5.411m。
6m深基坑开挖放坡系数
![6m深基坑开挖放坡系数](https://img.taocdn.com/s3/m/67ab7fbdc9d376eeaeaad1f34693daef5ef7138f.png)
6m深基坑开挖放坡系数6m深基坑开挖放坡系数的重要性与应用1. 引言在建筑工程中,基坑开挖是一个常见的工序。
基坑开挖是指在建筑施工过程中,为了埋设地下设施或建造地下空间,需要对地面进行开挖的过程。
基坑开挖的深度是一个重要的参数,它直接关系到基坑的稳定性和施工的安全性。
准确地确定基坑开挖的放坡系数变得尤为重要。
2. 什么是放坡系数放坡系数是指在基坑开挖过程中,为了确保基坑边坡的稳定性,需要给边坡设置的坡度。
放坡系数通常用于判断基坑边坡的稳定性和确定边坡的合理坡度。
在实际工程中,放坡系数的大小取决于多个因素,例如土体的力学性质、坡度的高低以及工程地质条件等。
3. 6m深基坑开挖的放坡系数在进行6m深基坑开挖时,选择合适的放坡系数对于确保施工安全和基坑边坡的稳定性非常重要。
放坡系数的大小会影响基坑开挖的难度、施工时间和成本。
在选择6m深基坑的放坡系数时,需要进行充分的评估和分析。
需要考虑土体的力学性质。
不同类型的土体具有不同的力学特性,例如黏土、砂土和岩石等。
这些土体的稳定性和抗力有所不同,因此需要根据具体土体类型来确定合适的放坡系数。
基坑边坡的高度也会对放坡系数的选择产生影响。
一般而言,当基坑边坡高度较大时,需要选择较小的放坡系数以确保边坡的稳定性。
而当基坑边坡高度较小时,可以考虑选择较大的放坡系数,以提高施工效率。
另外,工程地质条件也是选择放坡系数的重要考虑因素。
当基坑周围存在高斜度的山体或地质构造时,需要选择较小的放坡系数以确保边坡的稳定性。
还需要考虑地下水位、地下水压力等因素对边坡稳定性的影响,并选择合适的放坡系数来应对这些影响。
4. 6m深基坑开挖放坡系数的应用正确选择6m深基坑开挖的放坡系数不仅能够确保施工安全和基坑边坡的稳定性,同时还能够提高施工效率。
合理的放坡系数能够降低基坑开挖的难度和风险,减少施工时间和成本。
另外,通过合适的放坡系数设计,还可以最大限度地减少土方开挖量,并且可以提供足够的工作空间供施工人员进行操作。
深基坑工程设计计算
![深基坑工程设计计算](https://img.taocdn.com/s3/m/c6848703b90d6c85ec3ac6cd.png)
深基坑工程设计计算一.深基坑工程设计计算l基坑工程设计计算包括三个部分的内容,即稳定性验算、结构内力计算和变形计算。
l稳定性验算是指分析土体或土体与围护结构一起保持稳定性的能力,包括整体稳定性、重力式挡墙的抗倾覆稳定及抗滑移稳定、坑底抗隆起稳定和抗渗流稳定等,基坑工程设计必须同时满足这几个方面的稳定性。
l结构内力计算为结构设计提供内力值,包括弯矩、剪力等,不同体系的围护结构,其内力计算的方法是不同的;由于围护结构常常是多次超静定的,计算内力时需要对具体围护结构进行简化,不同的简化方法得到的内力不会相同,需要根据工程经验加以判断;l变形计算的目的则是为了减少对环境的影响,控制环境质量,变形计算内容包括围护结构的侧向位移、坑外地面的沉降和坑底隆起等项目。
稳定性验算l整体稳定性l边坡稳定性计算l重力式围护结构的整体稳定性计算l抗倾覆、抗滑动稳定性l抗倾覆稳定性计算l抗水平滑动稳定性计算l抗渗透破坏稳定性边坡稳定性验算假定滑动面为圆弧用条分法进行计算不考虑土条间的作用力最小安全系数为最危险滑动面重力式围护结构的整体稳定性l重力式围护结构的整体稳定性计算应考虑两种破坏模式,一种是如图所示的滑动面通过挡墙的底部;另一种考虑圆弧切墙的整体稳定性,验算时需计算切墙阻力所产生的抗滑作用,即墙的抗剪强度所产生的抗滑力矩。
l重力式围护结构可以看作是直立岸坡,滑动面通过重力式挡墙的后趾,其整体稳定性验算一般借鉴边坡稳定计算方法,当采用简单条分法时可按上面的公式验算整体稳定性。
l上海市标准《基坑工程设计规程》规定,验算切墙滑弧安全系数时,可取墙体强度指标内摩擦角为零,粘聚力c=(1/15~1/10)qu。
当水泥搅拌桩墙体的无侧限抗压强度qu>1MPa时,可不考虑切墙破坏的模式。
锚杆支护体系的整体稳定性l两种不同的假定l一种是指锚杆支护体系连同体系内的土体共同沿着土体的某一深层滑裂面向下滑动,造成整体失稳,如左图所示;对于这一种失稳破坏,可采取上述土坡整体稳定的验算方法计算,按验算结果要求锚杆长度必须超过最危险滑动面,安全系数不小于1.50;l另一种是指由于锚杆支护体系的共同作用超出了土的承载能力,从而在围护结构底部向其拉结方向形成一条深层滑裂面,造成倾覆破坏,如右图所示。
理正深基坑二级放坡算例
![理正深基坑二级放坡算例](https://img.taocdn.com/s3/m/21c7da5c49d7c1c708a1284ac850ad02de80078c.png)
理正深基坑二级放坡算例在深基坑工程中,放坡是一种常见的边坡支护方法,它主要通过在坑壁上开挖一定坡角的边坡来减小土体的自重和坑壁的水平面积,以增加边坡的稳定性。
以下是一个关于深基坑二级放坡的算例:假设基坑的尺寸为长30m、宽20m、深度20m,坑壁的土体为黏性土,平均角度为30°,土体的重度为18kN/m³。
根据土体力学原理,可以计算出在坡度为30°的情况下,黏性土的稳定性。
首先计算坡面的面积:坡面面积 = 坑壁长度 x((坑底平方 + 坡度平方)的根号) = 30m x (20m² + 20m²)的根号= 30m x 28.28m= 848.4m²然后计算坡面的自重力:坡面自重力 = 坡面面积 x 土体重度= 848.4m² x 18kN/m³= 15291.2kN接下来计算坡面的水平力:坡面水平力 = 坡面自重力 x sin(坡度角度)= 15291.2kN x sin(30°)= 7645.6kN最后计算坡面的垂直力:坡面垂直力 = 坡面自重力 x cos(坡度角度)= 15291.2kN x cos(30°)= 13219.4kN将水平力和垂直力转换为x轴和y轴上的力,则有:x轴上的力 = 坡面水平力 x cos(坡度角度)y轴上的力 = 坡面垂直力 + 坡面水平力 x sin(坡度角度)最终,可以得到在坡度为30°的情况下,黏性土的稳定性为:x轴上的力 = 4408.5kN,y轴上的力 = 19104.4kN。
根据黏性土的稳定性,可以判断坑壁的放坡是稳定的。
土方计算偏差及解决意见3
![土方计算偏差及解决意见3](https://img.taocdn.com/s3/m/425d25a01a37f111f1855b4f.png)
深基坑开挖土方量计算存在偏差问题及解决意见第三部分:边坡土方量计算情况前面两部分,我们对单个方格网块及多个方格网块土方量计算过程存在偏差情况做比较和分析,本部分将对边坡土方计量算情况详细分析比较。
我们选取一段边坡进行计算、比较和分析,其它边坡段道理与此相同,选取边坡段如下图:基坑顶边线基坑底边线图中基坑实测底边线所在位置高程均为23.275m,基坑实测顶边线所在位置高程普遍在26米多,高程差别不悬殊,基坑深度接近。
上图可以看出,基坑各部分上下边线间距大小相差很大,这说明基坑边坡坡度系数几乎无一处是相同的,且别很大。
我们依据基底标高、方格网高程数据及基坑底边线、顶边线图形用cad生成几何实体如下图:由于方格网各角点与基坑顶边线有相当距离,方格网角点高程不能直接反映边坡实体顶面高程,我们使用cad查询查出边坡实体各顶点高程如下:26.3202、26.5070、26.5506、26.5826、26.5903、26.5248、26.5285 26.4815、26.4679、26.4844、26.4600、26.4541、26.4766、26.4675 26.5189、26.4998、26.4394、26.3818、26.3780、26.3800实体顶面平各顶点均高程为:26.474695(m)下面,我们依据上述实体中基坑顶边线上部顶点及边、基坑底边线下部顶点及边,使用cad三维操作生成与实际边坡相同的几何实体如下图:使用cad查询可以查出边坡实体体积112.1136m3,但从上图可以看,边坡实体形状怪异,各部位竖向剖面千差万别,人工根本无法将其分割成为标准图形进行计算。
利用竖向剖面面积平均值乘以纵向长度来计算体积同样无从下手。
我们从另一角度来观察,把顶面取平均值将曲面转换为平面,那么,顶面面积及深度数值均容易算出来。
但因为基坑底面已缩小成一条曲线段,也就是说底面积为零。
经查询转换为平面后边坡实体顶面积为68.7618m2基坑深度按下式计算:26.474695-23.275=3.199695(m)确定顶面面积和深度后,我们用两种方法对其进行近似计算和比较。
深基坑专项方案计算
![深基坑专项方案计算](https://img.taocdn.com/s3/m/20978ee51b37f111f18583d049649b6649d70906.png)
一、概述深基坑工程作为城市基础设施建设中的重要环节,其安全、稳定和高效施工至关重要。
在深基坑专项方案计算中,需要综合考虑地质条件、工程规模、周边环境、施工工艺等多方面因素,以确保工程顺利进行。
以下将从几个方面对深基坑专项方案计算进行阐述。
二、计算依据1. 国家及地方相关规范、标准:如《建筑深基坑基坑工程施工安全技术规范》JGJ311-2013、《建筑桩基技术规范》JGJ94-2008等。
2. 项目地质勘察报告:包括土层分布、土质参数、地下水情况等。
3. 工程设计图纸及施工图纸:了解基坑开挖深度、支护结构形式、施工顺序等。
4. 周边环境资料:如周边建筑物、地下管线、道路等。
三、计算内容1. 基坑稳定性计算(1)土体抗剪强度计算:根据土质参数,计算土体的抗剪强度,进而确定土体在自重作用下的稳定性。
(2)土体抗拔强度计算:考虑支护结构对土体的抗拔作用,计算土体的抗拔强度。
(3)边坡稳定性计算:根据土体抗剪强度和边坡角度,计算边坡的稳定性。
2. 支护结构计算(1)土钉墙计算:根据土钉墙的设计参数,计算土钉的受力、土钉墙的稳定性及土钉墙的变形。
(2)排桩计算:根据排桩的设计参数,计算桩身受力、桩间土压力及桩基的稳定性。
(3)锚杆计算:根据锚杆的设计参数,计算锚杆的受力、锚杆墙的稳定性及锚杆墙的变形。
3. 降水计算(1)降水井布置:根据水文地质条件,确定降水井的布置方案。
(2)降水能力计算:根据降水井的设计参数,计算降水井的降水能力。
(3)降水效果评估:根据降水效果,评估降水对基坑稳定性的影响。
4. 基坑监测计算(1)监测点布置:根据工程特点和周边环境,确定监测点的布置方案。
(2)监测项目:根据监测点布置,确定监测项目,如位移、沉降、倾斜等。
(3)监测数据计算:根据监测数据,计算监测项目的变化趋势,评估基坑稳定性。
四、计算方法1. 数值模拟:利用有限元软件对基坑工程进行数值模拟,分析基坑稳定性、支护结构受力及变形等。
9米深基坑放坡系数
![9米深基坑放坡系数](https://img.taocdn.com/s3/m/24b36cbc8662caaedd3383c4bb4cf7ec4afeb627.png)
9米深基坑放坡系数1. 什么是基坑放坡系数?基坑放坡系数是指在基坑开挖施工中,为了保证基坑的稳定和安全,需要对基坑的边坡进行设计和施工。
基坑放坡系数是指边坡的倾斜角度与水平面夹角的比值。
一般情况下,较大的放坡系数代表较陡的边坡,而较小的放坡系数则代表较缓的边坡。
2. 9米深基坑放坡系数的重要性9米深的基坑属于较深的基坑范畴,因此基坑的边坡设计和施工尤为重要。
合理的放坡系数可以保证基坑边坡的稳定性,防止边坡坍塌和滑坡等危险情况的发生。
同时,合理的放坡系数还可以减少基坑开挖所需的土方开挖量,降低施工成本。
3. 影响9米深基坑放坡系数的因素3.1 地质条件地质条件是影响基坑放坡系数的重要因素之一。
不同地质条件下,土壤的稳定性和承载力会有所不同。
例如,黏性土壤的稳定性较差,需要采取较小的放坡系数;而砂土的稳定性较好,可以采取较大的放坡系数。
3.2 基坑深度基坑深度是另一个重要的影响因素。
一般来说,基坑深度越大,边坡的稳定性要求就越高,需要采取较小的放坡系数。
3.3 周边环境周边环境也会对基坑放坡系数产生影响。
例如,基坑周围存在建筑物、道路等结构物,需要考虑这些结构物对边坡稳定性的影响,从而确定合适的放坡系数。
4. 9米深基坑放坡系数的计算方法4.1 基本原理9米深基坑的放坡系数可以通过以下公式进行计算:放坡系数 = 边坡高度 / 边坡水平距离其中,边坡高度是指基坑边坡的高度,边坡水平距离是指基坑边坡底部到边坡顶部的水平距离。
4.2 实际计算过程实际计算过程中,需要根据具体的地质条件和基坑深度确定合适的放坡系数。
一般来说,可以参考相关规范和经验值进行初步估算,然后通过现场勘测和实测数据进行调整。
5. 9米深基坑放坡系数的选取原则5.1 安全性原则基坑的边坡设计和施工首要考虑的是安全性。
因此,在选取放坡系数时,需要保证边坡的稳定性,避免边坡坍塌和滑坡等安全事故的发生。
5.2 经济性原则在满足安全性的前提下,应尽可能选取较大的放坡系数,以减少土方开挖量,降低施工成本。
9米深基坑放坡系数
![9米深基坑放坡系数](https://img.taocdn.com/s3/m/09b16c287f21af45b307e87101f69e314232fa66.png)
9米深基坑放坡系数
(原创版)
目录
1.基坑放坡系数的概念
2.基坑放坡系数的计算方法
3.影响基坑放坡系数的因素
4.9 米深基坑放坡系数的具体应用
正文
一、基坑放坡系数的概念
基坑放坡系数是指为了防止坍塌和保证安全,需要将沟槽或基坑边壁修成一定的倾斜坡度,称为放坡。
放坡系数是边坡高度与底宽之比,用以确保土方开挖过程中基坑边坡的稳定性。
二、基坑放坡系数的计算方法
放坡系数的计算方法根据土壤类别、开挖深度和挖土方式的不同而有所区别。
一般情况下,放坡系数的计算公式为:放坡系数 = h / (b * m),其中 h 为基坑高度,b 为底宽,m 为放坡系数。
根据土壤类别,放坡系数的取值范围如下:
1.一二类土:放坡系数为 1.2~0.5;
2.三类土:放坡系数为 1.5~0.33;
3.四类土:放坡系数为 2.0~0.25。
三、影响基坑放坡系数的因素
1.土壤类别:不同的土壤类别在开挖过程中,土体的稳定性和变形特性有所不同,因此需要采用不同的放坡系数。
2.开挖深度:随着开挖深度的增加,土壤对基坑边坡的压力增大,为
保证边坡稳定,需要适当减小放坡系数。
3.挖土方式:人工挖土和机械挖土在挖土深度和土体破坏方面有所差异,因此需要根据实际情况选择合适的放坡系数。
四、9 米深基坑放坡系数的具体应用
在实际工程中,9 米深基坑的放坡系数需要根据上述因素综合考虑。
假设土壤类别为三类土,根据一般规定,放坡系数可取为 0.33。
这意味着在 9 米深的基坑中,边坡高度与底宽之比应为 1:0.33,以确保边坡在开挖过程中保持稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx 项目污水处理装置
生活、生产污水(废水)收集池格栅渠
( 460AB )
基坑边坡稳定性验算书
(放坡开挖施工)
编制:
审核:日期:二0—二年九月十九日
目录
1.基坑简介 (1)
1.1 基坑概况 (1)
1.2 场地土质情况 (1)
2.计算依据 (1)
3.力学验算法的基本假定 (1)
4.判定标准 (2)
5.验算过程(泰勒图表法) (2)
5.1 公式及字母意义 (2)
5.2 验算理论及方法 (2)
5.3 验算计算过程( H=7.8m) (3)
5.4 验算计算过程( H=3.2m) (4)
6.结论 (4)
1 •基坑简介
1.1基坑概况
污水处理装置460AB (生活污水收集池格栅渠、生产废水收集池格栅渠)水池
池体长度18.60米,宽度18.00米。
基坑底部开挖尺寸长度27.7米,宽度24.14米。
基坑有效工作深度-8.30米(绝对标高378.90m),上部3.2m放坡比1:0.5,下部4.6m 放坡比1:0.9。
基坑上部开挖尺寸长度41.98米,宽度38.42米。
1.2场地土质情况
根据地勘报告(KC-2012-3-051)(详勘)结果(勘探点号21#,孔顶标高
386.780m ):场地湿陷等级按I级(轻微)设防土质情况(至基坑底部)依次为:
2 .计算依据
采用力学验算法计算。
场地土质为粘性土,按圆弧滑动面法中表解法规则在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。
基坑周边无其它荷载。
按正常工作状态算:
基坑总深度7.8米,正常工作状态基坑深度7.8米,上部3.2m放坡比1:0.5,下
部4.6m放坡比1:0.9,错台1.4米。
3 .力学验算法的基本假定
滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。
再假定几个可能的滑动圆弧,按步骤分
别计算相应的稳定系数,在圆心辅助线上绘出稳定系数对应于圆心的关系曲线
K=f(o),在该曲线上找出最小的稳定系数 Kmin,与Kmin对应的滑动面就是最危险的滑动面。
4 .判定标准
国标50330-2002《建筑边坡工程技术规范》,5.3.1边坡稳定性评价:
边坡类别:二级边坡
当Kmin》1.25认为边坡是稳定的。
当尺Kmin W 1.25时,则应放缓边坡,再按上述方法进行稳定性验算。
5 .验算过程(泰勒图表法)
5.1 公式及字母意义
C
K=fA+ B
rH
K稳定系数
f 土的内摩擦第数,f=tan ©
H边坡高度m
A B取决于几何尺寸的系数,查下表
C 土的粘结力Kpa
r 土的容重
5.2验算理论及方法
基坑四周无其它荷载,用36度法确定圆心辅助线。
假定滑动面通过坡角,如图
所示,各个滑动圆弧的圆心自基坑边缘 Oo点开始,取S01=(0.25+0.4m), m为基坑开挖放坡坡率。
自O1点起每隔0.3H确定一点,设为滑动坡面圆心。
分别为O2、O3、
O4、O5。
表中数据按外插法计算求得
5.3验算计算过程(H=7.8m )
粘聚力c=18kpa 平均值
内摩擦角©=21.3°平均值
容重丫 =16.13KN/m3 平均值
土层内的抗剪强度参数建议值为:凝聚力 C: 18Kpa,内摩擦角①:21°。
容重丫 =15.4KN/m3。
°
f=tan © =tan21 =0.38386
c=18Kpa
r=15.4KN/m3
C
K=fA+ B rH
当边坡系数取1:0.9时,K值计算如下:
C
Ko1= fA+ B= 0.38386*1.992+18/15.4/7.8*4.736=1.474 rH
C
Ko2= fA+ B= 0.38386*1.612+18/15.4/7.8*4.94=1.359 rH
C
Ko3= fA+ B= 0.38386*1.356+18/15.4/7.8*5.44=1.336 rH
C
Ko4= fA+ B= 0.38386*1.224+18/15.4/7.8*6.208=1.4
rH
C
Ko5= fA+ B= 0.38386*1.088+18/15.4/7.8*7.38=1.524 rH
K=艺 Koi/n=(1.474+1.359+1.336+1.4+1.524)/5=1.419> 1.25
符合要求。
5.4验算计算过程(H=3.2m )
粘聚力c=18kpa 平均值
内摩擦角忙23°平均值
容重丫 =15.4KN/m3 平均值
土层内的抗剪强度参数建议值为:凝聚力C: 18Kpa,内摩擦角①:23。
容重Y=15.4KN/m3。
f=tan © =tan23。
=0.42447
c=18Kpa
r=15.4KN/m3
C
K=fA+ B rH
当边坡系数取1:0.5时,K值计算如下:
C
Ko1= fA+ B= 0.42447*1.142+18/15.4/3.2*2.7819=1.501
rH
C Ko2= fA+ B= 0.42447*0.9181+18/15.4/3.2*2.8905=1.445 rH
C
Ko3= fA+ B= 0.42447*0.77+18/15.4/3.2*3.1724=1.486 rH
C
Ko4= fA+ B= 0.42447*0.6914+18/15.4/3.2*3.621=1.616 rH
C
Ko5= fA+ — B=0.42447*0.6133+18/15.4/3.2*4.27=1.82 rH
K=艺 Koi/n=(1.501+1.445+1.486+1.616+1.82)/5=1.574> 1.25
符合要求。
6 .结论
基坑开挖采取上部3.2m放坡比1:0.5 ,下部4.6m放坡比1:0.9 ,大于5.3.1边坡安全稳定系数要求
符合《建筑边坡工程技术规范》(GB50300-2002)中二类边坡圆弧滑动法稳定安
全系数要求。
基坑边坡整体安全稳定。