排列组合中的分堆问题

合集下载

排列组合常用几种基本方法

排列组合常用几种基本方法

例6. 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球, 其中恰有2个小球与盒子的编号相同的放法有____种.
解: 选取编号相同的两组球和盒子的方法有 种,其余4组球与盒子需错位排列有9种放法.
故所求方法有15×9=135种.
C62 15
2020/5/24
新疆奎屯市第一高级中学
∴甲总站在乙的右侧的有站法总数为
A53 1 A53
2020/5/24
新疆奎屯市第一高级中学
6
特级教师王新敞
4.消序法(留空法)
解: 如图所示
B
变式:如下图所示,有5横8竖构成的 方格图,从A到B只能上行或右行共有 多少条不同的路线?
也可以看作是1,2,3,4,5,6,7,①,②,
③,④顺序一定的排列,有
ห้องสมุดไป่ตู้
解: 问题等价于把16个相同小球放入4个盒子里,每个盒子至少有一个小球 的放法种数问题.
将16个小球串成一串,截为4段有 种截断法,对应放到4个盒子里.
C135 455
因此,不同的分配方案共有455种 .
2020/5/24
新疆奎屯市第一高级中学
8
特级教师王新敞
5.剪截法:
n个 相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放 法等价于n个相同小球串成一串从间隙里选m-1个结点剪截成m段.
解:要完成发包这件事,可以分为两个步骤:
⑴先将四项工程分为三“堆”,有
C42C21C11 6 A22
种分法;
⑵再将分好的三“堆”依次给三个工程队,
有3!=6种给法.
∴共有6×6=36种不同的发包方式.
2020/5/24
新疆奎屯市第一高级中学

10.2排列组合中的分组分配问题

10.2排列组合中的分组分配问题

2 10
2 8
2 6
4 4
4 4
2、有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法? (1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
(1) (2) (3) 2 2 C6C4 1 2 C6C5 2 C2 3 C3 3 A3 (4) (5)
3 3 3 9 3 6
种.
3 ⑤先分3件为一堆有 C9 种方法,然后6件平均分配应有
3 2 2 2 C C C C C C C 9 6 4 2 1260 种. 种方法,故共有 3 A3 A
2 6
2 4 3 3
2 2
三:部分均分有分配对象的问题 例3 .12支笔按3:3:2:2:2再任意分给A、B、 C、D、E五个人有多少种不同的分法?
3 4 5 3 C 12 C 9 C 5 A 3 (2) C 3 C 4 C 5 9 5 12 5 5 2 (3) C 12 C 10 C 5 5 5 1 2 (4) A 3 C 12 C 10 C 5
12! 8! 4!· 8! 4!· 4!
1 3!
5775
• 练习1:把10人平均分成两组,再从每组中
选出正、副组长各一人,共有多少种选法?
解:分两步,先分组,再分别在每一组中选正、副 组长. 5 5 C10 C5 分组有 种方法, 2 A2
每组中选正、副组长都有 A 种方法. 由分步计数原理共有
5 5 C10 C5 2 2 A A 种. 5 5 50400 2 A2
2 5
二:均分有分配对象的问题
例2:6本不同的书按2∶2∶2平均分给甲、乙、 丙三个人,有多少种不同的分法?

排列组合的题型与方法

排列组合的题型与方法
解析:10个名额分到7个班级,就是把10个名额看成 10个相同的小球分成7堆,每堆至少一个,可以在10 个小球的9个空位中插入6块木板,每一种插法对应着 一种分配方案,故共有不同的分配方案为 C96 84 种。
(二)分组分配问题 5.限制条件的分配问题分类法: 例6.某高校从某系的10名优秀毕业生中选4人分别到西 部四城市参加中国西部经济开发建设,其中甲同学不 到银川,乙不到西宁,共有多少种不同派遣方案?
A 60 种。 A
5 5 2 2
(一)排序问题 4.定位问题优先法:某个或几个元素要排在指定位 置,可先排这个或几个元素;再排其它的元素。
例4.现有1名老师和4名获奖同学排成一排照相留念, 若老师不站两端则有不同的排法有多少种?
解析:老师在中间三个位置上选一个有 A1 种 ,
3
种,4名同学在其余4个位置上有 A4 种方法; 4
解析、(1)先从10人中选出2人承担甲项任务,再从剩下的8人中 选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务, 2 1 1 不同的选法共有 C10 C8C7 2520 种
(二)分组分配问题 2.有序分配问题逐分法:有序分配问题指把元素分成若 干组,可用逐步下量分组法.
例3、(2)12名同学分别到三个不同的路口进行流量的 调查,若每个路口4人,则不同的分配方案有( A )
(2)5本不同的书,全部分给4个学生,每个学生至少 一本,不同的分法种数为( B ) A、480种 B、240种 C、120种 D、96种
2 4 C5 A4 240
(二)分组分配问题
4.名额分配问题隔板法(无差别物品分配问题隔板法): 例5:10个三好学生名额分到7个班级,每个班级至少 一个名额,有多少种不同分配方案?

事业单位行测数量关系解题技巧:隔板法解决同素分堆问题

事业单位行测数量关系解题技巧:隔板法解决同素分堆问题

2019事业单位考试公共基础——隔板法排列组合问题是解决完成一件事的方法数的问题,是大家公认的难度较大的题型。

原因有二,一是题目很灵活,不同题目需要我们完成的事情不同;二是解法灵活,不同人做同一件事的做法不同。

尤其是考试中时间又紧,大家基本没有太多的时间来解这种题目,即使有些同学做了,正确率也不高。

因此我们针对排列组合中不同特征的题目,总结了不同的常用方法。

而隔板法就是我常用来解决排列组合中同素分堆问题的方法,接下来就给大家重点介绍下这个方法。

一、理论概述标准隔板法解决的问题:同素分堆,每堆至少分一个的问题。

公式推导:n个元素形成了中间n-1个空,分成m堆,只需隔m-1个板,因此在n-1个空中隔m-1个板,有Cn-1m-1种方法。

总结:n 个相同元素分成m 堆,每堆至少分一个,有Cn-1m-1种方法。

非标准的同素分堆问题:同素分堆,每堆至少分a(a>1)个。

解决方法:先给每堆分a-1个,转化为每堆至少分一个的标准问题,再套公式。

二、例题精讲【例1】8本相同的书,分给3个学生,每人至少分一个,有多少种分法?A.20B.21C.28D.30答案:B。

解析:8个相同的元素,分成3堆,每堆至少分一个,符合标准问法,用隔板法解决,根据公式得,C72=21种方法。

故选B。

【例2】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料,一共有多少种不同的发放方法?A.7B.9C.10D.12答案:C。

解析:同素分堆的非标准问法,用隔板法,转化成标准问法,先给每堆分8个,则剩余6个学习材料,即转化为:6份材料分给3个部门,每个部门至少分一个,因此根据公式得,C52=10种分法。

通过以上练习,大家会发现,隔板法可以帮助我们快速解决同素分堆问题。

希望大家平时多练习,掌握同素分堆问题的多种考法,提升排列组合题目的正确率。

排列组合平均分组问题与构造法

排列组合平均分组问题与构造法

排列组合平均分组问题与构造法一、平均分组问题除法策略对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于.例. 6本不同的书平均分成3堆,每堆2本共有多少分法?解: 分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法。

(1)将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?() (2)10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 (1540)(3)某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______()(4)、6本不同的书,分给甲、乙、丙三人,甲一本、乙二本、丙三本;有 种不同的分法。

一人一本、一人二本、一人三本;有 种不同的分法。

甲一本、乙一本、丙四本;有 种不同的分法。

一人一本、一人一本、一人四本;有 种不同的分法。

每个人都有两本书,有 种不同的分法。

60、360、30、90、905.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( ) A .4448412C C C B .44484123CC CC .334448412AC C CD .334448412A C C C二、构造模型策略 例:马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有 种(1)某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120) (2)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A.144 B.120 C.72 D.24[答案与解析].D [3人中每两人之间恰有一个空座位,有A 33×2=12种坐法,3人中某两人之间!!...!!21k n n n n n =222642C C C 222642C C C 33A 22236423/C C C A 544213842/C C C A 22224262/90C C A A =35C有两个空座位,有A 33×A 22=12种坐法,所以共有12+12=24种坐法.(3)、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有 种。

高中数学分堆分配问题

高中数学分堆分配问题

高中数学分堆分配问题篇一:高中数学排列组合中的分组分配问题排列组合中的分组分配问题分组分配问题是排列组合教学中的一个重点和难点。

某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决。

下面就排列组合中的分组分配问题,谈谈自己在教学中的体会和做法。

一、提出分组与分配问题,澄清模糊概念n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。

分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。

二、基本的分组问题例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.22分析:(1)分组与顺序无关,是组合问题。

分组数是C26C4C2=90(种) ,这90种分组实际上重复了6次。

我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。

以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数A3所以分法是3,222C6C4C2=15(种)。

(2)先分A3323组,方法是C1那么还要不要除以A3由于每组的书的本数是不一样的,6C5C3,3?我们发现,23因此不会出现相同的分法,即共有C16C5C3=60(种) 分法。

11(3)分组方法是C46C2C1=30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,CC2C1=15(种)。

排列组合问题的解答技巧和记忆方法

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

排列组合中的分堆问题最新版

排列组合中的分堆问题最新版

例2:(1)6本不同的书按2∶2∶2平均分给甲、 乙、丙三个人,有多少种不同的分法?
方法:先分再排法。分成的组数看成元 素的个数·
(1)均分的三组看成是三个元素在三 个位置上作排列
(1)
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
例2:(1)6本不同的书按 2∶2∶2平均分给甲、乙、丙三个 人,有多少种不同的分法?
一:均分不安排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
14 2 C
84C
4 4
A
3 3
12! 8! 1 5775
4!·8! 4!·4! 3!
(2)
C
12 2 C
120C82
C
6 6
A
3 3
二:分堆安排工作的问题
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
Aቤተ መጻሕፍቲ ባይዱ
1 3
C
4 6
C
1 2
C
1 1
练习3
练习:12本不同的书分给甲、乙、丙三人按下列条 件,各有多少 种不同的分法?

排列与组合-分组与分配问题

排列与组合-分组与分配问题
思考:这样分组会有重复吗? 答 : 可以假设这6个人编号为1, 2, 3, 4, 5, 6号.
第一次分组:先取4个人,取到1, 2, 3, 4作为第一组,再取到 5作为第二组,剩下6作为第三组,这是一种分组的方法.
第二次分组:先取到1, 2, 3, 4作为第一组,再取到6作为第二 组,剩下5作为第三组,这两种分组方法是一样的,所以有重复.
4 个项目进行培训,每名志愿者只分配到 1 个项目,每个项目至少分配 1 名志愿者,则不同的分配方案共有多少种?
解:根据题意,可以将5名志愿者按照2,1,1,1分成4组,再分配到4个
项目,则有:
C52
C31 C21 A33
C11
A44
240
故共有240种不同的分配方案.
课堂小结
分组问题
完全非均匀分组:分步组合; 完全均匀分组:分步组合后除以组数的阶乘; 部分均匀分组:分步组合后,若有m组元素个数相同,则除以m!
法?
解析:本题可先按照问题3将书分成三堆,分堆方法数是
C64
C21 A22
C11
15
种,再分给甲、乙、丙三人,排列方法数有 A33 种,再根据分步乘法计
数原理 ,分配方法数是
C64
C21 A22
C11
A33
90

.
点拨:先分组、再分配!
解决问题
情境: 将 5 名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶
思考:这样分组有什么问题吗?
探究新知
思考:这样分组有什么问题吗? 分步骤而人为增加了顺序!!
答 : 可以假设这6个人编号为1, 2, 3, 4, 5, 6号. 第一次分组:先取到1, 2作为第一组,再取3, 4作为第二组,剩

排列组合中的分堆与分配问题

排列组合中的分堆与分配问题

排列组合中的分堆与分配问题作者:陈学帅来源:《中国校外教育·综合(上旬)》2015年第13期摘要:介绍了排列、组合中比较困难的分堆与分配问题的解决方法。

从分给的对象和被分的元素是否相同(即有无差别)两个方面分别进行了研究。

分给的对象相同(即无差别)但被分的元素不相同是分堆问题,当各堆的元素数不同时是非平均分堆,一堆一堆的拿开即可;当各堆(或部分堆)的元素数相同时是平均分堆,按堆拿开后,若有k堆元素数相等,再除以;分给的对象不同(即有差别)是分配问题,给不同的对象逐次拿开或先分堆再分配。

关键词:排列组合分堆分配解决方法排列、组合中的分堆与分配问题是近几年高考中的一个热点问题,同时也是学生学习中的一个难点,本文就从被分的元素和分给的对象两端这两个方面来探讨一下此类问题的解决方法。

在将某些元素进行分配的问题中,我们按分给的对象是否相同(即有无差别)分为分堆问题与分配问题。

一、分堆问题分堆是研究将元素所分给的对象相同(即无差别)但被分的元素不相同的一类问题。

当各堆(或部分堆)分得的元素数相同时,称为平均分堆;当每堆分得的元素数各不相同时,称为非平均分堆。

1.非平均分堆例:将6名运动员分成三组,其中有一组1人的,一组2人的,一组3人的,有多少种不同的分法?解:本题中由于分给的对象无差别,并且每组的人数各不相同,所以这是一个非平均分堆问题,按题设要求逐堆随机拿开即可。

二、分配问题将元素所分给的对象不相同(即有差别)时的问题叫做分配问题。

分配问题按被分的元素是否相同又分为被分的元素相同(无差别)的分配问题与被分的元素不相同(即有差别)的分配问题两类:(一)被分的元素相同(无差别)的分配问题此类分配问题中,由于被分的元素无差别,因此在分配中,若将若干个元素平均分给几个对象,则只有一种分法;若几个对象所得元素数各不相同,则存在不同的分法。

例2.要从7个班中选10人参加数学竞赛,每个班至少出1人,共有多少种不同的选法?分析:本例其实就是将10个参加数学竞赛的名额分给7个班的分配问题,被分的名额是无差别的,但分给的对象即7个班是不同的。

高中数学排列组合难题

高中数学排列组合难题

高中数学排列组合难题
1、小张家住在二楼,他每次回家走楼梯时都是一步走二级或三级台阶,已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?
答案:设小明从一层到二层走二级台阶走了x步,走三级台阶走了y步,于是有:
2x+3y=16
1)x=2,y=4
2)x=5,y=2
3)x=8,y=0
∴小明从一层到二层不同的走法有:
N=C6(2)+C7(5)+C8(8)
=15+21+1
=37种。

2、“六个人,他们每人有一个帽子,但他们每个人都被要求戴别人的帽子,请问有多少种戴法?”
答案:这是错位问题记住通项公式An=(n-1)(A(n-1)+A(n-
2))A1=0A2=1A3=2A4=9A5=44A6=265
3、安排7个同学去5个运动项目,要求甲乙两同学不能参加一个项目,每个项目都有人参加,每人只参加一个,求方案书?
答案:(C73-C51+C72*C52/2-C52)*P55
思路:先分堆,再全排列,分堆方法有2种,
第一种:31111,把其中甲乙在一起的排除掉第二种:22111,把其中甲乙在一起的排除掉。

高中数学排列组合 平均分组(分配问题)

高中数学排列组合 平均分组(分配问题)
注意:非均分组有分配对象要把组数当作元素 个数再作排列。
五、当堂训练
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
C132
C
39 C 36
C
3 3
A
4 4
练习2
2:10本不同的书
(1)按2∶2∶2∶4分成四
堆有多少种不同的分法? (1)
(2)按2∶2∶2∶4分给甲、
乙、丙、丁四个人有多少 (2)
(1)
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
A
1 3
C
4 6
C
1 2
C
1 1
练习4:12本不同的书分给甲、乙、丙三人按下列 条件,各有多少 种不同的分法?
(1)一人三本,一人四本,一人五本;
(2)甲三本,乙四本,丙五本;
1.有分配对象和无分配对象
2.分配对象确定和不固定
三、效果检测
1.把abcd分成平均两组有_____多少种分法?
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
C
2 4
C
2 2
A
2 2
3
这两个在分组时只能算一个
2.平均分成的组,不管它们的顺序如何,都是一种情况,
所以分组后要除以Amm,即m!,其中m表示组数。

顿悟排列组合80题(精华)

顿悟排列组合80题(精华)

顿悟排列组合80题【分堆(分组)与分配】1、8本不同的书,按照以下要求分配,各有多少种不同的分法?⑴一堆1本, 一堆2本, 一堆5本;⑵甲得1本,乙得2本,丙得5本;⑶三人,一人1本, 一人2本, 一人5本;⑷平均分给甲、乙、丙、丁四人;⑸平均分成四堆;⑹分成三堆,一堆4本,一堆2本,一堆2本;⑺给三人一人4本, 一人2本, 一人2本。

2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法种数共有______3、6名旅客安排在3个房间,每个房间至少安排一名旅客,则不同的安排方法种数共____4、把A、B、C、D四个小球平均分成两组,有_________种分法5、七个人参加义务劳动,按下列方法分组有______种不同的分法(1)分成三组,分别为1人、2人、4人;(2)选出5个人再分成两组,一组2人,另一组3人。

6、四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有_____种7、5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为(A)480 (B)240 (C)120 (D)96 (E)808、将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A.70 B.140 C.280 D.840 E. 809、将9个(含甲、乙)平均分成三组,甲、乙分在不同组,则不同分组方法的种数为A.220 B.240 C.420 D.210 E. 18010、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A.300 B.240 C.144 D.96 E. 28011、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有___种.(A)480 (B)600 (C)430 (D)500 (E)48012、将9本不同的书分成3堆,问:(1)每堆3本,有多少种不同的分法?若分给三人,每人3本,又有多少种不同分法?(2)一堆5本,其余两堆各2本,有多少种不同的分法?若分给甲,乙,丙3人,①每人拿一堆,有多少种不同的分法?②若甲得5本,乙与丙各得2本,又有多少种分法?(3)如果一堆4本,一堆3本,一堆2本,又有多少种的分法?【排队、排座位(元素--位置):相邻捆绑与相间插空】13、6人排成一排照相,甲不排在左端,乙不排在右端,共有______种不同的排法14、n 个人围圆桌而坐,一共有_________种不同的排法15、7人照相,要求排成一排,甲乙两人相邻但不排在两端,不同的排法共有______种。

排列组合中的分堆问题

排列组合中的分堆问题

P(n,m)=n!/(n-m)!,其中n!表示n的 阶乘,即n×(n-1)×(n-2)×...×3×2×1。
组合
组合的定义
01
从n个不同元素中取出m个元素(m≤n),不考虑顺序,称为从
n个不同元素中取出m个元素的组合。
组合的计算公式
02
C(n,m)=n!/[(n-m)!m!],其中C(n,m)表示从n个不同元素中取出
分堆问题的变种研究
不同限制条件下的分堆问 题
例如,限制每堆中元素的数量、种类或顺序 ,研究这些限制条件对分堆问题解法的影响 。
分堆问题的加权变种
在分堆过程中,给每个元素赋予不同的权重,研究 如何根据权重进行最优分堆。
分堆问题的动态规划解法
研究如何使用动态规划算法解决分堆问题, 以及如何优化动态规划算法的效率。
动态规划法
动态规划法是一种通过将问题分解为 重叠的子问题并存储子问题的解来避 免重复计算的算法。在分堆问题中, 动态规划法可以用来解决具有重叠子 问题和最优子结构的问题。
VS
动态规划法的优点是能够处理具有重 叠子问题和最优子结构的问题,并且 可以避免重复计算。但是,对于一些 问题,动态规划法的空间复杂度可能 会很高。
分堆问题在现实生活中的应用前景
分堆问题在资源分配中的应用
研究如何利用分堆问题解决资源分配问题,例如,将有限的资源分配给不同的项目或任务 。
分堆问题在物流与供应链管理中的应用
研究如何利用分堆问题优化物流和供应链管理中的分拣、打包等问题。
分堆问题在计算机科学中的应用
研究如何利用分堆问题解决计算机科学中的算法设计和数据结构问题。
THANKS FOR WATCHING
感谢您的观看
游戏算法优化

行测数量关系技巧:排列组合异素不均分的分堆与分配问题

行测数量关系技巧:排列组合异素不均分的分堆与分配问题

⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题 公务员⾏测考试主要是考量⼤家的数学推理能⼒和逻辑分析能⼒,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题 公务员考试⾏测卷中,要说最难的题型,可能⼀千个读者⼼中有⼀千个哈姆雷特,各有各的说法。

但是要说到最容易出错的题型,那⾮排列组合不可。

但是排列组合在⺫前的公务员考试中尤其是国考,⼏乎是每年必考的题型,所以还是需要花精⼒去学习掌握。

今天带⼤家⼀起来学习其中的⼀个⼩知识点,即异素不均分的分堆与分配问题,主要是为了和我们之前所说的异素均分的分堆与分配形成对⽐和区分。

⼀、异素不均分的分堆与分配 概念并不难理解,所谓的异素,就是指被分的元素是不相同的,有区别的。

⽽不均分则是指分完后每⼀份数量不⼀样,⽐如说四个不同颜⾊的⼩球,分作两份,分别为1个和3个,这就是个异素不均分的问题。

⽽分堆与分配,⼜是有区别的,分堆就是把元素按照要求分开就⾏,⽐如说分成1个和3个,就可以了。

分配则是在分堆的基础上需要将分好的堆再分配给相应的对象。

⽐如说4个颜⾊不同的⼩球,分给⼩⺩和⼩李,其中⼀⼈拿3个,另⼀⼈则拿1个,这就是不均分的分配问题。

⼆、实际应⽤中的具体计算⽅法 我们通过⼀个例题来理解两种不同的分堆分配⽅式的具体计算。

例1:将标有A、B、C、D的四本书分作两组,其中⼀组3本,⼀组1本,有多少种分法? 【解析】通过上边的描述我们知道,这属于异素不均分的分堆问题,直接按照分步思想来操作就可以了,第⼀步从4本书中选出3本,第⼆步则选出剩下的1本,即 所以当我们把不同元素进⾏不均分分堆时,只需要按照基本的分步思想去操作即可。

例2:将标有A、B、C、D的四本书分给甲、⼄两个⼈,其中甲1本,⼄2本,有多少种分法? 【解析】这个题属于不均分分堆之后的指定分配,当我们分好堆的时候,其实已经确定了每⼀堆的归属,所以计算⽅式和结果,和例题1是⼀样的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2:将4名大学生分配到3个乡镇去当村官,每个 乡镇至少一名,则不同的分配方案有多少种?
3:5名志愿者分到3所学校支教,每个学校至少 去一名志愿者,则不同的分派方法共有多少种? 4: 将9个(含甲、乙)平均分成三组,甲、乙分 在同一组,则不同分组方法的种数为
5:将5名实习教师分配到高一年级的3个班实习, 每班至少1名,最多2名,则不同的分配方案有
问题1 把abcd平均分成两组有_____多少种分法?
ab ac ad
bc bd cd
cd bd bc
ad ac ab
这两个在分组时只能算一个
结论:平均分成的组,不管它们的顺序 如何,都是一种情况,所以分组后要 m A 除以 m ,即m!,其中m表示组数。
均分不安排工作的问题
例1:12本不同的书
例1:6本不同的书 (1)按1∶2∶3分成三堆有多少种不同的分法? 1 2 3 C6C5C3 (2)按1∶2∶3分给三个人有多少种不同的分法? 1 2 3 3 C6C5C3 A3
注意
(1)非均分问题只要按比例分完再用乘法原理作积
(2)分组安排工作要把组数当作元素个数再作排列。
非均分问题
例2.有六本不同的书分给甲、乙、丙三名同学, 按下条件,各有多少种不同的分法? 2 2 2 (1)每人各得两本;C6C4 C2 1 2 3 C6C5 C3 (2)甲得一本,乙得两本,丙得三本; 1 2 3 3 C6C5 C3 A3 (3)一人一本,一人两本,一人三本; 4 1 1 (4)甲得四本,乙得一本,丙得一本; C6 C2 C1 (5)一人四本,另两人各一本·
1:12本不同的书平均分成四组有多少种不同分法?
2:10本不同的书
(1)按2∶2∶2∶4分成四堆有多少种不同的分法?
C CCC 3 A 3 (2)按2∶2∶2∶4分给甲、乙、丙、丁四个人有
多少种不同的分法?
2 2 2 4 C10 C8 C6C4 4 A4 3 A3
2 10
2 8
2 64 4Fra bibliotek非均分问题
5 5 C C 2 2 2 5 5 C12 10 2 5 A2 C12 C10 C5 A2
(4)一人两本,另两人各五本·
5 5 C C 2 3 2 5 5 C12 10 2 5 A3 3C12 C10 C5 A2
练习
1.有4个不同的球,4个不同的盒子,把球全 部放入盒内, (1)共有多少种放法? (2)恰有1个盒不放球,有多少种放法? (3)恰有1个盒内放2个球,有多少种放法? (4)恰有2个盒内不放球,有多少种放法?
(1)按4∶4∶4平均分成三堆有多少种不同的分 4 4 4 法? C12 C8 C4
A
2 12 2 10
3 3
5775
(2)按2∶2∶2∶6分成四堆有多少种不同的分法?
C C C C 3 A3
2 8
6 6
分堆安排工作的问题
例2:(1)6本不同的书按2∶2∶2平均分给甲、 乙、丙三个人,有多少种不同的分法? 方法:先分再排。分成的组数看成元素的个数·
C A
4 6
3 3
4 1 1 C6 C2C 1 3 或 A 3 2 A2
练习
12本不同的书分给甲、乙、丙三人按下列条 件,各有多少 种不同的分法? 3 4 5 3 C C C A (1)一人三本,一人四本,一人五本; 12 9 5 3 3 4 5 C9 C5 (2)甲三本,乙四本,丙五本; C12 (3)甲两本,乙、丙各五本;
C C C 3 2 2 2 A3 C6 C4 C2 A
(2)12支笔按3:3:2:2:2分给A、B、C、 D、E五个人有多少种不同的分法?
2 6
2 4 3 3
2 2
C C C C C 5 A5 2 3 A2 A3
3 12
3 9
2 6
2 4
2 2
练习
C C C C A4 4
3 12 3 9 3 6 3 3
6:某外商计划在四个候选城市投资3个不同的项目 且在同一个城市投资的项目不超过2个,则该外商不 同的投资方案有( )种
相关文档
最新文档