高考数学二轮复习文专题限时训练
2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc
限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。
高考数学(文)二轮专题复习课件:第1部分 专题八 选考系列4-4、4-5 1-8-2
[ 自我挑战] 2.(2017· 高考全国卷Ⅱ)已知 a>0,b>0,a3+b3=2,证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2.
证明:(1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4. (2)证明:因为(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2 3a+b2 3a+b3 + 4 (a+b)=2+ 4 , 所以(a+b)3≤8,因此 a+b≤2.
于是 a=3.
1.用零点区分法解绝对值不等式的步骤: (1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的 不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端 点值. 2.用图象法、数形结合可以求解含有绝对值的不等式,使得 代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.
a+b+c 3 定理 3:如果 a,b,c 为正数,则 3 ≥ abc,当且仅当 a=b=c 时,等号成立. 定理 4:(一般形式的算术—几何平均不等式)如果 a1、a2、…、 a1+a2+…+an n an 为 n 个正数, 则 ≥ a1a2…an, 当且仅当 a1=a2=… n =an 时,等号成立.
2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: (1)|ax+b|≤c⇔-c≤ax+b≤c; (2)|ax+b|≥c⇔ax+b≥c 或 ax+b≤-c. 3.基本不等式 定理 1:设 a,b∈R,则 a2+b2≥2ab.当且仅当 a=b 时,等号 成立. a+b 定理 2:如果 a,b 为正数,则 2 ≥ ab,当且仅当 a=b 时, 等号成立.
1.不等式的证明常利用综合法、分析法、反证法、放缩法、 基本不等式和柯西不等式等,要根据题目特点灵活选用方法. 2.证明含绝对值的不等式主要有以下三种方法: (1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再 证明; (2)利用三角不等式||a|-|b||≤|a± b|≤|a|+|b|进行证明; (3)转化为函数问题,利用数形结合进行证明.
高三二轮复习限时训练(一)
高考二轮复习限时训练(一)(时间:60分钟)班级 姓名 得分一、填空题:本大题共12小题,每小题5分,共60分。
1、复数ii4321+-在复平面上对应的点位于第__ 象限. 2、命题“2,220x R x x ∃∈++≤”的否定是3、设{}{}=⋂+==∈==B A x y y x B R x x y y A 则,2|),(,,|2 4、已知x 、y 的取值如下表:从散点图分析,y 与x 线性相关,且回归方程为 0.95y x a =+,则a = 5、若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于____ ____。
6、如果执行右面的程序框图,那么输出的S = 7、把函数4cos()3y x π=++1的图象向左平移ϕ个单位,所得的图象对应的函数为偶函数,则ϕ的最小正值为8、如果实数x ,y 满足x 2+y 2=1,则(1+xy )(1-xy )的最小值为9、已知实数x ,y 满足条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,i z x y =+(i 为虚数单位),则|12i |z -+的最小值是 .10、一枚半径为1的硬币随机落在边长为3的正方形所在平面内,且硬币一定落在正方形内部或与正方形有公共点,则硬币与正方形没有公共点的概率是11、若函数f (x )=e x -2x-a 在R 上有两个零点,则实数a 的取值范围是12、设函数)0](,[,321)1ln()(2>-∈+-+=t t t x x e x x f x ,若函数的最大值是M ,最小值是m ,则M+m=二、解答题:本大题共2小题,共30分。
13、(本小题满分15分)在ABC ∆中,角A 、B 、C 的对边分别为,,a b c ,已知向量33(cos ,sin ),22A A m = (cos ,sin ),22A An =且满足m n +=(Ⅰ)求角A 的大小;(Ⅱ)若,b c +=试判断ABC ∆的形状。
14、(本小题满分15分)已知圆C :224x y +=.(1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程;(2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.高考二轮复习限时训练(一)1、三2、2,220.x R x x ∀∈++>3、∅4、2.6 5 6、25507、32π 8、43 9 10、 π+21111、()+∞-,2ln 2212、6 二、解答题: 13、(1)3A π=———————————————————7分(2)ABC ∆为直角三角形。
高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练
第二讲 三角函数的图象与性质1.(2019·豫南九校联考)将函数y =sin ⎝⎛⎭⎪⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫x 2-5π24B .y =sin ⎝ ⎛⎭⎪⎫x 2-π3C .y =sin ⎝ ⎛⎭⎪⎫x 2-5π12 D.y =sin ⎝⎛⎭⎪⎫2x -7π12 解析:函数y =sin ⎝ ⎛⎭⎪⎫x -π4经伸长变换得y =sin ⎝ ⎛⎭⎪⎫x 2-π4,再作平移变换得y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π6-π4=sin ⎝ ⎛⎭⎪⎫x 2-π3.答案:B2.(2019·某某亳州一中月考)函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )解析:由题意得函数的周期为T =2π,故可排除B ,D.对于C ,图象过点⎝ ⎛⎭⎪⎫π3,0,代入解析式,不成立,故选A. 答案:A3.(2019·某某某某十校期末测试)要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,∴要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象向左平移π6个单位长度.答案:B4.(2019·东北三省三校一模)已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为( )A.⎣⎢⎡⎦⎥⎤-π3,π6 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤-π3,2π3解析:由题意得2πω=2×π2,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z),解得-π3+k π≤x ≤π6+k π.当k =0时,有x ∈⎣⎢⎡⎦⎥⎤-π3,π6.故选A.答案:A5.(2019·高考全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B.32 C .1D.12解析:由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A. 答案:A6.(2019·某某某某一模)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .1 B.π2C .2D.π解析:∵函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,由ω∈(1,3),得ω=2.由题意得|x 1-x 2|的最小值为函数的半个周期,即T 2=πω=π2.答案:B7.(2019·某某平遥中学调研)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A .x =π12B.x =π4C .x =π3D.x =2π3解析:由题意知图象过A (0,3),B ⎝ ⎛⎭⎪⎫π6,0, 即f (0)=2sin φ=3,f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π6·ω+φ=0,又ω>0,|φ|<π,并结合图象知φ=2π3,π6·ω+φ=π+2k π(k ∈Z),得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3, 移动后g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以对称轴满足2x +π3=π2+k π(k ∈Z),解得x =π12+k π2(k ∈Z),所以满足条件的一条对称轴方程是x =π12,故选A.答案:A8.(2019·某某某某适应性统考)已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B.ω=2,φ=π6C .ω=12,φ=π3D.ω=12,φ=π12解析:由题意知T =4×⎝⎛⎭⎪⎫π12+π6=π,所以ω=2.因为A ⎝ ⎛⎭⎪⎫-π6,0,所以0=sin ⎝ ⎛⎭⎪⎫-π3+φ. 又0<φ<π2,所以φ=π3.答案:A9.(2019·某某某某3月模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,则ω的可能取值为( )A.23 B.2 C.143D.263解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2, ∴sin ⎝ ⎛⎭⎪⎫-π6=-sin ⎝ ⎛⎭⎪⎫π2ω-π6=-12,∴π2ω-π6=2k π+π6或π2ω-π6=2k π+5π6,k ∈Z ,∴ω=4k +23或ω=4k +2,k ∈Z.∵函数f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,∴ωx -π6∈⎝ ⎛⎭⎪⎫-π6,ωπ2-π6,∴2π<ωπ2-π6≤3π,∴133<ω≤193,∴ω=143或ω=6.故选C.答案:C10.(2019·贺州一模)已知函数f (x )=sin(2x +φ)(φ∈R),若f ⎝ ⎛⎭⎪⎫π3-x =f (x ),且f (π)>f ⎝ ⎛⎭⎪⎫π2,则函数f (x )取得最大值时x 的可能值为( )A.π6B.π5C.π3D.π2解析:因为f ⎝ ⎛⎭⎪⎫π3-x =f (x ), 即y =f (x )的图象关于直线x =π6对称,即函数f (x )在x =π6时取得最值,①当函数f (x )在x =π6时取得最大值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π3=f (π),满足题意, ②当函数f (x )在x =π6时取得最小值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2>f ⎝ ⎛⎭⎪⎫π3=f (π),不满足题意, 综合①②得:函数f (x )取得最大值时x 的可能值为π6.故选A. 答案:A11.(2019·某某一模)若函数f (x )=sinωx2·sin ⎝⎛⎭⎪⎫ωx 2+π2(ω>0)在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,则ω的取值X 围是( ) A .(0,5)B.[1,5)C.⎝ ⎛⎭⎪⎫0,92 D.⎣⎢⎡⎭⎪⎫1,92 解析:f (x )=sinωx2sin ⎝⎛⎭⎪⎫ωx 2+π2=12sin ωx ,当ωx =2k π+π2,即x =2k π+π2ω(k ∈Z)时函数取最大值,又函数f (x )在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,即有两种情况,一是区间⎣⎢⎡⎦⎥⎤-π3,π2内只有一个极值点,二是函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π2内单调递增,所以有⎩⎪⎨⎪⎧π2≤ωπ2<5π2,-3π2<-ωπ3或⎩⎪⎨⎪⎧π2≥ωπ2,-π2≤-ωπ3,解得ω∈⎣⎢⎡⎭⎪⎫1,92或ω∈(-∞,1],又∵ω>0,所以ω∈⎝ ⎛⎭⎪⎫0,92,故选C. 答案:C12.(2019·某某一模)函数f (x )=sin(2x +θ)+cos 2x ,若f (x )最大值为G (θ),最小值为g (θ),则( )A .∃θ0∈R ,使G (θ0)+g (θ0)=πB .∃θ0∈R ,使G (θ0)-g (θ0)=πC .∃θ0∈R ,使|G (θ0)·g (θ0)|=πD .∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π解析:f (x )=sin(2x +θ)+cos 2x =cos θ·sin 2x +⎝ ⎛⎭⎪⎫sin θ+12·cos 2x +12=54+sin θsin(2x +φ)+12,所以G (θ)=54+sin θ+12,g (θ)=-54+sin θ+12, ①对于选项A ,G (θ0)+g (θ0)=54+sin θ+12-54+sin θ+12=1,显然不满足题意,即A 错误,②对于选项B ,G (θ0)-g (θ0)=54+sin θ+12+54+sin θ-12=254+sin θ∈[1,3],显然不满足题意,即B 错误, ③对于选项C ,G (θ0)·g (θ0)=⎝ ⎛⎭⎪⎫54+sin θ+12·⎝ ⎛⎭⎪⎫54+sin θ-12=1+sin θ∈[0,2],显然不满足题意,即C 错误,④对于选项D ,⎪⎪⎪⎪⎪⎪G (θ)g (θ)=⎪⎪⎪⎪⎪⎪⎪⎪154+sin θ-12+1∈[2,+∞),即∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π,故D 正确, 故选D. 答案:D13.(2019·某某模拟)函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1(x ∈R)的最大值为________.解析:∵f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (x )max =2. 答案:214.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴x =π6-⎝⎛⎭⎪⎫7π12-π2=π12为f (x )的另一个相邻的极值点,故函数f (x )的最小正周期T =2×⎝⎛⎭⎪⎫7π12-π12=π.答案:π15.(2019·某某某某武邑中学模拟)将f (x )=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则ω的最大值为________.解析:将f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4ω+π4=2sin ωx 的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则满足T 4≥π4,即T ≥π,即2πω≥π,所以0<ω≤2,即ω的最大值为2.答案:216.已知函数f (x )=2a sin(πωx +φ)⎝ ⎛⎭⎪⎫a ≠0,ω>0,|φ|≤π2,直线y =a 与f (x )的图象的相邻两个距离最近的交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[a ,2a ];②在[2,4]上,当且仅当x =3时函数取得最大值; ③f (x )的图象可能过原点. 其中真命题的个数为________.解析:对于①,∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴结合图象可以看出,当a >0时,f (x )在[2,4]上的值域为[a ,2a ],当a <0时,f (x )在[2,4]上的值域为[2a ,a ],①错误;对于②,根据三角函数图象的对称性,显然x =2和x =4的中点是x =3,即当a >0时,f (x )在x =3处有最大值f (3)=2a ,当a <0时,f (x )在x =3处有最小值f (3)=2a ,②错误; 对于③,f (0)=2a sin φ,令f (0)=0,得φ=0,此时f (x )=2a sin πωx ,由2a sin πωx =a 得sin πωx =22,则πωx =2k π+π4(k ∈Z)或πωx =2k π+3π4(k ∈Z),∴x =2k +14ω(k ∈Z)或x =2k +34ω(k ∈Z),∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴令⎩⎪⎨⎪⎧2k +14ω=2,2k +34ω=4,解得k =18∉Z ,即不存在这样的k 符合题意,③错误. 综上,没有真命题. 答案:0。
2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1
(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。
精品K12学习高考学习复习资料数学二轮复习 限时训练22 定点、定值、最值探索性问题 理
【高考领航】2016届高考数学二轮复习 限时训练22 定点、定值、最值探索性问题 理(建议用时45分钟)1.抛物线y =4ax 2(a ≠0)的焦点坐标是( ) A .(0,a ) B .(a,0) C.⎝ ⎛⎭⎪⎫0,116a D.⎝⎛⎭⎪⎫116a ,0解析:选C.本题主要考查抛物线的标准方程和焦点坐标.将y =4ax 2(a ≠0)化为标准方程得x 2=14a y (a ≠0),所以焦点坐标为⎝ ⎛⎭⎪⎫0,116a ,所以选C.2.(2016·陕西省高三检测)已知直线l :x -y -m =0经过抛物线C :y 2=2px (p >0)的焦点,l 与C 交于A 、B 两点.若|AB |=6,则p 的值为( )A.12 B.32 C .1D .2解析:选B.因为直线l 过抛物线的焦点,所以m =p 2.联立⎩⎪⎨⎪⎧x -y -p 2=0y 2=2px得,x 2-3px +p 24=0.设A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=3p ,故|AB |=x 1+x 2+p =4p =6,p =32,故选B.3.(2014·高考新课标全国卷Ⅰ)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .4B .2C .1D .8解析:选C.利用抛物线的定义.如图,F ⎝ ⎛⎭⎪⎫14.0,过A 作AA ′⊥准线l ,∴|AF |=|AA ′|,∴54x 0=x 0+p 2=x 0+14,∴x 0=1.4.(2015·高考天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1解析:选D.利用渐近线与圆相切以及焦点坐标,列出方程组求解.由双曲线的渐近线y =± bax 与圆(x -2)2+y 2=3相切可知⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪±b a ×21+⎝ ⎛⎭⎪⎫b a 2=3,c =2,a 2+b 2=c 2,解得⎩⎨⎧a =1,b = 3.故所求双曲线的方程为x 2-y 23=1.5.抛物线y 2=2px (p >0)上横坐标为6的点到此抛物线焦点的距离为10,则该抛物线的焦点到准线的距离为( ) A .4 B .8 C .16D .32解析:选B.设抛物线的准线方程为x =-p 2(p >0),则根据抛物线的性质有p2+6=10,解得p=8,所以抛物线的焦点到准线的距离为8,故选B.6.(2014·高考新课标卷Ⅰ)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B .3 C.3mD .3m解析:选A.首先将双曲线方程化为标准方程,再利用点到直线的距离公式求解.双曲线C 的标准方程为x 23m -y 23=1(m >0),其渐近线方程为y =±33m x =±mmx ,即my =±x ,不妨选取右焦点F (3m +3,0)到其中一条渐近线x -my =0的距离求解,得d =3m +31+m= 3.故选A.7.(2015·高考全国卷Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233解析:选A.由双曲线方程可求出F 1,F 2的坐标,再求出向量MF 1→,MF 2→,然后利用向量的数量积公式求解.由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0), ∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20,∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 8.(2015·高考重庆卷)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( ) A .±12B .±22C .±1D .± 2解析:选C.根据两条直线垂直的条件,求出a ,b 之间的关系,进一步求出渐近线的斜率.由题设易知A 1(-a,0),A 2(a,0),B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a . ∵A 1B ⊥A 2C ,∴b 2ac +a ·-b 2ac -a=-1,整理得a =b . ∵渐近线方程为y =±b ax ,即y =±x ,∴渐近线的斜率为±1.9.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ) A.316B.38C.233D.433解析 (基本法) ∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y=±33x .拋物线C 1:y =12p x 2(p >0),焦点为F ′⎝ ⎛⎭⎪⎫0,p 2.设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x .∴y ′|x =x 0=1p x 0=33.②由①②得p =433.答案 D(速解法) 由题意F (2,0),不妨设渐近线为y =33x , C 1焦点为F ′⎝ ⎛⎭⎪⎫0,p 2,∴F ′F 的方程为y =-p 4(x -2),对y =12p x 2求导,设M (x 0,y 0),∴k =x 0p =33,又y 0=12px 20, ∴x 202p =-p 4(x 0-2),∴x 20p 2=-12(x 0-2),∴-12(x 0-2)=⎝ ⎛⎭⎪⎫332,∴x 0=43,∴p =433.答案 D10.(2014·高考山东卷)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0D .2x ±y =0解析:选A.设C 1的离心率e 1=1-⎝ ⎛⎭⎪⎫b a 2, C 2的离心率e 2= 1+⎝ ⎛⎭⎪⎫b a 2. e 1e 2=1-⎝ ⎛⎭⎪⎫b a 2·1+⎝ ⎛⎭⎪⎫b a 2=1-⎝ ⎛⎭⎪⎫b a 4=32. ∴⎝ ⎛⎭⎪⎫b a 4=1-34=14,∴ba =22. ∴渐近线y =±22x ,即x ±2y =0. 11.(2016·唐山市高三模拟)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,若F 关于直线3x+y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( ) A.12 B.3-12C.32D.3-1解析:选D.设A (m ,n ),则⎩⎪⎨⎪⎧n m +c -3=-1,3×m -c 2+n2=0,解得A ⎝ ⎛⎭⎪⎫c2,32c ,代入椭圆方程中,有c 24a 2+3c 24b2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴c 4-8a 2c2+4a 4=0,∴e 4-8e 2+4=0,∴e 2=4±23,∴e =3-1.12.(2016·贵阳市高三模拟)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,离心率为e ,过F 2的直线与双曲线的右支交于A 、B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2=( ) A .1+2 2 B .4-2 2 C .5-2 2D .3+2 2解析:选C.如图,设|AF 2|=x ,则|AF 1|=|AF 2|+2a =2a +x .又∵△F 1AB 是以A 为直角顶点的等腰直角三角形,∴|AB |=|AF 1|=2a +x ,∴|BF 2|=2a ,|BF 1|=|BF 2|+2a =4a ,∴4a =2(2a +x ),x =2(2-1)a ,又∵|AF 1|2+|AF 2|2=|F 1F 2|2,∴(2a +x )2+x 2=4c 2,即8a 2+4(3-22)a 2=4c 2,e2=c 2a2=5-2 2. 13.双曲线x 24-y 212=1的两条渐近线与直线x =1围成的三角形的面积为__________.解析:由题知,双曲线的渐近线为y =±3x ,故所求三角形的面积为12×23×1= 3.答案: 314.(2015·高考北京卷)已知双曲线x 2a2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.解析:直接求解双曲线的渐近线并比较系数.双曲线x 2a 2-y 2=1的渐近线为y =±xa,已知一条渐近线为3x +y =0,即y =-3x ,因为a>0,所以1a =3,所以a =33.答案:3315. (2016·兰州市高三模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是__________.解析:分别过点A 、B 作准线的垂线AE 、BD ,分别交准线于点E 、D ,则|BF |=|BD |,∵|BC |=2|BF |, ∴|BC |=2|BD |,∴∠BCD =30°,又∵|AE |=|AF |=3,∴|AC |=6,即点F 是AC 的中点,根据题意得p =32,∴抛物线的方程是y 2=3x . 答案:y 2=3x16.(2015·高考山东卷)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.解析:先表示出直线的方程和点P 的坐标,再将点P 的坐标代入直线的方程可得关于a ,b ,c 的方程,化简可以求出离心率.如图所示,不妨设与渐近线平行的直线l 的斜率为ba,又直线l 过右焦点F (c,0),则直线l的方程为y =b a (x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y2b2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去),故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =b a (2a -c ),化简可得离心率e =c a=2+ 3. 答案:2+ 3。
高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)
2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。
高考二轮复习限时训练(五)
高考二轮复习限时训练(五)(时间:60分钟)班级 姓名 得分一、填空题:(12×5分=60分)1、命题“2,210x R x x ∃∈-+≤”的否定形式为 .2、已知U={1,2,3,4,5,6},集合A={2,3},集合B={3,5},则A ∩(U B) = .3、0tan(1125)-的值是 .4、如图所示的流程图输出的n 值是 .5、若复数z 满足(2)5i z -= (i 是虛数单位),则z= .6、函数[]sin()(0,3y x x ππ=+∈)的单调减区间是 .7、方程x x 28lg -=的根)1,(+∈k k x ,k ∈Z ,则k = .8、已知向量(1,2),(2,3)a b == ,若()()a b a b λ+⊥-,则λ= .9、设奇函数()f x 满足:对x R ∀∈有(1)()0f x f x ++=,则(5)f = . 10、某城市一年中12个月的平均气温与月份的关系可近似地用三角函数)]6(6cos[-+=x A a y π(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为 ℃.11、在等比数列{}n a 中,若22a =,632a =,则4a = .12、在ABC ∆中,角A,B,C 所对的边分别是,,a b c ,若22b c+2a =,且a b=则∠C= .二.解答题(每题15分,共30分)13.设向量(c o s,s i n )m θθ=,sin ,cos )n θθ= ,),23(ππθ--∈,若1m n ∙=,求:(1))4sin(πθ+的值; (2))127cos(πθ+的值.14.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;使得MN∥平面DAE.南师大附校09高考二轮复习限时训练(五)一、填空题1、∀x∈R,x 2-2x+l >0 2、{2} 3、1 4、5 5、1 6、[,]6ππ7、3 8、53- 9、0 10、20.5 11、8 12、1050二、解答题13、解:(1)依题意,cos sin )sin cos )m n θθθθ∙=+cos )θθ=+4sin()4πθ=+又1m n ∙= ∴41)4sin(=+πθ…………… ……7分(2)由于),23(ππθ--∈,则)43,45(4πππθ--∈+结合41)4s i n(=+πθ,可得415)4cos(-=+πθ 则7cos()12θπ+11cos[()]43θππ=++11(4242=-⨯-⨯8=-15分14、(1)证明: ABE AD 平面⊥,BC AD //∴ABE BC 平面⊥,则BC AE ⊥…… ……… 3分又 ACE BF 平面⊥,则BF AE ⊥ ∴BCE AE 平面⊥ 又BCE BE 平面⊂ ∴BE AE ⊥ ………………………… 6分(2)在三角形ABE 中过M 点作MG ∥AE 交BE 于G 点,在三角形BEC 中过G 点作GN ∥BC交EC 于N 点,连MN,则由比例关系易得CN =CE 31…… …8分MG ∥AE MG ⊄平面ADE, AE ⊂平面ADE, ∴MG ∥平面ADE ……………………10分同理, GN ∥平面ADE∴平面MGN ∥平面ADE ……………12分又MN ⊂平面MGN ∴MN ∥平面ADE∴N 点为线段CE 上靠近C 点的一个三等分点 …………………………………………15分。
2020新课标高考数学(理)二轮总复习(课件+专题限时训练)专题7 高效解答客观题-2
专题限时训练建议用时:45分钟一、选择题1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0B.存在x0∈R,2x0>0C.对任意x∈R,2x≤0D.对任意x∈R,2x>0答案:D解析:本题主要考查全称命题与特称命题.由题意知,原命题的否定为“对任意x ∈R,2x>0”.2.下列命题中的假命题是()A.∀x∈R,e x>0B.∀x∈R,x2≥0C.∃x0∈R,sin x0=2D.∃x0∈R,2x0>x20答案:C解析:本题考查命题真假的判定.∀x∈R,sin x≤1<2,所以C选项是假命题.3.(2019·中卫一模)命题“若a2+b2=0,则a=0且b=0”的逆否命题是() A.若a2+b2≠0,则a≠0且b≠0”B.若a2+b2≠0,则a≠0或b≠0”C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0答案:D解析:命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”.4.已知p:x≤1;q:x2-x>0,则p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:本题考查充要条件的判定.依题意,¬q:x2-x≤0,即0≤x≤1;由x≤1不能得知0≤x≤1;反过来,由0≤x≤1可得x≤1.因此,p是¬q成立的必要不充分条件.5.(2019·绵阳模拟)已知命题p:∃x0∈R,使得lgcos x0>0;命题q:∀x<0,3x>0,则下列命题为真命题的是()A.p∧q B.p∨¬qC.¬p∧¬q D.p∨q答案:D解析:命题p:∃x0∈R,使得lgcos x0>0,∵-1≤cos x≤1,∴lgcos x≤0,∴命题p为假命题,命题q:∀x<0,3x>0,是真命题,∴p∧q为假命题,p∨¬q为假命题,¬p∧¬q为假命题,p∨q为真命题.6.若“0<x<1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,则实数a的取值范围是()A.(-∞,0]∪[1,+∞)B.(-1,0)C.[-1,0]D.(-∞,-1)∪(0,+∞)答案:C解析:(x-a)[x-(a+2)]≤0⇒a≤x≤a+2,由集合的包含关系知⎩⎪⎨⎪⎧a ≤0,a +2≥1⇒a ∈[-1,0]. 7.已知命题p :∀x >0,x +4x ≥4;命题q :∃x 0∈(0,+∞),2x 0=12.则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧¬q 是真命题D .¬p ∧q 是真命题 答案:C解析:因为当x >0时,x +4x ≥2x ·4x =4,当且仅当x =2时等号成立,所以p 是真命题,当x 0>0时,2x 0>1,所以q 是假命题,所以p ∧¬q 是真命题,¬p ∧q 是假命题.8.若x ,y ∈R ,则x >y 的一个充分不必要条件是( )A .|x |>|y |B .x 2>y 2 C.x >yD .x 3>y 3答案:C解析:本题考查充要条件的判断.由|x |>|y |,x 2>y 2未必能推出x >y ,排除A,B ;由x >y 可推出x >y ,反之,未必成立,而x 3>y 3是x >y 的充要条件.9.“a ≤-2”是“函数f (x )=|x -a |在[-1,+∞)上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:结合图象可知函数f (x )=|x -a |在[a ,+∞)上单调递增,易知当a ≤-2时,函数f (x )=|x -a |在[-1,+∞)上单调递增,但反之不一定成立.10.(2019·南昌二模)已知函数f (x )=ax 2+x +a ,命题p :∃x 0∈R ,f (x 0)=0,若p 为假命题,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12B.⎝ ⎛⎭⎪⎫-12,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞ 答案:C解析:因为p 为假命题,所以¬p 为真命题,即∀x ∈R ,f (x )≠0,故Δ=1-4a 2<0,解得a >12或a <-12.11.下列命题正确的个数是( )①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件;③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0”.A .1B .2C .3D .4答案:B解析:易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a ·b <0时向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0且a 与b 不反向”,故④不正确.12.(2019·珠海二模)“-1≤x +y ≤1且-1≤x -y ≤1”是“x 2+y 2≤1”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件答案:A解析:作出不等式组对应的平面区域如图.则“-1≤x+y≤1且-1≤x-y≤1对应的区域在单位圆内,则“-1≤x+y≤1且-1≤x-y≤1”是“x2+y2≤1”的充分不必要条件.二、填空题13.已知命题p:∃x∈R,sin x>a,若¬p是真命题,则实数a的取值范围为__________.答案:a≥1解析:依题意得,∀x∈R,sin x≤a恒成立,于是有a≥1.14.(2019春·思明区校级月考)命题p:|x|>1;命题q:x<m,若¬p是¬q的充分不必要条件,则实数m的取值范围为__________.答案:(-∞,-1]解析:由|x|>1得x>1或x<-1,若¬p是¬q的充分不必要条件,则q是p的充分不必要条件,即m≤1,即实数m的取值范围是(-∞,-1].15.(2019春·西湖区校级月考)命题p:若直线与抛物线有且只有一个公共点,则直线与抛物线相切.命题p是__________(真,假)命题,命题p的否命题是__________(真,假)命题.答案:假真解析:当直线和抛物线的对称轴平行时,满足只有一个交点,但此时直线和抛物线是相交关系,即命题p是假命题.命题p的逆命题为:若直线与抛物线相切,则直线与抛物线有且只有一个公共点,正确.命题的否命题和逆命题互为逆否命题,则命题的否命题为真命题.16.已知命题p:∃x0∈R,mx20+2≤0;命题q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是________.答案:[1,+∞)解析:因为p∨q是假命题,所以命题p和q都是假命题.由命题p:∃x0∈R,mx20+2≤0为假命题知,¬p:∀x∈R,mx2+2>0为真命题,所以m≥0.①由命题q:∀x∈R,x2-2mx+1>0为假命题知,¬q:∃x0∈R,x20-2mx0+1≤0为真命题,所以Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②由①和②得m≥1.。
2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2
专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.若∀x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,x 2>x 1,y 1=sin x 1x 1,y 2=sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 答案:B解析:设y =sin x x ,则y ′=(sin x )′·x -sin x ·(x )′x 2=x cos x -sin x x 2.因为在⎝ ⎛⎭⎪⎫0,π2上x <tan x ,所以x cos x -sin x <0,所以y ′<0,所以y =sin x x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以y 1>y 2.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,2) C.⎣⎢⎡⎭⎪⎫1,32 D .⎣⎢⎡⎭⎪⎫32,2答案:C解析:f ′(x )=4x -1x =(2x -1)(2x +1)x .∵x >0,∴由f ′(x )=0得x =12.令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎨⎧k -1≥0,k -1<12<k +1⇒1≤k <32.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .[0,1)B .(-1,1) C.⎝ ⎛⎭⎪⎫0,12 D .(0,1)答案:D解析:f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增, 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.4.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞)答案:D解析:∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞).5.(2019·曲靖二模)已知偶函数f (x )的定义域是(-∞,0)∪(0,+∞),其导函数为f ′(x ),对定义域内的任意x ,都有2f (x )+xf ′(x )>0成立,若f (2)=1,则不等式x 2f (x )<4的解集为( ) A .{x |x ≠0,±2} B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 答案:B解析:令g (x )=x 2f (x )-4,g (2)=0. ∵g (-x )=x 2f (-x )-4=x 2f (x )-4=g (x ),∴g (x )在定义域(-∞,0)∪(0,+∞)上为偶函数.当x >0时,g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )]>0成立. ∴函数g (x )在(0,+∞)上为增函数. ∴不等式x 2f (x )<4⇔g (|x |)<g (2). ∴|x |<2,x ≠0.解得x ∈(-2,0)∪(0,2).6.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ) A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )答案:A解析:因为xf ′(x )≤-f (x ),f (x )≥0, 所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0,则函数f (x )x 在(0,+∞)上单调递减. 由于0<a <b ,则f (a )a ≥f (b )b ,即af (b )≤bf (a ).7.(2019·甘肃模拟)若点(m ,n )在函数f (x )=13x 3-x (x >0)的图象上,则n -m +22的最小值是( ) A.13 B .23 C.223 D .2 2答案:C解析:∵点(m,n)在函数f(x)=13x3-x(x>0)的图象上,∴n=13m3-m,则n-m+22=13m3-2m+2 2.令g(m)=13m3-2m+22(m>0),则g′(m)=m2-2,可得g(m)在(0,2)递减,在(2,+∞)递增,∴g(m)的最小值是g(2)=223.8.定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.不确定答案:C解析:由(x-1)f′(x)<0可知,当x>1时,f′(x)<0,函数单调递减.当x<1时,f′(x)>0,函数单调递增.因为函数f(x+1)是偶函数,所以f(x+1)=f(1-x),f(x)=f(2-x),即函数f(x)图象的对称轴为x=1.所以,若1≤x1<x2,则f(x1)>f(x2);若x1<1,则x2>2-x1>1,此时有f(x2)<f(2-x1),又f(2-x1)=f(x1),所以f(x1)>f(x2).综上,必有f(x1)>f(x2).9.已知函数f(x)=ax-1+ln x,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是()A.a>2 B.a<3 C.a≤1 D.a≥3 答案:C解析:函数f(x)的定义域是(0,+∞),不等式ax-1+ln x≤0有解,即a≤x-x ln x在(0,+∞)上有解,令h(x)=x-x ln x,可得h′(x)=1-(ln x+1)=-ln x.令h′(x)=0,可得x=1,当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.10.直线y =a 分别与直线y =2(x +1),曲线y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324 D .32答案:D解析:解方程2(x +1)=a ,得x =a2-1.设方程x +ln x =a 的根为t (t >0),则t +ln t =a , 则|AB |=⎪⎪⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪⎪⎪t 2-ln t 2+1. 设g (t )=t 2-ln t2+1(t >0), 则g ′(t )=12-12t =t -12t (t >0).令g ′(t )=0,得t =1.当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6.同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立, 故实数a 的取值范围为[-6,-2].12.设函数f (x )=3sin πm x ,若存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2.则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案:C解析:由正弦函数的图象知,f (x )的极值点x 0满足f (x 0)=±3. ∴πx 0m =k π+π2,k ∈Z .∴x 0=⎝ ⎛⎭⎪⎫k +12·m .∴不等式x 20+f 2(x 0)<m 2⇔⎝ ⎛⎭⎪⎫k +122m 2+3<m 2(k ∈Z )⇔m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3(k ∈Z ). 存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2⇔存在整数k 使不等式m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠0且k ≠-1时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不成立.∴k =0或-1时,m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3⇔34m 2>3⇔m >2或m <-2. 二、填空题13.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是__________. 答案:⎝ ⎛⎭⎪⎫-22,0解析:作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0.解得-22<m <0.14.(2019春·潍坊期中)已知函数f (x )的定义域为R ,f (-2)=-2,若对∀x ∈R ,f ′(x )<3,则不等式f (x )>3x +4的解集为________. 答案:(-∞,-2)解析:根据题意,设g (x )=f (x )-3x -4,则g ′(x )=f ′(x )-3.由对∀x ∈R ,f ′(x )<3,则g ′(x )<0,即g (x )在R 上为减函数. 又由f (-2)=-2,则g (-2)=f (-2)+6-4=0, 则f (x )>3x +4⇒f (x )-3x -4>0⇒g (x )>g (-2), 即不等式的解集为(-∞,-2).15.(2019·南开区二模)已知函数f (x )=e x -1e x -2sin x ,其中e 为自然对数的底数,若f (2a 2)+f (a -3)<0,则实数a 的取值范围为________. 答案:⎝ ⎛⎭⎪⎫-32,1解析:∵f (x )=e x -1e x -2sin x ,∴f (-x )=e -x -e x +2sin x =-f (x ), ∵f (x )′=e x +1e x -2cos x ≥2e x ·e -x -2cos x ≥0,∴f (x )在R 上单调递增且为奇函数.由f (2a 2)+f (a -3)<0,可得f (2a 2)<-f (a -3)=f (3-a ), ∴2a 2<-a +3,解得-32<a <1. 16.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案:⎣⎢⎡⎭⎪⎫94,+∞解析:由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min .又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.专题限时训练 (大题规范练)(建议用时:30分钟)1.(2019·河南模拟)已知函数f (x )=x ln x +e. (1)若f (x )≥ax 恒成立,求实数a 的最大值; (2)设函数F (x )=e x -1f (x )-x 2-2x +1,求证:F (x )>0. 解析:(1)函数f (x )=x ln x +e 的定义域为(0,+∞), f (x )≥ax 恒成立⇔a ≤x ln x +e x .令φ(x)=x ln x+ex,则φ′(x)=x-ex2,可得φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)min=φ(e)=2,∴a≤2.故实数a的最大值为2.(2)由(1)可知f(x)≥2x,只需证明2x≥x2+2x-1e x-1.令g(x)=2x-x2+2x-1e x-1,则g′(x)=2-3-x2e x-1=2e x-1+x2-3e x-1.令h(x)=2e x-1+x2-3,h′(x)=2e x-1+2x>0在(0,+∞)恒成立.注意到h(1)=0,所以当x∈(0,1)时,h(x)<0,g′(x)<0,x∈(1,+∞)时,h(x)>0,g′(x)>0,∴g(x)在(0,1)单调递减,在(1,+∞)单调递增,∴g(x)min=g(1)=0.∴2x≥x2+2x-1e x-1.当且仅当x=1时取等号,而f(x)≥2x,当且仅当x=e时取等号,∴F(x)>0.2.(2019·蓉城名校联盟联考)已知函数f(x)=ax2-2(a+1)x+2ln x,a∈R.(1)讨论函数f(x)的单调性;(2)是否存在最大整数k,当a≤k时,对任意的x≥2,都有f(x)<e x(x-1)-ax-ln x成立?(其中e为自然对数的底数,e=2.718 28…),若存在,求出k的值;若不存在,请说明理由.解析:(1)f (x )的定义域为(0,+∞), f ′(x )=2ax -2(a +1)+2x =2(ax -1)(x -1)x,所以当a ∈(-∞,0]时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a ∈(0,1)时,f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,f (x )在(0,+∞)上单调递增;当a ∈(1,+∞)时,f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)ax 2-2(a +1)x +2ln x <e x (x -1)-ax -ln x 对x ≥2恒成立⇔ax 2-(a +2)x +3ln x <e x (x -1). ①当x =2时,得4a -(a +2)×2+3ln 2<e 2, 所以2a <e 2+4-ln 8<8+4-2=10, 所以a <5,则整数k 的最大值不超过4.下面证明:当a ≤4时,不等式①对于x ≥2恒成立, 设g (x )=ax 2-(a +2)x +3ln x -e x (x -1)(x ≥2), 则g ′(x )=2ax -(a +2)+3x -x e x . 令h (x )=2ax -(a +2)+3x -x e x .则h ′(x )=2a -3x 2-(x +1)e x <2a -(x +1)e x ≤2a -3e 2≤8-3e 2<0,所以h (x )在[2,+∞)上单调递减,所以h (x )=2ax -(a +2)+3x -x e x ≤h (2)=3a -12-2e 2≤232-2e 2<0. 即当x ∈[2,+∞)时,g ′(x )<0, 所以g (x )在[2,+∞)上单调递减,所以g(x)=ax2-(a+2)x+3ln x-e x(x-1)≤g(2)=2a-4+3ln 2-e2<8-4+3-e2=7-e2<0.所以a≤4时,不等式①恒成立,所以k的最大值为4.。
4专题四平面向量
热点考向解析
热点考向一 平面向量的概念 【变式训练】 1. ������������+ ������������ − ������������= 答案 0
2.在△ABC中,已知D是BC的中点,则������������ + ������������=
A. AD
B. 2 AD
C. ������������
热点考向解析
【解析】
(1) 因为 8a-b =8(1,1) -(2,5) =(6,3) ,c=(3,x) ,
所以(8a-b)·c=6×3+3x=18+3x,由题可得 18+3x=30,解得 x=4
(2)
a·(a+b)
=a·a+a·b
=
12
+1×1×cos60°=
3 2
(3) 因为 |a|= 12 + (−2)2= 5 |b|= 32 + (−1)2= 10 , a·b =1×3+(-2)×(-1) =5,
所以 cos<a,b>=
5
5×
10=
22,又因为<a,b>
∈
[0,
������
]
,故<a,b>=
������ 4
(4) ������������ ·������������ =1
热点考向解析
【小结】
求平面向量的内积有两种常用的方法: 一是利用平面向量的内积的定义,
即 a·b =|a|·|b|·cos<a,b>;二是利用平面向量的内积的坐标表示,
答案
−
������ ������
3 .【2017年高考题】已知向量 a =(1,m) ,b =(2,3).
高考数学大二轮复习专题二数列第一讲等差数列等比数列限时规范训练理
第一讲 等差数列、等比数列1.(2019·宽城区校级期末)在等差数列{a n }中,已知a 2+a 5+a 12+a 15=36,则S 16=( ) A .288 B .144 C .572D .72解析:a 2+a 5+a 12+a 15=2(a 2+a 15)=36, ∴a 1+a 16=a 2+a 15=18, ∴S 16=16(a 1+a 16)2=8×18=144,故选B. 答案:B2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 解析:由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.答案:C3.(2019·咸阳二模)《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .15.5尺B .12.5尺C .10.5尺D .9.5尺解析:设此等差数列{a n }的公差为d ,则a 1+a 4+a 7=3a 1+9d =37.5,a 1+11d =4.5, 解得:d =-1,a 1=15.5. 故选A. 答案:A4.(2019·德州一模)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( ) A .4 B .8 C .16D .32解析:设等比数列{a n }的公比为q , ∵a 1=1,a 5+a 7a 2+a 4=8, ∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2. 则a 6=25=32. 故选D. 答案:D5.(2019·信州区校级月考)已知等差数列{a n }的首项a 1=2,前n 项和为S n ,若S 8=S 10,则a 18=( )A .-4B .-2C .0D .2解析:∵等差数列{a n }的首项a 1=2,前n 项和为S n ,S 8=S 10, ∴8a 1+7×82d =10a 1+10×92d ,即16+28d =20+45d ,解得d =-417,∴a 18=a 1+17d =2+17×⎝ ⎛⎭⎪⎫-417=-2.故选B. 答案:B6.(2019·南充模拟)已知等比数列{a n }中的各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 10+a 11a 8+a 9=( ) A .1+ 2 B .1- 2 C .3+2 2D .3-2 2解析:等比数列{a n }中的各项都是正数, 公比设为q ,q >0,a 1,12a 3,2a 2成等差数列,可得a 3=a 1+2a 2, 即a 1q 2=a 1+2a 1q , 即q 2-2q -1=0,解得q =1+2(负的舍去),则a 10+a 11a 8+a 9=q 2(a 8+a 9)a 8+a 9=q 2=3+2 2. 故选C. 答案:C7.(2019·林州市校级月考)在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列,又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,则有( )A .a 2≤bc B .a 2>bc C .a 2=bcD .a 2≥bc解析:在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列, 又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,∴⎩⎨⎧2a =x +y ≥2xy ,xy =bc ,∴a 2≥bc . 故选D. 答案:D8.(2019·龙岩期末测试)等差数列{a n }中,若a 4+a 7=2,则2a 1·2a 2·2a 3·…·2a 10=( )A .256B .512C .1 024D .2 048解析:等差数列{a n }中,若a 4+a 7=2, 可得a 1+a 10=a 4+a 7=2, 则2a 1·2a 2·2a 3·…·2a 10=2a 1+a 2+…+a 10=212×10(a 1+a 10)=25×2=1 024.故选C. 答案:C9.(2019·长春模拟)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9 解析:由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.答案:C10.(2019·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n=1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1, 因为b n =1+a n a n =1+1a n,又对任意的n ∈N *都有b n ≥b 8成立, 所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7. 答案:A11.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),4a 5=a 3.设T n=S n -1S n,则数列{T n }中最大项的值为( )A.34B.45C.56D.78解析:设等比数列{a n }的公比为q ,则q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12,故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n-1=(-1)n -1×32n,S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对任意的n ∈N *,总有-712≤S n -1S n <0或0<S n -1S n ≤56,即数列{T n }中最大项的值为56.故选C.答案:C12.(2019·合肥二模)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,则n 的值为( )A .7B .8C .9D .10解析:由题意可得第n 层的货物的价格为a n =n ·⎝ ⎛⎭⎪⎫910n -1,设这堆货物总价是S n =1·⎝ ⎛⎭⎪⎫9100+2·⎝ ⎛⎭⎪⎫9101+3·⎝ ⎛⎭⎪⎫9102+…+n ·⎝ ⎛⎭⎪⎫910n -1,①由①×910可得910S n =1·⎝ ⎛⎭⎪⎫9101+2·⎝ ⎛⎭⎪⎫9102+3·⎝ ⎛⎭⎪⎫9103+…+n ·⎝ ⎛⎭⎪⎫910n,②由①-②可得110S n =1+⎝ ⎛⎭⎪⎫9101+⎝ ⎛⎭⎪⎫9102+⎝ ⎛⎭⎪⎫9103+…+⎝ ⎛⎭⎪⎫910n -1-n ·⎝ ⎛⎭⎪⎫910n =1-⎝ ⎛⎭⎪⎫910n1-910-n ·⎝ ⎛⎭⎪⎫910n=10-(10+n )·⎝ ⎛⎭⎪⎫910n,∴S n =100-10(10+n )·⎝ ⎛⎭⎪⎫910n,∵这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,∴n =10, 故选D. 答案:D13.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7-a 37-3=13-54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.答案:10014.(2019·安徽合肥二模)已知各项均为正数的数列{a n }前n 项和为S n ,若S 1=2,3S 2n -2a n +1S n =a 2n +1,则a n =________.解析:由S 1=2,得a 1=S 1=2. 由3S 2n -2a n +1S n =a 2n +1, 得4S 2n =(S n +a n +1)2.又a n >0,∴2S n =S n +a n +1,即S n =a n +1. 当n ≥2时,S n -1=a n , 两式作差得a n =a n +1-a n ,即a n +1a n=2. 又由S 1=2,3S 21-2a 2S 1=a 22,求得a 2=2. ∴当n ≥2时,a n =2×2n -2=2n -1.验证当n =1时不成立,∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥215.已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin 2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前7项和为________.解析:根据题意,数列{a n }满足a n +2-2a n +1+a n =0,则数列{a n }是等差数列, 又由a 4=π2,则a 1+a 7=a 2+a 6=a 3+a 5=2a 4=π,函数f (x )=sin 2x +2cos 2x2=sin 2x +cos x +1,f (a 1)+f (a 7)=sin 2a 1+cos a 1+1+sin 2a 7+cos a 7+1=sin 2a 1+cos a 1+1+sin 2(π-a 1)+cos (π-a 1)+1=2,同理可得:f (a 2)+f (a 6)=f (a 3)+f (a 5)=2,f (a 4)=sin π+cos π2+1=1,则数列{y n }的前7项和f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)+f (a 6)+f (a 7)=7; 故答案为7. 答案:716.如图,点D 为△ABC 的边BC 上一点,BD →=2DC →,E n (n ∈N )为AC 上一列点,且满足:E n A →=(4a n -1)E n D →+14a n +1-5E n B →,其中实数列{a n }满足4a n -1≠0,且a 1=2,则1a 1-1+1a 2-1+1a 3-1+…+1a n -1=________.解析:点D 为△ABC 的边BC 上一点, BD →=2DC →,E n D →-E n B →=2(E n C →-E n D →),∴E n C →=32E n D →-12E n B →又E n A →=λE n C →=3λ2E n D →-λ2E n B →,4a n -1=-3×14a n +1-5,∴4a n +1-5=-34a n -1,4a n +1-4=1-34a n -1=4a n -44a n -1,a n +1-1=a n -14a n -1, 1a n +1-1=4a n -1a n -1=4+3a n -1,∴1a n +1-1+2=3⎝ ⎛⎭⎪⎫1a n -1+2,∴1a n -1+2=3n, 1a n -1=3n-2. S n =3×(1-3n)1-3-2n =3n +1-3-4n2. 故答案为:3n +1-3-4n2. 答案:3n +1-3-4n2。
2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-2-1
专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.(2018·高考全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12答案:B解析:设该等差数列的公差为d ,根据题中的条件可得3⎝ ⎛⎭⎪⎫3×2+3×22×d =2×2+d +4×2+4×32×d ,整理解得d =-3,所以a 5=a 1+4d =2-12=-10,故选B.2.(2017·江西省五市联考)已知等差数列{a n }的前10项和为30,a 6=8,则a 100=( ) A .100 B .958 C .948 D .18 答案:C解析:法一 因为等差数列{a n }的前10项和为30,所以a 1+a 10=6,即a 5+a 6=6,因为a 6=8,所以a 5=-2,公差d =10,所以-2=a 1+4×10,即a 1=-42,所以a 100=-42+99×10=948,故选C.法二 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧a 1+5d =8,10a 1+10×92d =30,解得⎩⎪⎨⎪⎧a 1=-42,d =10,所以a 100=-42+99×10=948,故选C. 3.已知数列{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110答案:D解析:a 7是a 3与a 9的等比中项,公差为-2,所以a 27=a 3·a 9. 所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20, 所以S 10=10×20+10×92×(-2)=110.故选D.4.(2019·吉林模拟)已知等比数列{a n }的前n 项和为S n ,若1a 1+1a 2+1a 3=2,a 2=2,则S 3=( ) A .8 B .7 C .6 D .4答案:A解析:1a 1+1a 2+1a 3=a 1+a 3a 1a 3+1a 2=a 1+a 2+a 3a 22=S 34=2,则S 3=8.故选A.5.(2019·怀化三模)《孙子算经》是中国古代重要的数学著作,书中有一道题为:今有出门望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?若记堤与枝的个数分别为m ,n ,一等差数列{a n }的前n 项和为S n ,且a 2=m ,S 6=n ,则a 5为( ) A .18 B .81 C .234 D .243 答案:C解析:∵a 2=9,S 6=93, ∴729=6(a 2+a 5)2=3(a 5+9),∴a 5=234.故选C.6.(2018·昆明市调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( ) A .-2nB .2nC .2n -1D .2n +1答案:B解析:由题意,得a 2a 8=a 24.又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.7.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k =( ) A .22 B .23 C .24 D .25答案:A解析:{a n }为等差数列,所以a k =a 1+a 2+…+a 7=7a 4,则a 1+(k -1)d =7(a 1+3d ).因为a 1=0,所以(k -1)d =21d ,d ≠0,解得k =22,故选A.8.正项等比数列{a n }中的a 1,a 4 037是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2 019=()A .1B .2 C. 2 D .-1答案:A解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 037是方程x 2-8x +6=0的两根,所以a 1·a 4 037=a 22 019=6,即a 2 019=6,所以log6a 2 019=1,故选A.9.(2018·湖北八校联考)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=( ) A .36 B .33 C .32 D .31答案:D解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选D.10.(2018·大连模拟)在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( ) A .n (3n -1) B .n (n +3)2 C .n (n +1) D .n (3n +1)2答案:C解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.11.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( ) A.32 B .53 C.256 D .不存在答案:A解析:∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,∴q 2-q -2=0,∴q =2.∵存在两项a m ,a n 使得a m a n =4a 1,∴a m a n =16a 21,∴q m +n -2=16=24,而q =2,∴m +n -2=4,∴m +n =6,∴1m +4n =16(m +n )·⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当m =2,n =4时,等号成立,∴1m +4n 的最小值为32.故选A.12.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510答案:A解析:由于cos 2n π3-sin 2n π3=cos 2n π3以3为周期,故S 30=⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2 =∑k =110 ⎝ ⎛⎭⎪⎫9k -52=9×10×112-25=470.二、填空题13.(2019·北京四中热身卷)若等差数列{a n }满足a 1=12,a 4+a 6=5,则a 2 019=________. 答案:2 0192解析:∵等差数列{a n }满足a 1=12,a 4+a 6=5, ∴12+3d +12+5d =5, 解得d =12,∴a 2 019=12+2 018×12=2 0192.14.等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则{a n }的公比q =__________. 答案:-12解析:由题意得,2S 3=S 1+S 2,∴2(a 1+a 2+a 3)=a 1+(a 1+a 2),整理得a 2+2a 3=0,∴a 3a 2=-12,即公比q =-12.15.(2017·石家庄市高三质量检测)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =__________.答案:78解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2, 所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n4.令T n =n 2+n 4=14,解得n =7,所以a k =78.16.(2018·云南师大附中月考)已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.答案:n ·2n2n -1解析:由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎝ ⎛⎭⎪⎪⎫n -1a n -1-1(n ≥2,n ∈N *). 又1a 1-1=-12,∴数列⎩⎨⎧⎭⎬⎫n a n -1是以-12为首项,12为公比的等比数列,故n a n-1=-12n ,∴a n =n ·2n 2n-1(n ∈N *). 专题限时训练 (大题规范练)(建议用时:60分钟)1.(2019·河北模拟)已知数列{a n }满足a 1=2且a n +1=3a n +2n -1(n ∈N *). (1)求证:数列{a n +n }为等比数列; (2)求数列{a n }的通项公式; (3)求数列{a n }的前n 项和S n .解析:(1)数列{a n }满足a 1=2且a n +1=3a n +2n -1, 可得a n +1+n +1=3a n +3n =3(a n +n ),可得数列{a n +n }是首项为3,公比为3的等比数列. (2)a n +n =3n ,即a n =3n -n (n ∈N *). (3)S n =(3+9+…+3n )-(1+2+…+n ) =3(1-3n )1-3-12n (n +1)=32(3n -1)-12n (n +1).2.(2017·山西省八校联考)已知等比数列{a n }的公比q >1,a 1=1,且2a 2,a 4,3a 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2na n ,求数列{b n }的前n 项和T n .解析:(1)由2a 2,a 4,3a 3成等差数列可得2a 4=2a 2+3a 3,即2a 1q 3=2a 1q +3a 1q 2. 又q >1,a 1=1,故2q 2=2+3q , 即2q 2-3q -2=0,得q =2, 因此数列{a n }的通项公式为a n =2n -1. (2)b n =2n ×2n -1=n ×2n ,T n =1×2+2×22+3×23+…+n ×2n , ① 2T n =1×22+2×23+3×24+…+n ×2n +1, ② ①-②得-T n =2+22+23+…+2n -n ×2n +1,-T n =2(2n -1)2-1-n ×2n +1,T n =(n -1)×2n +1+2.3.(2017·福建省高中毕业班质量检测)已知等差数列{a n }的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }的前n 项和T n 满足T n =(n +5)a n . (1)求a n ;(2)求数列{1a nb n}的前n 项和.解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧ a 2=2,S 5=15,即⎩⎪⎨⎪⎧a 1+d =2,5a 1+10d =15,解得a 1=d =1,所以a n =n .(2)由(1)得,a n =n ,所以T n =n (n +5).当n ≥2时,b n =T n -T n -1=n (n +5)-(n -1)(n +4)=2n +4, 当n =1时,b 1=T 1=6也满足上式, 所以b n =2n +4(n ∈N *).所以1a n b n =1n (2n +4)=12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2. 设{1a nb n }的前n 项和为P n ,则当n ≥2时,P n =1a 1b 1+1a 2b 2+…+1a n b n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12+13+…+1n -⎝ ⎛⎭⎪⎫13+14+…+1n +1n +1+1n +2 =14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14(n +1)-14(n +2).当n =1时,P 1=1a 1b 1=16也满足上式.综上,P n =38-14(n +1)-14(n +2).4.已知数列{a n }满足:a 1=1,na n +1=2(n +1)a n +n (n +1)(n ∈N *). (1)若b n =a nn +1,试证明数列{b n }为等比数列; (2)求数列{a n }的通项公式a n 及其前n 项和S n .解析:(1)证明:由na n +1=2(n +1)a n +n (n +1)得a n +1n +1=2a nn +1,得a n +1n +1+1=2a n n +2=2⎝ ⎛⎭⎪⎫a n n +1,即b n +1=2b n .又b 1=2,所以数列{b n }是以2为首项,2为公比的等比数列. (2)由(1)知b n =2n ,得a nn +1=2n ,即a n =n (2n -1),∴S n =1×(2-1)+2×(22-1)+3×(23-1)+…+n (2n -1) =1×2+2×22+3×23+…+n ·2n -(1+2+3+…+n ) =1×2+2×22+3×23+…+n ·2n-n (n +1)2.令T n =1×2+2×22+3×23+…+n ·2n , 则2T n =1×22+2×23+3×24+…+n ·2n +1, 两式相减,得-T n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,∴T n =2(1-2n )+n ·2n +1=(n -1)·2n +1+2,n(n+1)∴S n=(n-1)·2n+1+2-2.。
高考二轮复习限时训练(二)
高考二轮复习限时训练(二)(时间:60分钟)班级 姓名 得分一.填空题(每题5分,共60分)1. 已知复数121,2z i z i =-=+,那么12z z ⋅的值是 .2. 集合{}22,A x x x R =-≤∈ {}2|,12B y y x x ==--≤≤,则()R C A B= .3. 函数x y 2sin =向量a 平移后,所得函数的解析式是12cos +=x y ,则模最小的一个向量a = .4. 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表 (单位:环)如果甲、乙两人中只有1人入选,则入选的最佳人选应是 .5. 曲线在53123+-=x x y 在1=x 处的切线的方程为 .6. 已知实数x ,y 满足22,052yx y x +=++那么的最小值为 .7. 如图,是棱长为2的正四面体的左视图,则其主视图的面积为 . 8. 设数列{}n a 的首项127,5a a =-=,且满足22()n n a a n N ++=+∈,则135a a a a++++ = . 9.已知tan()35πα-=-则22sin cos 3cos 2sin αααα=- .10.阅读下列程序: Read S ←1For I from 1 to 5 step 2 S ←S+I Print S End for End输出的结果是 .11. 设函数()()f x g x 、在R 上可导,且导函数''()()f x g x >,则当a x b <<时,下列不等式:(1)()()f x g x >(2)()()f x g x <(3)()()()()f x g b g x f b +<+(4) ()()()()f x g a g x f a +>+ 正确的有 .12. 已知抛物线的顶点在原点,焦点在x 轴的正半轴上,F 为焦点,,,A B C 为抛物线上的三点,且满足0FA FB FC ++= ,FA + FB + 6FC =,则抛物线的方程为 .二.解答题(每题15分,共30分)13.直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(1)求证:平面⊥C AB 1平面CB B 1; (2)求三棱锥C AB A 11-的体积.14.已知二次函数),,(,)(2R c b a c bx ax x f ∈++=满足:对任意实数x ,都有x x f ≥)(,且当∈x (1,3)时,有2)2(81)(+≤x x f 成立。
统考版2023高考化学二轮专题复习考前非选择题适应性训练训练一
训练(一)(满分:58分限时:40分钟)非选择题(包括必考题和选考题两部分。
第26~28题为必考题,每道题考生都必须作答。
第35、36题为选考题,考生根据要求作答。
)(一)必考题(共43分)26.(14分)钼酸锂(Li2MoO4)的外观为白色结晶粉末,易溶于水,难溶于有机溶剂,用于电极材料、金属陶瓷的制作。
工业上以某精选钼矿(主要含MoS2,还含有少量CuFeS2)为原料制备Li2MoO4,其工艺流程如图:回答下列问题:、Cl-,“酸浸、氧化”过程中,(1)“滤液1”含有的离子主要有Fe2+、Cu2+、SO2-4CuFeS2与FeCl3溶液反应的离子方程式为________________________________________________________________________ ________________________________________________________________________。
(2)写出“氧化、灼烧”时发生反应的化学方程式:。
(3)MoO3属于氧化物(填“酸性”“碱性”或“两性”)。
(4)“酸化沉钼”过程中,溶液pH和反应时间对钼酸的析出有很大影响,根据图中数据判断最佳的“酸化沉钼”条件:pH为、反应时间为;滤液2中含有的主要溶质的用途是(填一种即可)。
(实线、虚线分别表示其他条件相同时反应时间、pH 对实验结果的影响)(5)H 2MoO 4和Li 2CO 3在熔融状态下反应也可生成Li 2MoO 4,写出反应的化学方程式: 。
在实验中该熔融操作可以在 (填字母)中进行。
A .陶瓷坩埚B .石英坩埚C .铁坩埚(6)将“滤液1”用酸性H 2O 2氧化,得到含c (Fe 3+)=0.01 mol·L -1、c (Cu 2+)=0.22 mol·L -1的混合溶液。
若调节pH 使溶液中Fe 3+浓度不超过5.0×10-6 mol·L -1,而Cu 2+全部留在母液中,则该溶液的pH 范围为 {已知K sp [Fe (OH )3]=4.0×10-38,K sp [Cu (OH )2]=2.2×10-20,lg 2=0.3}。
2020届高考数学(理)二轮专题复习: 专题一 集合、常用逻辑用语、平面向量、复数 1-1-2 Word版含答案.doc
限时规范训练二 平面向量、复数运算限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3解析:选C.a +i 2-i =2a -1+a +5,由题意知2a -1=a +2,解之得a =3.2.若复数z 满足(1+2i)z =(1-i),则|z |=( ) A.25 B.35 C.105D.10解析:选C.z =1-i 1+2i =-1-3i 5⇒|z |=105.3.已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 解析:选B.2z -z 2=21+i -(1+i)2=-+--2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.4.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1解析:选C.∵z 为纯虚数,∴a =2,∴a +i 71+a i =2-i 1+2i=2--2i +2-2=-3i 3=-i.5.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:选B.∵复数z =11-i=1+i -+=12+12i ,∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.6.若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12B.2-1C .1D.2+12解析:选A.由z (1-i)=|1-i|+i ,得z =2+i1-i=2++-+=2-12+2+12i ,z 的实部为2-12,故选A. 7.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =( ) A .2 B .3 C .4D .5解析:选B.由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3,故选B. 8.已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83D.53解析:选B.∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ×13(2x +3y )=13⎝ ⎛⎭⎪⎫6+9y x +4x y +6≥13⎝ ⎛⎭⎪⎫12+29y x·4x y =8,当且仅当2x =3y=32时,等号成立. ∴3x +2y的最小值是8.故选B.9.在平行四边形ABCD 中,AC =5,BD =4,则AB →·BC →=( ) A.414B .-414C.94D .-94解析:选C.因为BD →2=(AD →-AB →)2=AD →2+AB →2-2AD →·AB →,AC →2=(AD →+AB →)2=AD →2+AB →2+2AD →·AB →,所以AC →2-BD →2=4AD →·AB →,∴AD →·AB →=AB →·BC →=94.10.在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →·AC →=-4,则△ABC 的面积为( ) A .4 B .5 C .2D .3解析:选C.∵AB →=(2,2),∴|AB →|=22+22=2 2. ∵AB →·AC →=|AB →|·|AC →|cos A =22×2cos A =-4, ∴cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB →|·|AC →|sin A =2.故选C.11.△ABC 的外接圆的圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在BC →方向上的投影为( )A.12B.32 C .-12D .-32解析:选A.由2AO →=AB →+AC →可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以|OA →|=|OB →|=|OC →|,由题意知|OA →|=|AB →|=1,故△OAB 为等边三角形,所以∠ABC =60°.所以向量BA →在BC →方向上的投影为|BA →|cos∠ABC =1×cos 60°=12.故选A.12.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9解析:选D.由平面向量的数量积的几何意义知,AM →·AN →等于AM →与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB 2→+AD 2→+32AB →·AD →=9. 二、填空题(本题共4小题,每小题5分,共20分) 13.已知复数z =3+i -32,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i -32=3+i-2-23i =3+i -+3=3+-3-+3-3=23-2i -8=-34+14i ,∴z ·z =⎝ ⎛⎭⎪⎫-34+14i ⎝ ⎛⎭⎪⎫-34-14i =316+116=14. 答案:1414.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 夹角的大小为________.解析:|a +x b |≥|a +b |恒成立⇒a 2+2x a ·b +x 2b 2≥a 2+2a·b +b 2恒成立⇒x 2+2a ·b x -1-2a ·b ≥0恒成立,∴Δ=4(a·b )2-4(-1-2a·b )≤0⇒(a·b +1)2≤0,∴a·b =-1,∴cos〈a ,b 〉=a·b |a |·|b |=-12,又〈a ,b 〉∈[0,π],故a 与b 的夹角的大小为2π3.答案:23π15.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO →·BC →=________.解析:如图,取BC 的中点M ,连OM ,AM ,则AO →=AM →+MO →, ∴AO →·BC →=(AM →+MO →)·BC →.∵O 为△ABC 的外心,∴OM ⊥BC ,即OM →·BC →=0,∴AO →·BC →=AM →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC 2→-AB 2→)=12(62-42)=12×20=10.答案:1016.已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________.解析:设OA →=a ,OB →=b ,则BA →=a -b . ∵非零向量a ,b ,c 满足|a |=|b |=|a -b |, ∴△OAB 是等边三角形. 设OC →=c ,则AC →=c -a ,BC →=c -b .∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上,∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos 30°=233.答案:233。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题限时训练(一) 集合、常用逻辑用语A 组(时间:30分钟 分数:80分)一、选择题(每小题5分,共60分)1.(2015·陕西卷)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]答案:A解析:M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1],故选A.2.(2015·聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4答案:D解析:因为A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},所以⎩⎨⎧ a 2=16,a =4,则a =4.3.(2015·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:因为a >2,则a 2>2a 成立,反之不成立,所以“a >2”是“a 2>2a ”成立的充分不必要条件.4.已知集合A ={z ∈C |z =1-2a i ,a ∈R },B ={z ∈C||z |=2},则A ∩B 等于( )A .{1+3i,1-3i}B .{3-i}C .{1+23i,1-23i}D .{1-3i}答案:A解析:A ∩B 中的元素同时具有A ,B 的特征,问题等价于|1-2a i|=2,a ∈R ,解得a =±32.故选A.5.(2015·济南模拟)设A ,B 是两个非空集合,定义运算A ×B ={x |x ∈A ∪B 且x ∉A ∩B }.已知A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A ×B =( )A .[0,1]∪(2,+∞)B .[0,1)∪[2,+∞)C .[0,1]D .[0,2]答案:A解析:由题意得A ={x |2x -x 2≥0}={x |0≤x ≤2},B ={y |y >1},所以A ∪B =[0,+∞),A ∩B =(1,2],所以A ×B =[0,1]∪(2,+∞).6.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立;②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b ”的逆否命题;④若p 且q 为假命题,则p ,q 均为假命题.其中真命题是( )A .①②③B .①②④C .①③④D .②③④答案:A解析:①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x ≥2,得x >1; ③中由a >b >0,得1a <1b ,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.7.(2015·衡中二模)设集合P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2x 2+2x =⎝ ⎛⎭⎪⎫12-x -6,集合T ={x |mx +1=0},若T ⊆P ,则实数m 的取值组成的集合是( )A.⎩⎨⎧⎭⎬⎫13,12B.⎩⎨⎧⎭⎬⎫13 C.⎩⎨⎧⎭⎬⎫13,-12,0 D.⎩⎨⎧⎭⎬⎫-12 答案:C解析:由2 x 2+2x =⎝ ⎛⎭⎪⎫12-x -6,得2x 2+2x =2x +6, ∴x 2+2x =x +6,即x 2+x -6=0,∴集合P ={2,-3}.若m =0,则T =∅⊆P .若m ≠0,则T =⎩⎨⎧⎭⎬⎫-1m , 由T ⊆P ,得-1m =2或-1m =-3,∴m =-12或m =13.故选C.8.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值范围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)答案:C解析:(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知,⎩⎨⎧ a ≤0,a +2≥1⇒a ∈[-1,0].9.(2015·江西南昌调研)下列说法错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若命题p :∃x 0∈R ,x 20+x 0+1<0,则綈p :∀x ∈R ,x 2+x +1≥0C .若x ,y ∈R ,则“x =y ”是“xy ≥⎝ ⎛⎭⎪⎫x +y 22”的充要条件 D .已知命题p 和q ,若“p 或q ”为假命题,则命题p 与q 中必有一真一假 答案:D解析:易知A ,B 正确;由xy ≥⎝ ⎛⎭⎪⎪⎫x +y 22⇔4xy ≥(x +y )2⇔4xy ≥x 2+y 2+2xy ⇔(x -y )2≤0⇔x =y 知,C 正确;对于D ,命题“p 或q ”为假命题,则命题p 与q 均为假命题,所以D 不正确.10.(2015·洛阳模拟)有如下四个命题:p 1:∃x 0∈(0,+∞),⎝ ⎛⎭⎪⎫12x 0 <⎝ ⎛⎭⎪⎫13x 0 ; p 2:∃x 0∈⎝ ⎛⎭⎪⎫13,12,x 120=⎝ ⎛⎭⎪⎫13x 0 ; p 3:∀x ∈R,2x >x 2;p 4:∀x ∈(1,+∞),⎝ ⎛⎭⎪⎫32x -1>log 13x . 其中真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4答案:D解析:根据指数函数的性质,∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x , 故命题p 1是假命题;令f (x )=⎝ ⎛⎭⎪⎫13x -x 12 , 则f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫13 13 -⎝ ⎛⎭⎪⎫13 12 >0, f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1312 -⎝ ⎛⎭⎪⎫12 12 <0, 所以f ⎝ ⎛⎭⎪⎫13f ⎝ ⎛⎭⎪⎫12<0,所以命题p 2是真命题;当x =2时,2x =22=4,x 2=22=4,故2x >x 2不成立,命题p 3是假命题;当x >1时,⎝ ⎛⎭⎪⎫32x -1>1,log 13x <0, 故⎝ ⎛⎭⎪⎫32x -1>log 13x 恒成立, 命题p 4是真命题,故选D.11.(2015·陕西五校第二次模拟)下列命题正确的个数是( )①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件; ③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0”.A .1B .2C .3D .4答案:B解析:易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a ·b <0得向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0且a 与b 不反向”,故④不正确.12.(2015·江西鹰潭一模)已知命题p :已知实数a ,b ,则ab >0是a >0且b >0的必要不充分条件,命题q :在曲线y =cos x 上存在斜率为2的切线,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题答案:C 解析:显然命题p 为真命题,命题q :y =cos x 的导函数为y ′=-sin x ,-1≤y ′≤1,故曲线y =cos x 上不存在斜率为2的切线,q 为假命题,綈q 为真命题,所以p ∧(綈q )为真命题,故选C.二、填空题(每小题5分,共20分)13.(2015·济南模拟)已知集合A ={x ||x -1|<2},B ={x |log 2x <2},则A ∩B =________. 答案:{x |0<x <3}解析:将两集合化简,得A ={x |-1<x <3},B ={x |0<x <4},故结合数轴得A ∩B ={x |-1<x <3}∩{x |0<x <4}={x |0<x <3}.14.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.答案:[1,+∞)解析:因为p ∨q 是假命题,所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知,綈p :∀x ∈R ,mx 2+2>0为真命题,所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知,綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1.15.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.答案:{2,4,6,8}解析:U =A ∪B ={x ∈N *|lg x <1}={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4}={1,3,5,7,9},所以B ={2,4,6,8}.16.下列命题中,是假命题的是________.①存在α,β∈R ,有tan(α+β)=tan α+tan β;②对任意x >0,有lg 2x +lg x +1>0;③△ABC ,A >B 的充要条件是sin A >sin B ;④对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数.答案:④解析:对于①,当α=β=0时,tan(α+β)=0=tan α+tan β,因此①是真命题;对于 ②,注意到lg 2x +lg x +1=⎝⎛⎭⎪⎫lg x +122+34≥34>0,因此②是真命题;对于③,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此③是真命题;对于④,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,所以④是假命题.B 组(时间:30分钟 分数:80分)一、选择题(每小题5分,共60分)1.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个答案:B 解析:由M ={x |-2≤x -1≤2},得M ={x |-1≤x ≤3},则M ∩N ={1,3},有2个.2.已知集合A ={x |log 2x <1},B ={x |0<x <c ,其中c >0}.若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)答案:D解析:因为A ={x |log 2x <1}={x |0<x <2},由A ∪B =B ,得A ⊆B ,又B ={x |0<x <c ,其中c >0},所以结合数轴,得c ≥2,故选D.3.(2015·吉林长春质检)已知p :函数f (x )=|x +a |在(-∞,-1)上是单调函数;q :函数g (x )=log a (x +1)(a >0且a ≠1)在(-1,+∞)上是增函数,则綈p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:C解析:p 成立⇔a ≤1,所以綈p 成立⇔a >1,又q 成立⇔a >1,则綈p 是q 的充要条件,故选C.4.(2015·北京朝阳模拟)设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 恰恰含有一个整数,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34B.⎣⎢⎡⎭⎪⎫34,43 C.⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞) 答案:B解析:A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数f (x )=x 2-2ax -1的图象的对称轴为x =a (a >0),f (0)=-1<0,根据f (x )的图象可知,要使A ∩B 中恰含有一个整数,则这个整数为2,所以有f (2)≤0且f (3)>0,即⎩⎨⎧ 4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧ a ≥34,a <43,即34≤a <43.5.已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有( )A .1个B .2个C .4个D .8个答案:B解析:|a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)(a 2-3)=0⇒a =2或a =±3(舍),即A 中只有一个元素2,故A 的子集只有2个,故选B.6.(2015·济宁模拟)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .“x =6”是“x 2-5x -6=0”的必要不充分条件C .命题“对任意x ∈R 均有x 2-x +1>0”的否定是:“存在x 0∈R 使得x 20-x 0+1<0”D .命题“若x =y ,则cos x =cos y ”的逆否命题为真命题答案:D解析:命题“若x 2=1,则x =1”的否命题为:“若x 2≠1,则x ≠1”,A 错误;“x =6”是“x 2-5x -6=0”的充分不必要条件,B 错误;命题“对任意x ∈R 均有x 2-x +1>0”的否定是:“存在x 0∈R 使得x 20-x 0+1≤0”,C 错误;命题“若x =y ,则cos x =cos y ”为真命题,故其逆否命题为真命题.7.M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为( )A .1B .-1C .-1或1D .0或1或-1答案:D解析:由于M ∩N =N ,所以N ⊆M ,而M ={a },N ={x |ax -1=0},当a =0时,N =∅,符合题意;当a ≠0时,N =⎩⎨⎧⎭⎬⎫1a , 依题意有a =1a ,所以得a =±1.综上,实数a 的值为0或1或-1.8.已知命题p :方程x 2+mx +1=0有两个不相等的负实数根.命题q :方程4x 2+4(m -2)x +1=0无实数根,若“p 或q ”为真命题,“p 且q ”为假命题,则m 的取值范围是( )A .{m |m ≥3}B .{m |1<m ≤2}C .{m |1<m ≤3}D .{m |m ≥3或1<m ≤2}答案:D解析:由p ,得⎩⎨⎧ Δ1=m 2-4>0,-m <0,则m >2. 由q ,得Δ2=16(m -2)2-16=16(m 2-4m +3)<0,则1<m <3. 因为“p 或q ”为真,“p 且q ”为假,所以p 与q 一真一假.①当p 真q 假时,⎩⎨⎧ m >2,m ≤1或m ≥3,解得m ≥3;②当p 假q 真时,⎩⎨⎧ m ≤2,1<m <3,解得1<m ≤2.所以m 的取值范围为{m |m ≥3或1<m ≤2}.9.给出以下三个命题:①若ab ≤0,则a ≤0或b ≤0;②在△ABC 中,若sin A =sin B ,则A =B ;③在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根. 其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .②③答案:B解析:①的否命题是:若ab >0,则a >0且b >0,为假命题,也有可能是a <0且b <0,对②,由正弦定理,得sin A =sin B ⇔a =b ⇔A =B ,正确.对③,原命题错误,若b 2-4ac <0,则方程无实数根,所以,只有②的四种命题都是真命题.10.(2015·山西质检)给定下列三个命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数;p 2:∃a ,b ∈R ,a 2-ab +b 2<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ).则下列命题中的真命题为( )A .p 1∨p 2B .p 2∧p 3C .p 1∨綈p 3D .綈p 2∧p 3答案:D 解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1, f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题; 对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题; 对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3是真命题.所以綈p 2∧p 3为真命题,故选D.11.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z },若P ∩Q ≠∅,则m 等于( )A .1B .2C .1或52D .1或2答案:D解析:由于Q ={x |2x 2-5x <0,x ∈Z }=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <52,x ∈Z ={1,2}, 而P ={0,m }且P ∩Q ≠∅,故m =1或2.故选D.12.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },则集合A ×B 中属于集合{(x ,y )|log x y ∈N }的元素个数是( )A .3B .4C .8D .9答案:B解析:由给出的定义得A ×B ={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log 22=1,log 24=2,log 28=3,log 44=1,因此一共有4个元素,故选B.二、填空题(每小题5分,共20分)13.(2015·西安模拟)设A 是自然数集的一个非空子集,对于k ∈A ,如果k 2∉A ,则k ∉A ,那么k 是A 的一个“酷元”,给定S ={x ∈N |y =lg(36-x 2)},设M ⊆S ,且集合M 中的两个元素都是“酷元”,那么这样的集合M 的个数为________.答案:5解析:由题意知,S 为函数y =lg(36-x 2)的定义域内的自然数集,由36-x 2>0,解得-6<x <6,又因为x ∈N ,所以S ={0,1,2,3,4,5}.依题意可知,若k 是集合M 的“酷元”是指k 2与k 都不属于集合M .显然当k =0时,k 2=k =0;当k =1时,k 2=k =1.所以0,1都不是“酷元”.若k =2时,则k 2=4;若k =4,则k =2.所以2与4不能同时在集合M 中,才能称为“酷元”.显然3与5都是集合S 中的“酷元”.综上,若集合M 中所含两个元素都是“酷元”,则这两个元素的选择可分为两类: ①只选3与5,即M ={3,5};②从3与5中任选一个,从2与4中任选一个,即M ={3,2}或{3,4}或{5,2}或{5,4}. 所以满足条件的集合M 共有5个.14.对r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0,如果对∀x ∈R ,r (x )为假命题,s (x )为真命题,则m 的取值范围是________.答案:[-2,2)解析:若r (x )为真命题,即对∀x ∈R ,sin x +cos x >m 为真命题,则m <(sin x +cos x )min ,又因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,且-2≤2sin ⎝ ⎛⎭⎪⎫x +π4≤2,所以m <-2,因为r (x )为假命题,则m ≥-2,若s (x )为真命题,即对∀x ∈R ,x 2+mx +1>0,所以Δ=m 2-4<0,所以-2<m <2,又因为r (x )为假命题,s (x )为真命题,所以⎩⎨⎧ m ≥-2,-2<m <2,所以-2≤m <2.15.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.答案:①④解析:对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①为真命题;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②为假命题;对③,由x 2=4得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③为假命题;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④为真命题.16.(2015·日照模拟)已知有限集A ={a 1,a 2,a 3,…,a n }(n ≥2,n ∈N ).如果A 中元素a i (i =1,2,3,…,n )满足a 1a 2…a n =a 1+a 2+…+a n ,就称A 为“复活集”,给出下列结论:①集合⎩⎨⎧⎭⎬⎫-1+52,-1-52是“复活集”; ②若a 1,a 2∈R ,且{a 1,a 2}是“复活集”,则a 1a 2>4;③若a 1,a 2∈N *,则{a 1,a 2}不可能是“复活集”;④若a i ∈N *,则“复活集”A 有且只有一个,且n =3.其中正确的结论是________.答案:①③④解析:易判断①是正确的;②不妨设a 1+a 2=a 1a 2=t ,则由根与系数的关系知a 1,a 2是一元二次方程x 2-tx +t =0的两个根,由Δ>0,可得t <0或t >4,故②错;③不妨设A 中a 1<a 2<a 3<…<a n ,由a 1a 2…a n =a 1+a 2+…+a n <na n ,得a 1a 2…a n -1<n , 当n =2时,即有a 1<2,所以a 1=1,于是1+a2=a2,a2无解,即不存在满足条件的“复活集”,故③正确;当n=3时,a1a2<3,故只有a1=1,a2=2,求得a3=3,于是“复活集”A只有一个,为{1,2,3}.当n≥4时,由a1a2…a n-1≥1×2×3×…×(n-1),即有n>(n-1)!,也就是说“复活集”A存在的必要条件是n>(n-1)!,事实上,(n-1)!≥(n-1)(n-2)=n2-3n+2=(n-2)2-2+n>2,矛盾,所以当n≥4时不存在复活集A,故④正确.。