黑龙江省大庆实验中学2020届高三5月第一次模拟数学(理)含解析

合集下载

2020年黑龙江省大庆实验中学高考数学模拟试卷(理科)(二)(5月份) (含答案解析)

2020年黑龙江省大庆实验中学高考数学模拟试卷(理科)(二)(5月份) (含答案解析)

2020年黑龙江省大庆实验中学高考数学模拟试卷(理科)(二)(5月份)一、选择题(本大题共12小题,共60.0分)1.已知A={x|x2−2x≤0},B={x|y=lgx},则A∪B=()A. RB. (0,+∞)C. [0,+∞)D. [1,+∞)2.复数Z=i1+i(其中i为虚数单位)的虚部是()A. −12B. 12i C. 12D. −12i3.已知回归方程y^=1.5x−15,则()A. y=1.5x−15B. 15是回归系数aC. 1.5是回归系数aD. x=10时,y=04.函数f(x)=lg(|x|+x2)(|x|−1)x的图象大致为()A. B.C. D.5.如图是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为()A. 8−π4B. 8−πC. 83−π4D. 83−π6.已知数列{a n}是公比为2的等比数列,若a3a4a5=8,则a6等于()A. 4B. 8C. 12D. 167. 圆M:x 2+y 2−2x −2y +1=0与直线x a +y b =1(a >2,b >2)相切,则a +2b 的最小值为( ) A. 8 B. 10 C. 12 D. 148. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若c =2,C =π3,且a +b =3,则△ABC 的面积为 ( )A. 13√312 B. 5√34 C. 512 D. 5√3129. 下列表示旅客搭乘火车的流程正确的是( )A. 买票→候车→检票→上车B. 候车→买票→检票→上车C. 买票→候车→上车→检票D. 候车→买票→上车→检票 10. 双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与圆x 2+y 2=a 2相切,与C 的左、右两支分别交于点A 、B ,若|AB|=|BF 2|,则C 的离心率为( )A. √5+2√3B. 5+2√3C. √3D. √5 11. 已知图象经过点(7π12,0)的函数f(x)=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,则φ=( )A. −π3B. π6C. π3D. −π6 12. 函数f(x)=x 2−ax +1在区间(12,3)上有零点,则实数a 的取值范围是( )A. (2,+∞)B. [2,+∞)C. [2,103)D. [2,52) 二、填空题(本大题共4小题,共20.0分)13. 二项式(ax 2√x )5展开式中的常数项为5,则实数a = ______ .14. 已知向量a⃗ =(3,1),b ⃗ =(−2,4),求a ⃗ 在b ⃗ 方向上的投影为______ . 15. 已知在三棱锥P −ABC 中,PA ⊥平面ABC ,AB =AC =PA =2,且在△ABC 中,∠BAC =120°,则三棱锥P −ABC 的外接球的体积为______ .16. 已知数列{a n }中,a 1=3,a n+1=1a n −1+1,则a 2014= ______ .三、解答题(本大题共7小题,共84.0分)17. 已知:△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos2B −cos(A +C)=0.(Ⅰ)求角B 的大小;(Ⅱ)若sinA =3sinC ,△ABC 的面积为3√34,求b 边的长.18.如图,底面为正方形的四棱锥P−ABCD中,PA⊥平面ABCD,E为棱PC上一动点,PA=AC.(1)当E为PC中点时,求证:PA//平面BDE;(2)当AE⊥平面PBD时,求二面角P−BD−E的余弦值.19.为了精准备考,某市组织高三年级进行摸底考试,已知全体考生的数学成绩X近似服从正态分布N(100,100)(满分为150分,不低于120分为成绩优秀).(1)若参加考试的人数为30000,求P(X⩾120)及成绩优秀的学生人数;(2)从全体考生中随机抽取3人,ξ表示数学成绩为(90,110]的人数,求ξ的分布列与期望.附:若X ∼N(μ,σ2),则P(μ−σ<X ≤μ+σ)≈23;P(μ−2σ<X ≤μ+2σ)≈1920.20. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)和直线l :y =bx +2,椭圆的离心率e =√63,坐标原点到直线l 的距离为√2.(1)求椭圆的方程;(2)已知定点E(−1,0),若直线y =kx +2(k ≠0)与椭圆相交于C ,D 两点,试判断是否存在实数k ,使得以CD 为直径的圆过定点E ?若存在,求出k 的值;若不存在,请说明理由.21. 已知函数f(x)=e x −ae −x −(a +1)x(a ∈R).(其中常数e =2.71828…,是自然对数的底数).(1)求函数f(x)的极值点;(2)若对于任意0<a <1,关于x 的不等式[f(x)]2<λ(e a−1−a)在区间(a −1,+∞)上存在实数解,求实数λ的取值范围.22.直角坐标系xOy中,曲线C的参数方程为{x=1+√3cosα,其中α为参数,直线l的方程y=√3sinα为x+√3y−2=0,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.(1)求曲线C的普通方程和直线l的极坐标方程;(2)已知射线OA:θ=π与曲线C和直线l分别交于M,N两点,求线段MN的长.323.已知函数f(x)=|2x−1|−|x+3|,∀a,b∈[1,+∞),|a+b|≤m|ab+1|.2(1)解不等式f(x)≤2;(2)证明:∀x∈R,f(x)≥−1−m.-------- 答案与解析 --------1.答案:C解析:解:A={x|x2−2x≤0}={x|0≤x≤2},B={x|y=lgx}={x|x>0},则A∪B={x|x≥0}=[0,+∞).故选:C.化简集合A、B,根据并集的定义写出A∪B.本题考查了集合的化简与运算问题,是基础题.2.答案:C解析:解:复数Z=i1+i =i(1−i)(1+i)(1−i)=12+12i,则虚部为12,故选:C.先化简复数,由虚部的定义可得答案.本题考查复数的基本概念,属基础题.3.答案:A解析:解:回归直线必要样本中心点(x,y)点,故y=1.5x−15,即A正确;回归直线方程为y=bx+a中,一次项系数是回归系数b,常数项为回归系数a,故−15是回归系数a,故B错误;1.5是回归系数b,故C错误;x=10时,y的预报值为0,但y值不一定为0,故D错误故选A根据回归直线必要样本中心点(x,y)点,代入可判断A的真假;根据回归直线方程为y=bx+a中,一次项系数是回归系数b,常数项为回归系数a,可判断B,C的真假;根据回归直线的意义,可判断D的真假.本题考查的知识点是线性回归方程,熟练掌握线性回归方程的基本概念是解答的关键.解析:先判断函数的奇偶性,然后令x =2进行计算,判断函数值的符号是否一致即可.本题主要考查函数图象的识别和判断,利用函数奇偶性,和特殊值的关系是解决本题的关键. 解:f(−x)=lg(|−x|+(−x)2)(|−x|−1)(−x)=−lg(|x|+x 2)(|x|−1)x =−f(x),则f(x)是奇函数,图象关于原点对称,排除C ,D ,f(2)=lg(2+4)2=lg62>0,排除B ,故选:A .5.答案:C解析:【试题解析】本题主要考查了三视图,棱锥的体积公式,圆柱的体积公式,属于较易题.该几何体是一个正四棱锥挖去一个圆柱,利用体积公式可得结果.解:该几何体是一个正四棱锥挖去一个圆柱,正四棱锥的底面边长为2,高为2,其体积为13×22×2=83,圆柱的底面半径为12,高为1,其体积为π×(12)2×1=π4, 则该几何体的体积为V =83−π4,故选C . 6.答案:B解析:本题考查等比数列的通项公式,属基础题.由题意可得a 4的值,进而由等比数列的通项公式可得.解:∵数列{a n }是公比为2的等比数列,且a 3a 4a 5=8,∴a 43=8,解得a 4=2,∴a 6=a 4×22=8,故选:B解析:本题考查直线与圆的位置关系,利用基本不等式求最值,涉及点到直线的距离公式的用法,属中档题.根据圆M 与直线相切,即圆心到直线的距离等于半径解得a =2b−2b−2,则a +2b =2b−2b−2+2b =2b−2+2(b −2)+6,根据基本不等式求解即可.解:圆M:x 2+y 2−2x −2y +1=0化为(x −1)2+(y −1)2=1,因为圆M 与直线x a +y b =1(a >2,b >2)相切,直线x a +y b =1(a >2,b >2)化为bx +ay −ab =0,则点M 到直线bx +ay −ab =0的距离为1, 即22=1化简得ab −2a −2b +2=0,则a =2b−2b−2, 则a +2b =2b−2b−2+2b =2b−2+2(b −2)+6⩾4+6=10,当且仅当2b−2=2(b −2)时取等号,所以a +2b 的最小值为10.8.答案:D解析:解:∵c =2,C =π3,a +b =3,∴由余弦定理:c 2=a 2+b 2−2abcosC ,可得:4=a 2+b 2−ab =(a +b)2−3ab =9−3ab ,∴解得ab =53,∴S △ABC =12absinC =12×53×√32=5√312. 故选:D .由已知及余弦定理可解得ab 的值,利用三角形面积公式即可得解.本题主要考查了余弦定理,三角形面积公式的应用,属于基础题.解析:本题考查流程图的作用,考查学生分析解决问题的能力,属于基础题.旅客搭乘火车,应买票→候车→检票→上车,可得结论.解:旅客搭乘火车,应买票→候车→检票→上车,故选A.10.答案:A解析:解:由双曲线的定义可得|BF1|−|BF2|=2a,|AB|=|BF2|,可得|AF1|=2a,则|AF2|=|AF1|+2a=4a,cos∠BF1F2=√c2−a2c=|AF1|2+|F1F2|2−|AF2|22|AF1|⋅|F1F2|=4a2+4c2−16a22⋅2a⋅2c,化简可得c4−10a2c2+13a4=0,由e=ca可得e4−10e2+13=0,解得e2=5+2√3,可得e=√5+2√3,故选:A.由双曲线的定义可得|AF1|=2a,则|AF2|=|AF1|+2a=4a,运用直角三角形的余弦函数定义和余弦定理,可得a,c的方程,再由离心率公式,解方程可得所求值.本题考查双曲线的定义、方程和性质,考查离心率的求法,注意运用锐角三角函数和余弦定理,考查化简整理的运算能力,属于中档题.11.答案:D解析: 本题考查三角函数的图象与性质,属于中档题. 由周期求出ω,再利用点(7π12,0)在函数f(x)的图象上,可求φ的值.解:∵T =2πω=π,∴ω=2,∴f(x)=sin(2x +φ). 又∵点(7π12,0)在函数f(x)的图象上,∴sin (2×7π12+φ)=0,∴φ=−7π6+kπ(k ∈Z).又∵|φ|<π2,∴φ=−π6.故选D . 12.答案:C解析:由题意可得x 2−ax +1=0在区间(12, 3)内有解,利用函数有一个零点或者两个零点,列出关系式,即可求得实数a 的取值范围.解:由f(x)=x 2−ax +1在区间(12, 3)内有零点,可得x 2−ax +1=0在区间(12, 3)内有解. 函数f(x)=x 2−ax +1过(0,1),∴{a 2>0f(12)f(3)<0或{ f(12)≥0f(3)≥012≤a 2≤3f(a 2)<0, 解{a 2>0f(12)f(3)<0得52<a <103, 解{ f(12)≥0f(3)≥012≤a 2≤3f(a 2)<0得2≤a ≤52, 综上a ∈[2,103).故选C . 13.答案:1解析:解:二项式(ax2√x )5的展开式的通项公式为T r+1=C5r⋅a5−r ⋅ x10−2r ⋅ x −r2=C5r⋅a5−r ⋅ x10−52r,令10−5r2=0,解得r=4,故展开式中的常数项为C51⋅a1=5,∴a=1,故答案为1.先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项.再由常数项为5,求得a的值.本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.答案:−√55解析:解:向量a⃗=(3,1),b⃗ =(−2,4),可得a⃗⋅b⃗ =3×(−2)+1×4=−2,|a⃗|=√9+1=√10,|b⃗ |=√4+16=2√5,可得a⃗在b⃗ 方向上的投影为a⃗ ⋅b⃗|b⃗|=2√5=−√55.故答案为:−√55.运用向量数量积的坐标表示和模的公式,可得a⃗⋅b⃗ ,|a⃗|,|b⃗ |,再由a⃗在b⃗ 方向上的投影为a⃗ ⋅b⃗|b⃗|,计算即可得到所求值.本题考查向量数量积的坐标表示和模的公式以及向量的投影的概念,考查运算能力,属于基础题.15.答案:20√5π3解析:本题考查三棱锥的外接球体积,考查学生的计算能力,确定三棱锥的外接球的半径是关键.求出BC,可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球体积.解:∵AB=AC=2,∠BAC=120°,∴BC=2√3,∴2r=√3√32=4,∴r=2,∵PA ⊥面ABC ,PA =2,∴该三棱锥的外接球的半径为√22+12=√5,∴该三棱锥的外接球的体积43π⋅(√5)3=20√5π3. 故答案为:20√5π3. 16.答案:32解析:解:∵a n+1−1=1a n −1=a n−1−1,∴{a n −1}为周期数列且周期为2,a 1−1=2,∴a 2014−1=a 2−1=1a1−1=12, ∴a 2014=32. 故答案为:32.由题意可知{a n −1}为周期数列且周期为2,a 1−1=2,即可求出答案本题考查数列递推式,考查数列的通项,考查学生的计算能力,比较基础. 17.答案:解:(Ⅰ)由已知得cos2B +cosB =0,可得2cos 2B +cosB −1=0,即(2cosB −1)(cosB +1)=0,解得cosB =12或cosB =−1.因为0<B <π,故cosB =12,所以,B =π3.(Ⅱ)由sinA =3sinC 利用正弦定理可得a =3c ,而△ABC 的面积为12acsinB =3√34, 将a =3c 和B =π3代入上式,得出c =1,且a =3,再由余弦定理b 2=a 2+c 2−2accosB ,解得b =√7.解析:(Ⅰ)由条件可得2cos 2B +cosB −1=0,求得cos B 的值,可得B 的值.(Ⅱ)由sinA =3sinC 利用正弦定理可得a =3c ,再根据△ABC 的面积为12acsinB =3√34求得a 、c 的值,再由余弦定理求得b 的值.本题主要考查二倍角公式、诱导公式、正弦定理、余弦定理的应用,属于中档题.18.答案:解:(1)连接AC ,BD 设其交点为O ,连接OE ,则O 为中点,故OE//PA ,又PA ⊄平面BDE ,OE ⊂平面BDE ,故PA//平面BDE ;(2)以O 为原点,OA ,OB 分别为x ,y 轴,过O 做AP 的平行线为z 轴,建立如图所示空间坐标系,如图示:设AB =2,则A(√2,0,0), C(−√2,0,0),B(0,√2,0),D(0,−√2,0),P(√2,0,2√2),设PE PC =λ>0,E(√2−2√2λ,0,2√2−2√2λ), AE⃗⃗⃗⃗⃗ =(−2√2λ,0,2√2−2√2λ), AE ⊥平面PBD ,所以AE ⃗⃗⃗⃗⃗ ⋅PD ⃗⃗⃗⃗⃗ =0,AE ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,解得λ=23,因为AE ⊥平面PBD ,所以AE ⃗⃗⃗⃗⃗ 是平面PBD 的一个法向量,E(−√23,0,2√23),AE ⃗⃗⃗⃗⃗ =(−4√23,0,2√23),BE ⃗⃗⃗⃗⃗ =(−√23,−√2,2√23), BD ⃗⃗⃗⃗⃗⃗ =(0,−2√2,0),设平面BDE 的法向量为n⃗ =(x,y,z ),则有{BE ⃗⃗⃗⃗⃗ ⋅n ⃗ =0BD ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0, 即{−√23x −√2y +2√23z =0−2√2y =0,令x =2,得n⃗ =(2,0,1), 设二面角P −BD −E 为θ,则|cosθ|=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ ||n ⃗⃗ |=35,由图知,二面角为锐角, 故二面角P −BD −E 的余弦值为35.解析:本题主要考查线面平行的证明,二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.(1)连结AC ,BD ,交于点O ,连结OE ,推导出OE//PA ,由此能证明PA//平面BDE .(2)建立空间直角坐标系,利用向量法求出平面PBD 的法向量和平面BDC 的法向量,利用向量法能求出二面角P −BD −C 的余弦值.19.答案:解:(1)∵X ∼N(100,100),∴μ=100,σ=10,P (X ≥120)=1−P (80<X ≤120)2 =1−19202 =140, 成绩优秀的人数为30000×140=750(人);(2)根据题意,P (90<X ≤110)≈23,ξ的取值有0,1,2,3,ξ∼B(3,23),P(ξ=0)=(13)3=127; P(ξ=1)=C 31(13)2×23=627=29;P(ξ=2)=C 32×13×(23)2=1227=49; P(ξ=3)=(23)3=827.ξ的分布列为:E(ξ)=3×23=2.解析:本题考查正态分布及离散型随机变量的分布列与期望,属于一般题.(1)利用正态分布解决问题;(2)离散型随机变量求分布列,期望问题.20.答案:解:(1)直线l :y =bx +2,坐标原点到直线l 的距离为√2. ∴√b 2+1=√2 ∴b =1∵椭圆的离心率e =√63, ∴a 2−1a 2=(√63)2 ∴a 2=3∴所求椭圆的方程是x 23+y 2=1;(2)直线y =kx +2代入椭圆方程,消去y 可得:(1+3k 2)x 2+12kx +9=0∴△=36k 2−36>0,∴k >1或k <−1设C(x 1,y 1),D(x 2,y 2),则有x 1+x 2=−12k 1+3k 2,x 1x 2=91+3k 2∵EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),且以CD 为圆心的圆过点E ,∴EC ⊥ED∴(x 1+1)(x 2+1)+y 1y 2=0∴(1+k 2)x 1x 2+(2k +1)(x 1+x 2)+5=0∴(1+k 2)×91+3k 2+(2k +1)×(−12k 1+3k 2)+5=0 解得k =76>1,∴当k =76时,以CD 为直径的圆过定点E解析:(1)利用直线l :y =bx +2,椭圆的离心率e =√63,坐标原点到直线l 的距离为√2,建立方程,求出椭圆的几何量,即可求得椭圆的方程;(2)直线y =kx +2代入椭圆方程,利用韦达定理及CD 为圆心的圆过点E ,利用数量积为0,即可求得结论.本题考查椭圆的标准方程与性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.21.答案:解:(1)易知f′(x)=e x+ae−x−(a+1)=(e x−1)(e x−a),e x①当a≤0时,∴函数f(x)的极小值点为x=0,无极大值点;②当0<a<1时,∴函数f(x)的极大值点为x=lna,极小值点为x=0;③当a=1时,f′(x)=(e x−1)2⩾0,e x∴函数f(x)单调递增,即f(x)无极值点;④当a>1时,∴函数f(x)的极大值点为x=0,极小值点为x=lna;综上所述,当a≤0时,函数f(x)的极小值点为x=0,无极大值点;当0<a<1时,函数f(x)的极大值点为x=lna,极小值点为x=0;当a=1时,函数f(x)无极值点;当a>1时,函数f(x)的极大值点为x=0,极小值点为x=lna.(2)以下需多次引用到如下不等式:e x≥1+x,当且仅当x=0时取等号,证明略.注意到当0<a<1时,有lna<a−1<0.−1,当0<a<1时,gˈ(a)=0,令g(a)=lna−a+1,则g′(a)=1a∴g(a)<g(1)=0,即a−1>lna,显然a−1<0,∴lna<a−1<0,∴由(1)可知当0<a<1时,f(x)在区间(a−1,0)上递减,在区间(0,+∞)上递增,∴f(x)在区间(a−1,+∞)上的最小值为f(0)=1−a,∵关于x的不等式[f(x)]2<λ(e a−1−a)在区间(a−1,+∞)上存在实数解,∴只需当0<a<1时,关于a的不等式(1−a)2<λ(e a−1−a)恒成立,由上易知当0<a<1时,e a−1−a>0,∴只需当0<a<1时,不等式λ>(1−a)2e−a恒成立即可,令函数F(x)=(1−x)2e x−1−x ,0≤x<1,则F′(x)=(x−1)(3e x−1−xe x−1−x−1)(e x−1−x)2,(法一)令函数G(x)=3e x−1−xe x−1−x−1,0≤x<1,则Gˈ(x)=(2−x)e x−1−1,当0<x<1时,∵e1−x>2−x,∴(2−x)e x−1<1,∴Gˈ(x)<0,∴G(x)>G(1)=0,即G(x)>0,∴当0<x<1时,Fˈ(x)<0,∴F(x)<F(0)=e,即F(x)<e,∴当0<a<1时,不等式λ=(1−a)2e a−ea恒成立,只需λ≥e,综上,实数λ的取值范围为[e,+∞).解析:本题考查利用导数研究函数的极值,最值问题,难度较大.(1)求导,讨论a,即可求导函数的单调区间,从而求得极值.(2)依题意,只需当0<a<1时,不等式λ>(1−a)2e a−1−a恒成立即可,令函数F(x)=(1−x)2e x−1−x,利用导数求解即可.22.答案:解:(1)由{x=1+√3cosα,y=√3sinα(α为参数)得曲线C的普通方程为(x−1)2+y2=3.由直线l的方程为:x+√3y−2=0,得极坐标方程为√3ρsinθ+ρcosθ−2=0,即ρsin(θ+π6)=1.(2)曲线C的极坐标方程是ρ2−2ρcosθ−2=0,把θ=π3代入曲线C的极坐标方程得ρ2−ρ−2=0,解之得ρM=2或ρM=−1(舍).把θ=π3代入直线l的极坐标方程得ρN=1,所以MN =|ρM −ρN |=|2−1|=1.解析:本题考查了简单曲线的极坐标方程,属中档题.(1)消去参数可得普通方程,再利用公式化成极坐标方程;(2)先求出曲线C 的极坐标方程,把θ=π3代入曲线C 的极坐标方程,解得ρ的值, 把θ=π3代入直线l 的极坐标方程解得ρ的值,从而得出结果.23.答案:解:(1)f(x)=|2x −1|−|x +32|={ 52−x,x <−32−3x −12,−32≤x ≤12x −52,x >12, 根据题意,{x <−3252−x ≤2或{−32≤x ≤12−3x −12≤2或{x >12x −52≤2, 解之得−56≤x ≤92,故解集为[−56,92].(2)当x ∈(−∞,12)时,函数f(x)单调递减,当x ∈(12,+∞)时,函数f(x)单调递增.∴当x =12时,函数f(x)min =−2.由题知|a+b||ab+1|≤m ,即a+b ab+1≤m ,∵(a +b)−(ab +1)=(a −1)(1−b)≤0,则a +b ≤ab +1,∴a+b ab+1≤1.∴m ≥1,∴−m −1≤−2,∴f(x)≥−1−m .解析:本题考查了绝对值不等式的解法和不等式的证明,属基础题.(1)f(x)=|2x −1|−|x +32|={ 52−x,x <−32−3x −12,−32≤x ≤12x −52,x >12,然后分段解不等式f(x)≤2;(2)求出f(x)的最小值,证明f(x)min≥−1−m,即可.。

黑龙江省大庆实验中学2020届高三综合训练(五)数学(理科)试卷及答案解析

黑龙江省大庆实验中学2020届高三综合训练(五)数学(理科)试卷及答案解析

黑龙江省大庆实验中学2020届高三综合训练(五)数学(理科)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设集合}|3,xA y y x R ==∈,{|}B y y x R ==∈,则A B =( )A. []0,2B. ()0,∞+C. (]0,2D. [)0,22.若201924(1)2iz i i =+--,则复数z 在复平面内对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限3.下列说法错误的是( )A.命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”B.“1x >”是“||1x >”的充分而不必要条件C.若p 且q 为假命题,则p 、q 均为假命题D.命题:p “存在x ∈R ,使得210x x ++<”,则非:p “任意x ∈R ,均有210x x ++≥”4.在ΔABC 中,AC=1,AC ⃑⃑⃑⃑⃑⃑ ⋅AB ⃑⃑⃑⃑⃑⃑⃑ =−1,O 为ΔABC 的重心,则BO ⃑⃑⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑⃑ 的值为A. 1B. 32 C. 53 D. 25.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为A. 35B. 20C. 18D. 9 6.函数()()33lg xxf x x -=+⋅的图象大致为( )A. B.C. D.7.二项式(x −a x )8的展开式中x 2的系数是−7,则a =( )A. 1B. 12C. −12D. −18.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线OL 时,表示收入完全平等.劳伦茨曲线为折线OKL 时,表示收入完全不平等.记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积,将Gini aS=称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则1Gini 4=; ④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则1Gini 2=. 其中正确的是:( ) A.①④B.②③C.①③④D.①②④ 9.圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( )A. ),2πB. π⎡⎤⎣⎦C.}D. ,2π⎫⎪⎪⎣⎭10.已知α,β是函数1()sin cos 3f x x x =+-在[0,2)π上的两个零点,则cos()αβ-=( ) A.1-B.89-C.2-D.011.椭圆与双曲线共焦点1F 、2F ,它们的交点P 对两公共焦点1F 、2F 的张角为122F PF θ∠=,椭圆与双曲线的离心率分别为1e 、2e ,则( )A.222212cos sin 1e e θθ+= B. 222212sin cos 1e e θθ+=C. 2212221cos sin e e θθ+= D. 2212221sin cos e e θθ+= 12.设函数g (x )=e x +(1−√e)x −a (a ∈R ,e 为自然对数的底数).定义在R 上的函数f (x )满足f (−x )+f (x )=x 2,且当x ≤0时,f′(x )<x .若存在x 0∈{x |f (x )+12≥f (1−x )+x },且x 0为函数y =g (x )−x 的一个零点,则实数a 的取值范围为( ) A. (√e2,+∞) B. (√e,+∞) C. [√e,+∞) D. [√e2,+∞) 第II 卷(非选择题)二、填空题(题型注释)13.已知x ,y 满足{y ≥0x +y ≤2y ≥0,则z=2x+y 的最大值为__________.14.用1、2、3、4、5、6六个数字组成的没有重复数字的六位数,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是____________。

2020年黑龙江省高考数学模拟试卷(理科)(5月份) (含答案解析)

2020年黑龙江省高考数学模拟试卷(理科)(5月份) (含答案解析)

2020年黑龙江省高考数学模拟试卷(理科)(5月份)一、单项选择题(本大题共12小题,共60.0分)1. 已知集合M ={x|x 2>4},N ={−3,−2,2,3,4},则M ∩N =( )A. {3,4}B. {−3,3,4}C. {−2,3,4}D. {−3,−2,2,3,4}2. 已知复数z =−1−2i(1+i)2,则z −=( )A. −34+14iB. −14+34iC. −1+12iD. −1−12i3. 设F 1,F 2为椭圆的两焦点,B 为椭圆短轴的一个端点,若△BF 1F 2为正三角形,则椭圆的离心率为( )A. 12B. √22C. √32D. 24. 某地气象局把当地某月(共30天)每一天的最低气温作了统计,并绘制了如图所示的统计图,假设该月最低气温的中位数为m c ,众数为m 0,平均数为x −,则( )A. m c =m 0=x −B. m c =m 0<x −C. m c <m 0<x −D. m 0<m c <x −5. 设函数f(x)={log 12(3−x ),(x ≤0)f (x −3)+1,(x >0),则f(20)=( )A. 3B. 4C. 5D. log 1217 6. 函数f(x)=cos(2x +π4)的最小正周期是( )A. π2B. πC. 2πD. 4π7. 在平行四边形ABCD 中,若AB ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y AD⃗⃗⃗⃗⃗⃗ ,则x −y =( ) A. −1 B. 0 C. 1D. 28. 设等比数列{a n }的前n 项和为S n ,若64a 4+a 7=0,则S4S 2=( )A. 17B. 5C. −3D. −59. 已知双曲线C:y 2a 2−x 2b 2=1(a >0,b >0)的离心率为√5,则双曲线的渐近线方程为( )A. y =±2xB. y =±12xC. y =±√5xD. y =±23x10. 函数f(x)={2−x −1,(x ≤0)f(x −1),(x >0),若方程f(x)=x +a 恰有两个不等的实根,则a 的取值范围为( )A. (−∞,0)B. [0,1)C. (−∞,1)D. [0,+∞)11. 某几何体的三视图如图所示,则其表面积为( )A. 16+2√2πB. 24+2πC. 5+2√2πD. 4+2(1+√2)π12. 已知定义在R 上的函数f(x)满足其导函数f′(x)<0在R 上恒成立,则不等式f(|x|)<f(1)的解集为( )A. (−1,1)B. (0,1)C. (1,+∞)D. (−∞,−1)∪(1,+∞)二、填空题(本大题共4小题,共20.0分)13. 二项式(2x 2−√x )5的展开式中的第______项为常数项. 14. 若实数x,y 满足约束条件{x +2y ≥0x −y ≤0x −2y +2≥0,则z =3x −y 的最小值等于______. 15. 在正四棱柱ABCD −A 1B 1C 1D 1中,若AA 1=2AB ,则异面直线BD 1与CC 1所成角的正切值为__________.16. 等差数列{a n }中,a 1>0,S n 是前n 项和且S 9=S 18,则当n =__________时,S n 最大. 三、解答题(本大题共7小题,共84.0分)17. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,2(a 2−b 2)=2accosB +bc .(1)求A ;(2)若D 是BC 边上一点,且BD =3DC ,∠DAB =π2,求tan C .18.假定某人在规定区域投篮命中的概率为2,现他在某个投篮游戏中,共投篮3次.3(1)求连续命中2次的概率;(2)设命中的次数为X,求X的分布列和数学期望E(X).19.在四棱锥P−ABCD中,底面ABCD为菱形,且∠ABC=120°,PB=PD,PA⊥PC,AB=2√3,PC=2√6.(I)证明:平面PAC丄平面ABCD;(II)求二面角B−AP−D的正切值.20.已知抛物线x2=2py(p>0)过点(2,1).(Ⅰ)求抛物线的方程和焦点坐标;(Ⅱ)过点A(0,−4)的直线l与抛物线交于两点M,N,点M关于y轴的对称点为T,试判断直线TN 是否过定点,并加以证明.21.已知函数f(x)=1+lnx−ax2.(1)讨论函数f(x)的单调区间;⋅e x+x−ax3.(2)证明:xf(x)<2e222.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.若曲线C的极坐标方程为ρ=2sinθ,求曲线C的直角坐标方程.23.已知函数f(x)=|x−1|+|x−2|.(1)解不等式:f(x)≤x+3;(2)若不等式|m|·f(x)≥|m+2|−|3m−2|对任意m∈R恒成立,求x的取值范围.【答案与解析】1.答案:B解析:解:集合M ={x|x 2>4}={x|(x +2)(x −2)>0}=(−∞,−2)∪(2,+∞), ∵N =N ={−3,−2,2,3,4}, ∴M ∩N ={−3,3,4}, 故选:B .求出M 中不等式的解集,确定出M ,求出M 与N 的交集即可. 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.答案:D解析:本题考查了复数的运算法则、共轭复数的定义,属于基础题. 利用复数的运算法则、共轭复数的定义即可得出. 解:复数z =−1−2i(1+i)2=−1−2i 2i=(1+2i)⋅i −2i⋅i =−2+i 2=−1+12i ,则z −=−1−12i. 故选:D .3.答案:A解析:解:由题意,设椭圆的半焦距长为c ,则 ∵△BF 1F 2为正三角形, ∴b =√3c ∴a 2−c 2=3c 2 ∴a =2c ∴e =ca =12 故选:A .利用△BF 1F 2为正三角形,确定几何量之间的关系,进而可求椭圆的离心率. 本题考查椭圆的几何性质,考查学生的计算能力,属于基础题.4.答案:D解析:本题考查中位数,众数,平均数的求法,考查条形统计图,属于简单题.由统计图分别求出该月每一天的最低气温的中位数,众数,平均数,由此能求出结果. 解:由统计图得:最低气温在3−5之间的频数为15,最低气温在6−10之间的频数也为15, 故该月最低气温的中位数为m c =5+62=5.5,众数为m 0=5,平均数为x −=130×(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97. ∴m 0<m c <x −. 故选:D .5.答案:C解析:本题考查分段函数,对数函数,属于基础题.根据函数的解析式将f(20)逐步转化为f(−1)+7后,代入解析式由对数的运算性质求值. 解:由题可得:f(20)=f(17)+1=f(14)+2=f(11)+3=···=f(2)+6=f(−1)+7=log 124+7=5,故选C .6.答案:B解析:解:根据复合三角函数的周期公式T =2π|ω|得, 函数f(x)=cos(2x +π4)的最小正周期是π, 故选:B .由题意得ω=2,再代入复合三角函数的周期公式T =2π|ω|求解.本题考查了三角函数的周期性,以及复合三角函数的周期公式T =2π|ω|应用,属于基础题.7.答案:D解析:解:在平行四边形ABCD 中, AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ , 故AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AD⃗⃗⃗⃗⃗⃗ , 由AB ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ 得:x =1,y =−1, 故x −y =2, 故选:D .根据向量加法的平行四边形法则可得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,结合AB ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,求出x ,y ,可得答案. 本题考查的知识点是平面向量的基本定理,难度中档.8.答案:A解析:本题考查了等比数列的通项公式以及等比数列的求和公式,属于基础题.根据题意,结合等比数列的通项公式可求出公比q ,利用等比数列的求和公式,可得S4S 2=1+q 2,由此可求出答案.解:设等比数列{a n }的公比为q , 因为64a 4+a 7=0, 所以64×a 1q 3+a 1q 6=0, 所以q =−4, 所以S 4S 2=a 1(1−q 4)1−q a 1(1−q 2)1−q=1+q 2=17.故选A .9.答案:B解析:此题考查双曲线的简单性质的应用,考查计算能力.由题意得ca =√5,可得b 2a 2=4,由此可得答案;解:由双曲线y 2a2−x 2b2=1(a >0,b >0)的离心率为√5,可得ca =√5, 即a 2+b 2a 2=5,可得b 2a 2=4,则该双曲线的渐近线方程为:y =±ab x =±12x . 故选B .10.答案:C解析:解:由函数f(x)={2−x −1,(x ≤0)f(x −1),(x >0),可得f(x)的图象和函数y =x +a 有两个不同的交点, 如图所示:故有a <1, 故选C .由题意可得f(x)的图象和函数y =x +a 有两个不同的交点,结合图象,求出a 的取值范围. 本题考查根的存在性及根的个数判断,以及函数与方程的思想、数形结合的数学思想,解答关键是运用数形结合的思想,属于中档题.11.答案:B解析:解:由已知的三视图可得:该几何体是一个正方体内挖去一个圆柱得到的组合体,正方体的棱长为2,故表面积为:6×2×2=24,圆柱的底面直径为2,故底面半径为1,底面面积为:π,底面周长为:2π,侧面面积为:4π,故组合体的表面积S=24−2×π+4π=24+2π,故选:B由已知的三视图可得:该几何体是一个正方体内挖去一个圆柱得到的组合体,求出正方体的表面积,圆柱的侧面积和底面积,进而可得答案.本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.12.答案:D解析:解:定义在R上的函数f(x)满足其导函数f′(x)<0在R上恒成立,可知函数f(x)是减函数,函数y=f(|x|)是偶函数,当x>0时,可得x>1,当x<0时,可得x<−1,则不等式f(|x|)<f(1)的解集为:(−∞,−1)∪(1,+∞).故选:D.利用函数的导数判断函数的单调性,结合不等式转化求解即可.本题考查函数的导数判断函数的单调性,不等式的解法,考查计算能力.13.答案:5解析:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.解:二项式(2x2−1√x )5的展开式的通项公式为Tr+1=C5r⋅(−1)r⋅25−r⋅x10−5r2,令10−5r2=0,求得r=4,故展开式中的第5项为常数项,故答案为5.14.答案:−72解析:作出不等式组对应的平面区域,通过目标函数的几何意义,利用数形结合即可的得到结论.本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 解:依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:y =3x −z ,则z 的最小值即为动直线在y 轴上的截距的最大值.通过平移可知在A 点处动直线在y 轴上的截距最大.因为A :{x +2y =0x −2y +2=0解得A(−1,12), 所以z =3x −y 的最小值z min =3⋅(−1)−12=−72.故答案为:−72.15.答案:√22解析:本题主要考查了异面直线所成的角,属于基础题.由CC 1//BB 1,知∠B 1BD 1是异面直线BD 1与CC 1所成角(或其补角),由此能求出异面直线BD 1与CC 1所成角的正切值.解:∵在正四棱柱ABCD −A 1B 1C 1D 1中,CC 1//BB 1,∴∠B 1BD 1是异面直线BD 1与CC 1所成角(或其补角),设AA 1=2AB =2,则B 1D 1=√2,BB 1=2,∴tan∠B 1BD 1=B 1D 1BB 1=√22. ∴异面直线BD 1与CC 1所成角的正切值为√22. 故答案为√22. 16.答案:13或14解析:由S 9=S 18,可知9a 1+9×82d =18a 1+18×172d ,整理得a 1=−13d.所以S n =d 2n 2+(a 1+d 2)n =d 2(n −272)−7298d.又因为a 1>0,所以d <0,且n ∈N ∗,故当n =13或14时,S n 最大.17.答案:解:(1)因为2accosB =a 2+c 2−b 2,所以2(a 2−b 2)=a 2+c 2−b 2+bc . 整理得a 2=b 2+c 2+bc ,所以cosA =−12,即A =2π3. (2)因为∠DAB =π2,所以AD =BD ⋅sinB ,∠DAC =π6.在△ACD 中,有AD sinC =CD sin∠DAC ,又因为BD =3CD ,所以3sinB =2sinC ,由B =π3−C 得3√32cosC −32sinC =2sinC , 整理得tanC =3√37.解析:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.(1)由余弦定理可得2accosB =a 2+c 2−b 2,代入已知等式整理得cosA =−12,即可求得A .(2)由已知可求∠DAC =π6,由正弦定理有AD sinC =CD sin∠DAC ,又BD =3CD ,可得3sinB =2sinC ,由B =π3−C 化简即可得解.18.答案:解:(1)设A i (i =1,2,3)表示第i 次投篮命中,A i 表示第i 次投篮不中,设投篮连续命中2次为事件A ,则连续命中2次的概率:P(A)=P(A 1A 2A 3+A 1A 2A 3)=23×23×13+13×23×23=827(2)命中的次数X 可取0,1,2,3,P(X =0)=(1−23)3=127, P(X =1)=C 31(23)(1−23)2=29,P(X =2)=C 32(23)2(1−23)=49, P(X =3)=(23)3=827,∴X 的分布列为:E(X)=0×127+1×29+2×49+3×827=2.解析:本题考查离散型随机变量的概率期望及方差.(1)根据相互独立事件同时发生的概率公式求连续命中2次的概率;(2)设命中的次数为X,X可取0,1,2,3,分别求出相应概率再求求X的分布列和数学期望E(X).19.答案:(I)证明:如图连接AC.BD.焦点为O,由四边形ABCD为菱形知,.又PB=PD,OB=OD,所以.而OP∩AC=O,所以.又,所以平面.(II)由四边形ABCD为菱形,,AB=2√3,得AC=6由平面,过点P作,垂足为E,则.又,PC=2√6,AB=2√3则PA=2√3,PE=2√2,AE=2.如图所示,以O 为坐标原点,OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 为x ,y 轴的正方向建立空间直角坐标系O −xyz ,则O(0,0,0),A(0,−3,0),B(√3,0,0),C(0,3,0),D(−√3,0,0),P(0,−1,2√2)设平面ABP 法向量为n 1=(x,y,z),AB⃗⃗⃗⃗⃗ =(√3,3,0),AP ⃗⃗⃗⃗⃗ =(0,2,2√2), 则{n 1⋅AB ⃗⃗⃗⃗⃗ =0n 2⋅AP ⃗⃗⃗⃗⃗ =0, 所以{√3x +3y =02y +2√2z =0, 令z = 1,则x =√6,y =−√2,所以n 1=(√6,−√2,1),同理可求,平面ADP 的法向量n 2=(√6,√2,−1),因此,, 求得, 所以二面角B −AP −D 的正切值为2√2.解析:本题考查面面垂直的判定定理,空间向量法求二面角,属于基础题目.(1)由四边形ABCD 为菱形得到AC ⊥BD ,再由PB = PD ,OB = OD ,得到即可由线面垂直的判定定理得到; (2)以O 为坐标原点,OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 为x ,y 轴的正方向建立空间直角坐标系O −xyz ,利用向量垂直求出平面法向量,由向量的夹角公式求得二面角.20.答案:解:(Ⅰ)因为抛物线x 2=2py(p >0)过点P(2,1),所以2p =4所以抛物线方程为x 2=4y ,焦点坐标为(0,1)(Ⅱ)由题意可知直线斜率存在且不等于0,设直线l 的方程为y =kx −4,由{y =kx −4x 2=4y,消y 整理得x 2−4kx +16=0, 则△=16k 2−64>0,即|k|>2设M(x 1,y 1),N(x 2,y 2)则T(−x 1,y 1)且x 1+x 2=4k ,x 1x 2=16.直线TN :y −y 2=y 2−y1x 2+x 1(x −x 2), ∴y =y 2−y 1x 2+x 1(x −x 2)+y 2, ∴y =x 22−x 124(x 1+x 2)(x −x 2)+14x 22, ∴y =x 2−x 14x −x 22−x 1x 24+14x 22, ∴y =x 2−x 14x +x 1x 24, 即y =x 2−x 14x +4所以,直线TN 恒过定点(0,4).解析:本题考查抛物线方程的应用,直线与抛物线的位置关系的应用,考查计算能力. (Ⅰ)因为抛物线x 2=2py(p >0)过点P(2,1),求出p ,得到抛物线方程然后求解焦点坐标.(Ⅱ)设直线l 的方程为y =kx −4,由{y =kx −4x 2=4y,消y 整理得x 2−4kx +16=0,设M(x 1,y 1),N(x 2,y 2)则T(−x 1,y 1)利用韦达定理转化求解直线方程,推出恒过的定点即可.21.答案:解:(1)f(x)的定义域是(0,+∞),f′(x)=1−2ax 2x ,故a ≤0时,f′(x)>0,f(x)在(0,+∞)递增,当a >0时,令f′(x)=0,解得:x =√2a 2a, 故f(x)在(0,√2a 2a)递增,在(√2a 2a ,+∞)递减; (2)证明:要证xf(x)<2e 2⋅e x +x −ax 3,即证xlnx <2e 2⋅e x ,也即证lnx x <2e xe 2x 2, 令g(x)=2e 2⋅e x x 2(x >0),则g′(x)=2e2⋅e x(x−2)x3,故g(x)在(0,2)递减,在(2,+∞)递增,故g(x)最小值=g(2)=12,令k(x)=lnxx ,则k′(x)=1−lnxx2,故k(x)在(0,e)递增,在(e,+∞)递减,故k(x)最大值=k(e)=1e,∵1e <12,故k(x)<ℎ(x),即lnx<2e x−2x,故xf(x)<2e2⋅e x+x−ax3.解析:本题考查了函数的单调性,最值问题,考查导数的应用以及不等式的证明,分类讨论思想,转化思想,是一道综合题.(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)问题转化为证lnxx <2e xe2x2,令g(x)=2e2⋅e xx2(x>0),令k(x)=lnxx,根据函数的单调性求出函数的最值,从而证明结论.22.答案:解:将曲线C的极坐标方程ρ=2sinθ,两边同乘以一个ρ,得ρ2=2ρsinθ,即x2+y2=2y,故曲线C的直角坐标方程为x2+y2−2y=0.解析:本题考查极坐标与直角坐标的转化,将曲线C的极坐标方程ρ=2sinθ,两边同乘以一个ρ,得ρ2=2ρsinθ,利用极坐标与直角坐标的互化,求解即可.23.答案:解:(1)∵f(x)≤x +3,∴|x −1|+|x −2|≤x +3,①当x ≥2时,, ②当1<x <2时,, ③当x ≤1时,, 由①②③可得x ∈[0,6];(2)①当m =0时,0≥0,∴x ∈R ;②当m ≠0时,即f(x)≥|2m +1|−|2m −3|对m 恒成立,|2m +1|−|2m −3|≤|(2m +1)−(2m −3)|=4, 当且仅当2m ≥3,即0<m ≤23时取等号,∴f(x)=|x −1|+|x −2|≥4,由x ≥2,2x −3≥4,解得x ≥72;1<x <2,x −1+2−x ≥4,解得x ∈⌀;x ≤1时,3−2x ≥4,解得x ≤−12;综上可得x ∈(−∞,−12]∪[72,+∞).解析:(1)分别讨论x ≥2,1<x <2,x ≤1时,去掉绝对值,解不等式求并集可得;(2)讨论m =0,m ≠0,由绝对值不等式的性质可得f(x)≥4,再讨论x ≥2,1<x <2,x ≤1时,解不等式求并集可得范围.本题考查绝对值不等式的解法和绝对值不等式的性质,考查分类讨论思想方法和转化思想、运算能力,属于中档题.。

2020届黑龙江省大庆实验中学高考理科数学一模试题

2020届黑龙江省大庆实验中学高考理科数学一模试题

2020届黑龙江省大庆实验中学高考理科数学一模试题一、单选题(本题共12小题,每题5分,共60分)1.(5分)已知集合A={x∈N|0<x<log216},集合B={x|2x﹣2>0},则集合A∩B真子集个数是()A.2B.3C.4D.82.(5分)i为虚数单位,则的虚部为()A.﹣i B.i C.﹣1D.13.(5分)在(﹣)6的展开式中,中间一项的二项式系数为()A.20B.﹣20C.15D.﹣154.(5分)已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x+2y﹣3=0,则该双曲线的离心率为()A.5或B.或C.或D.5或5.(5分)17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin234°=()A.B.C.D.6.(5分)已知m,n是两条不同的直线,α,β是两个不同的平面,则m∥n的充分条件是()A.m,n与平面α所成角相等B.m∥α,n∥αC.m∥α,m⊂β,α∩β=n D.m∥α,α∩β=n7.(5分)已知点(3,1)和(﹣4,6)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣7<a<24B.﹣24<a<7C.a<﹣1或a>24D.a<﹣24或a>7 8.(5分)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,3,…,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[401,731]的人数为()A.10B.11C.12D.139.(5分)甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为,各局比赛结果相互独立且没有平局,则在甲获得冠军的条件下,比赛进行了三局的概率为()A.B.C.D.10.(5分)已知a=5ln4π,b=4ln5π,c=5lnπ4,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.b<a<c D.a<b<c11.(5分)已知椭圆C:,过原点的直线交椭圆于A,B两点,以AB为直径的圆过右焦点F,若∠F AB=α∈,则此椭圆离心率的取值范围是()A.B.C.D.12.(5分)已知函数(其中无理数e=2.718…),关于x的方程有四个不等的实根,则实数λ的取值范围是()A.B.(2,+∞)C.D.二.填空题(本题共4道小题,每题5分,共20分)13.(5分)函数f(x)=a x+1+1,(a>0,a≠1)的图象恒过定点P,则P点坐标为.14.(5分)我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式中“…”即代表无限次重复,但原式却是个定值,它可以通过方程,求得,类似上述过程,则.15.(5分)在四面体S﹣ABC中,SA=SB=2,且SA⊥SB,,,则该四面体体积的最大值为,该四面体外接球的表面积为.16.(5分)在△ABC中,,点D为线段AB上一动点,若最小值为,则△ABC的面积为.三.解答题(本题共5道小题,每题12分,共60分)17.(12分)已知数列{a n}满足,a1=1,a2=4且a n+2﹣4a n+1+3a n=0(n∈N*).(Ⅰ)求证:数列{a n+1﹣a n}为等比数列,并求出数列{a n}的通项公式;(Ⅱ)设b n=2n•a n,求数列{b n}的前n项和S n.18.(12分)如图,在四棱锥P﹣ABCD中,侧面P AD为等边三角形,且垂直于底面ABCD,AB=BC=1,∠BAD=∠ABC=90°,∠ADC=45°,分别是AD,PD的中点.(Ⅰ)证明:平面CMN∥平面P AB;(Ⅱ)已知点E在棱PC上且,求直线NE与平面P AB所成角的余弦值.19.(12分)已知抛物线y2=2px(p>0)上的两个动点A(x1,y1)和B(x2,y2),焦点为F.线段AB的中点为M(3,y0),且A,B两点到抛物线的焦点F的距离之和为8.(1)求抛物线的标准方程;(2)若线段AB的垂直平分线与x轴交于点C,求△ABC面积的最大值.20.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次NCP普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这k个人的血样再分别进行一次化验,这样,该组k个人的血总共需要化验k+1次.假设此次普查中每个人的血样化验呈阳性的概率为p,且这些人之间的试验反应相互独立.(1)设方案②中,某组k个人的每个人的血化验次数为X,求X的分布列;(2)设p=0.1,试比较方案②中,k分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)21.(12分)已知函数.(1)若f'(x)是f(x)的导函数,讨论g(x)=f'(x)﹣x﹣alnx的单调性;(2)若(e是自然对数的底数),求证:f(x)>0.四、请考生在第22~23题中任选一道作答,如果多做,则按所做第一题计分,作答时请写清题号.22.(10分)在直角坐标系中,曲线C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.(Ⅰ)求曲线C的极坐标的方程以及曲线D的直角坐标方程;(Ⅱ)若过点(极坐标)且倾斜角为的直线l与曲线C交于M,N两点,弦MN的中点为P,求的值.23.已知函数f(x)=|2x﹣4|+|x+1|,(Ⅰ)解不等式f(x)≤9;(Ⅱ)若不等式f(x)<2x+a的解集为A,B={x|x2﹣3x<0},且满足B⊆A,求实数a 的取值范围.。

黑龙江省高三模拟考试数学(理)试卷附答案解析

黑龙江省高三模拟考试数学(理)试卷附答案解析

黑龙江省高三模拟考试数学(理)试卷附答案解析班级:___________姓名:___________考号:___________一、单选题1.已知复数2z ai =-+(,a R i ∈是虚数单位)对应的点在复平面内第二象限,且6z z ⋅=,则=a AB.C .2D .2-2.全集[]1,10U =,集合{|(1)(8)0}A x x x =--≤和[]2,10B =,则()UA B =( )A .()2,8B .[]2,8C .[][]1,28,10⋃D .[)(]1,28,10⋃3.平面直角坐标系中角α的终边经过点()3,4P -,则2cos +π=2α⎛⎫ ⎪⎝⎭( )A .110B .15C .45D .9104.二项式1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( ) A .4B .6C .8D .105.下列命题正确的个数是( )①)0a b ab +≥>②若0a b >>,0c d << 则ac bd <;③不等式110x+>成立的一个充分不必要条件是1x <-或1x >; ④若i a 、i b 和()1,2i c i =是全不为0的实数,则“111222a b c a b c ==”是“不等式21110a x b x c ++>和22220a xb xc ++>解集相同”的充分不必要条件. A .1B .2C .3D .46.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出版产品供给,实现了行业的良性发展.下面是2017年至2021年我国新闻出版业和数字出版业营收情况,则下列说法错误的是( )A .2017年至2021年我国新闻出版业和数字出版业营收均逐年增加B .2021年我国数字出版业营收超过2017年我国数字出版业营收的2倍C .2021年我国新闻出版业营收超过2017年我国新闻出版业营收的3倍D .2021年我国数字出版业营收占新闻出版业营收的比例未超过三分之一7.若函数()23f x x ax a =-++在[]1,2上单调递减,则a 的取值范围是( )A .3,4⎡⎫+∞⎪⎢⎣⎭B .3,2⎛⎤-∞ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .2,3⎛⎤-∞ ⎥⎝⎦8.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =则A .112n n n S S ++-=B .2n n a =C .21n n S =-D .121n n S -=-9.已知平面l αβ=,m 是α内不同于l 的直线,那么下列命题中错误..的是( ) A .若//m β,则//m l B .若//m l ,则//m β C .若m β⊥,则m l ⊥D .若m l ⊥,则m β⊥10.古希腊阿基米德被称为“数学之神”.在他的墓碑上刻着一个圆柱,圆柱里内切着一个球,这个球的直径恰好等于圆柱的高,则球的表面积与圆柱的表面积的比值为( ) A .12B .23C .34D .4511.已知向量,a b 满足1,a a b =⊥,则向量2a b -在向量a 方向上的投影向量为( ) A .a B .1 C .-1 D .a -12.已知函数()()()()1ln ,0,0x x x f x xe x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程22()()0f x af x a a -+-=有四个不等实根,则实数a 的取值范围为( ) A .(0,1]B .()[),11,-∞-⋃+∞C .(,1){1}-∞-D .(){}1,01-二、填空题13.已知(2,1),(,1)a b λ=-=-,若a 与b 夹角为钝角,则实数λ取值范围是___________.14.已知某批零件的长度误差(单位:毫米)服从正态分布(0,4)N ,从中随机取一件,其长度误差落在区间(2,4)内的概率为___________.(附:若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<<+=,(22)0.9545P μσξμσ-<<+=) 15.过抛物线2:4C x y =的焦点Fl ,交抛物线于A ,B 两点,抛物线在A ,B 处的两条切线交于点M ,则MF =______.三、双空题16.海水受日月的引力,在一定的时候发生涨落的现象潮汐.一般地,早潮叫潮,晚潮叫汐.通常情况下,船在涨潮时驶进航道,靠近码头:卸货后,在落潮时返回海洋.下表是某港口某天的时刻与水深关系的预报,我们想选用一个函数来近似描述这一天港口的水深y 与时间x 之间的关系,该函数的表达式为__________________________.已知一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有2.25米的安全间隙(船底与洋底的距离),则该船可以在此港口停留卸货的时间最长为_____________小时(保留整数).四、解答题17.(1)已知数列{}n a 的前n 项和Sn =n 2+n ,求数列{}n a 的通项公式;(2)设数列{}n a 的首项为a 1=1,递推公式为an=1+11n a - (2)n ≥,写出这个数列的前5项 18.如图,已知四棱锥V ABCD -的底面是矩形,VD ⊥平面,222,,,ABCD AB AD VD E F G ===分别是棱,,AB VC CD 的中点.(1)求证:EF ∥平面VAD ;(2)求平面AVE 与平面VEG 夹角的大小.19.甲乙丙三人进行竞技类比赛,每局比赛三人同时参加,有且只有一个人获胜,约定有人胜两局(不必连胜)则比赛结束,此人直接赢得比赛.假设每局甲获胜的概率为12,乙获胜的概率为14,丙获胜的概率为14,各局比赛结果相互独立. (1)求甲在3局以内(含3局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望). 20.点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. (1)求点P 的轨迹方程;(2)记点P 的轨迹为C ,过F 的直线l 与曲线C 交于点,M N ,与抛物线24y x =交于点,A B ,设(1,0)D -,记DMN 与DAB 面积分别是12,S S ,求21S S 的取值范围. 21.已知函数()2e ex xf x =和()221g x x x =-++. (1)求函数()f x 的单调区间和最值;(2)求证:当1x <时()()f x g x <;当1x >时()()f x g x >; (3)若存在12x x <,使得()()12f x f x =,证明122x x +>.22.已知双曲线C 的中心在原点,(1,0)D. (1)求双曲线C 的方程;(2)若过点(3,0)-任意作一条直线与双曲线C 交于A ,B 两点(A ,B 都不同于点D ),求证:DA DB ⋅为定值. 23.已知函数()2f x x =-.(1)解不等式()()242f x f x -+<;(2)若()()2133f x f x m m -++≥+对所有的x ∈R 恒成立,求实数m 的取值范围.参考答案与解析1.A【详解】试题分析:2(2)(2)46z z ai ai a ⋅=-+--=+= 和 22a = ,z 对应点在第二象限,则0a >,所以a =A .考点:复数的运算. 2.D【分析】解不等式确定集合A ,然后由集合的运算法则计算. 【详解】{|(1)(8)0}A x x x =--≤[1,8]=,[]2,10B = ∴[]2,8A B ⋂=. ∵[]1,10U =,∴()[)(]1,28,10UA B ⋂=⋃.故选:D . 3.B【分析】首先根据三角函数定义得到3cos 5α=-,再根据余弦二倍角公式和诱导公式求解即可.【详解】角α的终边经过点()3,4P -,5r == 所以3cos 5α=-.()2311+cos +2π1+cos 15cos +π====22225-ααα⎛⎫ ⎪⎝⎭.故选:B 4.C【分析】根据给定条件求出幂指数n 的值,再求出二项展开式的通项,利用给定关系式即可计算得解. 【详解】因为1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,则展开式共有11项,即10n =于是得101ax bx ⎛⎫+ ⎪⎝⎭的展开式的通项为1010102110101C ()()C r r r rr r r r a T ax x bx b ---+==⋅依题意得10210323101023C 3C a a b b--⋅=⋅⋅,化简得8ab =所以ab 的值为8. 故选:C 5.B【分析】利用基本不等式判断①,利用不等式的性质判断②,根据充分条件、必要条件的定义判断③④;【详解】解:对于①,当0a >,0b >时a b +≥当且仅当a b =时取等号,若1a =-、1b 满足0ab >,显然a b +<对于②,若0a b >>,0c d <<则0c d ->->,故ac bd ->-,故ac bd <,故②正确; 对于③,使不等式110x +>,整理得10x x +>,故0x >或1x <-,所以不等式110x+>成立的一个充分不必要条件是1x <-或1x >,故③正确;对于④,不等式210x x ++>与220x x ++>的解集都为R ,但是1112≠ 若111111==---,则不等式210x x ++>与210x x --->的解集不相同 故若i a 、i b 和(1,2)i c i =是全不为0的实数,则“111222a b c a b c ==”是 “不等式21110a x b x c ++>和22220a x b x c ++>解集相同”的既不充分也不必要条件,故④错误.故选:B . 6.C【分析】根据统计图逐个分析判断即可【详解】解:对于A ,由统计图可知2017年至2021年我国新闻出版业和数字出版业营收均逐年增加,所以A 正确;对于B ,由统计图可得2021年我国数字出版业营收为5720.9亿元,2017年我国数字出版业营收为1935.5亿元,5720.921935.5>⨯ 所以B 正确;对于C ,由统计图可得2021年我国新闻出版业营收为23595.8亿元,2017年我国新闻出版业营收为16635.3亿元,因为23595.8316635.3<⨯,所以C 错误;对于D ,由统计图可得,2021年我国数字出版业营收为5720.9亿元,新闻出版业营收23595.8亿元,而123595.87865.35720.93⨯≈>,所以D 正确故选:C 7.D【分析】结合二次函数的性质求解函数()f x 的单减区间为3[,)2a +∞,即[]31,2,2a ∞⎡⎫⊆+⎪⎢⎣⎭,列出不等关系求解即可.【详解】由题意,函数()f x 是开口向下的二次函数,对称轴为32ax = 故函数()f x 的单减区间为3[,)2a+∞ 即[]31,2,2a ∞⎡⎫⊆+⎪⎢⎣⎭,故312a ≤解得:23a ≤则a 的取值范围是2,3⎛⎤-∞ ⎥⎝⎦.故选:D 8.C【分析】先利用等比数列的性质得到3a 的值,再根据24,a a 的方程组可得24,a a 的值,从而得到数列的公比,进而得到数列的通项和前n 项和,根据后两个公式可得正确的选项.【详解】因为{}n a 为等比数列,所以2324a a a =,故3364a =即34a =由24241016a a a a +=⎧⎨=⎩可得2428a a =⎧⎨=⎩或2482a a =⎧⎨=⎩,因为{}n a 为递增数列,故2428a a =⎧⎨=⎩符合.此时24q =,所以2q或2q =-(舍,因为{}n a 为递增数列).故3313422n n n n a a q ---==⨯= ()1122112n n n S ⨯-==--.故选C.【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a =;(2)公比1q ≠时则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S -- 为等比数列(0n S ≠ )且公比为n q .9.D【分析】A 选项.由线面平行的性质可判断;B 选项.由线面平行的判定可判断;C 选项.由线面垂直的性质可判断D 选项.由线面垂直的判定定理可判断. 【详解】A 选项://m β,由l αβ=,又m α⊂,则由线面平行的性质可得//m l ,故A 正确.B 选项://m l ,由l αβ=,m β⊄,l β⊂由线面平行的判定可得//m β,故B 正确. C 选项:由l αβ=,则l β⊂,又m β⊥所以m l ⊥,故C 正确.D 选项:因为一条直线垂直于平面内的一条直线不能推出直线垂直于平面,故D 错误.故选:D 10.B【分析】设球半径为R ,则圆柱底面半径为R ,圆柱的高为2R ,根据球和圆柱的表面积公式,即可求出比值.【详解】设球半径为R ,则圆柱底面半径为R ,圆柱的高为2R 则24S R π=球2222226S S S R R R R πππ=+=⋅+⨯=圆柱侧底所以23S S =球圆柱 故选:B. 11.A【分析】根据给定条件,求出(2)a b a -⋅,再借助投影向量的意义计算作答.【详解】因1,a a b =⊥,则2(2)21a b a a b a -⋅=-⋅=,令向量2a b -与向量a 的夹角为θ 于是得(2)|2|cos ||||||a ab a a a b a a a a θ-⋅-⋅=⋅= 所以向量2a b -在向量a 方向上的投影向量为a . 故选:A 12.A【分析】画出函数()f x 的图象,使用换元法,令()t f x =,并构造函数()22=-+-g t t at a a ,通过t 的范围,可得结果.【详解】当0x ≥时()1xf x xe -=,则()()'11-=-x f x x e令()'0f x >,则01x ≤<令()'0f x <,则1x >所以函数()f x 在[)0,1递增,在()1,+∞递减 则()()min 11==f x f ,且当0x ≥时()0f x > 函数()()()()1ln ,0,0x x x f x xe x -⎧-<⎪=⎨≥⎪⎩图象如图关于x 的方程22()()0f x af x a a -+-=有四个不等实根令()t f x = ()22=-+-g t t at a a则①0=t ,t=1所以()()22001110g a a a g a a a ⎧=-=⎪⇒=⎨=-+-=⎪⎩②()0,1t ∈ ()(),01,∈-∞⋃+∞t 由()()2110=-≥g a则函数()g t 一个根在()0,1,另外一个根在(),0∞-中所以()20001=-<⇒<<g a a a综上所述:(0,1]a ∈ 故选:A【点睛】本题考查方程根的个数求参数,学会使用等价转化的思想以及换元法,考验分析能力以及逻辑推理能力,采用数型结合的方法,形象直观,化繁为简,属难题. 13.1,2(2,)2⎛⎫-⋃+∞ ⎪⎝⎭【分析】根据a 与b 夹角为钝角可得(2,1)(,1)0a b λ⋅=-⋅-<,求得λ的范围,再去掉向量反向时的值即可得解.【详解】根据题意可得:(2,1)(,1)210a b λλ⋅=-⋅-=--< 可得12λ>-当2λ=,a b =-时,a 与b 方向相反夹角为180,不符题意 所以12λ>-且2λ≠故答案为1,2(2,)2⎛⎫-⋃+∞ ⎪⎝⎭.14.0.1359【分析】利用正态分布的对称性计算给定区间内的概率作答.【详解】因长度误差ξ(单位:毫米)服从正态分布(0,4)N ,则0,2μσ== 于是得(22)0.6827P ξ-<<= (44)0.9545P ξ-<<= 所以1(24)(0.95450.6827)0.13592P ξ<<=-=.故答案为:0.1359 15.4【分析】先求出直线l ,设1122(,),(,)A x y B x y ,将直线方程代入抛物线方程化简利用根与系数的关系,再利用导数的几何意求出切线的斜率,从而可求出在A ,B 处的切线方程,再求出点M 的坐标,进而可求出MF【详解】抛物线2:4C x y =的焦点为(0,1)F ,则直线l 为1y =+,设1122(,),(,)A x y B x y由214y x y⎧=+⎪⎨=⎪⎩,得240x --=则12124x x x x +==- 由214y x =,得12y x '=,则过点11(,)A x y 的切线的斜率为112x所以过点11(,)A x y 的切线方程为21111()42x y x x x -=-,即211124x y x x =-同理可得过22(,)B x y 的切线方程222124x y x x =-两切线方程联立,得221212112424x x x x x x -=-,得121()2x x x =+= 所以2111212111()12244x y x x x x x =⋅+-==-所以点M 的坐标为)1-所以4MF =故答案为:416. () 2.5sin()5372f x x π=+ 4【分析】第一空根据表中数据的周期性规律判断为正弦型函数,先由周期计算出ω,再由最值计算出A 和b ,最后由最大值处的数据计算出ϕ,即可得到函数的表达式;第二空先判断出水深的最小值,再由前面求得的函数列不等式,求出解集的宽度即为安全停留时长.【详解】观察表中数据可知,水深与时间近似为正弦型函数.设该函数表达式为()sin()f x A x b ωϕ=++由表中数据可知,一个周期为12小时24分,即744分钟 所以2372T ππω== max min ()()7.5 2.5 2.522f x f x A --=== max ()7.5 2.55b f x A =-=-= (186) 2.5sin()57.52f πϕ=++= 0ϕ∴= 则该函数的表达式为:() 2.5sin()5372f x x π=+.由题可知,水深为4 2.25 6.25+=米以上时安全令() 6.25f x ≥解得62310x ≤≤即安全时间为31062248-=分钟,约4小时. 故答案为:() 2.5sin()5372f x x π=+;4.17.(1)=2n a n ;(2)1=1a ,2a =2 345358,,235a a a ===. 【分析】(1)Sn =n 2+n ,21(2)n S n n n -=-≥ 两式相减即得解;(2)利用递推公式直接求解.【详解】解:(1)由题得Sn =n 2+n 221(1)1(2)n S n n n n n -=-+-=-≥所以两式相减得=2n a n ,又11=2a S =所以=2n a n 适合1n =.所以数列{}n a 的通项公式为=2n a n .(2)由题得1=1a ,2a =1+11=2a 3451325381,1,1223355a a a =+==+==+=. 所以数列的前5项为1=1a ,2a =2 345358,,235a a a ===. 18.(1)证明见详解; (2)π3【分析】(1)如图建立空间直角坐标系,求出平面VAD 的法向量,然后EF 与法向量垂直可证;(2)分别求出两个平面的法向量再根据平面AVE 与平面VEG 夹角公式可求得.【详解】(1)如图建系()()()()()()1000,100,0,0,1110,020,010,012D A V E C G F ⎛⎫ ⎪⎝⎭,,,,,,,,,,,,, ()()100,001DA DV ∴==,,,,,设平面VAD 的法向量为()=,,,n a b c所以0,0DA n a DV n c ⎧⋅==⎪∴⎨⋅==⎪⎩不妨取()=0,1,0,n 又111,0,,100100,22EF EF n ⎛⎫=-∴⋅=-⨯+⨯+⨯= ⎪⎝⎭ 又EF ⊄平面VAD ,EF ∴∥平面VAD ;(2)由(1)知:()()()()0,1,0,1,0,1,1,0,0,0,1,1AE AV GE GV ==-==-设平面AVE 的法向量为()1=,,n x y z ,平面VEG 的法向量()2=,,n p q r所以110,0AE n y AV n x z ⎧⋅==⎪⎨⋅=-+=⎪⎩不妨取()1=1,0,1;n同理220,0GE n p GV n q r ⎧⋅==⎪⎨⋅=-=⎪⎩不妨取()2=0,1,1;n 设平面AVE 与平面VEG 夹角为π,0,2θθ≤≤所以121πcos cos ,,.23n n θθ===∴= 19.(1)12(2)分布列见解析,()4516E X =【分析】(1)根据相互独立事件与互斥事件的概率公式计算可得.(2)依题意X 的可能取值为2、3、4,求出所对应的概率,即可得到分布列与数学期望.(1)解:用A 表示“甲在3局以内(含3局)赢得比赛”,k A 表示“第k 局甲获胜”,k B 表示“第k 局乙获胜”, k C 表示“第k 局丙获胜” 则()()()()12123213P A P A A P A A A P A A A =++11111111111222222222⎛⎫⎛⎫=⨯+⨯-⨯+-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (2)解:依题意X 的可能取值为2、3、4所以()()()()121212111111322244448P X P A A P B B P C C ==++=⨯+⨯+⨯= ()()()()()()()1231231231231231234P X P A B C P AC B P B A C P BC A P C A B P C B A ==+++++1113624416=⨯⨯⨯= ()()()7312416P X P X P X ==-=-== 所以X 的分布列为所以()373452348161616E X =⨯+⨯+⨯=20.(1)22143x y +=(2)4,3⎡⎫+∞⎪⎢⎣⎭ 【解析】(112=,化简即可求出; (2)当直线l 的斜率存在时将直线方程分别与椭圆和抛物线的方程联立,将两个三角形的面积比转化为弦长比,化为关于k 的关系式,求最值求值域即可,之后将直线l 的斜率不存在的情况求出,最后得到答案.【详解】(112= 化简得:223412x y +=,故1C 的方程为22143x y +=. (2)依题意21AB S S MN= ①当l 不垂直于x 轴时设l 的方程是()()10y k x k =-≠联立()21 4y k x y x⎧=-⎨=⎩,得()2222240k x k x k -++= 设()11,A x y , ()22,B x y 则212224k x x k ++= ()2122412k AB x x k +=++=;联立()221 34120y k x x y ⎧=-⎨+-=⎩得:()22223484120k x k x k +-+-= 设()33,M x y ,()44,N x y 则2342834k x x k +=+ 234241234k x x k -=+()2212134k MN k +==+ 则2221234414,333AB S k S MN k k +⎛⎫===+∈+∞ ⎪⎝⎭②当l 垂直于x 轴时易知AB 4= 223b MN a== 此时1243AB S S MN ==综上,21S S 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】该题考查的是有关解析几何的问题,涉及到的知识点有动点轨迹方程的求解,直线被椭圆截得的弦长,直线被抛物线截得的弦长,属于较难题目.21.(1)单调递增区间为(),1-∞,单调递减区间为()1,+∞,最大值为2,无最小值(2)证明见解析(3)证明见解析【分析】(1)求出函数的导数,判断导数的正负,即可求得答案;(2)设()()()22e 21ex x h x f x g x x x =-=+--,求导,根据导数的正负,判断()h x 的单调性,结合()10h =,即可证明结论;(3)作出函数()2e e x x f x =,()221g x x x =-++的大致图象,数形结合,利用函数的图象,根据函数值判断根的情况,从而证明结论.(1)∵()()()()()22e e 2e e 2e 1e e x x x x x x x f x ''--'== ∴当1x <时0f x ,函数()f x 的单调递增区间为(),1-∞;当1x >时()0f x '<,函数()f x 的单调递减区间为()1,+∞.∴函数()f x 的最大值为()12f =,无最小值.(2)证明:设()()()22e 21ex x h x f x g x x x =-=+-- 则()()()()21e e 2e 122e e x x xx x h x x ---'=+-= ∴()0h x '≥,当且仅当1x =时等号成立∴函数()h x 单调递增,又()10h =∴当1x <时()0h x <,即()()f x g x <当1x >时()0h x >,即()()f x g x >.(3)证明:结合(1)(2)作出函数()2e e xx f x =,()221g x x x =-++的大致图象:当x →-∞时()f x →-∞;当x →+∞时()0f x →令()()12f x f x m ==,则()012m f <<=.又∵二次函数()g x 的图象开口向下,最大值为()12g =∴存在34x x <,使得()()()()3412g x g x f x f x ===.结合(2)的结论以及图象知3142x x x x <<<∵函数()g x 的图象关于直线1x =对称∴342x x +=∴12342x x x x +>+=【点睛】本题综合考查了导数的应用,考查导数与函数的单调性以及最值得关系,以及利用导数证明相关不等式问题,解答时要注意构造函数,从而利用导数判断新函数的性质,进而证明不等式.22.(1)2212y x -= (2)证明见解析【分析】(1)根据双曲线的性质及其点到直线的距离公式即可求解.(2)根据已知条件设出直线AB 方程及A ,B 的坐标,将直线与双曲线方程联立,得出关于y 的 一元二次方程,根据韦达定理得出12,y y 的关系,再根据向量的数量积的坐标运算即可求解.(1)因双曲线C 的中心在原点,一个顶点是(1,0)D ,则设双曲线C 的方程为:2221(0)y x b b -=>,则c()双曲线C 的渐近线为y bx ±=焦点()到渐近线y bx ±=的距离为d =b =所以双曲线C 的方程为2212y x -=. (2)显然直线AB 不垂直于y 轴,设直线AB 方程:3x ty =-由22322x ty x y =-⎧⎨-=⎩消去x 得:22(21)12160t y ty --+= 当2210t -≠时222(12)64(21)16(4)0t t t ∆=--=+>恒成立设1122(,),(,)A x y B x y ,则 所以1212221216,2121t y y y y t t +==-- 1122(1,),(1,)DA x y DB x y =-=-因此,12121212(1)(1)(4)(4)DA DB x x y y ty ty y y ⋅=--+=--+21212(1)4()16t y y t y y =+-++222216(1)481602121t t t t +=-+=-- 所以DA DB ⋅为定值0.23.(1)()2,2,3⎛⎫-∞-⋃-+∞ ⎪⎝⎭;(2)[]4,1-. 【解析】(1)利用分段讨论法去掉绝对值,求出不等式()()242f x f x -+<的解集;(2)由绝对值不等式的意义求出()()13f x f x -++的最小值,得出关于m 的不等式,求解即可.【详解】解:(1)由题知不等式()(24)2f x f x -+< 即2222x x --+<等价于12222x x x <-⎧⎨-+++<⎩或122222x x x -≤≤⎧⎨-+--<⎩ 或22222x x x >⎧⎨---<⎩; 解得<2x -或223x -<≤或2x >,即<2x -或23x >-(2)由题知(1)(3)31(3)(1)4f x f x x x x x -++=-+--+≥+= (1)(3)f x f x ∴-++的最小值为4234m m ∴+≤解得41m -≤≤∴实数m 的取值范围为[4-,1].。

黑龙江省大庆实验中学2020届高三数学仿真模拟试题理(含解析)

黑龙江省大庆实验中学2020届高三数学仿真模拟试题理(含解析)

大庆实验中学实验一部2020届高三仿真模拟数学试卷(理工类)本试卷分第I卷(选择题)和第H卷(非选择题)两部分,共23题,共150分,共3页。

考试时间:120 分钟考试结束后,将本试卷和答题卡一并交回。

第I卷(共60分)一、选择题:本大题共12 个小题,每小题5 分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,,则()A. B. C. D.【答案】A【解析】由题知,,则.故本题答案选.2. 已知复数.若在复平面内对应的点分别为,线段的中点对应的复数为,则()A. B. 5 C. D.【答案】A【解析】,所以,选A.3. 命题,则的否定形式是()A. ,则B. ,则C. ,则D. ,则【答案】D【解析】试题分析:在变命题的否定形式的时候,要注意把全称命题改成特称命题,本题中需要改动两处:一处是全称量词“任意”改成存在量词“存在”,另外一处把“大于等于” 改成相反方面“小于” . 所以本题应该选D.考点:命题的否定形式.4. 已知等差数列的公差为2,若、、成等比数列,则等于()A. -2B. -4C. 2D. 0【答案】C 【解析】由题知,即,又,解得,则.故本题答案选.5. 二项式的展开式中项的系数为,则()A. 4B. 5C. 6D. 7答案】C【考点定位】二项式定理.6. 是表示空气质量的指数,指数值越小,表明空气质量越好,当指数值不大于100 时称空气质量为“优良”.如图是某地4月1日到12 日指数值的统计数据,图中点表示4 月1 日的指数值为201 .则下列叙述不正确的是()A. 这12天中有6天空气质量为“优良”B. 这12天中空气质量最好的是4月9 日C. 这12天的指数值的中位数是90D. 从4日到9 日,空气质量越来越好【答案】C【解析】由图可知,不大于100天有6日到11日,共6天,所以A对,不选.最小的一天为10日,所以B对,不选•中位为是,C错.从图中可以4日到9日越来越小,D对.所以选C.7. 高三某班15名学生一次模拟考试成绩用茎叶图表示如图1.执行图2 所示的程序框图,若输入的分别为这15 名学生的考试成绩,则输出的结果为()A. 6B. 7C. 8D. 9【答案】D【解析】由框图功能可知,它的作用是统计出分数大于或等于110 分的人数n. 所以. 选D.8. 已知,是曲线与轴围成的封闭区域.若向区域内随机投入一点,则点落入区域的概率为()A. B. C. D.【答案】D【解析】如下图,我们可知概率为两个面积比. 选D.【点睛】解几何概型问题的关键是确定“测度” ,常见的测度有长度、面积、体积等,若题中只有一个变量,可考虑利用长度模型,若题中由两个变量,可考虑利用面积模型.9. 设点在不等式组所表示的平面区域内,则的取值范围为()A. B. C. D.【答案】D【解析】如图所示,绘制不等式组表示的平面区域,结合目标函数的几何意义可得,目标函数在点处取得最大值2,在点处取得最大值5,目标函数的取值范围是.本题选择D选项•10. 已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得出这个几何体的内切球半径是()A. B. C. D.【答案】D【解析】由三视图可知,该几何体为三棱锥,设内切球半径为,则由棱锥的体积公式有①,其中,分别为三棱锥四个面的面积,,代入①得到,解得•11. 如图所示点是抛物线的焦点,点分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B.C. D.【答案】B【解析】抛物线的的准线方程,焦点,由抛物线的定义可得,圆的圆心,半径,所以的周长,由抛物线及圆可得交点的横坐标为,所以,所以,故选B.12. 已知函数f (X)=,若存在X i、X2、…X n满足==••==,贝U X1+X2+…+X n的值为( )A. 4B. 6C. 8D. 10答案】C解析】由函数的解析式可得函数f(x) 的图象关于点(2,0) 对称,结合图象知:X I、X2、…X n满足•••函数f (x)与y= x-1的图象恰有5个交点,且这5个交点关于(2,0)对称, 除去点(2,0) ,故有X1+X2 +…+ X n=X l+X2+X3+X4=8.本题选择C选项.第n卷(共90分)二、填空题(每题5 分,满分20 分,将答案填在答题纸上)13. 已知函数(为正实数)只有一个零点,则的最小值为【答案】【解析】函数只有一个零点,则,则,可知,又,则.故本题应填.点睛:本题主要考查基本不等式. 基本不等式可将积的形式转化为和的形式, 也可将和的形式转化为积的形式, 两种情况下的放缩功能, 可以用在一些不等式的证明中, 还可以用于求代数式, 函数等的取值范围或最值中. 与常用来和化积, 而和常用来积化和.14. 设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于、两点,为的实轴长的倍,则的离心率为________________ .【答案】【解析】设双曲线的标准方程为,由题意,得,即,,所以双曲线的离心率为. 点睛:处理有关直线和圆锥曲线的位置关系问题时,记住一些结论可减少运算量、提高解题速度,如:过椭圆或双曲线的焦点且与焦点所在坐标轴垂直的弦长为,过抛物线的焦点且与对称轴垂直的弦长为.15. 把3 男生2女生共5名新学生分配到甲、乙两个班,每个班分的新生不少于2 名,且甲班至少分配1 名女生,则不同的分配方案种数为 _________________ .(用数字作答)【答案】1616.已知函数,点O为坐标原点,点,向量=(0 , 1 ), 0 n是向量与的夹角,则使得恒成立的实数t 的取值范围为 ______________ .【答案】【解析】根据题意得, 是直线OA n 的倾斜角,则:,据此可得:结合恒成立的结论可得实数t 的取值范围为.点睛:对于恒成立问题,常用到以下两个结论:⑴ a> f(X)恒成立?a> f(X)max;⑵ a< f (x)恒成立?a< f (x) min.用裂项相消法求和时,注意裂项后的系数以及搞清未消去的项,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对的边分别为•(1)求角;(2)若的中线的长为,求的面积的最大值.【答案】( 1 ); (2).【解析】试题分析:(1) 由题意结合余弦定理求得;(2) 利用余弦定理结合面积公式和均值不等式可得的面积的最大值为.试题解析:(1) ,即.(2) 由三角形中线长定理得:,由三角形余弦定理得:,消去得: (当且仅当时,等号成立) ,即.18. (本小题满分12 分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100 名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为"体育迷”.(1)根据已知条件完成上面的列联表,若按的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求分布列,期望和方差.附:【答案】(1)没有理由认为“体育迷”与性别有关;(2)分布列见解析,期望为,方差为.【解析】试题分析:(1)利用频率分布直方图,可得各组概率,进一步可填出列联表,利用公式求出的值,结合所给数据,用独立性检验可得结果;(2)利用分层抽样,可确定人中有男女,利用古典概型,可得结果.试题解析:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而列联表如下:将列联表中的数据代入公式计算,得因为,所以没有理由认为“体育迷”与性别有关.(2)由分层抽样可知人中男生占,女生占,选人没有一名女生的概率为,故所求被抽取的2名观众中至少有一名女生的概率为.19.如图,在四棱锥P—ABCDK 平面PADL底面ABCD其中底面ABC[为等腰梯形,AD// BCPA= AB= BC= CD= 2, PD= 2, PAL PD Q为PD的中点.(I)证明:CQ/平面PAB(n)求直线PD与平面AQC所成角的正弦值【答案】(I)见解析;(n).【解析】试题分析:⑴取PA的中点N,由题意证得BN// CQ则CQ/平面PAB⑵利用题意建立空间直角坐标系,结合平面的法向量可得直线PD与平面AQC所成角的正弦值为.试题解析:(I)证明如图所示,取PA的中点N,连接QNBN 在^ PAD中, PNh NA PQ= QD所以QN/ AD 且QNh AD在厶APD中 , PA^ 2 , PD= 2, PA± PD所以AD== 4,而BC= 2,所以BC= AD又BC// AD,所以QN/ BC 且QNh BC故四边形BCQ为平行四边形,所以BN// CQ又BN?平面PAB且CQ平面PAB 所以CQ/平面PAB(n)如图,取AD的中点M连接BM取BM的中点Q连接BO PO由(1)知PA= AM= PM= 2,所以△ APM为等边三角形,所以POL AM 同理BOL AM.因为平面PADL平面ABCD所以POh BO.如图,以O为坐标原点,分别以OB OD OP所在直线为x轴,y轴,z轴建立空间直角坐标系则O(0,0,0) D(0,3,0) A(0 -1,0) B( 0,0) P(0,0 ) C( 2,0)则=(,3,0).因为Q为DP的中点,故Q所以=.设平面AQC的法向量为m= (x , y , z),则可得令y =—,贝U x= 3, z = 5.故平面AQC勺一个法向量为m^ (3,—, 5).设直线PD与平面AQC所成角为0.贝U sin 0 = |cos 〈,n〉| ==.从而可知直线PD与平面AQC所成角正弦值为.20. 已知分别是椭圆勺左,右焦点,分别是椭圆勺上顶点和右顶点,且,离心率.(I)求椭圆的方程;(H)设经过的直线与椭圆相交于两点,求的最小值【答案】(I) ; (n).【解析】试题分析:(1) 由题意列方程可得,故所求椭圆方程为(2) 设出直线方程,联立直线与椭圆的方程,结合题意可得,当且仅当时上式取等号. 的最小值为。

黑龙江省大庆实验中学2020届高三毕业班下学期5月第一次高考模拟考试数学(理)试题(解析版)

黑龙江省大庆实验中学2020届高三毕业班下学期5月第一次高考模拟考试数学(理)试题(解析版)
5.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是顶角为 的等腰三角形(另一种是顶角为 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金 中, .根据这些信息,可得 ( )
A. B. C. D.
【答案】B
【解析】
【分析】
由题意画出图形,可得四边形 为矩形,则 ,结合 , , ,列式可得 关于 的三角函数,利用辅助角公式化简后求解椭圆离心率的取值范围.
【详解】设椭圆的另一焦点为 ,连接 , , ,
设椭圆的焦距为 ,由题意则四边形 为矩形,∴ ,
, .
结合椭圆定义,可知 ,即 ,则 ,
A. B. C. D.
【答案】D
【解析】
【分析】
在 ,由正弦定理可知: ,即可求得 值,根据诱导公式化简 ,即可求得答案.
【详解】在 ,由正弦定理可知:



.
故选:D.
【点睛】本题主要考查了根据正弦定理和诱导公式求三角函数值,解题关键是掌握正弦定理公式和熟练使用诱导公式,考查了分析能力和计算能力,属于中档题.
对于事件 ,甲获得冠军,包含两种情况:前两局甲胜和事件 ,
, ,故选A.
【点睛】本题考查利用条件概率公式计算事件的概率,解题时要理解所求事件的之间的关系,确定两事件之间的相对关系,并利用条件概率公式进行计算,考查运算求解能力,属于中等题.
10.已知 , , ,则a,b,c的大小关系是( )
A. B. C. D.
【详解】∵点 和 在直线 的两侧,

2020学年黑龙江省大庆市高考一模数学理及答案解析

2020学年黑龙江省大庆市高考一模数学理及答案解析

2020年黑龙江省大庆市高考一模数学理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={-1,0,1,2,3},B={x||x|≤2},则A∩B的值为( )A.{-1,0,1,2}B.{-2,-1,0,1,2}C.{0,1,2}D.{1,2}解析:分别求出集合A,B,由此能求出A∩B.∵集合A={-1,0,1,2,3},B={x||x|≤2}={x|-2≤x≤2},∴A∩B={-1,0,1,2}.答案:A2.若复数21-=+izi,则z在复平面内所对应的点位于的( )A.第一象限B.第二象限C.第三象限D.第四象限解析:利用复数代数形式的乘除运算化简求得z所对应点的坐标得答案.∵()()()()1322121311122----====-++-i ii iz ii i i,∴复数z在复平面内所对应的点的坐标为(12,32-),位于第四象限.答案:D3.若x,y满足111≤⎧⎪+≥⎨⎪≥-⎩yx yy x,则2x+y的最大值为( )A.2B.5C.6D.7解析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.作出x,y满足111≤⎧⎪+≥⎨⎪≥-⎩yx yy x对应的平面区域如图:(阴影部分).由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,此时z最大.由11=⎧⎨=-⎩yy x,解得A(2,1),代入目标函数z=2x+y得z=2×2+1=5.即目标函数z=2x+y的最大值为5.答案:B4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.2B.4C.8D.12解析:由几何体的三视图得到该几何体是四棱锥S-ABCD ,其中,四边形ABCD 是边长为2的正方形,PC ⊥平面ABCD ,PC=3,由此能求出几何体的体积. 由几何体的三视图得到该几何体是四棱锥S-ABCD ,其中,四边形ABCD 是边长为2的正方形, PC ⊥平面ABCD ,PC=3, ∴几何体的体积:22341133=⨯⨯=⨯⨯⨯=正方形ABCD V S PC .答案:B5.执行如图所示的程序语句,则输出的S 的值为( )A.22B.1C.2+1解析:模拟程序框图的运行过程,得出该程序运行后输出的是2350sinsinsin sin 4444ππππ=+++⋯+S 的值,2350sinsinsin sin44442384950sin sin sin sin sin sin 4444444950sin sin44sin sin4122ππππππππππππππ=+++⋯+⎛⎫=+++⋯++⋯++ ⎪⎝⎭=+=+=+S答案:C6.已知命题p :直线l 1:ax+y+1=0与l 2:x+ay+1=0平行;命题q :直线l :x+y+a=0与圆x 2+y 2=1,则命题p 是q( )A.充分不必要条件B.必要不充分条件C.充要条件D.既充分也不必要条件 解析:根据直线平行的等价条件以及直线和圆相交的弦长公式分别进行计算,结合充分条件和必要条件的定义进行判断即可.当a=0时,两直线方程分别为y+1=0,x+1=0,两直线不平行,当a ≠0时,若两直线平行,则满足1111=≠a a ,由11=a a 得a 2=1,得a=±1,由111≠a ,得a ≠1,即a=-1, 即p :a=-1,圆心到直线的距离=d ,半径r=1,∵直线l :x+y+a=0与圆x2+y2=1,∴r 2=d 2+(2)2,即21122=+a ,得a 2=1,得a=±1, 则命题p 是q 充分不必要条件. 答案:A7.数列{a n }为正项递增等比数列,满足a 2+a 4=10,a 32=16,则1012++⋯+a a a 等于( )A.-45B.45C.-90D.90解析:运用等比数列的通项公式和性质,求出q.再结合对数运算公式,求出结果即可. ∵{a n}为正项递增等比数列,∴a n >a n-1>0,公比q >1.a 2+a 4=10①,且a 32=16=a 3·a 3=a 2·a 4②,由①②解得a 2=2,a 4=8.又因为a 4=a 2·q 2,得q=2或q=-2(舍).则得a 5=16,a 6=32,5121012160++⋯+=⋯=a a a a a a a a953229224590⨯⨯⨯=====.答案:D 8.若1e ,2e 是夹角为60°的两个单位向量,则向量12=+a e e ,122=-+b e e 的夹角为( )A.30°B.60°C.90°D.120°解析:根据题意,设a 、b 的夹角为θ, 又由1e ,2e 是夹角为60°的两个单位向量,且12=+a e e ,122=-+b e e ,则()()22121212122232=+-+=-++=a b e e e e e e e e ,又由12=+a e e,则11=++=a , 由122=-+b e e ,则14=+-=b则有1os 2c θ==a b a b,则θ=60°. 答案:B9.已知双曲线22221-=x y a b (a >0,b >0)的一条渐近线过点(1),且双曲线的一个焦点在抛物线y 2=16x 的准线上,则双曲线的方程为( )A.221412-=x y B.221124-=x y C.221420-=x y D.221204-=x y解析:双曲线22221-=x y a b (a >0,b >0)的渐近线方程为y=±ba x , 由一条渐近线过点(1,可得=ba双曲线的一个焦点(-c ,0)在抛物线y 2=16x 的准线x=-4上,可得c=4,即有a 2+b 2=16, 解得a=2,则双曲线的方程为221412-=x y .答案:A10.已知f(x)是定义在R 上的奇函数,当x ∈[0,+∞)时,f ′(x)<0.若12ln ⎛⎫ ⎪⎝=-⎭a f ,211ln ⎛⎫⎛⎫ ⎪ ⎪⎝⎭-⎭=⎝b f e e ,c=f(e 0.1),则a ,b ,c 的大小关系为( )A.b <a <cB.b <c <aC.c <a <bD.a <c <b解析:根据条件先判断函数的单调性,结合对数的运算性质进行化简即可. ∵当x ∈[0,+∞)时,f ′(x)<0,∴当x ∈[0,+∞)时,函数f(x)单调递减,∵f(x)是定义在R 上的奇函数,∴函数在(-∞,+∞)上单调递减,()()1222ln ln ln ⎛⎫⎪⎝=-=-⎭-=a f f f , 2111ln ln 1⎛⎫ ⎪⎝=-⎭->e e e ,又211ln 0⎛⎫- ⎪⎝⎭<e e ,则2111ln 0-⎛⎫⎝⎭-⎪<<e e ,e 0.1>1,0<ln2<1, 则0.12111ln ln 2⎛⎫⎪⎝⎭--<<<e e e ,则()()0.12112ln ln ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝-⎭>>f f f e e e ,即c <a <b. 答案:C11.函数f(x)=2sin(ωx+φ)(ω>0)的图象过点(9π,2),相邻两个对称中心的距离是3π,则下列说法不正确的是( )A.f(x)的最小正周期为23πB.f(x)的一条对称轴为x=49πC.f(x)的图象向左平移9π个单位所得图象关于y 轴对称D.f(x)在[9π-,9π]上是减函数解析:求出函数f(x)的解析式,再判断选项中的命题是否正确即可.函数f(x)=2sin(ωx+φ)图象相邻两个对称中心的距离是3π,∴23π=T ,∴223ππω==T ,解得ω=3; 又f(x)的图象过点(9π,2), ∴2sin(9πω+φ)=2,∴292ππωϕπ+=+k ,k ∈Z ;解得φ=6π+2k π,k ∈Z ; 令k=0,得φ=6π,∴f(x)=2sin(3x+6π);∴f(x)的最小正周期为T=23π,A 正确; 442sin 32996πππ⎛⎫⎛⎫=⨯+=- ⎪ ⎪⎝⎭⎝⎭f 为最小值,∴f(x)的一条对称轴为x=49π,B 正确;f(x)的图象向左平移9π个单位,得函数2sin 32sin 32cos3962πππ⎡⎤⎢⎥⎣⎦⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭y x x x,其图象关于y 轴对称,C 正确;x ∈[9π-,9π]时,3x ∈[3π-,3π],∴3x+6π∈[6π-,2π]时,∴f(x)=2sin(3x+6π)在[9π-,9π]上是增函数,D 错误.答案:D12.已知函数()21211415⎧+-≤≤⎪=⎨+-≤⎪⎩,,<x x f x x x x ,若关于x 的方程f(x)-ax=0有两个解,则实数a 的取值范围是( )A.(0,625]∪[52-,-2) B.(0,625)∪[52-,-2]C.(-∞,52-)∪[625,+∞)∪{0,-2}D.(-∞,52-)∪[625,+∞)解析:分别作出函数y=f(x)和y=ax 的图象,利用方程有两个解,利用数形结合即可得到结论.设函数y=f(x)和y=ax , 作出函数f(x)的图象如图:要使方程f(x)-ax=0有2两个解,即函数y=f(x)和y=ax 有2个不同的交点,∵f(-2)=5,f(5)=|5+15-4|=65, 当y=ax经过点(5,65)时,此时a=625, 当过点(-2,5)时,此时a=52-,当直线y=ax 与y=x 2+1相切时,∵y ′=2x ,设切点为(x 0,y 0),-2≤x 0≤0,∴200012+=x x x ,解得x 0=-1,当x 0=-1,此时a=-2,结合图象,综上所述a 的取值范围为[52-,-2)∪(0,625].答案:A二、填空题(本题有4标题,每小题5分,满分20分,将答案填在答题纸上)13.()3021-=⎰x dx .解析:根据定积分的运算,即可求得答案.()()3230036219=-=-=-⎰x x x x d .答案:614.一个圆柱的轴截面是正方形,在圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切.记球O 的体积为V 1,圆柱内除了球之外的几何体体积记为V 2,则12V V 的值为 .解析:设圆柱的底面半径为r ,则圆柱的高为2r ,球O 的半径为r ,∴球O 的体积V 1=43πr 3,圆柱内除了球之外的几何体体积:V 2=πr 2×2r -43πr 3=23πr 3,∴313243322ππ==r V V r .答案:215.若f(x)=e xl na+e -xlnb 为奇函数,则12+a b 的最小值为 . 解析:由奇函数的性质可得f(0)=0,即有对数的运算性质可得ab=1,再由基本不等式,即可得到所求最小值.f(x)=e xl na+e -xlnb 为奇函数, 可得f(0)=0,即有e 0lna+e 0lnb=0, 即有ln(ab)=0,可得ab=1,(a >0,b >0),则12≥=+a b ,当且仅当时,等号成立,则12+a b 的最小值为. 答案:16.已知抛物线C :y 2=4x ,过其焦点F 作一条斜率大于0的直线l ,l 与抛物线交于M ,N 两点,且|MF|=3|NF|,则直线l 的斜率为 .解析:方法一:由抛物线的定义:|NF|=|DH|=x ,|MF|=|CM|=3x ,根据相似三角形的性质,即可求得直线MN 的倾斜角为60°,即可求得直线l 的斜率. 抛物线C :y2=4x ,焦点F(1,0),准线为x=-1, 分别过M 和N 作准线的垂线,垂足分别为C 和D ,过NH ⊥CM ,垂足为H , 设|NF|=x ,则|MF|=3x ,由抛物线的定义可知:|NF|=|DN|=x ,|MF|=|CM|=3x , ∴|HM|=2x ,由|MN|=4x ,∴∠HMF=60°,则直线MN 的倾斜角为60°, 则直线l 的斜率k=tan60°3.方法二:设直线MN 的方程y=k(x-1),代入抛物线方程,利用韦达定理及向量的坐标运算,即可求得k 的值.抛物线C :y 2=4x ,焦点F(1,0), 准线为x=-1,设直线MN 的斜率为k ,则直线MN 的方程y=k(x-1),设M(x 1,y 1),N(x 2,y 2),()241⎧=⎪⎨=-⎪⎩y x y k x , 整理得:k 2x 2-2(k 2+2)x+k 2=0,则()212222++=k x x k ,x 1x 2=1,由|MF|=3|NF|,3=M FN F ,即(1-x 1,-y 1)=3(x 2-1,y 2),x 1+3x 2=4,整理得:3x 2-4x 2+1=0,解得:x 2=13,或x 2=1(舍去),则x 1=3,解得:k=3, 由k >0,则3.方法三:设直线MN 的方程x=mx+1,代入抛物线方程,利用韦达定理及向量的坐标运算即可求得m 的值,则直线l 的斜率为1m .抛物线C :y 2=4x ,焦点F(1,0),准线为x=-1,设直线MN 的方程x=mx+1,设M(x 1,y 1),N(x 2,y 2),214=+⎧⎨=⎩x my y x ,整理得:y 2-4my-4=0,则y 1+y 2=4m ,y 1y 2=-4,由|MF|=3|NF|,3=M FN F ,即(1-x 1,-y 1)=3(x 2-1,y 2),-y 1=3y 2,即y 1=-3y 2,解得:y 2=,y 1∴4m=,则m=,∴直线l.三、解答题(本大题共6小题,共70分,第17~21题为必考题,每小题12分,第22、23题为选考题,有10分.解答应写出文字说明、证明过程或演算步骤.)17.设函数y=f(x)的图象由y=2sin2x+1的图象向左平移12π个单位得到.(1)求f(x)的最小正周期及单调递增区间.解析:(1)通过函数的图象的变换,求出函数的解析式,然后求解函数的周期以及函数的单调区间.答案:(1)y=2sin2x+1的图象向左平移12π个单位得到y=2sin(2x+6π)+1的图象, 即f(x)=2sin(2x+6π)+1.函数最小正周期T=π.令222262πππππ-+≤+≤+k x k (k ∈Z),则222233ππππ-+≤≤+k x k (k ∈Z),解得36ππππ-+≤≤+k x k (k ∈Z),所以y=f(x)的单调增区间是[3ππ-+k ,6ππ+k ](k ∈Z).(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f(A)=2,b=1,S △ABCa 的值. 解析:(2)利用已知条件求出A ,然后利用图象定理,以及三角形的面积求解a 即可.答案:(2)由题意得:f(A)=2sin(2A+6π)+1=2,则有sin(2A+6π)=12.因为0<A <π,所以5266ππ+=A ,A=3π.由1sin 2==ABCbc A Sb=1得,c=4.根据余弦定理,a 2=b 2+c 2-2bccosA=1+16-2×1×4×12=13,所以18.已知数列{a n }的前n 项和为S n ,点(n ,S n )在曲线25122=+y x x 上,数列{b n }满足b n +b n+2=2b n+1,b 4=11,{b n }的前5项和为45.(1)求{a n },{b n }的通项公式.解析:(1)利用已知条件求出{a n }的通项公式,判断数列是等差数列求解{b n }的通项公式.答案:(1)由已知得:21252=+n S n n ,当n=1时,1115232==+=a S ,当n ≥2时,()()22151125112222-=-=+----=+n n n a S S n n n n n ,当n=1时,符合上式.所以a n =n+2.因为数列{b n }满足b n +b n+2=2b n+1,所以{b n }为等差数列.设其公差为d.则()413131155245=+=⎧⎪⎨=+=⎪⎩b b db b d,解得152=⎧⎨=⎩bd,所以b n=2n+3.(2)设()()12328=--nn nca b,数列{c n}的前n项和为T n,求使不等式T n>54k恒成立的最大正整数k的值.解析:(2)化简数列的通项公式,利用裂项相消法求解数列的和即可.答案:(2)由(1)得,()()()()()()11111 2328214222141212121 ====---+-+--⎛⎫⎝⎭+⎪nn nca b n n n n n n,111111521212111143341⎛⎫⎛⎫-⎪ ⎪⎝=-++⋯+-=-⎝+⎭-+⎭nTn n n,因为()()111121232212431+⎛⎫-=-=++⎪⎭++⎝>n nT Tn n n n,所以{T n}是递增数列.所以T n≥T1=16,故T n>54k恒成立只要11654=>Tk恒成立.所以k<9,最大正整数k的值为8.19.已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD且PA=AB=2.E为PA的中点.(1)求证:PC∥面BDE.解析:(1)连接CA交BD于O,连接OE,证明OE∥PC,即可推出PC∥面BDE.答案:(1)连接CA交BD于O,连接OE,因为ABCD为正方形且AC,BD为对角线,所以O为CA的中点,又E为PA的中点,故OE为△PAC的中位线,所以OE∥PC,而OE⊂面BDE,PC⊂面BDE,故PC∥面BDE.(2)求直线DE与平面PBC所成角的余弦值.解析:(2)以A为原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系A-xyz.求出平面PBC的法向量n=(x,y,z),设直线DE与平面PBC所成角为θ,利用向量的数量积求解即可.答案:(2)以A为原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系A-xyz. 则B(2,0,0),D(0,2,0),C(2,2,0),E(0,0,1),P(0,0,2),所以DE=(0,-2,1),BP=(-2,0,2),BC=(0,2,0),设平面PBC的法向量n=(x,y,z),则⎧=⎪⎨=⎪⎩n BPn BC,即-=⎧⎨=⎩x zy,令z=1,则法向量n=(1,0,1),设直线DE与平面PBC所成角为θ,则10 sin cos10θ===,n DEn DEn DE,故直线DE与平面PBC所成角的余弦值310.20.已知椭圆C:22221+=x ya b(a>b>0),其焦距为2,离心率为22.(1)求椭圆C 的方程.解析:(1)由2c=2,可得c=1,由2=c a,可得,从而b 2=a 2-c 2=1,即可求出椭圆方程.答案:(1)因为椭圆焦距为2,即2c=2,所以c=1,2=c a,所以, 从而b 2=a 2-c 2=1,所以,椭圆的方程为2212+=x y .(2)设椭圆的右焦点为F ,K 为x 轴上一点,满足2=O OF K ,过点K 作斜率不为0的直线l 交椭圆于P ,Q 两点,求△FPQ 面积S 的最大值.解析:(2)设直线MN 的方程为y=k(x-2)(k ≠0).代入椭圆方程得(1+2k 2)x 2-8k 2x+8k 2-2=0.设M(x 1,y 1),N(x 2,y 2),由判别式△>0解得k 范围.利用弦长公式、三角形面积计算公式、二次函数的单调性即可得出.答案:(2)椭圆右焦点F(1,0),由2=O OF K 可知K(2,0), 直线l 过点K(2,0),设直线l 的方程为y=k(x-2),k ≠0, 将直线方程与椭圆方程联立得(1+2k2)x2-8k2x+8k2-2=0.设P(x 1,y 1),Q(x 2,y 2),则2122812+=+k x x k ,21228212-=+k x x k , 由判别式△=(-8k 2)2-4(2k 2+1)(8k 2-2)>0解得k 2<12.点F(1,0)到直线l 的距离为h,则==h()42212222226482111242211121-==-=+-⨯++++kk k k S PQ h x x k k k k k ))22221221122-==+k k k k令t=1+2k 2,则1<t <2,则2232+==-t t S t当134=t时,S取得最大值.此时k2=16,k=±,S取得最大值4.21.已知函数f(x)=1-ax+lnx(1)若不等式f(x)≤0恒成立,则实数a的取值范围.解析:(1)分离参数,构造函数,利用导数求出函数的最值即可求出参数的取值范围.答案:(1)由题意知,1-ax+lnx≤0恒成立.变形得:ln1+≥xax.设()ln1+=xh xx,则a≥h(x)max.由()2ln'=-xh xx可知,h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,h(x)在x=1处取得最大值,且h(x)max=h(1)=1. 所以a≥h(x)max=1,实数a的取值范围是[1,+∞).(2)在(1)中,a取最小值时,设函数g(x)=x(1-f(x))-k(x+2)+2.若函数g(x)在区间[12,8]上恰有两个零点,求实数k的取值范围.解析:(2)问题转化为即关于x的方程x2-xlnx-k(x+2)+2=0在区间[12,8]上恰有两个实数根,再分离参数,构造函数,利用导数求出函数的最值即可求出参数的取值范围. 答案:(2)由(1)可知,a≥1,当a=1时,f(x)=1-x+lnx,g(x)=x(x-lnx)-k(x+2)+2=x2-xlnx-k(x+2)+2,g(x)在区间[12,8]上恰有两个零点,即关于x的方程x2-xlnx-k(x+2)+2=0在区间[12,8]上恰有两个实数根.整理方程得,2ln 22-+=+x x x k x ,令()2ln 22-+=+x x x s x x ,x ∈[12,8],()()2232ln 42+--'=+x x x s x x .令φ(x)=x 2+3x-2lnx-4,x ∈[12,8],则()()()212ϕ-+'=x x x x,x ∈[12,8],于是φ′(x)≥0,φ(x)在[12,8]上单调递增.因为φ(1)=0,当x ∈[12,1)时,φ(x)<0,从而s ′(x)<0,s(x)单调递减,当x ∈(1,8]时,φ(x)>0,从而s ′(x)>0,s(x)单调递增,()()9ln 23312ln 2118105251⎛⎫ ⎪=⎭-+==⎝,,s s s , 因为()5726ln 2801102--=⎛⎫ ⎪⎝⎭>s s ,所以实数k 的取值范围是(1,9ln 2105+].(3)证明不等式:2ln(2×3×4×…×n)>221-+n n n (n ∈N*且n ≥2).解析:(3)由(1)可得x-1≥lnx ,当且仅当x=1时取等号,令x=21k ,则有22111ln -≥kk ,其中k ∈N*,k ≥2,利用放缩裂项,累加求和即可证明.答案:(3)证明:由(1)可知,当a=1时,有x-1≥lnx , 当且仅当x=1时取等号.令x=21k ,则有22111ln -≥kk ,其中k ∈N*,k ≥2.整理得:()2111112ln 111111≥-=--=-+-->k k k k k k k k ,当k=2,3,…,n 时,12ln 212112-+->,12ln 313113-+->,…,112ln 11-+->n n n ,上面n-1个式子累加得:2ln(2×3×…×n)>n-1-1+1n .n ∈N*且n ≥2,即2ln(2×3×…×n)>221-+n n n .命题得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. [选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以原点O 为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线C 1:x 2+y 2=1,直线l :ρ(cos θ-sin θ)=4.(1)将曲线C 1上所有点的横坐标、纵坐标分别伸长为原来的2倍后得到曲线C 2,请写出直线l ,和曲线C 2的直角坐标方程.解析:(1)直接把参数方程和极坐标方程与直角坐标方程进行转化.答案:(1)因为l :ρ(cos θ-sin θ)=4,转化为直角坐标方程为:x-y=4; 设曲线C 2上任一点坐标为(x ′,y ′),则2'=⎧⎪⎨'=⎪⎩x x y , 所以2'⎧=⎪⎪⎨⎪=⎪⎩x x y , 代入C 1方程得:22123''+⎛⎫⎛⎫⎪ ⎝=⎪⎝⎭⎭x y , 所以C 2的方程为22143''+=x y .(2)若直线l 1经过点P(1,2)且l 1∥l ,l 1与曲线C 2交于点M ,N ,求|PM|·|PN|的值. 解析:(2)利用直线哈曲线建立方程组,利用一元二次方程根和系数的关系求出结果.答案:(2)直线l :x-y=4倾斜角为4π,由题意可知,直线l 1的参数方程为2122⎧=+⎪⎪⎨⎪=+⎪⎩x t y (t 为参数), 联立直线l 1和曲线C 2的方程得,27702++=t . 设方程的两根为t 1,t 2,则t 1t 2=2.由直线参数t 的几何意义可知,|PM|·|PN|=|t 1t 2|=2.[选修4-5:不等式选讲]23.已知a ,b 是任意非零实数.(1)求3232++-a b a b a 的最小值.解析:(1)根据绝对值三角不等式得出结论.答案:(1)因为|3a+2b|+|3a-2b|≥|3a+2b+3a-2b|=6|a|,当且仅当(3a+2b)(3a-2b)≥0时取等号,3232++-a b a ba 的最小值为6.(2)若不等式|3a+2b|+|3a-2b|≥|a|(|2+x|+|2-x|)恒成立,求实数x 取值范围. 解析:(2)根据(1)的结论可得:|2+x|+|2-x|≤6,再讨论x 的符号解出x 的范围.答案:(2)由题意得:323222++-++-≤a b a b x x a 恒成立, 结合(1)得:|2+x|+|2-x|≤6.当x ≤-2时,-x-2+2-x ≤6,解得-3≤x ≤-2;当-2<x ≤2时,x+2+2-x ≤6成立,所以-2<x ≤2;当x >2时,x+2+x-2≤6,解得2<x ≤3.综上,实数x 的取值范围是[-3,3].。

黑龙江省部分学校2020届高三5月联考试题 数学(理科)

黑龙江省部分学校2020届高三5月联考试题 数学(理科)

黑龙江省部分学校2020届高三5月联考试题 高三数学试卷(理科)考生注意:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分。

考试时间120分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:高考全部内容。

第I 卷一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合M ={x|x<2},N ={x|x 2>6},则M ∩N =A.(-6,2)B.(-∞,-6)C.(-∞,2)D.(-∞,-6)∪(2,6)2.设z =2+(3-i)2,则z =A.6+10iB.6-10iC.10+6iD.10-6i3.已知P 为椭圆22132x y +=短轴的一个端点,F 1,F 2是该椭圆的两个焦点,则△PF 1F 2的面积为A.2B.2C.4D.224.2020年1月,某专家为了解新型冠状病毒肺炎的潜伏期,他从确诊感染新型冠状病毒的70名患者中了解到以下数据:根据表中数据,可以估计新型冠状病毒肺炎的潜伏期的平均值为(精确到个位数)A.6天B.7天C.8天D.9天5.若函数f(x)=3x +log 2(x -2),则f(5)+f(103)= A.24 B.25 C.26 D.276.函数f(x)=|1+2sin2x|的最小正周期为A.2π B.π C.32π D.2π 7.在平行四边形ABCD 中,若4CE ED =u u u r u u u r ,则BE u u u r =A.45AB AD -+u u u r u uu rB.45AB AD-u u u r u u u rC.45AB AD-+u u u r u u u rD.34AB AD-+u u u r u u u r8.已知等比数列{a n}的前n项和为S n,且a10=2a6,若mS32=S8+S24,则m=A.715B.12C.815D.7169.已知双曲线C:22221(0,0)x ya ba b-=>>的右顶点为A,直线y=32(x+a)与C的一条渐近线在第一象限相交于点P,若PA与x轴垂直,则C的离心率为A.2B.3C.2D.310.已知函数f(x)=2410220xx x xx---+≤-⎪>⎧⎪⎨⎩,,,若关于x的方程(f(x)-2)(f(x)-m)=0恰有5个不同的实根,则m的取值范围为A.(1,2)B.(2,5)∪{1}C.{1,5}D.[2,5)∪{1}11.某几何体的三视图如图所示,俯视图为正三角形,则该几何体外接球的表面积为A.254πB.643πC.25πD.32π12.已知定义域为R的函数f(x)满足f(12)=12,f'(x)+4x>0,其中f'(x)为f(x)的导函数,则不等式,f(sinx)-cos2x≥0的解集为A.[-3π+2kπ,3π+2kπ],k∈Z B.[-6π+2kπ,6π+2kπ],k∈ZC.[3π+2kπ,23π+2kπ],k∈Z D.[6π+2kπ,56π+2kπ],k∈Z第II卷二、填空题:本大题共4小题,每小题5分,共20分。

黑龙江省大庆市2020届高三数学第一次教学质量检测试题理含解析

黑龙江省大庆市2020届高三数学第一次教学质量检测试题理含解析

黑龙江省大庆市2020届高三数学第一次教学质量检测试题 理(含解析)第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题8分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合{}{}2|,|01A x x x B x x =≤=<≤,则AB =( )A. (]0,1B. []0,1C. (],1-∞D.()(],00,1-∞【答案】A 【解析】 【分析】求出集合A 后可求AB .【详解】[]0,1A =,故(]0,1A B =,故选A.【点睛】本题考查集合的运算交,属于基础题.2.已知2(1i)=1i z(i 为虚数单位),则复数z 的共轭复数等于( )A. 1i --B. 1i -C. 1i -+D. 1i +【答案】A 【解析】 【分析】由复数的运算法则,化简复数1z i =-+,再根据共轭复数的概念,即可求解,得到答案.【详解】由题意,复数满足2(1)=1i i z,即221(1)2=11111i i i izi i ii i,所以复数z 的共轭复数等于1z i =--,故选A .【点睛】本题主要考查了复数的运算法则,以及共轭复数的概念的应用,其中解答中熟记复数的运算法则,准确求解复数z 是解答的关键,着重考查了运算与求解能力,属于基础题.3.已知()()2,1,,2a b x =-=,且//a b ,则a b +=( ) A. 4 B. 3【答案】C 【解析】 【分析】利用向量共线的坐标形式可求x ,求出a b +的坐标后可求a b +. 【详解】因为//a b ,故221x ⨯=-⨯,所以4x =-, 故()2,1a b +=-,故5a b +=. 故选C.【点睛】如果()()1122,,,a x y b x y ==,那么:(1)若//a b ,则1221x y x y =;(2)若a b ⊥,则12120x x y y +=.4.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”其中“日减功迟”的具体含义是每天比前一天少织同样多的布,则每天比前一天少织布的尺数为( ) A.829B.415C.429D.215【答案】C 【解析】 【分析】将问题转化为等差数列问题,通过90n S =,1n a =,15a =,构造方程组解出公差,从而得到结果.【详解】设每天所织布的尺数为n a ,则数列{}n a 为等差数列 设公差为d由题意可知:15a =,1n a =,90n S =则()()51115902n d n n n d ⎧+-=⎪⎨-+=⎪⎩,解得:30429n d =⎧⎪⎨=-⎪⎩即每天比前一天少织429尺的布 本题正确选项:C【点睛】本题考查等差数列通项公式、求和公式的应用,关键是能够将问题转化为等差数列基本量求解的问题.5.设抛物线22y px =的焦点在直线2380x y +-=上,则该抛物线的准线方程为( ) A. 1x =- B. 2x =- C. 3x =- D. 4x =-【答案】D 【解析】 【分析】由抛物线焦点F 在2380x y +-=上,求得8p =,进而得到抛物线的准线方程,得到答案. 【详解】由题意,抛物线22y px =的焦点,02p F ⎛⎫⎪⎝⎭,又由焦点F 在2380x y +-=上, 解得8p =,所以抛物线的准线方程为42px =-=-,故选D. 【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,着重考查了推理与运算能力,属于基础题.6.若直线1y x =+和曲线ln 2y a x =+相切,则实数a 的值为( )A.12B. 1C. 2D.32【答案】B 【解析】 分析】设切点为()00,ln 2x a x +,求出函数在0x x =处的导数后可得切线的斜率,从而可用a 表示切点的横坐标,最后根据切点在切线上得到关于a 的方程,解该方程后可得实数a 的值. 【详解】设切点为()00,ln 2x a x +,因为a y x'=,故切线的斜率01a k x ==, 所以0x a =,所以ln 21a a a +=+,因为0a >,故1a =, 故选B.【点睛】解决曲线的切线问题,核心是切点的横坐标,因为函数在横坐标处的导数就是切线的斜率,本题为基础题.7.某公司安排甲、乙、丙3人到,A B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( ) A.15B.16C.13D.14【答案】B 【解析】 【分析】求出基本事件的总数和随机事件中含有的基本事件的个数,利用公式可求概率.【详解】设事件C 为“A 城市恰好只有甲去”,则基本事件的总数为22326C A =,事件C 中含有的基本事件的总数为1,所以()16P C =. 故选B.【点睛】古典概型的概率的计算,关键是基本事件的总数和随机事件中基本事件的个数的计算,计算时应利用排列组合的方法来考虑,此类问题为基础题.8.已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<为偶函数,将()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得的图象对应的函数为()g x ,若()g x 最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭( ) A. -2B. 2C.【答案】C 【解析】 【分析】由题意根据三角函数的图象的对称性求出φ,由周期求出ω,由三角函数的值求出A ,可得函数的解析式,从而求得38f π⎛⎫⎪⎝⎭. 【详解】∵()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<为偶函数,故()()f x f x -=,所以()()sin sin A x A x ωϕωϕ+=-+,整理得到sin cos cos sin sin cos cos sin x x x x ωϕωϕωϕωϕ+=-+, 所以sin cos 0x ωϕ=对任意的x ∈R 恒成立,所以cos 0ϕ=,即,2k k Z πϕπ=+∈.因为0ϕπ<<,故2ϕπ=.所以()cos f x A x ω=, 将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()cos2A g x xω=.因为()g x 最小正周期为2π,则有22πω=2π,∴ω=2,g (x )=A cos x ,f (x )=A cos2x .且4g π⎛⎫=⎪⎝⎭4cos A π=,解得2A =,所以()2cos2f x x =,所以332cos 84f ππ⎛⎫== ⎪⎝⎭故选:C.【点睛】本题主要考查函数y =A sin (ωx +φ)的图象变换规律,三角函数的图象的对称性,函数y =A sin (ωx +φ)的部分图象求解析式,属于基础题.9.设m ,n 是两条不同直线,α,β是两个不同平面,则下列命题错误..的是( ) A. 若m α⊥,//n α,则m n ⊥ B. 若n α⊥,//n m ,则m α⊥ C. 若m α⊥,//m β,则αβ⊥ D. 若αβ⊥,//m α,则m β⊥【答案】D 【解析】 【分析】利用线面垂直的性质定理及相关的推论考查所给的选项是否正确即可. 【详解】逐一考查所给的选项:由线面垂直的性质定理推论可知:若m α⊥,//n α,则m n ⊥,选项A 正确; 由线面垂直的性质定理推论可知:若n α⊥,//n m ,则m α⊥,选项B 正确;由线面垂直的性质定理推论可知:若m α⊥,//m β,则平面β内存在直线l ,满足//l m ,则l α⊥,然后利用面面垂直的判定定理可得αβ⊥,选项C 正确;在如图所示的正方体1111ABCD A B C D -中,取平面,αβ分别为平面11,ABCD ADD A ,直线m 为棱11B C ,满足αβ⊥,//m α,但是不满足m β⊥,选项D 错误; 故选:D.【点睛】本题主要考查线面垂直的性质定理及其推论,线面关系命题的判定,属于中等题. 10.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则异面直线AM 与BC 所成角的余弦值为( )A.510B.53C.64D.15 【答案】A 【解析】 【分析】如图,取11A B 的中点,连接,MN AN ,可以证明AMN ∠是异面直线AM 与BC 所成角,利用余弦定理可求其余弦值.【详解】如图,取11A B 的中点N ,连接,MN AN , 在111A B C ∆中,因为,M N 为中点,所以11MNB C ,由直三棱柱111ABC A B C -可得11BC B C ,故MNBC ,所以AMN ∠或其补角是异面直线AM 与BC 所成角.因为三棱柱111ABC A B C -是直棱柱,所以1AA ⊥平面111A B C , 因为11A C ⊂平面111A B C ,故111AA AC ⊥,故1AA M ∆为直角三角形, 同理1AA N ∆为直角三角形. 设2AB a =,则1A N a =,在1Rt AA N ∆中,有AN =,同理AM =,又MN a =,故222cosAMN ∠==. 故选A.【点睛】求异面直线所成的角,一般需要平移空间直线后将空间角转化为平面角来处理,后者可以利用平面几何的相关知识方法或利用解三角形的方法求平面角的大小或角的余弦值. 11.设函数()f x 是定义在实数集上的奇函数,在区间[1,0)-上是增函数,且(2)()f x f x +=-,则有( )A. 13()()(1)32f f f << B. 31(1)()()23f f f <<C. 13(1)()()32f f f <<D. 31()(1)()23f f f <<【答案】A 【解析】 【分析】由题意可得11f f ,f (1)f (1)33⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,3112222f f f ⎛⎫⎛⎫⎛⎫=-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再利用函数在区间[1,0)-上是增函数可得答案. 【详解】解:()f x 为奇函数,()()f x f x ∴-=-,又(2)()f x f x +=-11f f ,f (1)f (1)33⎛⎫⎛⎫∴=--=-- ⎪ ⎪⎝⎭⎝⎭,3112222f f f ⎛⎫⎛⎫⎛⎫=-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又1111023--<-<-≤,且函数在区间[1,0)-上是增函数,11f (1)f f 023⎛⎫⎛⎫∴-<-<-< ⎪ ⎪⎝⎭⎝⎭,11f (1)f f 23⎛⎫⎛⎫∴-->-->-- ⎪ ⎪⎝⎭⎝⎭31(1)23f f f ⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭,故选A.【点睛】本题考查利用函数的单调性、奇偶性比较函数值的大小,考查利用知识解决问题的能力.12.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,若双曲线的左支上存在一点P ,使得2PF 与双曲线的一条渐近线垂直于点H ,且224PF F H =,则此双曲线的离心率为( ) A.263B.43C.132D.53【答案】D 【解析】 【分析】利用2PF 与双曲线的一条渐近线垂直于点H 可求出H 的坐标,再利用224PF F H =求出P 的坐标(用,,a b c 表示),将P 的坐标代入双曲线的方程后可求离心率.【详解】双曲线的渐近线为b y x a =±,取一条渐近线为by x a =, 则直线()2:a a acF H y x c x b b b=--=-+,由a ac y x b b b y x a ⎧=-+⎪⎪⎨⎪=⎪⎩得2a x c ab y c ⎧=⎪⎪⎨⎪=⎪⎩,故2,a ab H c c ⎛⎫⎪⎝⎭. 因为224PF F H =,故224PF F H =-,从而()2,4,p p a ab c x y c c c ⎛⎫--=--⎪⎝⎭, 所以2434p p a x c c ab y c ⎧=-⎪⎪⎨⎪=⎪⎩,将P 的坐标代入双曲线的方程可以得到:222224431a ab c c c a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=,化简可得29250e -=,所以53e =, 故选D.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分13.若实数x ,y 满足不等式组220102x y x y y ++≥⎧⎪+-≤⎨⎪≥-⎩,则z x y =-的最大值为____________.【答案】5 【解析】 【分析】由题意首先画出不等式组表示平面区域,然后结合目标函数的几何意义求解其最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点C 处取得最大值, 联立直线方程:102x y y +-=⎧⎨=-⎩,可得点的坐标为:()3,2C -,据此可知目标函数的最大值为:()max 325z =--=. 故答案为:5.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.14.若函数()222,0,0x mx m x f x x m x ⎧-+≤=⎨+>⎩,且()()12f f =,则m 的值为__________.【答案】12【解析】 【分析】先求出()1f ,再根据()10f >、()10f ≤分类讨论并求出相应的()()1ff ,根据()()12f f =可求实数m 的值.【详解】()11f m =+, 若1m >-,则()()121ff m =+,令212m +=,故12m =;若1m ≤-,则()()()()2211211f f m m m m =+-++=,故()()12f f =无解,综上,12m =. 故答案为:12m =. 【点睛】分段函数的处理方法有两种:(1)分段处理,因为在不同的范围上有不同的解析式,故可考虑在不同范围上对应的方程、不等式等;(2)数形结合,即画出分段的函数的图像,从而考虑与分段函数相关的不等式问题、方程的解等问题.15.sin 3αα+=,则cos 23πα⎛⎫-= ⎪⎝⎭__________.【答案】59- 【解析】 【分析】先逆用两角和的正弦得到sin 33πα⎛⎫+= ⎪⎝⎭,令3παθ=-,则cos 23πα⎛⎫- ⎪⎝⎭的值即为cos2θ-的值,利用二倍角的余弦值可求此值.sin 3αα+=可以得到12sin 23αα⎫+=⎪⎪⎝⎭所以sin 33πα⎛⎫+= ⎪⎝⎭,设3πθα=+,则3παθ=- 则222333πππαθπθ⎛⎫-=--=- ⎪⎝⎭, 所以()245cos 2cos 2cos 22sin 11399παπθθθ⎛⎫-=-=-=-=-=-⎪⎝⎭.故答案为:59-. 【点睛】三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.16.已知e 为自然对数的底数,若对任意的1,1x e ⎡⎤∈⎢⎥⎣⎦,总存在唯一的[]1,2y ∈-,使得2ln 1y x x a y e -++=成立,则实数a 的取值范围是___________.【答案】22,4e e ⎛⎤ ⎥⎝⎦【解析】 【分析】令()ln 1f x x x a =-++,1,1x e ⎡⎤∈⎢⎥⎣⎦,()[]2,1,2xg x x e x =∈-.利用导数可求前者的值域和后者的单调性,最后根据方程的解的唯一性得到实数a 的取值范围.【详解】令()ln 1f x x x a =-++,1,1x e ⎡⎤∈⎢⎥⎣⎦,()[]2,1,2xg x x e x =∈-.当1,1x e ⎛⎫∈ ⎪⎝⎭时,()1110x f x x x -'=-=>,故()f x 在1,1e ⎛⎫ ⎪⎝⎭为增函数, 故()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为1,a a e ⎡⎤-⎢⎥⎣⎦. 又当()1,0x ∈-时,()()220xg x x x e '=+<,当()0,2x ∈时,()()220xg x x x e '=+>,所以()g x 在[]1,0-上减函数,在[]0,2上为增函数.令()t f x =,因为对任意的1,1x e ⎡⎤∈⎢⎥⎣⎦,总存在唯一的[]1,2y ∈-,使得2ln 1yx x a y e-++=成立,故对直线s t =与函数()s g y =的图象有且只要一个公共点, 而()()()211,00,24g g g e e-===,且()g x 在[]1,0-上为减函数,在[]0,2上为增函数, 故214t e e <≤,所以2114a e e a e ⎧->⎪⎨⎪≤⎩,即224a e e <≤. 故答案为:22,4e e ⎛⎤ ⎥⎝⎦.【点睛】本题以多元方程解的性质为载体,考查导数在函数性质研究中的应用,在解决问题的过程中,注意把解的个数合理地转化为动直线与函数图象的位置关系,此类问题为难题. 三、解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.已知各项均为正数的数列{}n a 的前n 项和n S 满足222n n n S a a =+-.(1)求数列{}n a 的通项公式;(2)若2n an b =,求数列{}n b 的前n 项和n T .【答案】(1)1n a n =+;(2)224n n T +=-.【解析】 【分析】(1)利用1n n n a S S -=-把递推关系转化为11n n a a --=,再利用等差数列的通项公式可求{}n a 的通项;(2)利用等比数列的求和公式可求{}n b 的前n 项和n T . 【详解】(1)当1n =时,12a =,当2n ≥时,()()()221112222n n n n n n n a S S a a a a ---⎡⎤=-=+--+-⎣⎦, ∴()()1110n n n n a a a a --+--=, ∵0n a >,∴11n n a a --=,∴{}n a 是以12a =为首项,1d =为公差的等差数列, ∴1n a n =+.(2)由(1)的1n a n =+,则12n n b +=,∴()222122412n n nT +-==--.【点睛】数列的通项{}n a 与前n 项和n S 的关系式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,我们常利用这个关系式实现{}n a 与n S 之间的相互转化. 而数列求和关键看通项的结构形式,如果通项是等差数列或等比数列的通项,则用公式直接求和;如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 18.微信作为一款社交软件已经在支付、理财、交通、运动等各方面给人们的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.A 先生朋友圈里有大量好友使用了“微信运动”这项功能,他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:(1)以样本估计总体,视样本频率为概率,在A 先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有X 名,求X 的分布列和数学期望;(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动懒人”.根据题意完成下面的2×2列联表,并据此判断能否有90%以上的把握认为“评定类型”与“性别”有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++【答案】(1)分布列见解析,65;(2)没有. 【解析】 【分析】(1)利用二项分布可求X 的分布列和数学期望.(2)根据题设中的数据可得列联表,再由公式可计算得到2K 的观察值,最后根据临界值表可得没有90%以上的把握认为“评定类型”与“性别”有关.【详解】(1)在A 先生的男性好友中任意选取1名,其中走路步数不低于6000的概率为82205=,X 可能取值分别为0,1,2,3, ∴()30033227055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()21133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()12233236255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()0333328355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, X 的分布列为则()2754368601231251251251255E X =⨯+⨯+⨯+⨯=, (也可写成235XB ⎛⎫ ⎪⎝⎭,),∴()26355E X =⨯=.(2)完成2×2列联表运动达人 运动懒人 总计 男 4 16 20 女 7 13 20 总计 112940∴2K 的观测值()240413716 1.129 2.70611292020k ⨯⨯-⨯=≈<⨯⨯⨯, ∴据此判断没有90%以上的把握认为“评定类型”与“性别”有关.【点睛】本题考查离散型随机变量的分布列、数学期望和独立性检验,计算分布列时要弄清随机变量取某值时对应的随机事件的含义并确定合理的概率计算方法.必要时可借助于常见的分布列来帮助计算(如0-1分布、二项分布、超几何分布等),而独立性检验一般地依据给定的列联表计算2K 的观察值,再结合临界值表得到是否有把握认定结论.19.如图,在四棱锥P ABCD -中,//AB CD ,90BCD ∠=,224AB BC CD ===,PAB ∆为等边三角形,且平面PAB ⊥平面ABCD ,Q 为PB 中点.(1)求证:AQ ⊥平面PBC ; (2)求二面角B PC D --的正弦值. 【答案】(1)证明见解析;(2)154.【解析】 【分析】(1)可证BC ⊥平面PAB ,从而得到要证的线面垂直;(2)过点B 作PC 的垂线BH ,交PC 于点H ,连结DH ,可证二面角B PC D --的平面角为BHD ∠,利用余弦定理可求其余弦值后可得其正弦值.我们也可以建立如图所示的空间直角坐标系,求出平面PBC 的法向量和平面PCD 的法向量后可求它们的夹角的余弦值,从而得到二面角的正弦值.【详解】(1)证明:因为//AB CD ,090BCD ∠=, 所以AB BC ⊥,又∵平面PAB ⊥平面ABCD ,且平面PAB ⋂平面ABCD AB =,AB 平面PAB ,∴BC ⊥平面PAB ,又∵AQ ⊂平面PAB ,∴ 所以BC AQ ⊥,∵Q 为PB 中点,且PAB ∆为等边三角形,∴PB AQ ⊥,又∵PB BC B ⋂=, ∴AQ ⊥平面PBC .(2)【法一】过点B 作PC 的垂线BH ,交PC 于点H ,连结DH , 取AB 中点为O ,连接PO .因为PAB ∆为等边三角形,所以PO AB ⊥,由平面PAB ⊥平面ABCD ,PO ⊂平面PAB ,平面PAB ⋂平面ABCD AB =, 所以PO ⊥平面ABCD ,CD ⊂平面ABCD ,所以PO CD ⊥,由条件知OD CD ⊥,又POOD O =,所以CD ⊥平面POD ,又PD ⊂平面POD ,所以CD PD ⊥, 又CD CB =,所以Rt PDC Rt PBC ∆≅∆, 所以DH PC ⊥,由二面角的定义知,二面角B PC D --的平面角为BHD ∠,在Rt PDC ∆中,4,2,PB BC PC ===由PB BC BH PC =,所以525PB BC BH PC ===,同理可得455DH =, 又22BD =BHD ∆中,(2222224545221cos 2445452BH DH BD BHD BH DH +-+-⎝⎭⎝⎭∠===-⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭,所以,二面角B PC D --15. 【法二】取AB 中点为O ,连接PO ,因为PAB ∆为等边三角形,所以PO AB ⊥, 由平面PAB ⊥平面ABCD ,PO ⊂平面PAB ,平面PAB ⋂平面ABCD AB =, 所以PO ⊥平面ABCD ,所以PO OD ⊥,由224AB BC CD ===,090ABC ∠=, 可知//OD BC ,所以⊥OD AB ,以AB 中点O 为坐标原点,,,OA OD OP 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系O xyz -,所以()()()2,0,0,0,2,0,2,2,0A D C -,(()0,0,23,2,0,0P B -, 所以()()()2,2,0,0,2,23,2,0,0AD DP CD =-=-=, 由(1)知,可以AQ 为平面PBC 的法向量, 因为Q 为PB 的中点, 所以(3Q -,由(1)知,平面PBC 的一个法向量为(3AQ =-, 设平面PCD 的法向量为(),,n x y z =,由·0·0n CD n DP ⎧=⎨=⎩得202230x y z =⎧⎪⎨-+=⎪⎩,取1z =,则()0,3,1n =, 所以231cos ,43331AQ n AQ n AQ n===+⨯+, 所以二面角B PC D --15. 【点睛】线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角得到. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.20.椭圆()2222:10x y E a b a b+=>>的右焦点为F ,且短轴长为23,离心率为12.(1)求椭圆E 的标准方程;(2)设点B 为椭圆E 与y 轴正半轴的交点,是否存在直线l ,使得l 交椭圆E 于,M N 两点,且F 恰是BMN ∆的垂心?若存在,求l 的方程;若不存在,说明理由.【答案】(1)22143x y +=;(2)存在,3163y x =-【解析】 【分析】(1)根据短轴长和离心率可求,,a b c ,从而得到椭圆的标准方程;(2)假设存在直线l ,则其斜率为3k =l 的方程为3y x m =+,()()1122,,,M x y N x y ,由F 为垂心可得()212123413033m x x x x m m ⎛⎫-+--= ⎪ ⎪⎝⎭,联立直线方程和椭圆方程,消去y 后利用韦达定理可得关于m 的方程,解该方程后可得所求的直线方程.【详解】(1)设椭圆C 的方程为()222210,0x y a b a b+=>>,则由题意知223b =3b =22112b e a =-=,解得24a =,所以椭圆C 的方程为22143x y +=.(2)由(1)知,E 的方程为22143x y +=,所以(()3,1,0B F ,所以直线BF 的斜率3BF k =-,假设存在直线l ,使得F 是BMN ∆的垂心,则BF MN ⊥. 设l 的斜率为k ,则1BF k k =-,所以3k =. 设l 的方程为3y x m =+,()()1122,,,M x y N x y . 由2233143y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得()2213831230x mx m ++-=, 由()()22834131230mm ∆=-⨯⨯->,得393933m -<<, ()2121212383,1313m m x x x x -+=-=. 因为MF BN ⊥,所以0MF BN =,因为()()11221,,,3MF x y BN x y =--=-, 所以()()1212130x x y y ---=,即()12121333130333x x x m x m x m ⎛⎫⎛⎫⎛⎫--++++= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎭,整理得()212123413033m x x x x m m ⎛⎫-+--+= ⎪ ⎪⎝⎭, 所以()221233834130313313m m m m m -⎛⎫⎛⎫----+= ⎪⎪ ⎪⎪⎝⎭⎝⎭, 整理得22153480m m --=,解得3m =或163m =,当m 时,直线MN 过点B ,不能构成三角形,舍去;当m =时,满足m <<, 所以存在直线l ,使得F 是BMN ∆的垂心,l的方程为y x =-【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等. 直线与圆锥曲线的位置关系中的几何量的计算问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把题设中的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为若干变量的方程,从而可得欲求的几何量的值. 21.已知函数()()2ln 1,2x f x ax b g x ax bx x =--=+. (1)当2,3a b ==-时,求函数()f x 在x e =处的切线方程; (2)若函数()y f x =的两个零点分别为12,x x ,且12x x ≠,求证:1212x x g +⎛⎫> ⎪⎝⎭.【答案】(1)130x y e+--=;(2)证明见解析. 【解析】 【分析】(1)求出函数在x e =处的导数,求出切点坐标后可得切线的方程.(2)利用()()120f x f x ==可得()()12122121212ln0222x x x x x x x x a b x x +++⎛⎫⎛⎫--= ⎪ ⎪-⎝⎭⎝⎭,因此只需证明()()112212ln 12x x x x x x +>-即1122121ln 121x x x x x x ⎛⎫+ ⎪⎝⎭>⎛⎫- ⎪⎝⎭即可,令12x t x =,构建新函数()()()21ln ,0,11t m t t t t -=-∈+可证该不等式成立.【详解】(1)当2,3a b ==-时,()()ln 30xf x x x x=-+>,()221ln x x f x x--'=, 则()1f e '=-,切点为1,3e e e ⎛⎫-+ ⎪⎝⎭, 故函数()f x 在x e =处的切线方程为130x y e+--=. (2)证明:∵12,x x 是()f x 的两个零点,不妨设12x x <,∴()()120f x f x ==,即111ln 102x ax b x --=,222ln 102x ax b x --=, ∴21111ln 02x ax bx --=,22221ln 02x ax bx --=, 相减得:()()221212121ln ln 02x x a x x b x x -----= 故()121212ln102x x a x x b x x -+-=-,整理得到()()()11222121212ln102x x x x a x x b x x x x +-+-+=-, 则()()12122121212ln0222x x x x x x x x a b x x +++⎛⎫⎛⎫--= ⎪ ⎪-⎝⎭⎝⎭, ∴()()11221212ln 22x x x x x x g x x ++⎛⎫= ⎪-⎝⎭即()()111122212212121ln ln 2221x x x x x x x x x x g x x x x ⎛⎫++ ⎪+⎛⎫⎝⎭== ⎪-⎛⎫⎝⎭- ⎪⎝⎭, 令12x t x =,即证01t <<,()()1ln 121t t t +>-也就是()21ln 01t t t --<+, 令()()()21ln ,0,11t m t t t t -=-∈+,()()()()222114011t m t t t t t -'=-=>++,()()21ln 1t m t t t -=-+在()0,1上是增函数, 又∵()10m =,∴()0,1t ∈,()0m t <,命题得证.【点睛】解决曲线的切线问题,核心是切点的横坐标,因为函数在横坐标处的导数就是切线的斜率.与函数零点有关的不等式的证明,可利用零点满足的等式将要求证的不等式进行转化,再构造新函数,利用导数讨论新函数的性质可证明新转化的不等式是成立的.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,圆C 的方程为222((1)(0)x y r r -+-=>,以坐标原点O为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切。

黑龙江省大庆实验中学2020届高三5月模拟测试理科数学试题(含答案)

黑龙江省大庆实验中学2020届高三5月模拟测试理科数学试题(含答案)

大庆实验中学2020届高三综合训练(一)数学试卷一、选择题:本大题共12小题,每小题5分,共60分.1.已知集合M ={x |﹣1<x <3},N ={x |y =lg (x 2﹣1)},则M ∩N =( ) A .{x |﹣1<x <3}B .{x |﹣1<x <1}C .{x |1<x <3}D .{x |﹣1<x ≤1}2.已知复数z 满足z •(1+2i )=|3﹣4i |(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知a =0.40.3,b =0.30.3,c =0.30.4,则( ) A .a >c >bB .a >b >cC .c >a >bD .b >c >a4.现有甲、乙两台机床同时生产直径为40mm 的零件,各抽测10件进行测量,其结果如图,不通过计算从图中数据的变化不能反映和比较的数字特征是( ) A .极差 B .方差 C .平均数 D .中位数 5.给出如下四个命题:①若“p 或q ”为假命题,则,p q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”; ③若,a b 是实数,则“2a >”是“24a >”的必要不充分条件; ④命题“若,x y =则sin sin x y =”的逆否命题为真命题.其中正确命题的个数是( ) A .3 B .2 C .1 D .06.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b cos C ﹣c cos B =2c •cos C ,则角C 的取值范围为( ) A .B .C .D .7.已知平面向量,,均为单位向量,若,则的最大值是( )A .B .3C .D .8.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的精美图案.如图所示的窗棂图案,是将边长为2R 的正方形的内切圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.若在正方形内随机取一点,则该点在窗棂图案上阴影内的概率为( ) A .B .C .D .9.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=2﹣|x +2|.若对任意的x ∈[﹣1,2],f (x +a )>f (x )成立,则实数a 的取值范围是( )A .(0,2)B .(0,2)∪(﹣∞,﹣6)C .(﹣2,0)D .(﹣2,0)∪(6,+∞)10.已知双曲线C:(a>0,b>0)的左、右顶点分别为A,B,左焦点为F,P为C上一点,且PF⊥x 轴,过点A的直线l与线段PF交于点M(异于P,F),与y轴交于点N,直线MB与y轴交于点H,若(O为坐标原点),则C的离心率为()A.2B.3C.4D.511.已知函数,在区间[0,π]上有且仅有2个零点,对于下列4个结论:①在区间(0,π)上存在x1,x2,满足f(x1)﹣f(x2)=2;②f(x)在区间(0,π)有且仅有1个最大值点;③f(x)在区间上单调递增;④ω的取值范围是,其中所有正确结论的编号是()A.①③B.①③④C.②③D.①④12.设函数恰有两个极值点,则实数t的取值范围是()A.∪(1,+∞)B.∪[1,+∞)C.D.[1,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.二项式(﹣)5的展开式中x﹣2的系数是.14.在今年的疫情防控期间,某省派出5个医疗队去支援武汉市的4个重灾区,每个重灾区至少分配一个医疗队,则不同的分配方案共有种.(用数字填写答案)15.已知抛物线y2=4x的焦点为F,准线为l,过点F且斜率为的直线交抛物线于点M(M在第一象限),MN ⊥l,垂足为N,直线NF交y轴于点D,则|MD|=.16.在四面体ABCD中,CA=CB,DA=DB,AB=6,CD=8,AB⊂平面α,l⊥平面α,E,F分别为线段AD,BC的中点,当四面体以AB为轴旋转时,直线EF与直线l夹角的余弦值的取值范围是.三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,考生都必须作答,第22、23题为选考题,考生根据要求作答.17.(12分)已知S n是公差不为零的等差数列{a n}的前n项和,S3=6,a3是a1与a9的等比中项.(1)求数列{a n}的通项公式;(2)设数列,数列{b n}的前2n项和为P2n,若,求正整数n的最小值.18.(12分)19.(12分)已知椭圆与抛物线D:y2=﹣4x有共同的焦点F,且两曲线的公共点到F的距离是它到直线x=﹣4(点F在此直线右侧)的距离的一半.(1)求椭圆C的方程;(2)设O为坐标原点,直线l过点F且与椭圆交于A,B两点,以OA,OB为邻边作平行四边形OAMB.是否存在直线l,使点M落在椭圆C或抛物线D上?若存在,求出点M坐标;若不存在,请说明理由.20.(12分)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X都在[70,100)内,在以组距为5画分数的频率分布直方图(设“”)时,发现Y满足,n∈N*,5n≤X<5(n+1).(1)试确定n的所有取值,并求k;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在[95,100)的参赛者评为一等奖;分数在[90,95)的同学评为二等奖,但通过附加赛有的概率提升为一等奖;分数在[85,90)的同学评为三等奖,但通过附加赛有的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生A和B均参加了本次比赛,且学生A在第一阶段评为二等奖.(i)求学生B最终获奖等级不低于学生A的最终获奖等级的概率;(ii)已知学生A和B都获奖,记A,B两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.21.已知函数2()23()x x f x e ax a e a R −=−+∈,其中 2.71828...e =为自然对数的底数. (1)讨论()f x 的单调性;(2)当(0,)x ∈+∞时,222e ()3e 10()x x x a a x af x −−+−−+>恒成立,求a 的取值范围.(二)选考题:10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy 中,曲线C 的方程为x 2﹣2x +y 2=0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)写出曲线C 的极坐标方程,并求出直线l 与曲线C 的交点M ,N 的极坐标; (2)设P 是椭圆上的动点,求△PMN 面积的最大值.[选修4-5:不等式选讲] 23.已知f (x )=x 2+2|x ﹣1|. (1)解关于x 的不等式:;(2)若f (x )的最小值为M ,且a +b +c =M (a ,b ,c ∈R +),求证:.大庆实验中学2020届高三综合训练(一)数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.解:N ={x |x 2﹣1>0}={x |x >1或x <﹣1},M ={x |﹣1<x <3}, ∴M ∩N ={x |1<x <3}. 故选:C .2.解:由z •(1+2i )=|3﹣4i |=5, 得,∴在复平面内复数z 对应的点的坐标为(1,﹣2),位于第四象限, 故选:D .3.解析:0.30.3>0.30.4,即b >c >0,而,即a >b ,∴a >b >c , 故选:B . 4.C由于极差反映了最大值与最小值差的关系,方差反映数据的波动幅度大小关系,平均数反映所有数据的平均值的关系,中位数反映中间一位或两位平均值的大小关系,因此由图可知,不通过计算不能比较平均数大小关系. 故选C . 5.【答案】B对于①,若 “p 或q ”为假命题,则p ,q 均为假命题,故①正确;对于②,命题“若x ≥2且y ≥3,则x +y ≥5”的否命题为“若x <2或y <3,则x +y <5”,故②错;对于③,因为2a <−时24a >,所以若a ,b 是实数,则“a >2”是“a 2>4”的充分不必要条件,故③错; 对于④,命题“若x y =,则sin sin x y =”为真命题,则其的逆否命题为真命题,故④正确. 故选:B .6.【分析】由已知利用正弦定理,两角差的正弦函数公式,二倍角的正弦函数公式可得sin (B ﹣C )=sin2C ,在锐角三角形中可求B =3C ,可得,且,从而解得C 的取值范围.【解答】解:∵b cos C ﹣c cos B =2c •cos C ,∴由正弦定理可得:sin B cos C ﹣sin C cos B =2sin C cos C , ∴sin (B ﹣C )=sin2C , ∴B ﹣C =2C , ∴B =3C ,∴,且,∴.故选:A.7.解:∵平面向量,,均为单位向量,(+)2=+2•+=3,故||=;∴=•+﹣(+)•=﹣()≤+|+|•|﹣|=+;当且仅当与反向时取等号.故选:C.8.解:连接A、B、O,得等边三角形OAB,则阴影部分的面积为S阴影=12×(×πR2﹣×R2×sin60°)=(2π﹣3)R2,故所求概率为.故选:B.9.解析:依题意作出f(x)的图象,y=f(x+a)的图象可以看成是y=f(x)的图象向左(a>0时)或向右(a <0时)平移|a|个单位而得,当a>0时,y=f(x)的图象至少向左平移6个单位(不含6个单位)才能满足f(x+a)>f(x)成立,当a<0时,y=f(x)的图象向右平移至多2个单位(不含2个单位)才能满足f(x+a)>f(x)成立(对任意的x∈[﹣1,2]),故x∈(﹣2,0)∪(6,+∞),故选:D.10.解:不妨设P在第二象项,|FM|=m,H(0,h)(h>0),由知N(0,﹣2h),由△AFM~△AON,得(1),由△BOH~△BFM,得(2)(1),(2)两式相乘得,即c=3a,离心率为3.故选:B.11.解析:∵x∈[0,π],∴,令,则由题意,在上只能有两解和∴,(*)因为在上必有,故在(0,π)上存在x1,x2满足f(x1)﹣f(x2)=2;①成立;对应的x(显然在[0,π]上)一定是最大值点,因对应的x值有可能在[0,π]上,故②结论错误;解(*)得,所以④成立;当时,,由于,故,此时y=sin z是增函数,从而f(x)在上单调递增.综上,①③④成立,故选:B.12.解:求导得有两个零点等价于函数φ(x)=e x﹣(2x+1)t有一个不等于1的零点,分离参数得,令,,h(x)在递减,在递增,显然在取得最小值,作h(x)的图象,并作y=t的图象,注意到h(0)=1,,(原定义域x>0,这里为方便讨论,考虑h(0)),当t≥1时,直线y=t与只有一个交点即φ(x)只有一个零点(该零点值大于1);当时在两侧附近同号,不是极值点;当时函数φ(x)=e x﹣(2x+1)t有两个不同零点(其中一个零点等于1),但此时在x=1两侧附近同号,使得x=1不是极值点不合.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.解:展开式通项,依题意,,得r=3,所以:x﹣2的系数是.故答案为:﹣80.14.解:根据题意,将5个医疗队分派到4个重灾区,每个重灾区至少分配一个医疗队,则其中有一个重灾区安排两个医疗队,剩下3个重灾区各安排一个医疗队,分2步进行分析:先选出一个重灾区分配有两个医疗队,有C41种分配法,再为剩下的3个重灾区各分配一个医疗队,有种分配法,所以不同的分配方案数共有.故答案为:240.15.解:设准线l与x轴交于E.易知F(1,0),EF=2,由抛物线定义知|MN|=|MF|,由于∠NMF=60°,所以△NMF为等边三角形,∠NFE=60°,所以三角形边长为|NM|==2|FE|=4,又OD是△FEN的中位线,MD就是该等边三角形的高,,故答案为:2.16.解:∵在四面体ABCD中,CA=CB,DA=DB,AB=6,CD=8,AB⊂平面α,l⊥平面α,E,F分别为线段AD,BC的中点,∴AB⊥CD,又GE∥CD,GF∥AB,∴GE⊥GF,得EF=5.当四面体绕AB旋转时,由GF∥AB,即EF绕GF旋转,故EF与直线l所成角的范围为[90°﹣∠GFE,90°],∴直线EF与直线l夹角的余弦值的取值范围是.故答案为:[0,].三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必做题:60分.17.【分析】(1)设出等差数列的公差为d,且不为0,运用等比数列的中项性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(2)求得,再由数列的裂项相消求和,计算可得P2n,解不等式可得所求最小值.【解答】解:(1)公差d不为零的等差数列{a n},由a3是a1与a9的等比中项,可得,即a1(a1+8d)=(a1+2d)2,化为a1=d,又S 3=3a 1+3d =6,可得a 1=d =1,所以数列{a n }是以1为首项和公差的等差数列, 故综上;(2)由(1)可知, 所以=,所以,故n 的最小值为505. (2)法二:所以当n 为奇数时+11111+=21212123n n b b n n n n −++−+++-112123n n =+−+- ()()()21234212+++11111155743411=141n n nP b bb b b b n n n −=+++=−+−++−+−+−++ 所以,故n 的最小值为505. 18.19.解:(1)由题意知F(﹣1,0),因而c=1,即a2=b2+1,又两曲线在第二象限内的交点Q(x Q,y Q)到F的距离是它到直线x=﹣4的距离的一半,即4+x Q=2(﹣x Q+1),得,则,代入到椭圆方程,得.由,解得a2=4,b2=3,∴所求椭圆的方程为.(2)当直线AB的斜率存在且不为0时,设直线AB的方程为y=k(x+1),由,得(3+4k2)x2+8k2x+4k2﹣12=0,设M(x0,y0),A(x1,y1),B(x2,y2),则2122834kx xk−+=+,,由于OABM为平行四边形,得,故,若点M在椭圆C上,则,代入得,解得k无解;若点M在抛物线D上,则,代入得,解得k无解.当直线斜率不存在时,易知存在点M(﹣2,0)在椭圆C上.故不存在直线l,使点M落在抛物线D上,存在直线l,使点M(﹣2,0)落在椭圆C上.20.解:(1)根据题意,X在[70,100)内,按组距为5可分成6个小区间,分别是[70,75),[75,80),[80,85),[85,90),[90,95),[95,100),∵70≤X<100,由5n≤X<5(n+1),n∈N*,∴n=14,15,16,17,18,19,每个小区间对应的频率值分别是P=5Y=.,解得k=,∴n的对值是14,15,16,17,18,19,k=.(2)(i)由于参赛学生很多,可以把频率视为概率,由(1)知,学生B的分数属于区间[70,75),[75,80),[80,85),[85,90),[90,95),[95,100)的概率分别是:,我们用符号A ij(或B ij)表示学生A(或B)在第一轮获奖等级为i,通过附加赛最终获奖等级为j,其中j≤i(i,j=1,2,3),记W=“学生B最终获奖等级不低于学生A的最终获奖等级”,则P(W)=P(B1+B21+B22A22+B32A22)=P(B1)+P(B21)+P(B22)P(A22)+P(B32)P(A22)=+=.(ii)学生A最终获得一等奖的概率是P(A21)=,学生B最终获得一等奖的概率是P()=,P (ξ=0)=(1﹣)(1﹣)=, P (ξ=1)=, P (ξ=2)=, ∴ξ的分布列为:E ξ==.21. (1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;(2)令()()221210x g x e x a x ax a =−−−+−+只需在()0,x ∈+∞使()min 0g x >即可,通过讨论a 的范围,求出函数的单调区间,求出函数的最值,从而确定a 的范围即可.解:(1)由题意可知,()22223'23x x x x x e ae a f x e a a e e −−−=−−= ()()3x x x e a e a e−+=, 当0a =时,()'0xf x e =>,此时()f x 在R 上单调递增; 当0a >时,令()'0f x =,解得()ln 3x a =,当()(),ln 3x a ∈−∞时,()'0f x <,()f x 单调递减;当()()ln 3,x a ∈+∞时,()'0f x >,()f x 单调递增;当0a <时,令()'0f x =,解得()ln x a =−,当()(),ln x a ∈−∞−时,()'0f x <,()f x 单调递减;当()()ln ,x a ∈−+∞时,()'0f x >,()f x 单调递增;综上,当0a =时,()f x 在R 上单调递增;当0a >时,()(),ln 3x a ∈−∞时,()f x 单调递减, ()()ln 3,x a ∈+∞时单调递增;当0a <时,()(),ln x a ∈−∞−时,()f x 单调递减, ()()ln ,x a ∈−+∞时单调递增.(2)由()()222310x x ex a a e x a f x −−+−−+>, 可得,()2212100x e x a x ax a −−−+−+>,令()()221210x g x e x a x ax a =−−−+−+,只需在()0,x ∈+∞使()min 0g x >即可,()()()()'1222x x x g x e x a e x a e x a =−−+−+=−−,①当0a ≤时,0x a −>,当0ln2x <<时,()'0g x <,当ln2x >时,()'0g x >,所以()g x 在()0,ln2上是减函数,在()ln2,+∞上是增函数,只需()()22ln22ln22ln 22ln280g a a =−+−−++>, 解得ln24ln22a −<<+,所以ln240a −<≤;②当0ln2a <<时,()g x 在()0,a 上是增函数,在(),ln2a 上是减函数,在()ln2,+∞上是增函数,则()()2000g ln g ⎧>⎪⎨≥⎪⎩,解得0ln2a <<, ③当ln2a =时,()'0g x ≥,()g x 在()0,+∞上是增函数,而()209ln2ln 20g =−−>成立, ④当ln2a >时,()g x 在()0,ln2上是增函数,在()ln2,a 上是减函数,在(),a +∞上是增函数,则()()2100090a g a e g a a ⎧=−>⎪⎨=−−≥⎪⎩,解得ln2ln10a <<. 综上,a 的取值范围为()ln24,ln10−.(二)选考题:10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.解:(1)曲线C 的方程为x 2﹣2x +y 2=0.转换为极坐标方程为:ρ=2cos θ.联立,得M (0,0),.(2)易知|MN |=1,直线.设点P (2cos α,sin α),则点P 到直线l 的距离.∴(其中). ∴△PMN 面积的最大值为.[选修4-5:不等式选讲]23.解:(1)当x<0时,等价于x2+2|x﹣1|>﹣2,该不等式恒成立,……(1分)当0<x≤1时,f(x)>等价于x2﹣2x>0,该不等式解集为ϕ,……(2分)当x>1时,等价于x2+2x﹣2>2,解得,………(3分)综上,x<0或,所以不等式的解集为.…………………(5分)证明:(2),易得f(x)的最小值为1,即a+b+c=M=1……………………………(7分)因为a,b,c∈R+,所以,,,所以≥2a+2b+2c=2,……………………(9分)当且仅当时等号成立.…………………………………………(10分)。

黑龙江省大庆实验中学2020-2021学年度高三第一次线上教学质量检测数学理科试题参考答案

黑龙江省大庆实验中学2020-2021学年度高三第一次线上教学质量检测数学理科试题参考答案
所以 x1 + ln x1 −1 0 .
因为 (x) = x + ln x −1在 (0, +) 上是单调增函数,且(1) = 0 ,所以 x1 1 , 由(1)可知, f (x) = xex 在 (1, +) 是单调递增,
所以 a
=
x1e x1
e .又 1 e
x1

F
1 e
=
1
1
ee
e

a
∴ sin ( B + C ) = 2sinAcosA ,
∴ sinA = 2sinAcosA .
∵ A(0, ) ,∴ sinA 0 ,
∴ cosA = 1 ,∴ A = .
2
3
(2)∵ a = 2 , sinBsinC = sin2 A ,∴ bc = a2 = 4 .由 a2 = b2 + c2 − 2bccosA ,得 4 = b2 + c2 − 4 ,
∴ P ( X 90) = P ( X + 2 ) = 1 (1− 0.9544) = 0.0228
2 ∴估计笔试成绩不低于 90 分的人数为 0.02285000 = 114 人
(2) Y 的取值分别为 0,3,5,8,10,13,则
P (Y = 0) = (1− 3) (1− 2)2 = 1
x2
3) ( kx1x2 + 1−
) ( =
3 kx1x2 + 1+
)3 x2 ),
3 x1
其中 kx1x2
=

8k 4k 2 +
3
=
x1
+
x2

实验三部第一次线上教学质量检测答案 第 3 页共 5 页

黑龙江省大庆实验中学2020届高三5月第一次模拟数学(理)试题

黑龙江省大庆实验中学2020届高三5月第一次模拟数学(理)试题

18. (本小题满分 12 分).如图,在四棱锥 P ABCD 中,侧面 PAD 为等边三角形,且垂直于底面 ABCD ,
AB BC 1,BAD ABC 90,AD=2 , M , N 分别是 AD, PD 的中点.
(1)证明:平面 CMN (2)已知点 E 在棱 PC
/上/ 且平面CEPAB2
8. 采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编号为1, 2 ,... ,960,分组后某组抽
到的号码为 41.抽到的 32 人中,编号落入区间401,731 的人数为( )
A.10
B.11
C.12
D.13
9.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为 3 ,且各局 4
相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)
21.(本小题满分 12 分)已知函数 f (x) (x a) ln x 1 x(a R) . 2
(1)若 f '(x) 是 f (x) 的导函数,讨论 g(x) f '(x) x a ln x 的单调性;
(2)若 a ( 1 , 2 e ) ( e 是自然对数的底数),求证: f (x) 0 . 2e
分别进行一次化验,这样,该组 k 个人的血总共需要化验 k 1 次.假设此次普查中每个人的血样化验呈阳性的概 率为 p ,且这些人之间的试验反应相互独立.
(1)设方案②中,某组 k 个人的每个人的血化验次数为 X ,求 X 的分布列;
(2)设 p 0.1,试比较方案②中,分别取 2,3,4 时,各需化验的平均总次数;并指出在这三种分组情况下,
(1)写出曲线 C 的极坐标方程以及曲线 D 的直角坐标方程;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(其中无理数 e
2.718 ),关于
x 的方程
f x
1
f x
有四个不等的实根,则
实数 的取值范围是( )
A.
0,
e 2
B. 2,
C.
e2 4
4 e2
,
D.
e 2
2 e
,
二.填空题(本题共 4 道小题,每题 5 分,共 20 分)
13.曲线 y ax1 1(a 0 且 a 1)恒过定点 P,则 P 点坐标为_________.
2 3
CP
,求直线
NE
与平面
PAB
所成角的余弦
值.
19.(本小题满分 12 分) 已知抛物线 y2 2 px ( p 0 )上的两个动点 A x1, y1 和 B x2 , y2 ,焦点为 F. 线
段 AB 的中点为 M 3, y0 ,且 A,B 两点到抛物线的焦点 F 的距离之和为 8.
(1)求抛物线的标准方程;
(2)若线段 AB 的垂直平分线与 x 轴交于点 C,求 ABC 面积的最大值.
20.(本小题满分 12 分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全 公司范围内举行一次 NCP (新冠肺炎简称)普查,为此需要抽验 1000 人的血样进行化验,由于人数较多,检疫
3
,
7 12

2
sin
4
6, 2
2,
得e
2, 2
6
3
.
12.D
依题意可知函数
f
x
ex x2
的定义域为 , 0 0,
.且
f
'
x
ex
x
x3
2
.
所以 f x 在 , 0,2, 上递增,在 0, 2 上递减,且 f 2 e2 ,由此画
4
答案第 2页,总 8页
出 f x 的图像如下图所示.
(2)若不等式 f (x) 2x a 的解集为 A, B x | x2 3x 0 ,且满足 B A ,求实数 a 的取值范围.
大庆实验中学 2020 届高三五月第一次模拟考试理科数学参考答案
1.B
∵集合
A
x
N
0
x
log2 16
{x N
|0
x
4} 1, 2,3 ,集合
B

面积为_______________.
三.解答题(本题共 5 道小题,每题 12 分,共 60 分)
17.(本小题满分 12 分)已知数列 an 满足, a1 1 , a2 4 ,且 an2 4an1 3an 0 n N* .
(1)求数列an 的通项公式; (2)设 bn 2n an ,求数列bn 的前 n 项和 Sn .
8. 采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编号为1, 2 ,... ,960,分组后某组抽
到的号码为 41.抽到的 32 人中,编号落入区间401,731 的人数为( )
A.10
B.11
C.12
D.13
9.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为 3 ,且各局 4
由独立事件的概率乘法公式得
P
AB
C21
3 4
1 4
3 4
9 32

对于事件 A ,甲获得冠军,包含两种情况:前两局甲胜和事件 AB ,
P A
3 4
2
9 32
27 32
, P B
A
P AB P A
9 32
32 27
1 3
10.C 11. B
设椭圆的另一焦点为 F ,连接 AF , AF , BF ,
2
a2 a
e2 1 ( b )2 5 或5,e 5 或 5.
a4
2
5.C
由题可知 ACB
72 ,且 cos 72
1 2
BC
AC
5 1 , cos144 2 cos2 72 1 4
5 1, 4
则 sin 234 sin 144 90 cos144 5 1 .
4
6.C
对于 A,若 m, n 与平面 所成角相等,则 m, n 可能相交或者异面,故 A 错;
()
A.5 或 5 4
B. 5 或 5 2
C. 3 或 3 2
D.5 或 5 3
5.17 世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分
割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄
金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为 36 的等腰三角形(另一
14.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与
圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1
1
1
1 1
中“…”既代表无限次重
复,但原式却是个定值,它可以通过方程1
1 x
x 求得 x
1 2
5
,类似上述过程,
3
3
__________.
大庆实验中学 2020 届高三五月第一次模拟考试
理科数学试卷
一、单选题(本题共 12 小题,每题 5 分,共 60 分)
1.已知集合 A x N 0 x log2 16 ,集合 B x 2x 2 0 ,则集合 A B 真子集个数是( )
A.2
B.3
C.4
D.8
2. i
为虚数单位,则 2i3 1 i
a 7a 24 0 ,解得 7 a 24.
8.C ∵960÷32=30,∴每组 30 人,∴由题意可得抽到的号码构成以 30 为公差的等差数列, 又某组抽到的号码为 41,可知第一组抽到的号码为 11,
答案第 1页,总 8页
∴由题意可得抽到的号码构成以 11 为首项、以 30 为公差的等差数列,
相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)
21.(本小题满分 12 分)已知函数 f (x) (x a) ln x 1 x(a R) . 2
(1)若 f '(x) 是 f (x) 的导函数,讨论 g(x) f '(x) x a ln x 的单调性;
(2)若 a ( 1 , 2 e ) ( e 是自然对数的底数),求证: f (x) 0 . 2e
比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了三局的概率为( )
A. 1 3
B. 2 5
C. 2 3
D. 4 5
10.已知 a 5ln 4 , b 4 ln 5 , c 5ln 4 ,则 a,b, c 的大小关系是( )
A. c b a
B. c a b
C. b a c
D. a b c
令t gx
关于 x 的方程
f x ,则 t g x 的单调性与 f x 相同,且 g 2 e .
2
f x
1
f x
有四个不等的实根,所以 t
1 t
,即 t 2
t
1
0

0,
e 2
,
e 2
,
上各有
一实根.令
ht
t2
t
1, h0
1
0
对于 B,若 m / /, n / / ,则 m, n 可能相交或者异面,故 B 错;
对于 C,若 m / / , m , n ,由线面平行的性质定理可得 m // n ,故 C 正确;
对于 D,若 m // , n ,则 m, n 可能异面,故 D 错;
故选:C 7.A
点 3,1 和 4, 6 在直线 3x 2 y a 0 的两侧, 3 3 21 a 3 4 2 6 a 0 即
18. (本小题满分 12 分).如图,在四棱锥 P ABCD 中,侧面 PAD 为等边三角形,且垂直于底面 ABCD ,
AB BC 1,BAD ABC 90,AD=2 , M , N 分别是 AD, PD 的中点.
(1)证明:平面 CMN / / 平面 PAB ;
(2)已知点
E
在棱
PC
上且 CE
15.在四面体 S ABC 中,SA SB 2 ,且 SA SB ,BC 5 ,AC 3 ,则该四面体体积的最大值为________,
该四面体外接球的表面积为________.
16.在
ABC
中,
A
3
,
AC
:
BC
2 : 3 ,点
D
为线段
AB
上一动点,若
DA
DC
最小值为
3 4
,则
ABC
部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验 1000 次.方案②:按 k 个人一 组进行随机分组,把从每组 k 个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴 性,这 k 个人的血只需检验一次(这.时.认.为.每.个.人.的.血.化.验.1k 次.);否则,若呈阳性,则需对这 k 个人的血样再
请考生在第 22 23 题中任选一道作答,如果多做,则按所做第一题计分,作答时请写清题号.
22.(本小题满分
10
分)在直角坐标系中,曲线
C
的参数方程为
x y
3 cos 2 sin
(
为参数),以原点为极点,x

的正半轴为极轴,建立极坐标系,曲线 D 的极坐标方程为 4sin( ) . 6
种是顶角为108 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,
相关文档
最新文档