高等数学:第五讲 罗尔中值定理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: (1) f(x)= x3+4x2-7x-10在区间[-1,2]上连续;
1
(2) f (x)=3x2+8x-7在(-1,2)内存在;
(3)f (-1)=f (2)= 0;
所以 f(x)满足定理的三个条件.
令f (x)=3x2+8x-7=0
解得 x 4 37 3
则 37 4 (1 , 2) 就是要找的点,显然有f (ξ)=0.
3
不求函数 y ( x 1)( x 2)( x 3) 的导数,说明方程
2 f ( x) 0 有几个实根,并指出它们所在的区间.
分析: 该类问题主要说明函数满足罗尔定理的条件,
且寻找函数值相等的若干个点.
本题(1) (2)
所以有
,至少两个根; 为一元二次方程,至多两个根.
.
谢谢
罗尔中值定理
问题引入
y
C
f (a) A
Oa
B
可能不唯一
bx
罗尔中值定理
满足: (1) 在区间 (2) 在区间
上连续 内可导
(3)
在 内至少存在一点
y
f (a) A
y f (x) B
O a
bx
使 f ( ) 0.
补充说明
1)罗尔定理的条件是充分非必要条件.
例如,
y
1
结论成立!
O
π
2
f ( π ) 0. 2
πx
但 y f (x) 在[0, π]上不连续; 不满足定理条件(1)和(明
2) 如果定理三个条件不全满足,结论未必成立. 例如,
y
结论均不成y 立!
O 1x
1 O 1 x
y O 1x
例题
验证罗尔中值定理对函数 f(x)=x3+4x2-7x-10 在区间[-1,2]上的正确性, 并求出.