高二月考数学(理科)试题

合集下载

河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在棱长为a的正方体ABCD﹣A1B1C1D1中,M为AB的中点,则点C到平面A1DM的距离为()A. a B. a C. a D. a参考答案:A【考点】点、线、面间的距离计算.【专题】计算题.【分析】连接A1C、MC,三棱锥A1﹣DMC就是三棱锥C﹣A1MD,利用三棱锥的体积公式进行转换,即可求出点C到平面A1DM的距离.【解答】解:连接A1C、MC可得=△A1DM中,A1D=,A1M=MD=∴=三棱锥的体积:所以 d(设d是点C到平面A1DM的距离)∴=故选A.【点评】本题以正方体为载体,考查了立体几何中点、线、面的距离的计算,属于中档题.运用体积计算公式,进行等体积转换来求点到平面的距离,是解决本题的关键.2. 如果函数的导函数是偶函数,则曲线在原点处的切线方程是()A. B. C. D.参考答案:A试题分析:,因为函数的导数是偶函数,所以满足,即,,,所以在原点处的切线方程为,即,故选A.考点:导数的几何意义3. 若集合,,则是A.B.C.D.参考答案:B略4. 设,记,若则()A. B.- C. D.参考答案:B5. 下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则参考答案:C6. 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度 B.假设三内角都大于60度C.假设三内角至少有一个大于60度D.假设三内角至多有二个大于60度参考答案:B略7. 椭圆上的点到直线的最大距离是()A.3 B.C.D.参考答案:D8. 用反证法证明命题“三角形的内角中至少有一个大于60°,反证假设正确的是( )A. 假设三内角都大于60°B. 假设三内角都不大于60°C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个大于60°参考答案:B【分析】反证法的第一步是假设命题的结论不成立,根据这个原则,选出正确的答案.【详解】假设命题的结论不成立,即假设三角形的内角中至少有一个大于60°不成立,即假设三内角都不大于60°,故本题选B.【点睛】本题考查了反证法的第一步的假设过程,理解至少有一个大于的否定是都不大于是解题的关键.9. 对于幂函数,若,则,大小关系是()A. B.C. D.无法确定参考答案:A10. 若f(x)是偶函数且在(0,+∞)上减函数,又,则不等式的解集为()A. 或B. 或C. 或D. 或参考答案:C∵是偶函数,,∴,∵,∴∵在上减函数,∴,∴或∴不等式的解集为或,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 设两个独立事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相同,则事件发生的概率为____.参考答案:12. 若x 2dx=9,则常数T的值为 .参考答案:3【考点】定积分.【分析】利用微积分基本定理即可求得.【解答】解: ==9,解得T=3,故答案为:3.13. 给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为 ▲ .参考答案:14. 甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).参考答案: 336 略15. 设变量满足约束条件则的最大值为________参考答案:4 16. 若在展开式中x 3的系数为-80,则a = .参考答案:-2;17. 已知,且是第二象限角,则____________参考答案:三、 解答题:本大题共5小题,共72分。

四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题

四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题

【详解】解:∵ A = {x 1 < x < 2}, B = {x 1 £ x £ 2} ,
∴ A Ç B = {x 1 < x < 2} ,
故选:D. 2.C 【分析】由复数运算法则可得 z 代数形式,后可得其虚部.
【详解】
z
=
3 + 2i 1+ i
=
(3 + 2i)(1- i) (1+ i)(1- i)
=
5
2
i
=
5 2
-
1 2
i
,则
z
的虚部是
-
1 2
.
故选:C 3.B
【分析】根据点 P ( x, y) 在椭圆上得
x2 a2
+
y2 b2
= 1,且 -a
£
x
£ a ,再利用两点距离求得
PF1
=
c a
x + a ,从而可确定
PF1
a, c 的最大值与最小值,即可求得 的值,即可得离心率
e
=
c a
的值.
【详解】设椭圆的半焦距为 c ,若椭圆上一点 P ( x,
为圆柱下底面圆
O
的直径,C
是下底面圆周上一点,已知
ÐAOC
=
π 3

OA
=
2
,圆柱的高为
5.若点
D
在圆柱表面上运动,且满足
uuur BC
×
uuur CD
=
0
,则点
D
的轨
迹所围成图形的面积为________.
试卷第31 页,共33 页
16.已知函数 f ( x) = aln2x +1- x (a Î R) 有且仅有一条切线经过点 (0, 0) .若"x Î[1, +¥) , f ( x) + mlnx £ 0 恒成立,则实数 m 的最大值是______.

高二第二学期月考数学试卷(理科)及答案

高二第二学期月考数学试卷(理科)及答案

.高二第二学期月考数学试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A.3B.4C.5D.62.已知i 是虚数单位,则复数z = 2−i4+3i 在复平面内对应的点所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.曲线y = x 2+3x 在点A (2,10)处的切线的斜率k 是( ) A.7 B.6 C.5 D.44.(√x −1x )9展开式中的常数项是( )A.-36B.36C.-84D.845.已知命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0,那么命题p 的否定是( ) A.∃a 0∈(0,+∞),a 02 - 2a 0 -3≤0 B.∃a 0∈(-∞,0),a 02 - 2a 0 -3≤0 C.∀a ∈(0,+∞),a 2 - 2a -3≤0 D.∀a ∈(-∞,0),a 2 - 2a -3≤06.已知F 1,F 2是双曲线12222=-b x a y(a >0,b >0)的下、上焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( ) A.√2 B.2 C.√3 D.37.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为∧y=8.5x +7.5,则表中的m 的值为( )A.50B.55C.60D.658.若f (x )=x 2 - 2x - 4lnx ,则)('x f <0的解集( )A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)9.设△ABC 的三内角A 、B 、C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形10.设等差数列{a n }的前n 项和为S n ,若a 1 = - 11,a 4 + a 6= - 6,则当S n 取最小值时,n 等于( ) A.6 B.7 C.8 D.911.由曲线y =√x ,直线y = x - 2及y 轴所围成的图形的面积为( ) A.103B.4C.163D.612.定义在R 上的函数f (x )满足:f (x )+)('x f >1,f (0)= 4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为( ) A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(0,+∞) D.(3,+∞)二、填空题(本大题共4小题,共20.0分)13.设随机变量X ~N (μ,σ2),且P (X <1)=12, P (X >2)=p ,则P (0<X <1)= ______ . 14.已知函数f (x )=13x 3+ax 2+x +1有两个极值点,则实数a 的取值范围是 ______ .15.已知函数xx f x f sin cos )4()('+=π,则f (π4)= ______ .16.观察下列一组等式:①sin 230°+cos 260°+sin 30°cos 60° = 34, ②sin 215°+cos 245°+sin 15°cos 45° = 34, ③sin 245°+cos 275°+sin 45°cos 75° = 34,…,那么,类比推广上述结果,可以得到的一般结果是: ______ .三、解答题(本大题共6小题,共72.0分).17.已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,√3sin C cos C - cos 2C = 12,且c =3 (1)求角C(2)若向量m⃗⃗ =(1,sin A )与n⃗ =(2,sin B )共线,求a 、b 的值.18.已知正数数列 {a n } 的前n 项和为S n ,且对任意的正整数n 满足2√S n =a n +1. (Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)设11+⋅=n n n a a b ,求数列 {b n } 的前n 项和B n .19.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).20.如图,在直三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D(Ⅰ)求证:BD ⊥A 1C(Ⅱ)求二面角B-A 1D-C 的大小.21.已知椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0),F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3. (1)求椭圆C 的方程;(2)过定点P (0,2)作直线l 与椭圆C 交于不同的两点A ,B ,且OA ⊥OB (其中O 为坐标原点),求直线l 的方程.22.已知函f (x )= ax 2 - e x (a ∈R ).(Ⅰ)a =1时,试判断f (x )的单调性并给予证明; (Ⅱ)若f (x )有两个极值点x 1,x 2(x 1<x 2). (i ) 求实数a 的取值范围; (ii )证明:1)(21-<<-x f e(注:e 是自然对数的底数)【解析】1. 解:因为集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},所以a +b 的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8, 所以M 中元素只有:5,6,7,8.共4个. 故选B .利用已知条件,直接求出a +b ,利用集合元素互异求出M 中元素的个数即可. 本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力. 2. 解:复数z =2−i4+3i =(2−i)(4−3i)(4+3i)(4−3i)=5−10i 25=15−25i 在复平面内对应的点(15,−25)所在的象限为第四象限. 故选:D ..利用复数的运算法则及其几何意义即可得出.本题考查了复数的运算法则及其几何意义,属于基础题. 3. 解:由题意知,y =x 2+3x ,则y ′=2x +3, ∴在点A (2,10)处的切线的斜率k =4+3=7, 故选:A .根据求导公式求出y ′,由导数的几何意义求出在点A (2,10)处的切线的斜率k . 本题考查求导公式和法则,以及导数的几何意义,属于基础题.4. 解:(√x −1x )9展开式的通项公式为T r +1=C 9r•(-1)r •x9−3r2,令9−3r 2=0,求得r =3,可得(√x −1x )9展开式中的常数项是-C 93=-84,故选:C .先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题. 5. 解:根据特称命题的否定是全称命题,得; 命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0, 那么命题p 的否定是:∀a ∈(0,+∞),a 2-2a -3≤0. 故选:C .根据特称命题的否定是全称命题,写出命题p 的否定命题¬p 即可. 本题考查了特称命题与全称命题的应用问题,是基础题目.6. 解:由题意,F 1(0,-c ),F 2(0,c ),一条渐近线方程为y =ab x ,则F 2到渐近线的距离为√a 2+b 2=b .设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,∴|MF 2|=2b ,A 为F 2M 的中点, 又0是F 1F 2的中点,∴OA ∥F 1M ,∴∠F 1MF 2为直角, ∴△MF 1F 2为直角三角形, ∴由勾股定理得4c 2=c 2+4b 2 ∴3c 2=4(c 2-a 2),∴c 2=4a 2, ∴c =2a ,∴e =2. 故选:B .首先求出F 2到渐近线的距离,利用F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,可得直角三角形,即可求出双曲线的离心率.本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题. 7. 解:由题意,x .=2+4+5+6+85=5,y .=25+35+m+55+755=38+m5,∵y 关于x 的线性回归方程为y ^=8.5x +7.5, 根据线性回归方程必过样本的中心, ∴38+m5=8.5×5+7.5,∴m =60. 故选:C .计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论. 本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点.属于基础题.8. 解:函数f (x )=x 2-2x -4lnx 的定义域为{x |x >0}, 则f '(x )=2x -2-4x =2x 2−2x−4x,由f '(x )=2x 2−2x−4x <0,得x 2-x -2<0,解得-1<x <2,∵x >0, ∴不等式的解为0<x <2, 故选:B .求函数的定义域,然后求函数导数,由导函数小于0求解不等式即可得到答案.本题主要考查导数的计算以及导数不等式的解法,注意要先求函数定义域,是基础题. 9. 解:∵△ABC 的三内角A 、B 、C 成等差数列, ∴∠B=60°,∠A+∠C=120°①; 又sin A 、sin B 、sin C 成等比数列, ∴sin 2B=sin A •sin C=34,②由①②得:sin A •sin (120°-A )=sin A •(sin 120°cos A-cos 120°sin A )=√34sin 2A+12•1−cos2A2=√34sin 2A-14cos 2A+14 =12sin (2A-30°)+14 =34,∴sin (2A-30°)=1,又0°<∠A <120° ∴∠A=60°. 故选D .先由△ABC 的三内角A 、B 、C 成等差数列,求得∠B=60°,∠A+∠C=120°①;再由sin A 、sin B 、sin C 成等比数列,得sin 2B=sin A •sin C ,②,①②结合即可判断这个三角形的形状.本题考查数列与三角函数的综合,关键在于求得∠B=60°,∠A+∠C=120°,再利用三角公式转化,着重考查分析与转化的能力,属于中档题.10. 解:设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6,解得d =2, 所以S n =−11n +n(n−1)2×2=n 2−12n =(n −6)2−36,所以当n =6时,S n 取最小值.故选A .条件已提供了首项,故用“a 1,d ”法,再转化为关于n 的二次函数解得. 本题考查等差数列的通项公式以及前n 项和公式的应用,考查二次函数最值的求法及计算能力.11. 解:联立方程{y =x −2y=√x得到两曲线的交点(4,2),因此曲线y =√x ,直线y =x -2及y 轴所围成的图形的面积为:S=∫(40√x−x+2)dx=(23x32−12x2+2x)|04=163.故选C.利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=√x,直线y=x-2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.12. 解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)-e0=4-1=3,∴g(x)>g(0),∴x>0故选:A.构造函数g(x)=e x f(x)-e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.13. 解:随机变量X~N(μ,σ2),可知随机变量服从正态分布,X=μ,是图象的对称轴,可知P(X<1)=12,P(X>2)=p,P(X<0)=p,则P(0<X<1)=12−p.故答案为:12−p.直接利用正态分布的性质求解即可.本题考查正态分布的简单性质的应用,基本知识的考查.14. 解:函数f(x)=13x3+ax2+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2-4>0,解得,a>1或a<-1.故答案为:(-∞,-1)∪(1,+∞)求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.本题考查导数的运用:求极值,考查二次方程实根的分布,考查运算能力,属于基础题.15. 解:由f(x)=f′(π4)cosx+sinx,得f′(x)=-f′(π4)sinx+cosx,所以f′(π4)=-f′(π4)sinπ4+cosπ4,f′(π4)=-√22f′(π4)+√22..解得f′(π4)=√2-1.所以f(x)=(√2-1)cosx+sinx则f(π4)=(√2-1)cosπ4+sinπ4=√22(√2−1)+√22=1.故答案为:1.由已知得f′(π4)=-f′(π4)sinπ4+cosπ4,从而f(x)=(√2-1)cosx+sinx,由此能求出f(π4).本题考查函数值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.16. 解:观察下列一组等式:①sin230°+cos260°+sin30°cos60°=34,②sin215°+cos245°+sin15°cos45°=34,③sin245°+cos275°+sin45°cos75°=34,…,照此规律,可以得到的一般结果应该是sin2x+sinx)cos(30°+x)+cos2(30°+x),右边的式子:34,∴sin2x+sinxcos(30°+x)+cos2(30°+x)=34.证明:sin2x+sinx(√32cosx−12sinx)+(√32cosx−12sinx)2=sin2x+√32sinxcosx-12sin2x+34cos2x-√32sinxcosx+14sin2x=3 4sin2x+34cos2x=34.故答案为:sin2x+sinxcos(30°+x)+cos2(30°+x)=34.观察所给的等式,等号左边是sin230°+cos260°+sin30°cos60°,3sin215°+cos245°+sin15°cos45°…规律应该是sin2x+sinxcos(30°+x)+cos2(30°+x),右边的式子:34,写出结果.本题考查类比推理,考查对于所给的式子的理解,从所给式子出发,通过观察、类比、猜想出一般规律,不需要证明结论,该题着重考查了类比的能力.答案和解析【答案】1.B2.D3.A4.C5.C6.B7.C8.B9.D 10.A 11.C 12.A13.12−p14.(-∞,-1)∪(1,+∞)15.116.sin2(30°+x)+sin(30°+x)cos(30°-x)+cos2(30°-x)=34.17.解:(1)∵√3sinCcosC −cos 2C =12, ∴√32sin2C −1+cos2C2=12∴sin (2C-30°)=1∵0°<C <180° ∴C=60°(2)由(1)可得A+B=120° ∵m ⃗⃗⃗ =(1,sinA)与n ⃗ =(2,sinB)共线, ∴sin B-2sin A=0∴sin (120°-A )=2sin A 整理可得,cosA =√3sinA 即tan A=√33∴A=30°,B=90° ∵c =3.∴a =√3,b =2√3 18.解:(Ⅰ)由2√S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2(1),(1)式中n 用n -1代入得4S n−1=(a n−1+1)2&(n ≥2)(2), (1)-(2),得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2,(3分) [(a n -1)+(a n -1+1)]•[(a n -1)-(a n -1+1)]=0, 由正数数列{a n },得a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列,有a n =2n -1.(7分) (Ⅱ)b n =1an ⋅a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),裂项相消得B n =n2n+1.(14分)19.(I )解:设“在X 次游戏中摸出i 个白球”为事件A i (i =,0,1,2,3),“在1次游戏中获奖”为事件B ,则B=A 2∪A 3, 又P (A 3)=C 32C 21C 52C 32=15,P (A 2)=C 32C 22+C 31C 21C 21C 52C 32=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710; (II )解:由题意可知X 的所有可能取值为0,1,2.X ~B(2,710) 所以X 的分布列是 X 012P9100215049100X 的数学期望E (X )=0×9100+1×2150+2×49100=75. 20.(Ⅰ)证明:分别以AB 、AC 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系,∵AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D , ∴B (2,0,0),C (0,2√3,0),A 1(0,0,√3),D (32,√32,√3).则BD ⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,−√3), ∴BD ⃗⃗⃗⃗⃗⃗ ⋅A 1C ⃗⃗⃗⃗⃗⃗⃗ =−12×0+√32×2√3−√3×√3=0.∴BD ⊥A 1C ;(Ⅱ)解:设平面BDA 1的一个法向量为m ⃗⃗⃗ =(x ,y ,z),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,0,√3),BD ⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),∴{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =−12x +√32y +√3z =0m ⃗⃗⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =−2x+√3z=0,取z =2,则m ⃗⃗⃗ =(√3,−3,2);设平面A 1DC 的一个法向量为n ⃗ =(x ,y ,z),DC ⃗⃗⃗⃗⃗ =(−32,3√32,−√3),CA 1⃗⃗⃗⃗⃗⃗⃗=(0,−2√3,√3),∴{n ⃗ ⋅CA 1⃗⃗⃗⃗⃗⃗⃗ =−2√3y +√3z =0n⃗⃗ ⋅DC ⃗⃗⃗⃗⃗⃗ =−32x+3√32y−√3z=0,取y =1,得n ⃗ =(−√3,1,2). ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m⃗⃗⃗ ||n ⃗⃗ |=4×22=−√28.∴二面角B-A 1D-C 的大小为arccos √28.21.解:(1)∵椭圆C :x 2a2+y 2b 2=1的左焦点F 1的坐标为(-√3,0),F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3, ∴{c =√32a +2c =4+2√3a 2=b 2+c 2,解得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,不满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -2,A (x 1,y 1),B (x 2,y 2),联立{x 24+y 2=1y =kx −2,得(1+4k 2)x 2-16kx +12=0,△=(-16k )2-48(1+4k 2)>0,由根与系数关系得x 1+x 2=16k1+4k 2,x 1•x 2=121+4k 2, ∵y 1=kx 1-2,y 2=kx 2-2,∴y 1y 2=k 2x 1•x 2-2k (x 1+x 2)+4. ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0,∴(1+k 2)x 1x 2-2k (x 1+x 2)+4=0, ∴12(1+k 2)1+4k -32k 21+4k +4=0,解得k =±2,∴直线l 的方程是y =2x -2或y =-2x -2. 22.解:(Ⅰ)当a =1时,f (x )=x 2-e x ,f (x )在R 上单调递减.事实上,要证f ′(x )=x 2-e x 在R 上为减函数,只要证明f ′(x )≤0对∀x ∈R 恒成立即可,设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x ,.. 当x =ln 2时,g ′(x )=0,当x ∈(-∞,ln 2)时,g ′(x )>0,当x ∈(ln 2,+∞)时,g ′(x )<0.∴函数g (x )在(-∞,ln 2)上为增函数,在(ln 2,+∞)上为减函数.∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0,故f ′(x )<0恒成立所以f (x )在R 上单调递减; (Ⅱ)(i )由f (x )=ax 2-e x ,所以,f ′(x )=2ax -e x .若f (x )有两个极值点x 1,x 2,则x 1,x 2是方程f ′(x )=0的两个根,故方程2ax -e x =0有两个根x 1,x 2,又因为x =0显然不是该方程的根,所以方程2a =e x x 有两个根, 设ℎ(x)=e x x ,得ℎ′(x)=e x (x−1)x 2.若x <0时,h (x )<0且h ′(x )<0,h (x )单调递减.若x >0时,h (x )>0.当0<x <1时h ′(x )<0,h (x )单调递减,当x >1时h ′(x )>0,h (x )单调递增.要使方程2a =e x x 有两个根,需2a >h (1)=e ,故a >e 2且0<x 1<1<x 2.故a 的取值范围为(e 2,+∞).(ii )证明:由f ′(x 1)=0,得:2ax 1−e x 1=0,故a =e x 12x 1,x 1∈(0,1) f(x 1)=ax 12−e x 1=e x 12x 1⋅x 12−e x 1=e x 1(x 12−1),x 1∈(0,1)设s (t )=e t (t 2−1)(0<t <1),则s ′(t)=e t (t−12)<0,s (t )在(0,1)上单调递减 故s (1)<s (t )<s (0),即−e 2<f(x 1)<−1.。

高中数学高二下学期数学试卷月考卷子(理)有答案

高中数学高二下学期数学试卷月考卷子(理)有答案

高中数学高二下学期数学试卷月考卷子(理)有答案一、选择题(共12小题,每小题5分,满分60分)1.若a <b <0,则下列结论不正确的是( )A.1a >1bB.a -b a >0 C .a 2<b 2D .a 3<b 32.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x ∈⎝⎛⎭⎫0,π2时,sin x +4sin x的最小值为4 C .当x >0时,x +1x≥2 D .当0<x ≤2时,x -1x无最大值 3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,b =2,B =45°,则角A 等于( )A .30°B .60°C .30°或150°D .60°或120°4.不等式lg(x 2-3x )<1的解集为( )A .(-2,5)B .(-5,2)C .(3,5)D .(-2,0)∪(3,5)5.下列结论正确的是( )A .若数列{a n }的前n 项和为S n ,S n =n 2+n +1,则{a n }为的等差数列B .若数列{a n }的前n 项和为S n ,S n =2n -2,则{a n }为等比数列C .非零实数a ,b ,c 不全相等,若a ,b ,c 成等差数列,则1a ,1b ,1c可能构成等差数列 D .非零实数a ,b ,c 不全相等,若a ,b ,c 成等比数列,则1a ,1b ,1c一定构成等比数列 6.在等比数列{a n } 中,a 1=4,公比为q ,前n 项和为S n ,若数列{S n +2}也是等比数列,则q 等于( )A .2B .-2C .3D .-3 7.设集合A ={x |-2≤x <4},B ={x |x 2-ax -4≤0},若B ⊆A ,则实数a 的取值范围为( )A .[-1,2]B .[-1,2)C .[0,3)D .[0,3]8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2A 2=b +c 2c,则△ABC 的形状一定是( ) A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形9.已知等差数列{a n }的前n 项和为S n ,若m >1且a m -1+a m +1-a 2m -1=0,S 2m -1=39,则m 等于( )A .10B .19C .20D .3910.设数列{a n }满足a 1+2a 2+22a 3…+2n -1a n =n 2(n ∈N *),通项公式是( ) A .a n =12nB .a n =12n -1C .a n =12nD .a n =12n +1 11.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m 等于( ) A .-2B .-1C .1D .212.设a n =|sin 1|1+|sin 2|22+…+|sin n |2n ,则对任意正整数m ,n (m >n )都成立的是( ) A .a m -a n <12n B .a m -a n >12n C .a m -a n <12m D .a m -a n >m -n 2二、填空题(共4小题,每小题5分,满分20分)13.若实数x ,y 满足条件⎩⎪⎨⎪⎧ x -y +1≥0,x +y ≥2,x ≤1,则2x +y 的最大值为______.14.已知数列{a n }满足a 1=1,a n +1=a n +2n -1(n ∈N *),则a n =__________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知tan A =12,tan B =13,且最长边的长为1,则△ABC 最短边的长为______.16.若x 、y 、z 均为正实数,则xy +yz x 2+y 2+z 2的最大值为____. 三、解答题(共6小题,满分70分)17.(10分)(1)已知正数a ,b 满足a +4b =4,求1a +1b的最小值. (2)求函数f (k )=k 2+2k 2+6的最大值.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a 2+c 2=b 2+ac .(1)若b =3,sin C =2sin A ,求c 的值;(2)若b =2,求△ABC 面积的最大值.19.(12分)解关于x 的不等式ax 2-2x -2-a <0(a >-1).20.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos C cos B =3c -a b. (1)求sin C sin A的值; (2)若B 为钝角,b =10,求a 的取值范围.21.(12分)设数列{a n }是首项为a 1(a 1>0),公差为2的等差数列,其前n 项和为S n ,且S 1,S 2,S 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =a n 2n 的前n 项和为T n ,求T n .22.(12分)数列{a n }的各项均为正数,S n 为其前n 项和,对于任意n ∈N *,总有a n ,S n ,a 2n 成等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }中,b n =a 1·a 2·a 3·…·a n ,数列{1b n}的前n 项和为T n ,求证:T n <2.参考答案1.C [∵a <b <0,且y =x 2在(-∞,0)上单调递增减,故a 2>b 2,C 错误.]2.C [对于A ,当0<x <1时,lg x <0,不等式不成立;对于B ,当x ∈⎝⎛⎭⎫0,π2时,sin x ∈(0,1),sin x +4sin x的最小值4取不到,由于sin x =2不成立; 对于C ,当x >0时,x +1x ≥2x ·1x=2,当且仅当x =1时等号成立; 对于D ,当0<x ≤2时,x -1x 递增,当x =2时,取得最大值32. 综合可得C 正确.]3.A [∵a =1,b =2,B =45°,∴由正弦定理可得:sin A =a sin B b =1×222=12, ∵a =1<b =2,由大边对大角可得:A ∈(0,45°),∴解得A =30°.]4.D [∵lg(x 2-3x )<1,∴⎩⎪⎨⎪⎧x 2-3x >0,x 2-3x <10, 解得-2<x <0或3<x <5,∴不等式lg(x 2-3x )<1的解集为(-2,0)∪(3,5).]5.D [在A 中,∵数列{a n }的前n 项和为S n ,S n =n 2+n +1,∴a 1=S 1=1+1+1=3,a n =S n -S n -1=(n 2+n +1)-[(n -1)2+(n -1)+1]=2n ,n =1时,a n =2≠a 1,故{a n }不为等差数列,故A 错误;在B 中,∵数列{a n }的前n 项和为S n ,S n =2n -2,∴a 1=S 1=2-2=0,∴{a n }不为等比数列,故B 错误;在C 中,若1a ,1b ,1c 构成等差数列,则2b =1a +1c =a +c ac =2b ac, ∴b 2=ac ,∴ac =(a +c 2)2=a 2+c 2+2ac 4,∴a =c ,继而a =c =b ,与非零实数a ,b ,c 不全相等矛盾,∴1a ,1b ,1c不可能构成等差数列,故C 错误;在D 中,∵非零实数a ,b ,c 不全相等,a ,b ,c 成等比数列,∴b 2=ac ,∴1b 2=1ac =1a ×1c, ∴1a ,1b ,1c一定成等比数列,故D 正确.] 6.C [由题意可得q ≠1,由数列{S n +2}也是等比数列可得S 1+2,S 2+2,S 3+2成等比数列,则(S 2+2)2=(S 1+2)(S 3+2).代入等比数列的前n 项和公式整理可得:(6+4q )2=24(1+q +q 2)+12,解得q =3.]7.C [∵Δ=a 2+16>0,∴设方程x 2-ax -4=0的两个根为x 1,x 2,(x 1<x 2),即函数f (x )=x 2-ax -4的两个零点为x 1,x 2,(x 1<x 2),则B =[x 1,x 2].若B ⊆A ,则函数f (x )=x 2-ax -4的两个零点在[-2,4)之间.注意到函数f (x )的图象过点(0,-4),∴只需⎩⎪⎨⎪⎧f -2 =4+2a -4≥0,f 4 =16-4a -4>0, 解得0≤a <3.]8.B [在△ABC 中,∵cos 2A 2=b +c 2c, ∴1+cos A 2=sin B +sin C 2sin C =12·sin B sin C +12∴1+cos A =sin B sin C +1,即cos A =sin B sin C, ∴cos A sin C =sin B =sin(A +C )=sin A cos C +cos A sin C ,∴sin A cos C =0,sin A ≠0,∴cos C =0,∴C 为直角.]9.C [∵数列{a n }为等差数列,则a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,又∵S 2m -1=(2m -1)a m =39,则m =20.]10.C [设{2n -1·a n }的前n 项和为T n , ∵数列{a n }满足a 1+2a 2+22a 3…+2n -1a n =n 2(n ∈N *), ∴T n =n 2, ∴2n -1a n =T n -T n -1=n 2-n -12=12, a n =122n -1=12n ,经验证,n =1时也成立,故a n =12n .] 11.C [先根据约束条件画出可行域,设z =x +y ,将最大值转化为y 轴上的截距,当直线z =x +y 经过直线x +y =9与直线2x -y -3=0的交点A (4,5)时,z 最大,将m 等价为斜率的倒数,数形结合,将点A 的坐标代入x -my +1=0得m =1.]12.A [a m -a n =|sin n +1 |2n +1+|sin n +2 |2n +1+…+sin m 2m ≤12n +1+12n +2+…+12m =12n .12[1-12m -n ]1-12<12n .] 13.4 [满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥2,x ≤1的平面区域如下图所示:由图可知:当x =1,y =2时,2x +y 取最大值4.]14.n 2-2n +2解析 ∵a 1=1,a n +1=a n +2n -1(n ∈N *),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(2n -3)+(2n -5)+…+1+1= n -1 2n -3+1 2+1 =n 2-2n +2.15.55解析 由题意可得tan C =-tan(A +B )=-tan A +tan B 1-tan A ·tan B =-12+131-12×13=-1, ∴∠C =135°,c 为最长边,故c =1,又∵0<tan B =13<12=tan A , ∴B 为最小角,b 为最短边,∵tan B =13,∴sin B =1010, 由正弦定理可得b =c sin B sin C =55. 16.22解析 ∵x 2+12y 2≥2xy ,12y 2+z 2≥2yz , ∴xy +yz x 2+y 2+z 2=xy +yz ⎝⎛⎭⎫x 2+12y 2+⎝⎛⎭⎫12y 2+z 2≤xy +yz 2 xy +yz =22,当且仅当x =z =22y 时,等号成立. 17.解 (1)由a ,b >0,且a +4b =4,即有1a +1b =14(a +4b )(1a +1b )=14(5+a b +4b a) ≥14(5+2a b ·4b a )=94. 当且仅当a =2b =43时取得最小值, 则1a +1b 的最小值为94. (2)令t =2+k 2(t ≥2),则g (t )=t t 2+4=1t +4t ≤12t ·4t=14, 当且仅当t =2,即k =±2时,取得等号,即有f (k )的最大值为14. 18.解 (1)∵sin C =2sin A ,∴由正弦定理可得c =2a ,又∵a 2+c 2=b 2+ac .b =3,∴a 2+4a 2=3+2a 2,解得a =1,c =2.(2)由余弦定理可得cos B =a 2+c 2-b 22ac =ac 2ac =12, ∴sin B =32, 又∵b =2,a 2+c 2=b 2+ac .∴4+ac =a 2+c 2≥2ac ,即ac ≤4,∴S △ABC =12ac sin B ,当且仅当a =c =2时等号成立. 故△ABC 面积的最大值为 3.19.解 (1)当a =0时,有-2x -2<0,∴x >-1.(2)a >0时,∵Δ=4-4a (-2-a )=4a 2+8a +4=4(a +1)2>0,方程ax 2-2x -2-a =0的两根为2±2 a +1 2a, 即x 1=-1,x 2=a +2a, ∴不等式的解集为{x |-1<x <a +2a}. (3)当-1<a <0时,Δ=4-4a (-2-a )=4a 2+8a +4=4(a +1)2>0,不等式ax 2-2x -2-a <0的解集为{x |x <a +2a或x >-1}. 综上,关于x 的不等式ax 2-2x -2-a <0(a >-1)的解集为:当-1<a <0时,关于x 的不等式ax 2-2x -2-a <0(a >-1)的解集为{x |x <a +2a或x >-1}. 当a =0时,关于x 的不等式ax 2-2x -2-a <0(a >-1)的解集为{x |x >-1};当a >0时,关于x 的不等式ax 2-2x -2-a <0(a >-1)的解集为{x |-1<x <a +2a}. 20.解 (1)由正弦定理,设a sin A =b sin B =c sin C=k , 则3c -a b =3k sin C -k sin A k sin B =3sin C -sin A sin B, 所以cos A -3cos C cos B =3sin C -sin A sin B. 即(cos A -3cos C )sin B =(3sin C -sin A )cos B ,化简可得sin(A +B )=3sin(B +C ).又A +B +C =π,所以sin C =3sin A ,因此sin C sin A=3. (2)由sin C sin A=3得c =3a . 由题意⎩⎪⎨⎪⎧a +c >b ,a 2+c 2<b 2, ∴52<a <10. 21.解 (1)∵S 1=a 1,S 2=a 1+a 2=2a 1+2,S 3=a 1+a 2+a 3=3a 1+6, 由S 1,S 2,S 3成等差数列得,2S 2=S 1+S 3,即22a 1+2=a 1+3a 1+6, 解得a 1=1,故a n =2n -1.(2)b n =a n 2n =2n -12n =(2n -1)(12)n , T n =1×12+3×14+5×18+…+(2n -1)·(12)n ,① ①×12得,12T n =1×(12)2+3×(12)3+5×(12)4+…+(2n -3)×(12)n +(2n -1)×(12)n +1,② ①-②得,12T n =12+2×(12)2+2×(12)3+…+2×(12)n -(2n -1)×(12)n +1=2×12 1-12n 1-12-12-(2n -1)×(12)n +1=32-12n -1-2n -12n +1,∴T n =3-42n -2n -12n =3-2n +32n . 22.(1)解 ∵对于任意n ∈N *,总有a n ,S n ,a 2n 成等差数列,∴2S n =a n +a 2n ,∴当n ≥1时,2S n -1=a n -1+a 2n -1,相减可得,2a n =a n +a 2n -(a n -1+a 2n -1),化为(a n +a n -1)(a n -a n -1-1)=0,∵数列{a n }的各项均为正数,∴a n -a n -1-1=0,当n =1时,2a 1=a 1+a 21,a 1>0,解得a 1=1.∴数列{a n }是等差数列,首项为1,公差为1.∴a n =1+(n -1)=n .(2)证明 b n =a 1·a 2·a 3·…·a n =n !.∴数列{1b n }的前n 项和为T n =11+12!+13!+…+1n !≤1+11×2+12×3+…+1 n -1 n =1+(1-12)+(12-13)+…+(1n -1-1n)=2-1n <2.。

高二第二学期月考数学试卷理科及答案

高二第二学期月考数学试卷理科及答案

高二第二学期月考数学试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A.3B.4C.5D.62.已知i 是虚数单位,则复数z = 2−i4+3i 在复平面内对应的点所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.曲线y = x 2+3x 在点A (2,10)处的切线的斜率k 是( ) A.7 B.6 C.5 D.44.(√x −1x )9展开式中的常数项是( ) A.-36 B.36 C.-84 D.845.已知命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0,那么命题p 的否定是( ) A.∃a 0∈(0,+∞),a 02 - 2a 0 -3≤0 B.∃a 0∈(-∞,0),a 02 - 2a 0 -3≤0 C.∀a ∈(0,+∞),a 2 - 2a -3≤0 D.∀a ∈(-∞,0),a 2 - 2a -3≤06.已知F 1,F 2是双曲线12222=-bx a y(a >0,b >0)的下、上焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( ) A.√2 B.2 C.√3 D.37.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为∧y=8.5x +7.5,则表中的m 的值为( )A.50B.55C.60D.658.若f (x )=x 2 - 2x - 4lnx ,则)('x f <0的解集( )A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)9.设△ABC 的三内角A 、B 、C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形10.设等差数列{a n }的前n 项和为S n ,若a 1 = - 11,a 4 + a 6= - 6,则当S n 取最小值时,n 等于( ) A.6 B.7 C.8 D.911.由曲线y =√x ,直线y = x - 2及y 轴所围成的图形的面积为( ) A.103 B.4 C.163 D.612.定义在R 上的函数f (x )满足:f (x )+)('x f >1,f (0)= 4,则不等式e xf (x )>e x +3(其中e 为自然对数的底数)的解集为( ) A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(0,+∞) D.(3,+∞)二、填空题(本大题共4小题,共20.0分)13.设随机变量X ~N (μ,σ2),且P (X <1)=12, P (X >2)=p ,则P (0<X <1)= ______ . 14.已知函数f (x )=13x 3+ax 2+x +1有两个极值点,则实数a 的取值范围是 ______ . 15.已知函数xx f x f sin cos )4()('+=π,则f (π4)= ______ .16.观察下列一组等式:①sin 230°+cos 260°+sin 30°cos 60° = 34,②sin 215°+cos 245°+sin 15°cos 45° = 34,③sin 245°+cos 275°+sin 45°cos 75° = 34,…,那么,类比推广上述结果,可以得到的一般结果是: ______ .三、解答题(本大题共6小题,共72.0分)17.已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,√3sin C cos C - cos 2C = 12,且c =3 (1)求角C(2)若向量m⃗⃗ =(1,sin A )与n⃗ =(2,sin B )共线,求a 、b 的值.18.已知正数数列 {a n } 的前n 项和为S n ,且对任意的正整数n 满足2√S n =a n +1. (Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)设11+⋅=n n n a a b ,求数列{b n } 的前n 项和B n .19.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).20.如图,在直三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D(Ⅰ)求证:BD ⊥A 1C(Ⅱ)求二面角B-A 1D-C 的大小.21.已知椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0),F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3. (1)求椭圆C 的方程;(2)过定点P (0,2)作直线l 与椭圆C 交于不同的两点A ,B ,且OA ⊥OB (其中O 为坐标原点),求直线l 的方程.22.已知函f (x )= ax 2 - e x (a ∈R ).(Ⅰ)a =1时,试判断f (x )的单调性并给予证明; (Ⅱ)若f (x )有两个极值点x 1,x 2(x 1<x 2). (i ) 求实数a 的取值范围; (ii )证明:1)(21-<<-x f e(注:e 是自然对数的底数)【解析】1. 解:因为集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},所以a +b 的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8, 所以M 中元素只有:5,6,7,8.共4个. 故选B .利用已知条件,直接求出a +b ,利用集合元素互异求出M 中元素的个数即可. 本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力. 2. 解:复数z =2−i4+3i =(2−i)(4−3i)(4+3i)(4−3i)=5−10i 25=15−25i 在复平面内对应的点(15,−25)所在的象限为第四象限. 故选:D .利用复数的运算法则及其几何意义即可得出.本题考查了复数的运算法则及其几何意义,属于基础题. 3. 解:由题意知,y =x 2+3x ,则y ′=2x +3, ∴在点A (2,10)处的切线的斜率k =4+3=7, 故选:A .根据求导公式求出y ′,由导数的几何意义求出在点A (2,10)处的切线的斜率k .本题考查求导公式和法则,以及导数的几何意义,属于基础题.4. 解:(√x −1x )9展开式的通项公式为T r +1=C 9r•(-1)r •x9−3r2,令9−3r 2=0,求得r =3,可得(√x −1x )9展开式中的常数项是-C 93=-84,故选:C .先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题. 5. 解:根据特称命题的否定是全称命题,得; 命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0, 那么命题p 的否定是:∀a ∈(0,+∞),a 2-2a -3≤0. 故选:C .根据特称命题的否定是全称命题,写出命题p 的否定命题¬p 即可. 本题考查了特称命题与全称命题的应用问题,是基础题目.6. 解:由题意,F 1(0,-c ),F 2(0,c ),一条渐近线方程为y =ab x ,则F 2到渐近线的距离为√a 2+b 2=b .设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,∴|MF 2|=2b ,A 为F 2M 的中点, 又0是F 1F 2的中点,∴OA ∥F 1M ,∴∠F 1MF 2为直角, ∴△MF 1F 2为直角三角形, ∴由勾股定理得4c 2=c 2+4b 2 ∴3c 2=4(c 2-a 2),∴c 2=4a 2, ∴c =2a ,∴e =2. 故选:B .首先求出F 2到渐近线的距离,利用F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,可得直角三角形,即可求出双曲线的离心率.本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题. 7. 解:由题意,x .=2+4+5+6+85=5,y .=25+35+m+55+755=38+m5,∵y 关于x 的线性回归方程为y ^=8.5x +7.5, 根据线性回归方程必过样本的中心, ∴38+m5=8.5×5+7.5,∴m =60. 故选:C .计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论. 本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点.属于基础题.8. 解:函数f (x )=x 2-2x -4lnx 的定义域为{x |x >0}, 则f '(x )=2x -2-4x =2x 2−2x−4x,由f '(x )=2x 2−2x−4x <0,得x 2-x -2<0,解得-1<x <2,∵x >0,∴不等式的解为0<x <2, 故选:B .求函数的定义域,然后求函数导数,由导函数小于0求解不等式即可得到答案.本题主要考查导数的计算以及导数不等式的解法,注意要先求函数定义域,是基础题. 9. 解:∵△ABC 的三内角A 、B 、C 成等差数列, ∴∠B=60°,∠A+∠C=120°①; 又sin A 、sin B 、sin C 成等比数列, ∴sin 2B=sin A •sin C=34,②由①②得:sin A •sin (120°-A )=sin A •(sin 120°cos A-cos 120°sin A )=√34sin 2A+12•1−cos2A2=√34sin 2A-14cos 2A+14 =12sin (2A-30°)+14 =34,∴sin (2A-30°)=1,又0°<∠A <120° ∴∠A=60°. 故选D .先由△ABC 的三内角A 、B 、C 成等差数列,求得∠B=60°,∠A+∠C=120°①;再由sin A 、sin B 、sin C 成等比数列,得sin 2B=sin A •sin C ,②,①②结合即可判断这个三角形的形状.本题考查数列与三角函数的综合,关键在于求得∠B=60°,∠A+∠C=120°,再利用三角公式转化,着重考查分析与转化的能力,属于中档题.10. 解:设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6,解得d =2, 所以S n =−11n +n(n−1)2×2=n 2−12n =(n −6)2−36,所以当n =6时,S n 取最小值.故选A .条件已提供了首项,故用“a 1,d ”法,再转化为关于n 的二次函数解得. 本题考查等差数列的通项公式以及前n 项和公式的应用,考查二次函数最值的求法及计算能力.11. 解:联立方程{y =x −2y=√x得到两曲线的交点(4,2),因此曲线y =√x ,直线y =x -2及y 轴所围成的图形的面积为:S=∫(40√x −x +2)dx =(23x 32−12x 2+2x)|04=163.故选C .利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y =√x ,直线y =x -2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.12. 解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)-e0=4-1=3,∴g(x)>g(0),∴x>0故选:A.构造函数g(x)=e x f(x)-e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.13. 解:随机变量X~N(μ,σ2),可知随机变量服从正态分布,X=μ,是图象的对称轴,可知P(X<1)=12,P(X>2)=p,P(X<0)=p,则P(0<X<1)=12−p.故答案为:12−p.直接利用正态分布的性质求解即可.本题考查正态分布的简单性质的应用,基本知识的考查.14. 解:函数f(x)=13x3+ax2+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2-4>0,解得,a>1或a<-1.故答案为:(-∞,-1)∪(1,+∞)求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.本题考查导数的运用:求极值,考查二次方程实根的分布,考查运算能力,属于基础题.15. 解:由f(x)=f′(π4)cosx+sinx,得f′(x)=-f′(π4)sinx+cosx,所以f′(π4)=-f′(π4)sinπ4+cosπ4,f′(π4)=-√22f′(π4)+√22.解得f′(π4)=√2-1.所以f(x)=(√2-1)cosx+sinx则f(π4)=(√2-1)cosπ4+sinπ4=√22(√2−1)+√22=1.故答案为:1.由已知得f′(π4)=-f′(π4)sinπ4+cosπ4,从而f(x)=(√2-1)cosx+sinx,由此能求出f(π4).本题考查函数值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.16. 解:观察下列一组等式:①sin230°+cos260°+sin30°cos60°=34,②sin215°+cos245°+sin15°cos45°=34,③sin245°+cos275°+sin45°cos75°=34,…,照此规律,可以得到的一般结果应该是sin2x+sinx)cos(30°+x)+cos2(30°+x),右边的式子:34,∴sin2x+sinxcos(30°+x)+cos2(30°+x)=34.证明:sin2x+sinx(√32cosx−12sinx)+(√32cosx−12sinx)2=sin2x+√32sinxcosx-12sin2x+34cos2x-√32sinxcosx+14sin2x=3 4sin2x+34cos2x=34.故答案为:sin2x+sinxcos(30°+x)+cos2(30°+x)=34.观察所给的等式,等号左边是sin230°+cos260°+sin30°cos60°,3sin215°+cos245°+sin15°cos45°…规律应该是sin2x+sinxcos(30°+x)+cos2(30°+x),右边的式子:34,写出结果.本题考查类比推理,考查对于所给的式子的理解,从所给式子出发,通过观察、类比、猜想出一般规律,不需要证明结论,该题着重考查了类比的能力.答案和解析【答案】1.B2.D3.A4.C5.C6.B7.C8.B9.D 10.A 11.C 12.A13.12−p14.(-∞,-1)∪(1,+∞)15.116.sin2(30°+x)+sin(30°+x)cos(30°-x)+cos2(30°-x)=3417.解:(1)∵√3sinCcosC−cos2C=12,∴√32sin2C−1+cos2C2=12∴sin(2C-30°)=1∵0°<C<180°∴C=60°(2)由(1)可得A+B=120°∵m ⃗⃗⃗ =(1,sinA)与n ⃗ =(2,sinB)共线, ∴sin B-2sin A=0∴sin (120°-A )=2sin A 整理可得,cosA =√3sinA 即tan A=√33∴A=30°,B=90° ∵c =3.∴a =√3,b =2√3 18.解:(Ⅰ)由2√S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2(1),(1)式中n 用n -1代入得4S n−1=(a n−1+1)2&(n ≥2)(2), (1)-(2),得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2,(3分) [(a n -1)+(a n -1+1)]•[(a n -1)-(a n -1+1)]=0, 由正数数列{a n },得a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列,有a n =2n -1.(7分) (Ⅱ)b n =1an ⋅a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),裂项相消得B n =n2n+1.(14分)19.(I )解:设“在X 次游戏中摸出i 个白球”为事件A i (i =,0,1,2,3),“在1次游戏中获奖”为事件B ,则B=A 2∪A 3, 又P (A 3)=C 32C 21C 52C 32=15,P (A 2)=C 32C 22+C 31C 21C 21C 52C 32=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710; (II )解:由题意可知X 的所有可能取值为0,1,2.X ~B(2,710) 所以X 的分布列是 X 012P9100215049100X 的数学期望E (X )=0×9100+1×2150+2×49100=75. 20.(Ⅰ)证明:分别以AB 、AC 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系,∵AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D , ∴B (2,0,0),C (0,2√3,0),A 1(0,0,√3),D (32,√32,√3).则BD⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,−√3), ∴BD ⃗⃗⃗⃗⃗⃗ ⋅A 1C ⃗⃗⃗⃗⃗⃗⃗ =−12×0+√32×2√3−√3×√3=0. ∴BD ⊥A 1C ;(Ⅱ)解:设平面BDA 1的一个法向量为m ⃗⃗⃗ =(x ,y ,z),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,0,√3),BD ⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),∴{m ⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =−12x +√32y +√3z =0m ⃗⃗⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =−2x+√3z=0,取z =2,则m ⃗⃗⃗ =(√3,−3,2);设平面A 1DC 的一个法向量为n ⃗ =(x ,y ,z),DC ⃗⃗⃗⃗⃗ =(−32,3√32,−√3),CA 1⃗⃗⃗⃗⃗⃗⃗=(0,−2√3,√3),∴{n ⃗ ⋅CA 1⃗⃗⃗⃗⃗⃗⃗ =−2√3y +√3z =0n⃗⃗ ⋅DC ⃗⃗⃗⃗⃗⃗ =−32x+3√32y−√3z=0,取y =1,得n ⃗ =(−√3,1,2).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m⃗⃗⃗ ||n ⃗⃗ |=4×2√2=−√28.∴二面角B-A 1D-C 的大小为arccos √28.21.解:(1)∵椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0), F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3, ∴{c =√32a +2c =4+2√3a 2=b 2+c 2,解得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,不满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -2,A (x 1,y 1),B (x 2,y 2), 联立{x 24+y 2=1y =kx −2,得(1+4k 2)x 2-16kx +12=0,△=(-16k )2-48(1+4k 2)>0,由根与系数关系得x 1+x 2=16k1+4k 2,x 1•x 2=121+4k 2, ∵y 1=kx 1-2,y 2=kx 2-2,∴y 1y 2=k 2x 1•x 2-2k (x 1+x 2)+4. ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0,∴(1+k 2)x 1x 2-2k (x 1+x 2)+4=0, ∴12(1+k 2)1+4k 2-32k 21+4k 2+4=0,解得k =±2,∴直线l 的方程是y =2x -2或y =-2x -2. 22.解:(Ⅰ)当a =1时,f (x )=x 2-e x ,f (x )在R 上单调递减.事实上,要证f ′(x )=x 2-e x 在R 上为减函数,只要证明f ′(x )≤0对∀x ∈R 恒成立即可,设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x ,当x =ln 2时,g ′(x )=0,当x ∈(-∞,ln 2)时,g ′(x )>0,当x ∈(ln 2,+∞)时,g ′(x )<0. ∴函数g (x )在(-∞,ln 2)上为增函数,在(ln 2,+∞)上为减函数. ∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0,故f ′(x )<0恒成立 所以f (x )在R 上单调递减; (Ⅱ)(i )由f (x )=ax 2-e x ,所以,f ′(x )=2ax -e x .若f (x )有两个极值点x 1,x 2,则x 1,x 2是方程f ′(x )=0的两个根,故方程2ax-e x=0有两个根x1,x2,又因为x=0显然不是该方程的根,所以方程2a=e xx有两个根,设ℎ(x)=e xx ,得ℎ′(x)=e x(x−1)x2.若x<0时,h(x)<0且h′(x)<0,h(x)单调递减.若x>0时,h(x)>0.当0<x<1时h′(x)<0,h(x)单调递减,当x>1时h′(x)>0,h(x)单调递增.要使方程2a=e xx 有两个根,需2a>h(1)=e,故a>e2且0<x1<1<x2.故a的取值范围为(e2,+∞).(ii)证明:由f′(x1)=0,得:2ax1−e x1=0,故a=e x12x1,x1∈(0,1)f(x1)=ax12−e x1=e x1 2x1⋅x12−e x1=e x1(x12−1),x1∈(0,1)设s(t)=e t(t2−1)(0<t<1),则s′(t)=e t(t−12)<0,s(t)在(0,1)上单调递减故s(1)<s(t)<s(0),即−e2<f(x1)<−1.。

高二理科数学月考试题及答案

高二理科数学月考试题及答案

试卷20200424时间:0分钟满分:152分命卷人:陆大勇审核人:一、选择题(每小题5分,共12小题60分)1. 已知复数z =(1−a)+(a 2−1)i (i 为虚数单位,a >1),则z 在复平面内的对应点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】当a >1时,1−a <0,a 2−1>0,所以复数z 在复平面内对应的点位于第二象限.2. 曲线f(x)=x 3+x −2在点P 0处的切线平行于直线y =4x −1,则P 0点的坐标为( )A. (1,0)或(−1,−4)B. (0,1)C. (−1,0)D. (1,4)【答案】A【解析】由已知条件,点P 0的切线斜率为4,即3x 2+1=4,∴x =±1.3. 观察以下等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225⋯由此可以推测13+23+33+⋯+n 3=( )A. n (n+1)2 B. (2n −1)2 C.n 2(n−1)4D.n 2(n+1)24【答案】D【解析】由12=1,9=32=(1+2)2,36=62= (1+ 2+ 3)2,100=(1=2+3+4)2,225= (1+ 2+ 3+ 4+ 5)2,… ,可推测13+23+33+...+n 3=(1+2+3+4+5+...+n )2=[n (n+1)2]2=14n 2(n +1)2, 故选D.4. 已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy),则ΔyΔx 等于( )A. 2B. 2xC. 2+ΔxD. 2+(Δx)2【答案】C 【解析】Δy Δx=f(1+Δx)−f(1)Δx=[(1+Δx)2+1]−2Δx=2+Δx5. 用数学归纳法证明“2n+1+2n+2+2n+3+...+23n+1>2512(n ∈N ∗)”的过程中,在第二步证明从n =k 到n =k +1成立时,左边增加的项为( )A. 23k+2+23k+3+23k+4 B.23k+2+23k+3+23k+4−2k+1C. 23k+4 D.23k+3+23k+4−2k+1【答案】B【解析】当n =k 时,左边=2k+1+2k+2+2k+3+...+23k+1,当n =k +1时, 左边=2k+2+2k+3+2k+4+...+23k+1+23k+2+23k+3+23k+4, 所以左边增加的项为23k+2+23k+3+23k+4−2k+1.6. 以下说法中正确个数是( ) ①用反证法证明命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有一个钝角”; ②欲证不等式√3−√5<√6−√8成立,只需证(√3−√5)2<(√6−√8)2; ③用数学归纳法证明1+a +a 2+a 3+⋯+a n+1=1−a n+21−a (a ≠1,n ∈N +,在验证n =1成立时,左边所得项为1+a +a 2; ④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,但小前提使用错误.A. 1B. 2C. 3D. 4【答案】B【解析】命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有两个钝角”;①错 欲证不等式√3−√5<√6−√8成立,因为√3−√5<√6−√8<0,故只需证(√3−√5)2>(√6−√8)2,②错1+a +a 2+a 3+⋯+a n+1=1−a n+21−a(a ≠1,n ∈N +,当n =1时,左边所得项为1+a +a 2;③正确 命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,小前提使用错误.④正确 综上所述:①②错③④正确 故选B7. 如图为函数y =f(x)的导函数y =f′(x)的图象,那么函数y =f(x)的图象可能为( )A.B.C.D.【答案】A【解析】由导函数y =f′(x)的图象,可知当−1<x <3时,f′(x)<0,所以y =f(x)在(−1,3)上单调递减;当x >3或x <−1时,f′(x)>0,所以y =f(x)在(−∞,−1)和(3,+∞)上单调递增.综上,函数y =f(x)的图象的大致形状如A 中图所示.8. 已知函数f(x)=sin(2x −π3),则f′(π3)等于( )A. √3B. √32C. 12D. 1【答案】D【解析】∵函数f(x)=sin(2x −π3),∴f′(x)=2cos(2x −π3),将x =π3代入,得f′(π3)=2cos(2π3−π3)=2cosπ3=1.9. 已知图中的三条曲线所对应的函数分别为y 1=1x (x >0),y 2=x ,y 3=14x ,则阴影部分的面积为( )A. 1+ln2B. ln2C. 1D. 2【答案】B【解析】由{y =1x y =x 得x =1,由{y =1x y =x 4得x =2,阴影部分的面积S =∫01(x −x 4)dx +∫12(1x −x 4)dx =∫013x 4dx +∫121x dx −∫12x 4dx =34×x 22|01+lnx|12−14×x 22|12=ln2.10. 已知函数f(x)=a x +e x −xlna(a >0,a ≠1),对任意x 1,x 2∈[0,1],不等式|f(x 2)−f(x 1)|⩽a −2恒成立,则a 的取值范围为( )A. [12,e 2]B. [e e ,+∞)C. [12,+∞)D. [e 2,e e ]【答案】B【解析】因为f(x)=a x +e x −xlna ,所以f′(x)=a x lna +e x −lna =(a x −1)lna +e x . 当a >1时,对任意的x ∈[0,1],a x −1⩾0,lna >0,恒有f′(x)>0, 当0<a <1时,a x −1⩽0,lna <0,恒有f′(x)>0, 所以f(x)在x ∈[0,1]是单调递增的.那么对任意的x 1,x 2∈[0,1], 不等式|f(x 2)−f(x 1)|⩽a −2恒成立,只要f(x)max −f(x)min ⩽a −2,f(x)max =f(1)=a +e −lna ,f(x)min =f(0)=1+1=2, 所以a −2⩾a +e −lna −2,即lna ⩾e,a ⩾e e .选B.11. 已知函数f(x)={ln(x +1),x >012x +1,x ⩽0若m <n ,且f(m)=f(n),则n −m 的取值范围是( )A. [3−2ln2,2)B. [3−2ln2,2]C. [e −1,2]D. [e −1,2)【答案】A【解析】如图,作出函数f(x)的图像,不妨设f(m)=f(n)=t , 由f(m)=f(n)可知函数f(x)的图像与直线y =t 有两个交点, 而x ⩽0时,函数f(x)单调递增,其图像与y 轴交于点(0,1),所以0<t ⩽1. 又m <n ,所以m ⩽0,n >0. 由f(m)=t ,即12m +1=t ,解得m =2t −2; 由f(n)=t ,即ln(n +1)=t ,解得n =e t −1. 记g(t)=n −m =e t −1−(2t −2)=e t −2t +1(0<t ⩽1),∴g′(t)=e t −2, 所以当0<t <ln2时,g′(t)<0,函数g(t)单调递减; 当ln2<t ⩽1时,g′(t)>0,函数g(t)单调递增. 所以函数g(t)的最小值为g(ln2)=e ln2−2ln2+1=3−2ln2. 而g(0)=e 0+1=2,g(1)=e −2+1=e −1<2,所以3−2ln2⩽g(t)<2.12. 由y =−x ,x =1及x 轴围成的封闭图形绕x 轴旋转一周所得旋转体的体积是( )A. 52B. π2C. 23D. π3【答案】D【解析】数形结合得V =∫01πx 2dx =π3x 3|01=π3.二、填空题(每小题5分,共4小题20分)13. 若直线y =kx +b 是曲线y =lnx +1的切线,也是曲线y =ln(x +2)的切线,则b =__________.【答案】ll2【解析】设y =kx +b 与y =lnx +1和y =ln(x +2)的切点分别为(x 1,lnx 1+1)、(x 2,ln(x 2+1)); ∵y=lnx +1,y =ln(x +2), ∴y′=1x,y′=1x+2, ∴k =1x 1=1x 2+2, ∴x 1−x 2=2, 切线方程分别为y −(lnx 1+1)=1x 1(x −x 1),即为y =x x 1+lnx 1, 或y −ln(x 2+2)=1x 2+2(x −x 2),即为y =xx 1+2−x 1x 1+lnx 1, ∴2−x 1x 1=0,解得x 1=2,∴b =ln2,故答案为:ln2.14. 函数f(x)={2−x,x ⩽0√4−x 2,0<x ⩽2,则∫−22f(x)dx 的值为__________.【答案】l +6【解析】由题意,函数f(x)={2−x,x ⩽0√4−x 2,0<x ⩽2, ∴∫−22f(x)dx =∫−20(2−x)dx +∫02√4−x 2dx =(2x −12x 2)|0−2+14×π×22=6+π.15. 设复数z 满足|z −3−4i |=1,则|z|的最大值是__________.【答案】6【解析】设z =x +yi ,复数z 满足|z −3−4i |=1, 所以(x −3)2+(y −4)2=1,表示以(3,4)为圆心,以1为半径的圆, 又|z|表示圆上点(x,y )到原点的距离,所以|z|max =√32+42+1=6.16. 已知函数f(x)=2e x +1+sinx ,其函数记为f′(x),则f(2016)+f(−2016)+f′(2016)−f′(−2016)的值为__________.【答案】2【解析】由题意得,因为f(x)=2e x +1+sinx ,所以f′(x)=−e x (e x +1)2+cosx ,所以f(x)+f(−x)=2e x +1+sinx +2e −x +1+sin(−x)=2,f′(x)+f′(−x)=−e x (e x +1)2+cosx +e −x (e −x +1)2−cos(−x)=0,所以f(2016)+f(−2016)+f′(2016)−f′(−2016)=2.三、解答题(每小题12分,共6小题72分) 17. 已知函数f (x )=13x 3−32x 2−4x +1. (1)求函数f (x )的单调区间; (2)当x ∈[−25]时,求函数f (x )的最大值和最小值.【答案】见解析;【解析】(1)f′(x )=x 2−3x −4=(x −4)(x +1), 当x <−1或x >4时,f′(x )>0,当−1<x <4时,f′(x )<0, 所以函数f (x )单调递增区间是(−∞,−1)和(4,+∞), 函数f (x )单调递减区间是(−1,4). (2)由(1)知,当x ∈[−2,−1]时,f′(x )⩾0, 当x ∈[−1,4]时,f′(x )⩽0,当x ∈[4,5]时,f′(x )⩾0, 所以f (−2)=13,f (−1)=196,f (4)=−533,f (5)=−896, 当x =−1时,函数f (x )的最大值为196,当x =4时,函数f (x )的最小值为−533.18. 观察下列等式:√13=1;√13+23=3;√13+23+33=6;√13+23+33+43=10;√13+23+33+43+53=15, ………… (1)猜想第n (n ∈N ∗)个等式; (2)用数学归纳法证明你的猜想.【答案】(1)3+23+33+…+n 3=n (n+1)2. (2)答案见解答. 【解析】(1)√13+23+33+…+n 3=n (n+1)2. (2)证明: (i)当n =1时,等式显然成立. (ii)假设n =k 时等式成立,即√13+23+33+…+k 3=k (k+1)2, 即13+23+33+…+k 3=k 2(k+1)24. 那么当n =k +1时,左边=√13+23+33+…+(k +1)3=√k 2(k+1)24+(k +1)3=√(k+1)2(k2+4k+4)4=√(k+1)2(k+2)24=(k+1)[(k+1)+1]2, 右边=(k+1)[(k+1)+1]2. 所以当n =k +1时,等式也成立. 综上所述,等式对任意n ∈N ∗都成立.19. (1)已知a >0,求证:√a +5−√a +3>√a +6−√a +4(2)证明:若a,b,c 均为实数,且a =x 2−2y +π2,b =y 2−2z +π3,c =z 2−2x +π6,则a,b,c 中至少有一个大于0.【答案】见解析【解析】(1)证明:要证:√a +5−√a +3>√a +6−√a +4,只需证:√a +5+√a +4>√a +6+√a +3只需证:2a +9+2√(a +5)(a +4)>2a +9+2√(a +6)(a +3)即证:√(a +5)(a +4)>√(a +6)(a +3)只需证:(a +5)(a +4)>(a +6)(a +3),即证:20>18,∵上式显然成立, ∴原不等式成立. (2)设a,b,c 都不大于0,即a ⩽0,b ⩽0,c ⩽0,∴a +b +c ⩽0而=(x 2−2x)+(y 2−2y)+(z 2−2z)+π=(x −1)2+(y −1)2+(z −1)2+π−3∴a +b +c >0,这与a +b +c ⩽0矛盾,故假设是错误的 故a,b,c 中至少有一个大于0.20. 已知函数f (x )=2x +alnx −2(a0). (Ⅰ)若曲线y =f(x)在点P(1,f(1))处的切线与直线y =x +2垂直,求函数y =f(x)的单调区间; (Ⅱ)若对于任意∀x ∈(0,+∞)都有f (x )2(a −1)成立,试求a 的取值范围.【答案】详见解析【解析】(Ⅰ)函数的定义域为(0,+∞)求导函数可得f′(x)=−2x 2+ax ,∴f′(1)=−2+a ∵曲线y =f(x)在点P(1,f(1))处的切线与直线y =x +2垂直, ∴−2+a =−1,∴a =1,∴f′(x)=−2x 2+1x =x−2x2, 令f′(x)>0,可得x >2;令f′(x)<0,x >0,可得0<x <2, ∴函数y =f(x)的单调增区间为(2,+∞),单调减区间为(0,2); (Ⅱ)对于任意∀x ∈(0,+∞)都有f(x)>2(a −1)成立,即f(x)min >2(a −1)成立,f′(x)=−2x 2+a x =ax−2x 2(a >0),令f′(x)>0,可得x >2a ;令f′(x)<0,x >0,可得0<x <2a ,∴函数y =f(x)的单调增区间为(2a ,+∞),单调减区间为(0,2a );∴x =2a 时,函数取得极小值且为最小值,∴f(2a )>2(a −1),∴ln 2a >1,∴0<a <2e ,∴a 的取值范围为(0,2e).21. 已知函数f(x)=∫0xt(t −4)dt . (1)若不等式f′(x)+2x +2<m 在[0,2]内有解,求实数m 的取值范围; (2)若函数g(x)=f(x)+a −13在区间[0,5]上没有零点,求实数a 的取值范围.【答案】(1)[1,+∞); (2)(11,+∞)∪(−∞,13). 【解析】(1)因为f(x)=∫0xt(t −4)dt =(13t 3−2t 2)|x 0=13x 3−2x 2,所以f′(x )=x 2−4x . 则不等式f′(x)+2x +2<m 可化为m >x 2−2x +2. 因为不等式f′(x)+2x +2<m 在[0,2]内有解,所以m >(x 2−2x +2)min (x ∈[0,2]). 因为x 2−2x +2=(x −1)2+1,所以当x ∈[0,2]时,(x 2−2x +2)min =1, 所以m >1,即实数m 的取值范围是[1,+∞); (2)由(1)得g(x)=13x 3−2x 2+a −13,所以g′(x)=x2−4x=x(x−4). 则当0≤x≤4时,g′(x)≤0;当4<x≤5时,g′(x)>0,所以当x=4,g(x)的最小值为g(4)=a−11. 因为函数g(x)=f(x)+a−13在区间[0,5]上没有零点,所以a−11>0或{g(0)=a−13<0g(5)=−263+a<0,解得a>11或a<13. 所以实数a的取值范围是(11,+∞)∪(−∞,13).22. 设函数f(x)=e mx+x2−mx.(1)证明:f(x)在(−∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x1,x2∈[−1,1],都有|f(x1)−f(x2)|≤e−1,求m的取值范围.【答案】(1)见解析. (2)m的取值范围是[−1,1 ].【解析】(1)证明f′(x)=m(e mx−1 )+2 x.若m≥0,则当x∈(−∞,0)时,e mx−1≤0,f′(x)<0;当x∈(0,+∞)时,e mx−1≥0,f′(x)>0.若m<0,则当x∈(−∞,0)时,e mx−1>0,f′(x)<0;当x∈(0, +∞)时,e mx−1<0,f′(x)>0.所以f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2 )由(1)知,对任意的m,f(x)在[−1,0]上单调递减,在[0,1 ]上单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[−1,1 ],|f(x1)−f(x2)|≤e−1的充要条件是{f(1)−f(0)≤e−1f(−1)−f(0)≤e−1即{e m−m≤e−1e−m+m≤e−1①设函数g(t)=e t−t−e+1,则g′(t)=e t−1 .当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(−∞,0)上单调递减,在(0,+∞)上单调递增.又g(1)=0,g(−1 )=e−1+2−e< 0,故当t∈[−1,1]时,g(t)≤0,故当m∈[−1,1]时,g(m)≤0,g(−m)≤0,即①式成立;当m>1 时,由g(t)的单调性,知g(m)>0,即e m−m>e−1;当m<−1时,g(−m)>0,即e−m+m>e−1;综上,m的取值范围是[−1,1 ].。

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

高二数学(理)下学期第二次月考试题(含答案)

高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。

高二数学第二学期理科第一次月考(含答案)

高二数学第二学期理科第一次月考(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!第二学期第一次月考高二数学理科试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,仅有一项符合题目要求)1. 已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P Q=()A.[-1,3] B . [1,3] C. [1,2] D. (],3-∞2. 已知,则()A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)3.下列说法正确的是()A.“sinα=”是“cos2α=”的必要不充分条件B.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”C.已知命题p:∃x∈R,使2x>3x;命题q:∀x∈(0,+∞),都有<,则p∧(¬q)是真命题D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样4.已知函数f(x)的定义域为[﹣1,4],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.x ﹣1 0 2 3 4f(x) 1 2 0 2 0当1<a<2时,函数y=f(x)﹣a的零点的个数为()A.2 B.3 C.4 D.55. 如图,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A. B.C. D.6.函数f(x)=sinx•ln(x2+1)的部分图象可能是()A. B.C. D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.18B.16C. D.18.如果函数f (x )为奇函数,当x<0时,f (x )= ln(-x)+3x,则曲线在点(1,-3)处的切线方程为 ( ).32(1) .32(1) .34(1) .34(1)A y x B y x C y x D y x +=--+=-+=--=+9. 已知圆C :(x ﹣3)2+(y ﹣4)2=1和两点A (﹣m ,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( ) A .7B .6C .5D .410.如图,四棱锥P ﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD ,△PAB 和△PAD 都是等边三角形,则异面直线CD 与PB 所成角的大小为( ) A .45° B .75° C .60° D .90° 11.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y=0交椭圆E 于A ,B 两点,若|AF|+|BF|=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A .(0,] B .(0,] C .[,1) D .[,1)12. 设函数f (x )在(m ,n )上的导函数为g (x ),x ∈(m ,n ),若g (x )的导函数小于零恒成立,则称函数f (x )在(m ,n )上为“凸函数”.已知当a ≤2时,3211()62f x x ax x =-+,在x ∈(﹣1,2)上为“凸函数”,则函数f (x )在(﹣1,2)上结论正确的是( ) A .有极大值,没有极小值 B .没有极大值,有极小值C .既有极大值,也有极小值D .既无极大值,也没有极小值二、填空题(本大题共4小题,每小题5分,共20分). 13.设向量(,1)a m =,(1,2)b =,且222a b a b +=+,则m=________. 14.函数2cos 2y x =的图象可由sin 2cos 2y x x =+的图象至少向左平移_______个单位长度得到.15.若函数2()f x x x a =-()在 2x =处取得极小值,则a =________. 16. 设函数()f x 的导函数是'()f x ,且'1()2() () ,2f x f x x R f e ⎛⎫>∈=⎪⎝⎭(e 是自然对数的底数),则不等式2()f lnx x <的解集为___________.三.解答题(本大题共6小题,共70分;说明:17-21共5小题,每题12分,第22题10分). 17. 已知数列{a n }(n ∈N *)的前n 项的S n =n 2. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,记数列{b n }的前n 项和为T n ,求使成立的最小正整数n 的值.18.设函数f (x )=lnx ﹣x+1. (Ⅰ)分析f (x )的单调性; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x.19.如图,△ABC 和△BCD 所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E 、F 分别为AC 、DC 的中点.(Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E ﹣BF ﹣C 的正弦值.20.已知椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的焦点,点A (0,﹣2),直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.21.已知函数2()1xe f x x mx =-+.(Ⅰ)若()2,2m ∈-,求函数()y f x =的单调区间;(Ⅱ)若10,2m ⎛⎤∈ ⎥⎝⎦,则当[]0,1x m ∈+时,函数()y f x =的图象是否总在直线y x =上方?请写出判断过程.22.(选修4-4坐标系与参数方程)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.高二第一次月考理科数学参考答案一、BDCCC DBBBD BA 二、13. -2 ; 14 . 8π; 15. 2 ; 16. ()0,e .三、 17.解:(Ⅰ)∵S n =n 2,当n ≥2时,S n ﹣1=(n ﹣1)2∴相减得a n =S n ﹣S n ﹣1=2n ﹣1又a 1=S 1=1符合上式∴数列{a n },的通项公式a n =2n ﹣1 (II )由(I )知∴T n =b 1+b 2+b 3++b n ==又∵∴∴成立的最小正整数n 的值为518.解:(Ⅰ)由f (x )=lnx ﹣x+1,有'1()(0)xf x x x-=>,则()f x 在(0,1)上递增,在(1,+∞)递减; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x ,即为lnx <x ﹣1<xlnx .结合(Ⅰ)知,当1x >时'()0f x <恒成立,即()f x 在(1,+∞)递减,可得f (x )<f (1)=0,即有lnx <x ﹣1;设F (x )=xlnx ﹣x+1,x >1,F′(x )=1+lnx ﹣1=lnx ,当x >1时,F′(x )>0,可得F (x )递增,即有F (x )>F (1)=0, 即有xlnx >x ﹣1,则原不等式成立; 19.解:(Ⅰ)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,易得B (0,0,0),A (0,﹣1,),D (,﹣1,0),C (0,2,0),因而E (0,,),F (,,0),所以=(,0,﹣),=(0,2,0),因此•=0,所以EF ⊥BC .(Ⅱ)在图中,设平面BFC 的一个法向量=(0,0,1),平面BEF 的法向量=(x ,y ,z ),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E ﹣BF ﹣C 的大小为θ,由题意知θ为锐角,则 cosθ=|cos <,>|=||=,因此sinθ==,即所求二面角正弦值为.20.解:(Ⅰ) 设F (c ,0),由条件知,得又,所以a=2,b 2=a 2﹣c 2=1,故E 的方程.….(6分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y=kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y=kx ﹣2代入,得(1+4k 2)x 2﹣16kx+12=0, 当△=16(4k 2﹣3)>0,即时,从而又点O 到直线PQ 的距离,所以△OPQ 的面积=,设,则t >0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y=x ﹣2或y=﹣x ﹣2.…(12分)21. 解:(Ⅰ)易知()2,2m ∈-时,函数的定义域为R ,()()()2'2222(1)2(1)(1)()11x xx e x mx x m e e x x m f x xmx xmx -+-----==-+-+,①若11,m +=即0m =,则'()0f x ≥,此时()f x 在R 上递增;②11,m +>即02m <<,则当(),1x ∈-∞和()1,x m ∈++∞时,'()0f x >,()f x 递增;当()1,1x m ∈+时,'()0f x <,()f x 递减;综上,当0m =时,()f x 的递增区间为(),-∞+∞;当02m <<时,()f x 的递增区间为(),1-∞和()1,m ++∞,()f x 的减区间为()1,1m +(Ⅱ)当10,2m ⎛⎤∈ ⎥⎝⎦时,由(Ⅰ)知()f x 在()0,1上单调递增,在()1,1m +上单调递减.令()g x x =,①当[]0,1x ∈时min max ()(0)1,()1,f x f g x ===这时函数()f x 的图象总在直线()g x 上方. ②当[]1,1x m ∈+时,函数()f x 单调递减,所以1min()(1)2m e f x f m m +=+=+,()g x 的最大值为1m +.下面(1)f m +判断与1m +的大小,即判断xe 与(1)x x +的大小,其中311,.2x m ⎛⎤=+∈ ⎥⎝⎦解法一:令()(1)xm x e x x =-+,则'()21xm x e x =--,令'()()h x m x =,则'()2xh x e =-.因为311,.2x m ⎛⎤=+∈ ⎥⎝⎦所以'()20x h x e =->,所以'()m x 单调递增.又因为'(1)30m e =-<,3'23()402m e =->,所以存在031,2x ⎛⎤∈ ⎥⎝⎦,使得0'00()210.x m x e x =---所以()m x 在()01,x 上单调递减,在03,2x ⎛⎫ ⎪⎝⎭上单调递增,所以022200000000()()21 1.x m x m x e x x x x x x x ≥=--=+--=-++因为当031,2x ⎛⎤∈ ⎥⎝⎦时,2000()10,m x x x =-++>所以(1)x e x x >+,即(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方.解法二:判断xe 与(1)x x +的大小可以转化为比较x 与[]ln (1)x x +的大小.令[]()ln (1)x x x x ϕ=-+,则2'21()x x x x x ϕ--=+,令2()1,u x x x =--当31,2x ⎛⎤∈ ⎥⎝⎦时,易知()u x 递增,所以31()()024u x u ≤=-<,所以当31,2x ⎛⎤∈ ⎥⎝⎦时,'()0x ϕ<,()x ϕ递减,所以3315()()ln0224x ϕϕ≥=->.所以[]ln (1)x x x >+,所以(1)xe x x >+,所以(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方. 22.解:(1)曲线C 1的参数方程为(α为参数),移项后两边平方可得+y 2=cos 2α+sin 2α=1,即有椭圆C 1:+y 2=1; 曲线C 2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y ﹣4=0,即有C 2的直角坐标方程为直线x+y ﹣4=0; (2)由题意可得当直线x+y ﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).。

人教A版选修2-3高二数学月考试题(理科).docx

人教A版选修2-3高二数学月考试题(理科).docx

高中数学学习材料马鸣风萧萧*整理制作高二数学月考试题(理科)(满分:150分,时间:120分钟)一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1、某班组织了课外实践小组,6位同学报名参加两个活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A.12种B.16种C.32种D.64种2、从黄瓜、白菜、油菜、扁豆4个蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,则不同的种植方法种数为( ) A.24种 B.18种 C.12种 D.6种3、已知函数5432f (x )x 5x 10x 10x 5x 1=-+-+-,x R ∈,则f (2)等于( )A.0 B.1 C.2 D.1- 4、用6种不同的颜色给图中A 、B 、C 、D 四块区域涂色,允许用同一种颜色涂不同的区域,但相邻的区域不能涂同一色,则不同的涂法共有( )A.240种B.480种C.120种D.360种5、从1,2,3,4,5,6这6个数中,不放回的任取两数,则两数都是偶数的概率是( )A.12 B. 13 C. 14 D. 156、某林场有树苗30000棵,其中松树苗4000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A.30 B. 25 C. 20 D.157、在一次射击训练中,一小组的成绩如下表,已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5B. 6C. 7D.88、两根相距9m 的木杆上系有一根绳子,并随机地在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率为( ) A.29 B. 49 C. 59 D. 799、某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名队员参加比赛,种子选手都必须在内,那么不同的选法共有( ) A.26种 B.84种 C.35种 D.21种10、有6本不同的书平均分给甲、乙、丙三人,共有不同的分配方式有( ) A.15种 B.90种 C.720种 D.360种 11、101(x )3x-的展开式中,含x 的正整数指数幂的项数有( ) A.0项 B.2 项 C.4项 D.6项12、从集合{}1,2,3,,11⋅⋅⋅中任意取两个元素作为椭圆方程2222x y 1m n+=中的m 和n ,则能组成落在矩形区域{}B (x,y )x 11,y 9=≤≤内的椭圆的个数是( ) A.43 B.72 C.86 D.90二、填空题(本大题共4小题,每小题5分,共20分)环数 7 8 9 人数 23A CBD13、已知778n 1n n C C C +-=,则n 的值为 ________.14、平面上有9个点,其中有4个点在同一条直线上,此外任意三点不共线,则过每两点连线,可得不同的直线有___条(用数字作答).15、如图所示的程序框图运行后输出的k 值是___. 16、若4(12)a b 2+=+(a ,b 为有理数,则a b +等于__.三、解答题(本大题共6小题,共70分,解答应有证明或演算步骤)17、(本小题满分10分)从2009年3月份开始,甲型H1N1流感在全球蔓延,我国也未能幸免于难.6月份,某省卫生防疫部门按5天为一组,统计了该省甲型H1N1流感每隔5天内的新确诊病例人数,并绘制了频率分布直方图,如图所示,已知从左至右个长方形的高的比为2︰3︰4︰6︰6︰1,第三组的频数为12.(1)该省6月份共有多少确诊病例;(2)为了调查治疗情况,有用分层抽样(每组的确诊病例为一层)抽取了一个容量为20的样本,从哪一组抽取的病例最多,抽取了多少?18、(本小题满分12分);下表为某学年随机抽出的100名学生的数学及语文成绩,成绩分为1~5五个档次,设x 、y 分别表示数学成绩和语文成绩,例如表中数学成绩为5分的共有2+6+2+0+2=12人,语文成绩为2分的共有0+10+18+0+2=30人.5 4 3 2 15 26 2 0 2 4 2 0 14 10 2 3 4 2 0 18 6 22 m 12 0 n 1226(1)求x 4=的概率及x 4=且y 3=的概率; (2)求x 3≥的概率及在x 3≥的基础上y 3=的概率; (3)求x 2=的概率及m+n 的值.19、(本题满分12分)从3名男生和2名女生中任选2人参加演讲比赛 (1)求所选2人中恰有一名女生的选法种数; (2)求所选2人中至少有一名女生的选法种数。

山东省济南市第二高级中学2022年高二数学理月考试题含解析

山东省济南市第二高级中学2022年高二数学理月考试题含解析

山东省济南市第二高级中学2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线的斜率为A. B. C. D.参考答案:A2. 图中的图象所表示的函数解析式是()A. B.C. D.参考答案:B3. 买4枝郁金香和5枝丁香的金额小于22元,而买6枝郁金香和3枝丁香的金额和大于24元,那么买2枝郁金香和买3枝丁香的金额比较,其结果是()A.前者贵 B.后者贵 C.一样 D.不能确定参考答案:A 解析:设郁金香x元/枝,丁香y元/枝,则,∴由不等式的可加(减)性,得x>3,y<2,∴2x>6,3y<6,故前者贵。

4. 下列四个命题:①对立事件一定是互斥事件②若、为两个事件,则③若事件两两互斥,则④若事件满足则是对立事件.其中错误命题的个数是()A.0B.1C.2D.3参考答案:D5. 设表示三条直线,、表示两个平面,则下列命题的逆命题不成立的是 ( )A.⊥,若⊥,则∥;B.β,是在内的射影,若⊥,则⊥;C.β,若⊥则⊥;D.,,若∥,则∥;参考答案:C略6. 正方体AC1中,点P、Q分别为棱A1B1、DD1的中点,则PQ与AC1所成的角为( )A.30o B.45o C.60o D.90o参考答案:D略7. 用“辗转相除法”求得333和481的最大公约数是()A.3 B.9 C.37 D.51参考答案:C【考点】用辗转相除计算最大公约数.【专题】转化思想;算法和程序框图.【分析】利用“辗转相除法”即可得出.【解答】解:481=333×1+148,333=148×2+37,148=37×4.∴333和481的最大公约数是37.故选:C.【点评】本题考查了“辗转相除法”,考查了推理能力与计算能力,属于基础题.8. 已知椭圆,则椭圆的焦距长为()(A). 1 (B). 2 (C). (D). 参考答案:D略9. 已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.参考答案:D【考点】双曲线的简单性质.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.10. 如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D上的两个动点,且EF=,则下列结论错误的是()A.AC⊥BF B.直线AE、BF所成的角为定值C.EF∥平面ABC D.三棱锥A﹣BEF的体积为定值参考答案:B【考点】异面直线及其所成的角.【分析】通过直线AC垂直平面平面BB1D1D,判断A是正确的;通过直线EF垂直于直线AB1,AD1,判断A1C⊥平面AEF是正确的;计算三角形BEF 的面积和A到平面BEF的距离是定值,说明C是正确的;只需找出两个特殊位置,即可判断D是不正确的;综合可得答案.【解答】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,又BE?平面BB1D1D,∴AC⊥BE,故A正确;∵当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠OEB,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠OE1B,显然两个角不相等,B不正确;∵平面ABCD∥平面A1B1C1D1,EF?平面A1B1C1D1,∴EF∥平面ABCD,故C正确;∵由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故V A ﹣BEF为定值.D正确;故选B.二、填空题:本大题共7小题,每小题4分,共28分11. 已知=2,=3,=4…,若=6,(a,t为互质的正整数),由以上等式,可推测a,t的值,则a+t=________.参考答案:41根据题中所列的前几项的规律可知其通项应为,所以当n=6时,,.12. 若直线ax+2by﹣2=0(a,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则的最小值为.参考答案:【考点】直线与圆的位置关系;基本不等式.【专题】计算题.【分析】由题意可知圆x 2+y 2﹣4x ﹣2y ﹣8=0的圆心(2,1)在直线ax+2by ﹣2=0上,可得a+b=1,而=()(a+b),展开利用基本不等式可求最小值【解答】解:由圆的性质可知,直线ax+2by ﹣2=0即是圆的直径所在的直线方程∵圆x2+y2﹣4x﹣2y﹣8=0的标准方程为(x﹣2)2+(y﹣1)2=13,∴圆心(2,1)在直线ax+2by﹣2=0上∴2a+2b﹣2=0即a+b=1∵=()(a+b)==3+2∴的最小值故答案为:【点评】本题主要考查了圆的性质的应用,利用基本不等式求解最值的问题,解题的关键技巧在于“1”的基本代换13. 用等值算法求294和84的最大公约数时,需要做次减法.参考答案:414. 设,将个数依次放入编号为的个位置,得到排列.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列,将此操作称为变换.将分成两段,每段个数,并对每段作变换,得到;当时,将分成段,每段个数,并对每段作变换,得到.例如,当时,,此时位于中的第4个位置.(1)当时,位于中的第个位置;(2)当时,位于中的第个位置.参考答案:(1)6;(2)15. 已知直线曲线相切则 .参考答案:16. 已知 -3+2 i是关于x的方程2x2+px+q=0的一个根,(p、q∈R),则p+q=________;参考答案:3817. 一个病人服用某种新药后被治愈的概率为0.9,服用这种新药的3个人中恰有1人被治愈的概率为__________(用数字作答).参考答案:0.027恰有人被治愈的概率.三、解答题:本大题共5小题,共72分。

西安市长安区第一中学2022-2023学年高二上学期第一次月考数学(理)试卷

西安市长安区第一中学2022-2023学年高二上学期第一次月考数学(理)试卷

长安一中2022—2023学年度第一学期第一次质量检测高二年级数学(理科)试题时间:100分钟总分:150分一、选择题:本大题共14小题,每小题5分,共70分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}2.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)4.将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( ) A .在区间⎣⎡⎦⎤3π4,5π4上单调递增 B .在区间⎣⎡⎦⎤3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦⎤3π2,2π上单调递减 5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得至其关,要见次日行里数,请公仔细算相还.”其意思为有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .96里B .48里C .192里D .24里 6.如图,在四面体ABCD 中,已知AB ⊥AC ,BD ⊥AC ,那么点D 在平面ABC 内的射影H 必在( )A .直线AB 上 B .直线BC 上 C .直线AC 上D .△ABC 内部7.已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是( )A .p q ∧B .p q ⌝∧ C .p q ⌝∧ D .p q ⌝⌝∧8.已知椭圆及以下3个函数:①②③;其中函数图像能等分该椭圆面积的函数个数有()A, 1个 B ,2个 C, 3个 D,0个9.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .1610.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A .312-B .23-C .312-D .31-11.若不等式组2022020x y x y x y m +-⎧⎪+-⎨⎪-+⎩≤≥≥,表示的平面区域为三角形,且其面积等于43,则m 的值为()A .-3B .1C .43D .3 12.直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]13.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O 为坐标原点,则△OAB 的面积为( ) A .334B .938 C .6332 D .9414.在△ABC 中,AC =3,BC =4,∠C =90∘.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的取值范围是( ) A. [−5,3]B. [−3,5]C. [−6,4]D. [−4,6]二、填空题:本大题共6小题,每小题5分,共30分。

2022-2023学年陕西省咸阳中学高二上学期第三次月考理科数学试题(解析版)

2022-2023学年陕西省咸阳中学高二上学期第三次月考理科数学试题(解析版)

陕西省咸阳中学2022—2023学年度第一学期第三次月考高二数学理科满分: 120分时间:100分钟一单项选择题(每题5分,共12道小题,共计60分)1. 数列{a n }, 满足a 1=2,a n+1=11−a n(n ∈N ∗), 则a 2021+a 2=() A.-2 B.-1 C.2 D.122. 中国古代数学著作《算法统宗》中有这样一个问题: “三百七十八里关, 初行健步不为难, 次日脚痛减一半, 六朝才得到其关, 要见次日行里数, 请公仔细算相还. ”其大意为: “有一个人走了 378 里路, 第一天健步行走, 从第二天起因脚痛每天走的路程为前一天的一半, 走了 6 天后到达目的地. ”则此人第 4 天走了()A.60 里B.48 里C.36 里D.24 里 3. 已知{a n }为等比数列, 且a 1a 13=π6, 则tan (a 2a 12)的值为()A.−√3B.√33C.±√3D.−√33 4. △ABC 的内角A,B,C 的对边分别为a,b,c . 已知a =√6,c =2,cosA =14, 则b =()A.√2B.1C.2D.35. 在△ABC 中,a,b,c 分别为A,B,C 的对边, 如果sinA sinB−sinC =b+c b−a, 那么∠C 的度数为() A.π6 B.π4C.π3 D.π26. 在△ABC 中,BC =√17,AC =3,cosA =13, 则△ABC 的面积为()A.2B.4√2C.4D.92 7. 若实数x,y 满足约束条件{y ⩽x,x +y ⩾1,2x −y ⩽2.则z =2x +y 的最大值为()A.32B.2C.4D.68. 已知a 、b 、c 、d ∈R , 下列命题正确的是()A.若a >b , 则ac >bcB.若a >b,c >d , 则ac >bdC.若a >b , 则1a <1bD.若1|a|<1|b|, 则|a|>|b| 9. 命题“ ∃x 0∈(0,+∞), 使得e x 0<x 0” 的否定是()A.∃x 0∈(0,+∞), 使得e x 0>x 0B.∃x 0∈(0,+∞), 使得e x 0≥x 0C.∀x ∈(0,+∞), 均有e x >xD.∀x ∈(0,+∞), 均有e x ≥x10.平面向量a =(1,2),b =(2,k 2). 则“k =2”是 “a//b ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件11. 已知向量m =(1,2,λ),n =(2,2,1),p =(2,1,1), 满足条件(p −m)⊥n , 则λ的值为()A.1B.−1C.2D.−212. 如图, 在正方体ABCD −A 1B 1C 1D 1中, 异面直线D 1C 与BD 所成的角为()A.30∘B.45∘C.60∘D.90∘二填空题(每题5分,共4道小题,共计20分)13当x>0时, 不等式x2+mx+4>0恒成立, 则实数m的取值范围是___________.14已知x,y>0, 且满足x+y=2, 则xy+x+y的最大值为___________., 则S n=___________.15设S n是数列{a n}的前n项和, 且a n=2n(n+1)16命题“任意x∈[−1,2],x2−2x−a≤0”为真命题, 则实数a的取值范围是___________.三解答题(本题4道小题,共计40分,写出必要的文字说明和演算步骤)17. (本题满分10分)如图, 在四棱锥P−ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB,E,F,G分别是PC,PD,BC的中点.(1) 求证: PC⊥AD;(2) 求证: 平面PAB//平面EFG.18.(本题满分10分)已知等差数列{a n}的前n项和为S n, 且a2=3,S5=25. (1) 求数列{a n}的通项公式;(2) 设b n=a n+2n−1, 求数列{b n}的前n项和T n. 19. (本题满分10分)在锐角△ABC中,A,B,C的对边分别为a,b,c, 且√3a= 2csinA.(1) 求角C的大小;(2) 若c=√7, 且ab= 6, 求ΔABC的周长.20. (本题满分10分)如图, 某人计划用篱笆围成一个一边靠墙(墙足够长) 的矩形菜园. 设菜园的长为x米, 宽为y米.(1) 若菜园面积为36 平方米, 则x,y为何值时, 所用篱笆总长最小?(2) 若使用的篱笆总长为30 米, 求2x+y的最小值.xy陕西省咸阳中学2022—2023学年度第一学期第三次月考高二数学理科参考答案及解析一单项选择题(每题5分,共12道小题,共计60分)1. 【答案】A 【解析】根据题意, 由a 1=2, 得a 2=11−a 1=−1;a 3=11−a 2=12;a 4=11−a 3=2,……, 所以数列{a n }是以 3 为周期的周期数列, 所以a 2021+a 2=a 2+a 2=−2.故选 : A .2. 【答案】D 【解析】根据题意, 记每天走的路程里数为{a n }.可知{a n }是以12为公比的等比数列.又由S 6=378, 得S 6=a 1(1−q 6)1−q =a 1(1−126)1−12=378.解可得a 1=192.则a 4=a 1×(12)3=24. 3. 【答案】B 【解析】因为{a n }为等比数列, 所以a 2a 12=a 1a 13=π6, 所以tan (a 2a 12)=tan π6=√33. 故选: B.4. 【答案】C 【解析】由余弦定理得(√6)2=b 2+22−2×b ×2×14, 即b 2−b −2=0, 解得b =2或−1(舍去), 故选C .5. 【答案】C 【解析】因为sinA sinB−sinC =b+c b−a , 由正弦定理可得a b−c =b+c b−a , 即ab −a 2=b 2−c 2. 所以c 2=b 2+a 2−ab . 又c 2=b 2+a 2−2abcosC .所以cosC =12.因为C ∈(0,π).所以C =π3.6. 【答案】B【解析】因为BC =√17,AC =3,cosA =13,由余弦定理BC 2=AB 2+AC 2−2AB ∙ACcosA , 所以AB 2−2AB −8=0, 所以AB =4.又因为cosA =13, 所以sinA =2√23, 所以S △ABC =12AB ∙AC ∙sinA =12×4×3×2√23=4√2.7. 【答案】D 【解析】解: 画出约束条件{y ≤x,x +y ≥1,2x −y ≤2.表示的平面区域, 如图所示:目标函数z =2x +y 可化为y =−2x +z ,平移目标函数知, 直线y =−2x +z 过点A 时, 在y 轴上的截距最大, 由{y =x 2x −y =2, 解得A(2,2),所以z 的最大值为z max =2×2+2=6.8. 【答案】D【解析】对于A , 当c ≤0时不成立. 对于B , 当a =1,b =−2,c =0,b =−1时, 显然不成立. 对于C , 当a =1,b =−2时, 不成立. 对于D , 因为0<1|a|<1|b|, 所以有|a|>|b|成立, 故选 D.9. 【答案】D 【解析】命题“ ∃x 0∈(0,+∞), 使得e x 0<x 0”的否定是: “∀x ∈(0,+∞), 使得e x ≥x ”10. 【答案】A 【解析】由k =2知a//b ; 由a//b 知k 2=4, 则k =±2, 故选A . 11. 【答案】A 【解析】因为p −m =(1,−1,1−λ), 所以(p −m)∙n =1×2+(−1)×2+(1−λ)×1=0, 解得λ=1, 故选A .12. 【答案】C【解析】因为BD//B 1D 1, 则∠CD 1B 1为所求, 又△CD 1B 1是正三角形,∠CD 1B 1=60∘, 故选C .二填空题(每题5分,共4道小题,共计20分)13.【解析】∵当x >0时, 不等式x 2+mx +4>0恒成立,∴m >−(x +4x ),∵x >0,∴x +4x ⩾2√4=4(x =2时, 取等号),∴−(x +4x)⩽−4,∴m >−4,故答案为:(−4,+∞)14.因为x,y >0, 且满足x +y =2,则xy +x +y =xy +2⩽(x+y 2)2+2=3当且仅当x =y =1时取等号,所以xy +x +y 的最大值为3.故答案为:315.因为a n =2n(n+1)=2(1n −1n+1),所以S n =2(1−12+12−13+⋯+1n −1n+1)=2(1−1n+1)=2n n+1.故答案为:2n n+1. 16.任意x ∈[−1,2],x 2−2x −a ≤0恒成立⇔x 2−2x ≤a 恒成立, 故只需(x 2−2x )max ≤a , 记f(x)=x 2−2x =(x −1)2−1,x ∈[−1,2], 易知f(x)max =f(−1)=3, 所以3≤a .故答案为:[3,+∞)三解答题(本题6道小题,共计70分,写出必要的文字说明和演算步骤) 17. 【解析】(1)详解:由PD ⊥平面ABCD , 得AD ⊥PD , 又AD ⊥CD (ABCD 是正方形 ),PD ∩CD =D , 所以AD ⊥平面PDC , 所以AD ⊥PC .(2)详解:由E,F 分别是线段PC,PD 的中点, 所以EF//CD , 又ABCD 为正方形,AB//CD , 所以EF//AB , 又EF/⊂平面PAB , 所以EF//平面PAB . 因为E,G 分别是线段PC,BC 的中点, 所以EG//PB , 又EG/⊂平面PAB , 所以EG//平面PAB . 因为EF ∩EG =E,EF,EG ⊂平面EFG , 所以平面EFG//平面PAB .18.【解析】(1): 设等差数列{a n }公差为d , 首项为a 1, 由题意, 有{a 1+d =35a 1+5×42d =25, 解得{a 1=1d =2, 所以a n =1+(n −1)×2=2n −1;(2) b n =a n +2n−1=2n −1+2n−1, 所以T n =n(1+2n−1)2+1−2n 1−2 19.【解析】(1)由√3a =2csinA 及正弦定理得a c =√3=sinAsinC 因为sinA >0, 故sinC =√32. 又∵△ABC 为锐角三角形, 所以C =π3.(2)由余弦定理a 2+b 2−2abcos π3=7,∵ab =6, 得a 2+b 2=13 解得: {a =2b =3或{a =3b =2 ∴△ABC 的周长为a +b +c =5+√7.20.【解析】(1)由题意得, xy =36, 所用篱笆总长为x +2y . 因为x +2y ≥2√2xy =2×√2×36=12√2, 当且仅当x =2y 时, 即x =6√2,y =3√2时等号成立. 所以菜园的长x 为6√2m , 宽y 为3√2m 时, 所用篱笆总长最小.(2)由题意得, x +2y =30,2x+y xy =1x +2y =130(1x +2y )(x +2y)=130(5+2y x +2x y )≥130(5+2√2y x ∙2x y )=310, 当且仅当2y x =2x y , 即x =y =10时等号成立, 所以2x+y xy 的最小值是310.。

高二数学第一次月考试卷理科 试题

高二数学第一次月考试卷理科 试题

卜人入州八九几市潮王学校2021年地区高二数学第一次月考试卷(理科)说明:本套试卷分第一卷(选择题)和第二卷(非选择题)两局部。

试卷总分值是150,考试时间是是120分钟。

第Ⅰ卷(选择题一共60分)一、选择题:本大题一一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,有一项为哪一项哪一项符合题目要求的,请将所选答案填在指定的答题栏内。

1.函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是〔〕A2B4 C2D-2 2.以下求导运算正确的选项是〔〕 A 、3211)1(x x x -='+B 、2ln 1)(log '2x x =C 、'2)cos (x x =-2xsinxD 、e xx 3'log 3)3(= 3.一个物体的运动方程为21s tt 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是〔〕A 、7米/秒B 、6米/秒C 、5米/秒D 、8米/秒4.设f(x)在[a,b]上连续,将[a,b]n 等分,在每个小区间上任取i ξ,那么dx x f b a)(⎰是〔〕A 、∑=∞→ni i n f 1)(lim ξB 、∑=∞→-•ni i n n ab f 1)(lim ξC 、∑=∞→•n i i i n f 1)(lim ξξD 、∑=∞→ni i n f 1)(lim ξ•-i ξ()1-i ξ 5.函数2mnymx 的导数为3'4x y =,那么〔〕A 、m=-1,n=-2B 、m=-1,n=2C 、m=1,n=-2D 、m=1,n=2 6.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的〔〕A 、充要条件B 、即不充分又不必要条件C 、充分非必要条件D 、必要非充分条件7.函数1ln 1ln xyx的导数为〔〕A 、2')ln 1(2x y +-=B 、2')ln 1(2x x y +=C 、2')ln 1(1x x y +-=D 、2')ln 1(2x x y +-=8、以下积分不正确的选项是〔〕A 、3ln 131=⎰dx x B 、xdx sin 0⎰π=-2 C 、31210=⎰dx x D 、23ln 29)1(232+=+⎰dx xx9.函数5224+-=x x y 的单调减区间是〔〕A 、[-1,1]B 、[-1,0],[1,+∞]C 、〔-∞,-1〕,〔0,1〕D 、(-∞,-1),[1,+∞] 10.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短间隔是〔〕 A 、5B 、25C 、35D 、011.方程076223=+-x x在〔0,2〕内根的个数有〔〕A .0B .1C .2D .312、设P 点是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,那么角α的取值范围是 A .2[0,)[,)23πππ⋃B .5[0,)[,)26πππ⋃C .),32[ππD .)65,2(ππ第二卷(非选择题一共90分)二、填空题:本大题一一共4小题,每一小题4分,一共16分.把答案填在题中的横线上. 13、定积分cdx b a⎰〔c 为常数〕的几何意义是:。

陕西省西安市第一中学2022-2021学年高二上学期第二次月考数学(理)试题 Word版含答案

陕西省西安市第一中学2022-2021学年高二上学期第二次月考数学(理)试题 Word版含答案

西安市第一中学2022-2021学年高二第一学期其次次月考 数学试题(理科)一、 选择题(本题共12道小题,每小题3分,共36分)1. 命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意R x ∈,都有02<xB .不存在R x ∈,使得02<xC .存在R x ∈0,使得020≥x D .存在R x ∈0,使得020<x2. 若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A .c ∥d B .c ⊥dC .c 不平行于d ,c 也不垂直于dD .以上三种状况均有可能3. AB 是过抛物线y 2=4x 焦点F 的弦,已知A ,B 两点的横坐标分别是x 1,x 2且x 1+x 2=6,则|AB |等于( )A .10B .8C .7D .64.,,,A B C D 是空间不共面的四点,且满足0AB AC •=,0AC AD •=,0AB AD •=,M 为BC 的中点,则AMD ∆是( )A .钝角三角形B .锐角三角形 C. 直角三角形 D .不确定5. 正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A . 32 B .22C . 12D .336.在同一坐标系中,方程222221与0(0)a x b y ax by a b +=+=>>的曲线大致是 ( )A .B .C .D .7.与双曲线3322=-y x 的焦点相同且离心率互为倒数的椭圆方程为( )A.1322=+y x B.1322=+y x C.1161222=+y x D.1121622=+y x 8.动点P 到直线05=+x 的距离减去它到M (2,0)的距离的差等于3,则点P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线9.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( )A .3 2B .2 3C .303D .32 610.椭圆)0(12222>>=+b a by a x 的半焦距为c ,若直线x y 2=与椭圆的一个交点的横坐标恰好为c ,则椭圆的离心率为( )A .221-B .212-C .12-D .13-11.抛物线y=x 2到直线2x ﹣y=4距离最近的点的坐标是( )A .35,24⎛⎫ ⎪⎝⎭B .(1,1)C .39,24⎛⎫⎪⎝⎭D .(2,4)12. 椭圆13422=+y x 上有n 个不同的点: 12,,,n P P P ,椭圆的右焦点为F .数列{||}n P F 是公差大于1001的等差数列, 则n 的最大值是( ) A .198 B. 199 C. 200 D. 201二、填空题(本大题共5小题,每小题4分,共20分)13.命题“若|x |=1,则x=1”的否命题为 .。

高二上学期第三次月考理科数学试题 Word版含答案

高二上学期第三次月考理科数学试题 Word版含答案

知识决定格局,格局影响命运绝密★启用前怀仁市大地学校2020-2021学年度上学期第三次月考高二理科数学(考试时间:120分钟试卷满分:150分)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4. 考试结束后,将答题卡交回。

第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. a>0,b>0且111a b+=,则4a b+=的最小值是A. 2B. 6C. 3D. 92. 给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②存在每个面都是直角三角形的四面体;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是A. 0B. 1C. 2D. 33. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A. 25B. 26C. 42D. 434. 如图所示,一个水平放置的平面图形的斜二测直观图是等腰梯形OA B C''',且直观图OA B C'''的面积为2,则该平面图形的面积为A. 2B. 42C. 4D. 225. 如图是一个空间几何体的三视图,则这个几何体侧面展开图的面积是A. 2πB. πC.2πD.4π6. 已知,m n是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是A. 若//,//,m nαα则//m n B. 若,,αγβγ⊥⊥则//αβC. 若//,//,m mαβ则//αβ D. 若,,m nαα⊥⊥则//m n7. 若直线1:260l ax y++=与直线()22:(1)10l x a y a+-+-=平行,则a的值为A. 2a=-或1a= B. 2a= C. 2a=或1a=- D. 1a=-8. 已知点(2,3)A,(3,2)B--与直线:10l kx y k--+=,且直线l与线段AB相交,则直线l的斜率k的取值范围为A. 2k≥或34k≤ B.34k≥或14k≤-C.344k-≤≤ D.324k≤≤9. 在平面直角坐标系xOy中,直线240x y+-=与两坐标轴分别交于点A、B,圆C经过A、B,且圆心在y轴上,则圆C的方程为A. 226160x y y++-= B. 226160x y y+--=C. 22890x y y++-= D. 22890x y y+--=10. “2x<”是“()lg10x-<”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11. 已知命题p:Rα∃∈,5sin cos4αα+=,命题q:正数的对数都是正数,则下列命题中为真命题的是知识决定格局,格局影响命运A. ()p q ⌝∨B. p q ∧C. ()()p q ⌝∧⌝D. ()()p q ⌝∨⌝12. 关于曲线2211:1C x y+=,有如下结论:①曲线C 关于原点对称;②曲线C 关于直线0x y ±=对称;③曲线C 是封闭图形,且封闭图形的面积大于2π; ④曲线C 不是封闭图形,且它与圆222x y +=无公共点;⑤曲线C 与曲线:||||22D x y +=有4个交点,这4点构成正方形; 其中所有正确结论的序号为A. ①②③⑤B. ①②④⑤C. ①②③④D. ①②③④⑤第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13. 已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是__________. 14. 若命题“x R ∃∈,使得2x ax a ++<0”是真命题,则实数a 的取值范围是__________.15. 若直线l 被直线1:10l x y -+=与2:30l x y -+=截得的线段长为22,则直线l 的倾斜角()090θθ︒≤<︒的值为__________.16. 已知1F ,2F 分别为椭圆()222210x y a b a b+=>>的左、右焦点,且离心率23e =,点P 是椭圆上位于第二象限内的一点,若12PF F △是腰长为4的等腰三角形,则12PF F △的面积为__________. 三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)命题p :x R ∀∈,2240x ax ++>,命题q :[]01,1x ∃∈-,使得210x a +->成立. (1)若命题p 为真命题,求实数a 的取值范围;(2)若p ,q 中有且仅有一个为真命题,求实数a 的取值范围. 18. (本小题满分12分)已知圆C :()()221316x y -+-=,直线l :()()234220m x m y m ++++-=.(1)无论m 取任何实数,直线l 必经过一个定点,求出这个定点的坐标; (2)当m 取任意实数时,直线l 和圆的位置关系有无不变性,试说明理由;(3)请判断直线l 被圆C 截得的弦何时最短,并求截得的弦最短时m 的值以及弦的长度a . 19. (本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为梯形,//,90B AB C AD D ︒∠=,点E 为PB 的中点,且224CD AD AB ===,点F 在CD 上,且13DF FC =.(1)求证:EF //平面PAD(2)若平面PAD ⊥平面ABCD ,PA PD =且PA PD ⊥,求三棱锥P CEF - 的体积20. (本小题满分12分)已知直线60x y +-=与直线20x y --=将圆C 分成面积相等的四部分,且圆C 与y 轴相切. (1)求圆C 的标准方程;(2)直线l 过点(2,0)P -,且与圆C 交于A ,B 两点,是否存在直线l ,使得12PA AB =,若存在,求出l 的方程;若不存在,请说明理由.21. (本小题满分12分)如图,ABCD 是边长为a 的正方形,DE ⊥平面ABCD ,AF ⊥平面ABCD ,33DE AF ==. (1)证明:平面//ABF 平面DCE ;(2)在DE 上是否存在一点G ,使平面FBG 将几何体ABCDEF 分成上下两部分的体积比为3∶11?若存在,求出G 的位置;若不存在,说明理由. 22. (本小题满分12分)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且经过点31,2⎛⎫-- ⎪⎝⎭,(1)求椭圆C 的标准方程;(2)过点()1,0作直线l 与椭圆相较于A ,B 两点,试问在x 轴上是否存在定点Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称,若存在,求出点Q 的坐标,若不存在,请说明理由.知识决定格局,格局影响命运理科数学参考答案 1.D 2.C 3.C 4.B 5.B 6.D 7.D8.A9.A10.B11.D12.B13.()1,4,1--14.0a <或4a > 15.15︒或75︒1617.(1)()2,2-;(2){21a a -<≤-或}2a ≥.18.(1)证明见解析;直线l 恒过()2,2-;(2)答案见解析;(3)当直线l 垂直PC 时,截得的弦最短,9m =-,a =19.(1)详见解析;(2)1220.(1)22(4)(2)16x y -+-=;(2)存在,20x y -+=或720x y ++=.. 21.(1)证明过程见详解;(2)存在点G 且1EG =满足条件.22.(1)22143x y +=;(2)存在(4,0)Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称.。

2022-2023学年四川省成都外国语学校高二上学期12月月考数学(理)试题 (解析版)

2022-2023学年四川省成都外国语学校高二上学期12月月考数学(理)试题 (解析版)
4.已知在一次射击预选赛中,甲、乙两人各射击 次,两人成绩的条形统计图如图所示,则下列四个选项中判断不正确的是
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数小于乙的成绩的中位数
C.甲的成绩的方差大于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
【答案】D
【解析】
【分析】根据条形统计图可分别计算出甲、乙的平均数、中位数、极差,从而判断出 的正误;根据成绩的分散程度可判断 的正误.
【详解】同时掷3枚硬币,至少有1枚正面包括有一正两反,两正一反,三正三种情况,
最多有1枚正面包括一正两反,三反,两种情况,故A不正确,
最多有1枚正面包括一正两反,三反与恰有2枚正面是互斥的但不是对立事件,故B不正确,
至多1枚正面一正两反,三反,至少有2枚正面包括2正和三正,故C正确,
至少有2枚正面包括2正和三正,与恰有1枚正面是互斥事件,故D不正确,
成都外国语学校高2024届2022-2023学年度12月月考
理科数学
一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.命题“ , ”的否定为()
A. , B. ,
C. , D. ,
【答案】A
【解析】
【分析】含有一个量词的命题的否定步骤为:改量词,否结论.
甲的成绩的极差大于乙的成绩的极差,故 不正确.
本题正确选项:
【点睛】本题考查根据条形统计图判断平均数、中位数、极差和方差的问题,属于基础题.
5.已知 的三个顶点分别为 , , ,则 边上的中线长为()
A. B. C. D.
【答案】B
【解析】
【分析】求得 的中点坐标,利用两点间的距离公式即可求得答案.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二月考理科数学试题 2012.6
选择题(每题5分,共60分)
1. 已知2log (x 1)1+=,则x 等于( )
A.0
B.1
C.2
D.3
2. 命题“x R,sin x 1∀∈≤”的否定形式为( )
A.x R,sin x 1∃∈≥
B.x R,sin x 1∀∈≥
C.x R,sin x 1∃∈>
D.x R,sin x 1∀∈>
3. 下列命题是真命题的是( )
A.2x R,(x 1)0∀∈+>
B.x {3,5,7},3x 1∀∈+为偶数
C.2x Q,x 3∃∈=
D. 2x R,x x 10∃∈-+= 4. “a 1>”是 “a log 20>”的( )条件
A.充分不必要
B.必要不充分
C.充分必要
D.即不充分也不必要
5. 函数x y a b 1=+-的图象经过第二、三、四象限,则一定有( )
A.0a 1<<且b 0>
B.a 1>且b 0>
C.0a 1<<且b 0<
D.a 1>且b 0<
6. 若253a ()5=、352b ()5=、25
2c ()5
=,则a 、b 、c 的大小关系是( )
A.a c b >>
B.a b c >>
C.c a b >>
D.b c a >>
7. 函数()lg sin f x x x =-的零点个数是( )
A.1
B.2
C.3
D.4
8. 下列函数中,值域为(,0)-∞的函数是( )
A.2=-y x
B.31=-y x
C. =y
D. 2=-x y
9. 在同一坐标系下,函数x
y e -=与函数ln y x =-的图象大致是( )
10. 设函数()f x 定义域为R ,且(2)()f x f x -=,当1≥x 时,()ln =f x x ,则 ( )
A.11()(2)()32<<f f f
B.11
()(2)()23
<<f f f
C.11
()()(2)23
<<f f f
D.11
(2)()()23
<<f f f
11. 已知()f x 是定义在R 上的偶函数,且(2)()f x f x +=,若()f x 在[1,0]-上是减函数,那
么()f x 在[1,3]上是( ) A.增函数
B.先增后减的函数
C.减函数
D.先减后增的函数
12. 若()f x 为偶函数,当[0,)∈+∞x 时,()1=-f x x ,则不等式2(1)0-<f x 的解集为( )
A.(1,0)-
B.(U
C.(0,2)
D.(1,2)
填空题(每题5分,共30分)
13. 函数2y x mx 1=++为偶函数,则m 的值为 。

14. 函数2
y lg(
a)1x
=+-为奇函数,则实数a 的值为 。

15. 函数x f (x)a =在区间(,0)-∞上的单调递减,则函数a g(x)log |x |=在区间(,0)-∞上的
单调性为 。

16. 已知函数)(x f y =是以2为周期的偶函数,且当)1,0(∈x 时,,1)(2-=x x f 则)2
7(f 的
值 。

17. 设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线2
1
=x 对称,则
(1)(2)f f += 。

18. 下列函数在定义域内能够满足“f (x y)f (x)f (y)+=”的是 。

(1)y ln x =;(2)y =(3)x y e =;(4)2y x = 解答题(每题12分,共60分) 19. 求下列函数的定义域:
(1)y =(2)1ln()1x y x -=+;(3)x x
x x e e y e e
--+=-
20. 已知函数22(2)4,0()0,0,0(2)4⎧-->⎪
==⎨⎪<-++⎩
x x f x x x x ,(1)画函数()=y f x 的图象;(2)写出函数
()=y f x 的单调区间;(3)求不等式()0≤f x 的解集。

21. 二次函数2(),(0)f x a x b x c a =++≠的图象与x 轴有且只有一个公共点,且
()22'=+f x x ,(1)求()f x 解析式;(2)若()=y f x 在区间[3,]-m 上的值域为[0,4],
求实数m 的取值范围。

22. 设函数)(x f 是定义在[1,0)-U (0,1]上的奇函数,当[1,0)∈-x 时,)(x f =21
2x
ax +
.(1) 求当(0,1]∈x 时,)(x f 的表达式;(2) 若1>-a ,判断)(x f 在(0,1]上的单调性,并证明你的结论.
23. 设函数|x 1||x 1|f (x)2+--=
,求使f (x)≥的x 的取值范围。

高二月考理科数学试题答题纸
班级姓名得分
选择题
填空题
13. ;14. ;15. ;
16. ;17. ;18. ;解答题
19.。

相关文档
最新文档