第一轮复习教学案 一元二次方程

合集下载

5年中考第一轮复习:一元二次方程 分式方程

5年中考第一轮复习:一元二次方程 分式方程

美博教育中考复习之一元二次方程、分式方程【课标要求】(1)了解一元二次方程的概念。

(2) 理解配方法,会用因式分解法、十字相乘法、公式法、配方法解简单的数字系数的一元二次方程.(3) 能根据具体问题的实际意义,检验结果是否合理.(4) 掌握一元二次方程根的判别式、一元二次方程根与系数的关系,并能灵活运用.(5)了解分式方程的概念。

(6)掌握分式方程的解法,并会检验。

(7)用应用分式方程解决相关实际问题。

【知识回顾】1、知识脉络(教材相应章节重要内容的结构与联系)2、考点详解(教材相应章节重要内容整理)(1)一元二次方程①只含有一个未知数,且未知项的最高次数是2的整式方程叫做一元二次方程.它的一般形式为02=++c bx ax (c b a ,,是已知数,0≠a ),其中bx ax ,2分别叫做二次项,一次项;c b a ,,分别叫做二次项系数,一次项系数,常数项.②一元二次方程的解法.其基本思想是降次.其常用方法:直接开平方法、配方法、因式分解法、公式法、十字相乘法.③一元二次方程02=++c bx ax (c b a ,,是已知数,0≠a )的根的判别式(ac b 42-=∆):(ⅰ)当0>∆时,一元二次方程有两个不相等的实数根;(ⅱ)当0=∆时,一元二次方程有两个相等的实数根;(ⅲ)当0<∆时,一元二次方程没有实数根.以上结论,反之亦成立.④一元二次方程根与系数的关系(韦达定理):若一元二次方程02=++c bx ax (c b a ,,是已知数,0≠a )的两根为1x 、2x ,则ac x x a b x x =⋅-=+2121,. (2)分式方程①分母中含有未知数的方程叫做分式方程.②分式方程的解法.其基本思想是将分式方程转化为整式方程.其方法是运用等式性质在方程两边同乘以最简公分母.解分式方程必须要验根.列方程(组)解应用题的一般步骤:①审清题意;②找出等量关系;③设出直(间)接未知数;④列出方程(组);⑤解方程(组);⑥验方程(组)的根;⑦答出完整的语句.3、典例剖析考点预测一:一元二次方程根的概念(以选择、填空出现)例1(2008 山东 聊城)已知1x =是方程220x ax ++=的一个根,则a 的值为( )A .2-B .2C .3-D .3【分析】把1x =代入方程220x ax ++=即可得到关于a 的一元一次方程,解方程即可求解。

一轮复习(9):一次二次方程

一轮复习(9):一次二次方程

课时9一元二次方程班级 姓名 学号一、中考考点:1、了解一元二次方程的概念和一元二次方程的根的意义。

2、理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。

3、了解一元二次方程根的判别式,知道一元二次方程根与系数的关系。

二、例题讲解:例1、(1)已知方程:① 0322=-x ②0112=-x ③ 0131212=+-y y ④022=++c y ay ⑤5)3)(1(2+=-+x x x ⑥ 02=-x x ⑦21=-x是一元二次方程的有 (只需写序号). (2)已知方程32)1(1=--+x xm m 是关于x 的一元二次方程,则=m .例2、(1)已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( )A .1B .0C .0或1D .0或-1(2)一元二次方程0422=++x x 的根的情况是 ( )A 、有一个实数根B 、有两个相等的实数根C 、有两个不相等的实数根D 、没有实数根(3)若关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围( )A 、m >121 B 、m <121 C 、m >121- D 、m <121- (4)关于x 的一元二次方程0422=++-k x k x 有实数根,则k 的取值范围是 . (5)方程(3)(3)x x x +=+的解是 .(6)若42+x 与32-x 互为相反数,则x 的值为(7)当____x 时,分式2341x x x --+的值为零.例3、用配方法说明:代数式132+--x x 的值不大于1213。

例4、解下列方程(1)22)31()3(-=+x (2)x x x 22)1(3-=- (公式法)(3)46)1)(3(+=++x x x (配方法) (4)052)52(2=++-x x例5、已知关于x 的方程2210x kx -+=的一个解与方程)1(412x x -=+的解相同. ⑴求k 的值;⑵求方程2210x kx -+=的另一个解.例6、已知方程0122=-++a x x 没有实数根,求证:方程a ax x 212-=+一定有两个不相等的实数根。

21.1 一元二次方程1教学案

21.1  一元二次方程1教学案

21.1一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x|k-1|+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x 2-2=5x ;(2)9x 2=16;(3)2x (3x +1)=17;(4)(3x -5)(x +1)=7x -2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x 2-5x -2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x 2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x 2+2x -17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x 2-9x -3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m 2.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为 1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x -2x =0的解为( ) A .x 1=1,x 2=2 B .x 1=0,x 2=1 C .x 1=0,x 2=2 D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.。

2015届九年级数学中考一轮复习教学案:第6课时一元二次方程及其应用

2015届九年级数学中考一轮复习教学案:第6课时一元二次方程及其应用

第6课时一元二次方程及其应用【复习目标】1.了解一元二次方程的定义及一般形式.2.理解配方法,能用配方法、公式法、因式分解法解带有数字系数的一元二次方程.3.会用一元二次方程根的判别式判断方程是否有实根和两个实根是否相等.4.了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题).5.能根据具体问题的实际意义,检验方程的解是否合理.【知识梳理】1.-元二次方程的定义:只含有_______个未知数,并且未知数的最高次数是_______的_______式方程叫做一元二次方程.2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项.3.一元二次方程的解法:(1)直接开平方法:形如(mx+n)2=p(p≥0)的方程的根为________.(2)配方法的步骤:移项,二次项的系数化为1(该步有时可省略),配方,直接开平方.(3)求根公式法:方程ax2+bx+c=0(a≠0),当b2-4ac_______0时,x=________.(4)因式分解法:如果一元二次方程可化为a(x-x1)(x-x2)=0的形式,那么方程的解为________.4.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=________.(1)当△>0时,方程有两个_______的实数根.(2)当△=0时,方程有两个_______的实数根.(3)当△<0时,方程没有实数根.5.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=________,x1·x2=________.6.列一元二次方程解增长率问题可简化为a(1±x)2=b,其中a为变化前的基础,b为变化后的结果,x为变化率,但要注意:增长率没有单位,且对于连续变化的问题都是以前一个时间段为基础,如2月份产量是在1月份基础上变化的,而不是以任意一个月份为基础的.【考点例析】考点一 一元二次方程根的意义例1已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定提示 由方程根的意义,把x =1代入方程,得到与m 有关的方程,解之即可. 考点二 一元二次方程的解法例2 解下列方程:(1) (x -3)2-9=0;(2) x 2-2x =5;(3) x 2-4x +2=0;(4) 2(x -3)=3x (x -3).提示 观察方程的特点可发现:(1)可用直接开平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x -3),故可用因式分解法.考点三 一元二次方程根的判别式例3 如果关于x 的一元二次方程kx 2-2110k x ++=有两个不相等的实数根,那么k 的取值范围是 ( )A . k<12B .k<12且k ≠0 C .-12≤k<12 D .-12≤k<12且k ≠0 提示 解决本题时需要从三方面综合考虑,一是由“一元二次方程”知k ≠0,二是由二次根式的意义知2k +1≥0,三是由原方程有两个不相等的实数根知()22140x k +->,三者缺一不可.考点四 一元二次方程根与系数的关系例4已知一元二次方程x 2-3x -1=0的两个根分别是x 1、x 2,则x 21x 2+x 1x 22的值为 ( )A .-3B .3C .-6D .6提示由于x21x2+x1x22=x1x2(x1+x2),此时根据一元二次方程根与系数的关系分别求得x1x2、x1+x2的值,从而解决问题.例5 (2012.南充)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1、x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.提示(1)因为一元二次方程有两个实数根,所以△≥0,从而解出m的取值范围;(2)根据根与系数的关系,可以用含有m的代数式分别表示出x1+x2及x1x2,代入2(x1+x2)+x1x2+10=0即可求出m的值.考点五一元二次方程的应用例6据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下面的问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?提示(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数为5000(1+x)2万人次.根据题意列方程求解;(2)2012年我国公民出境旅游总人数约7 200(1+x)万人次.例7某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每辆汽车的售价与销售量有如下关系:若当月仅售出1辆汽车时,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆;月底厂家根据销售量一次性返利给销售公司,销售10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,每辆返利1万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车(盈利=销售利润+返利)?提示用销售数量表示出每辆的进价、返利等,再表示出盈利,根据“盈利=销售利润+返利”列出方程求解.【反馈练习】1.方程(x-1)(x+2)=0的两根为( )A.x1=-1,x2=2 B.x1=1,x2=2C.x1=-1,x2=-2 D.x1=1,x2=-22.已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是( )A.k>43且k≠2 B.k≥43且k≠2C.k>43且k≠2 D.k≥43且k≠23.湛江市2009年平均房价为每平方米4000元,连续两年增长后,2011年平均房价达到每平方米5 500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是( )A.5500(1+x)2=4000 B.5500(1-x)2=4000C.4 00(1-x)2=5500 D.4000(1+x)2=55004.已知关于x的方程x2+mx-6=0的一个根为x=2,则这个方程的另一个根是________.5.已知m和n是方程2x2-5x-3=0的两根,则11m n+=_______.6.解方程:-x2-2x=2x+1.7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃想要平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?。

人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

D 1.(2021·河南) 若方程 x2-2x+m=0没有实数根,则 m的值可以是( )
A.-1
B.0
C.1
D. 3
2.(2021•岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等 的实数根,则实数k的值为 k 9.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,
a 1,b 3, c 4
b2 4ac -3 2 41(- 4) 9 16 25 0
所以方程有两个不等实数根
x b 3 25 3 5
2a
2
2
x1 4, x2 1
考点二:一元二次方程的解法
1x2 3x 4
2x2 6x 7 0
32 x2 4x 5 0
解:a 1,b (k 3),c 1 k
b2 4ac (k 3)2 41 (1 k) k 2 2k 5 k 2 2k 1 4 (k 1)2 4
因为(k 1)2 4 0, 所以方程有两个不等实数根。
考点三:判别式和一元二次方程根的情况
5.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中
考点二:一元二次方程的解法
2.配方法
对应练习: 1x2 4x 1 0
22x2 8x 3 0
12x2 1 3x
22x2 8x 3 0 x2 4x 3 0
2
x2 4x 3 2
x2 4x 4 3 4 2
x22 11 2
x 2 22 2
x1 2
22 ,x 2
变式2.若方程ax2+2x+1=0有两个不相等的实数根,则实数a的 取值范围是(a 1且a 0 )

2022年中考数学人教版一轮复习课件:第6课 一元二次方程的解法及应用

2022年中考数学人教版一轮复习课件:第6课 一元二次方程的解法及应用

26.(2020·广东)已知关于 x,y 的方程组ax+ x+y=2 43y=-10 3,与 xx- +yb=y=2, 15的解相同. (1)求 a,b 的值; (2)若一个三角形的一条边的长为 2 6,另外两条边的长是关 于 x 的方程 x2+ax+b=0 的解.试判断该三角形的形状,并 说明理由.
10.(2021·菏泽)列方程(组)解应用题. 端午节期间,某水果超市调查某种水果的销售情况,下面是 调查员的对话: 小王:该水果的进价是每千克 22 元; 小李:当销售价为每千克 38 元时,每天可售出 160 千克;若 每千克降低 3 元,每天的销售量将增加 120 千克. 根据他们的对话,解决下面所给问题:超市每天要获得销售 利润 3 640 元,又要尽可能让顾客得到实惠,则这种水果的销 售价为每千克多少元?
2.(2021·怀化)对于一元二次方程 2x2-3x+4=0,则它根的情况为
A.没有实数根
( A)
B.两根之和是 3
C.两根之积是-2
D.有两个不相等的实数根
3.一元二次方程根与系数的关系(韦达定理)
若 x1,x2 是关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的根, 则 x1+x2=-ba,x1x2=ac.
4.(2021·大连)“杂交水稻之父”袁隆平和他的团队探索培育的“海
水稻”在某试验田的产量逐年增加,2018 年平均亩产量约 500
千克,2020 年平均亩产量约 800 千克.若设平均亩产量的年
平均增长率为 x,根据题意,可列方程为
(D)
A.500(1+x)=800
B.500(1+2x)=800
A.k>-14 C.k>-14且 k≠0
B.k<41 D.k<41且 k≠0

高中数学 第2章 一元二次函数、方程和不等式 章末复习教学案第一册数学教学案

高中数学 第2章 一元二次函数、方程和不等式 章末复习教学案第一册数学教学案

第2章一元二次函数、方程和不等式知识系统整合规律方法收藏1.比较数(式)的大小依据:a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.适用范围:若数(式)的大小不明显,作差后可化为积或商的形式.步骤:①作差;②变形;③判断差的符号;④下结论.变形技巧:①分解因式;②平方后再作差;③配方法;④分子(分母)有理化.2.利用基本不等式证明不等式(1)充分利用条件是关键,要注意“1”的整体代换及几个“=”必须保证同时成立.(2)利用基本不等式证明不等式是综合法证明不等式的一种情况,其实质就是从已知的不等式入手,借助不等式的性质和基本不等式,经过逐步的逻辑推理,最后推得所证结论,其特征是“由因导果”.(3)证明不等式时要注意灵活变形,可以多次利用基本不等式的变形形式.3.利用基本不等式求最值(1)利用基本不等式求最值,必须同时满足以下三个条件:一正、二定、三相等.即:①x,y都是正数.②积xy(或和x+y)为常数(有时需通过“配凑、分拆”凑出定值).③x与y必须能够相等(等号能够取到).(2)构造定值条件的常用技巧①加项变换;②拆项变换;③统一换元;④平方后利用基本不等式.4.解一元二次不等式的步骤当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式的一般步骤如下:(1)确定对应方程ax2+bx+c=0的解;(2)画出对应函数y=ax2+bx+c的图象的简图;(3)由图象写出不等式的解集.特别提醒:(1)在通过图象获取解集时,注意不等式中的不等号方向、是否为严格不等关系及Δ=0时的特殊情况.(2)当a<0时,解不等式可以从两个方面入手:①画出对应图象进行直接判定(此时图象开口向下);②两边同乘以-1,把a 转变为-a 再进行求解.5.一元二次不等式的实际应用不等式在解决生活、生产中的一些实际问题中有着广泛的应用,主要有范围问题、最值问题等.解一元二次不等式的应用问题的关键在于构造一元二次不等式模型.解题的一般步骤是:(1)理清题意:弄清问题的实际背景和意义,用数学语言来描述问题. (2)简化假设:精选问题中的关键变量. (3)列出关系式:建立变量间的不等关系式. (4)求解:运用数学知识解相应不等式.(5)检验并作答:将所得不等式的解集放回原题中检验是否符合实际情况,然后给出问题的答案.学科思想培优一、常数代换法[典例1] 已知正数x ,y 满足x +y =1,则1x +41+y 的最小值为( )A .5 B.143 C.92D .2解析 因为x +y =1,所以x +(1+y )=2,则2⎝ ⎛⎭⎪⎫1x +41+y =[x +(1+y )]⎝ ⎛⎭⎪⎫1x +41+y =4x 1+y +1+yx+5≥24x 1+y ·1+y x +5=9,所以1x +41+y ≥92,当且仅当⎩⎪⎨⎪⎧4x 1+y =1+y x ,x +y =1,即⎩⎪⎨⎪⎧x =23,y =13时,等号成立,因此1x +41+y 的最小值为92.故选C.答案 C 二、消元法[典例2] 设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值为________.解析 解法一:由x -2y +3z =0,得y =x +3z2,故y 2xz =(x +3z )24xz =14⎝ ⎛⎭⎪⎫6+x z +9z x ≥14⎝ ⎛⎭⎪⎫6+2x z ·9z x =3, 当且仅当x =y =3z 时取等号,即y 2xz 的最小值为3.解法二:由x -2y +3z =0,得x =2y -3z ,x y=2-3zy>0.y 2xz =y 2(2y -3z )z =3⎝ ⎛⎭⎪⎫2-3z y ·3z y ≥3⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫2-3z y +3z y 2=3.当且仅当x =y =3z 时取等号,即y2xz 的最小值为3.答案 3 三、配凑法1.从和或积为定值的角度入手配凑某些不等式的约束条件可看成若干变元的和或积的定值,在不等式的变形中,配凑出这些定值,可使问题巧妙获解.常见的配凑变形有化积为和、常数的代换、加法结合律等常规运算和技巧.[典例3] 设x >0,y >0,x 2+y 22=1,求x 1+y 2的最大值.解 ∵x >0,y >0,x 2与y 22的和为定值,∴x 1+y 2=x 2(1+y 2)=2x 2·1+y 22≤2·x 2+1+y 222=2·x 2+y 22+122=324,当且仅当x 2=1+y 22,即x =32,y =22时取等号,即x 1+y 2的最大值为324.[典例4] 已知x ,y ,z 为正数,且满足xyz (x +y +z )=1,求(x +y )(y +z )的最小值. 解 由条件得x +y +z =1xyz,则(x +y )(y +z )=xy +xz +y 2+yz =y (x +y +z )+xz =y ·1xyz +xz =1xz +xz ≥2,当且仅当1xz=xz ,即xz =1时取等号,故(x +y )(y +z )的最小值为2.[典例5] 设a 1,a 2,a 3,…,a n 均为正实数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+a 3+…+a n .证明 为了约去a 2k a k +1中的分母,可考虑配上一项a k +1,于是有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2n -1a n +a n ≥2a n -1,a 2na 1+a 1≥2a n ,当且仅当a 1=a 2=…=a n 时取等号.以上不等式相加,化简,可得原不等式成立.2.从取等号的条件入手配凑在题中约束条件下,各变元将取某个特定值,这就提示我们可考虑用这些值来进行配凑. [典例6] 设a ,b ,c >0,a +b +c =1,求3a +1+3b +1+3c +1的最大值. 解2·3a +1≤2+3a +12=3a +32,2·3b +1≤3b +32,2·3c +1≤3c +32.以上三式相加,并利用a +b +c =1,得2(3a +1+3b +1+3c +1)≤6,故3a +1+3b +1+3c +1的最大值为3 2.四、判别式法在“三个二次”问题中的应用一元二次方程、一元二次不等式与二次函数的关系十分密切,习惯上称为“三个二次”问题.根据判别式法在解一元二次方程中的作用,可见判别式法在“三个二次”问题中的重要性.1.求变量的取值范围[典例7] 不等式(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立,求实数m 的取值范围.解 (m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. ①若m 2-2m -3=0,则m =-1或m =3.当m =-1时,不符合题意;当m =3时,符合题意.②若m 2-2m -3≠0,设y =(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. 则m 2-2m -3<0,Δ=b 2-4ac =5m 2-14m -3<0, 解得-15<m <3.故实数m 的取值范围是-15<m <3.2.求最值[典例8] 已知正实数a ,b 满足a +2b +ab =30,试求实数a ,b 为何值时,ab 取得最大值.解 构造关于a 的二次方程,应用“判别式法”.设ab =y , ①由已知得a +2b +y =30. ②由①②消去b ,整理得a 2+(y -30)a +2y =0, ③对于③,由Δ=(y -30)2-4×2y ≥0,即y 2-68y +900≥0,解得y ≤18或y ≥50,又y =ab <30,故舍去y ≥50,得y ≤18.把y =18代入③(注意此时Δ=0),得a 2-12a +36=0,即a =6,从而b =3.故当a =6,b =3时,ab 取得最大值18.3.证明不等式[典例9] 已知x ,y ∈R ,证明:2x 2+2xy +y 2-4x +5>0恒成立.证明 不等式可变形为y 2+2xy +2x 2-4x +5>0,将不等式左边看作关于y 的二次函数,令z =y 2+2xy +2x 2-4x +5,则关于y 的一元二次方程y 2+2xy +2x 2-4x +5=0的根的判别式Δ=4x 2-4(2x 2-4x +5)=-4(x -2)2-4<0,即Δ<0.则对于二次函数z =y 2+2xy +2x2-4x +5,其图象开口向上,且在x 轴上方,所以z >0恒成立,即2x 2+2xy +y 2-4x +5>0恒成立.五、含变量的不等式恒成立问题[典例10] 对于满足0≤p ≤4的一切实数,不等式x 2+px >4x +p -3恒成立,试求x 的取值范围.解 原不等式可化为x 2+px -4x -p +3>0, 令y =x 2+px -4x -p +3 =(x -1)p +(x 2-4x +3).由题设得⎩⎪⎨⎪⎧x 2-4x +3>0(p =0),4(x -1)+x 2-4x +3>0(p =4),解得x >3或x <-1.故x 的取值范围是x <-1或x >3.。

高中数学高三第六章不等式一元二次不等式及其解法(教案)

高中数学高三第六章不等式一元二次不等式及其解法(教案)

高三一轮复习 6.2 一元二次不等式及其解法【教学目标】1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

【重点难点】1。

教学重点:会解一元二次不等式并了解一元二次不等式与相应的二次函数、一元二次方程的联系;2。

教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】环节二:意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.解析[由题可得f(x)<0对于x∈[m,m+1]恒成立,即错误!解得-错误!〈m〈0.答案错误!知识梳理:知识点1 三个“二次”的关系ΔacΔ〉0Δ=0Δ数+a〉象次有两相异实根有两相等实根没有ax2+bx+c=0(a>0)的根x1,x2(x1<x2)x1=x2=-错误!ax2+bx+c〉0 (a>0)的解集{x|x〈x1或x〉x2}{x|x≠x1}Rax2+bx+c<0 (a〉0)的解集{x|x1〈x<x2}∅∅知识点2 用程序框图表示ax2+bx+c>0(a>0)的求解过程1.必会结论;(1)(x-a)(x-b)〉0或(x-a)(x-b)〈0型不等式解法教师引导学生及时总结,以帮助学生形成完整的认知结构。

由常见问题的解决和总结,使学。

九年级数学九年级中考第一轮复习08.一元二次方程的解法及根的判别式

九年级数学九年级中考第一轮复习08.一元二次方程的解法及根的判别式

A.平行四边形
C. 矩形
B. 梯形
D. 平行四边形或梯形
三.典型例题解析
例1:用配方法证明:对于任意的实数m、n,都有 m2+10n2-6mn-4n+9的值不小于5. (m-3n)2+(n-2)2+5
三.典型例题解析 已知下列n(n为正整数)个关于x的一元二次方程: x2 -1=0 (1) x2+x -2 (2) 例2 x2+2x -3=0 (3) …… x2+(n-1)x -n=0 (n) (1)请解上述一元二次方程(1)(2)(3)(n); (2)请你指出这n个方程的根具有的共同特点 (写出一条即可).
2
有两个不相等的实数根,求k的最小整数.
四.随堂检测反馈
2. k取什么值时, 函数y=(k-1)x2-(2k+1)x+k+1
的图象与x轴有交点.
小结与回顾
再 见
二.基础练习
2. 你能判断关于x的方程x2-kx+k-2=0根 的情况吗?
3. 抛物线y=-x2+4x-4与坐标轴有 2 个交点. 4. 抛物线y=mx2+2x+1的值恒正,则m的取值 范围是 m>1 .
二.基础练习
5.在四边形ABCD中, AB∥CD,且AB、CD的 长是关于x的方程 x2-3mx+2m2+m-1=0的两 个根,则四边形ABCD是 ( ) D
三.典型例题解析
例3:1.k取什么值时, 方程x2-2x+k=0
(1)有两个相等的实数根?
(2)有两个实数根?
(3)没有实数根?
三.典型例题解析
例4. 关于x的方程(k2+1) x2-

一元二次方程复习教学案基础

一元二次方程复习教学案基础

一元二次方程解法复习教学案复习目标:1、 理解并掌握一元二次方程的有关概念。

2、 能根据不同的一元二次方程的特点,选用恰当的方法求解,使解题过程简单合理。

教学过程: 一、知识回顾1.一元二次方程的概念:一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.例题:关于x 的方程221(1)50a a a x x --++-=是一元二次方程,则a =__________.2.一元二次方程的根:(1)已知m 是方程012=--x x 的一个根,则代数式m m -2的值等于A 、1B 、-1C 、0D 、2(2)已知一元二次方程032=++px x 的一个根为3-,则_____=p3.一元二次方程的解法: (1)直接开平方法:形如)0(2≥=a a x或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.例题:(2x +3)2-25=0.(直接开平方法) 练习:(1)一元二次方程2(6)5x +=可转化为两个一次方程,其中一个一次方程是6x +=次方程是 . (2)方程(x-1)2=4的解是 . (2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解. 例题:02722=--x x(配方法)练习:(1)解方程:2230xx --=(2)用配方法解方程23610x x -+=,则方程可变形为( )A .21(3)3x -=B .213(1)3x -=C .2(31)1x -=D .22(1)3x -=(3)用配方法解方程2420xx -+=,下列配方正确的是A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=- D .2(2)6x -=(3)公式法:一元二次方程20(0)axbx c a ++=≠的求根公式是21,240)x b ac =-≥.例题:2260xx +-=(公式法)练习:(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.例题:()()2322+=+x x (因式分解法)练习:1.方程(1)x x x -=的解是.2.关于x 的一元二次方程022=+-m mx x的一个根为1,则方程的另一根为 。

一元二次方程教学案

一元二次方程教学案

江宁区体育中心位于南京市东南部,距青奥村22.7千米,运动
员甲坐公交车,乙骑自行车,他们分别从体育中心和青奥村出发,相向而
千米/时,自行车的速度是
.
年南京奥运花坛的设计中,有一个造型需要摆
盆鲜花,为青奥会作奉献的精神促使公园园林队的工人们以原计倍的速度,提前一小时完成了任务,工人们实际每小时摆放多少盆
图,如果要使整个挂图的面积是5400cm2 ,设金色纸边的宽
一元一次方程与一元二次方程有什么联系与区别?一元一次方程与一。

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0) 的解集 {x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aRax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0, b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的一元二次不等式;②判断一元二次不等式所对应的方程实根的个数,即讨论判别式Δ与0的关系; ③确定方程无实根或有两个相同实根时,可直接写出解集;确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集. [典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2}B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).[举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,52.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ f β>0,f α>0. (2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,fα<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( ) A .15a << B .51a -<<- C .51a -<≤-D .31a -<≤-2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)[举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞D .(),0∞-2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<<B .10a -<≤C .10a -≤<D .10a -≤≤3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫ ⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x ->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________.8.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3B .[]0,3C .()3,0-D .(,1)(3,)-∞+∞2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21 D .26[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,)-∞-⋃+∞B .(6,--C .(6,2))--⋃+∞D .(,2)-∞-2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞-B .(],2-∞-C .(6,)-+∞D .(,6)-∞-5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根 有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b 2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0){x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aR的解集 ax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤[典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2} B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭【答案】D【解析】∵2210x x --<,∴112x -<<,∴不等式2210x x --<解集为112x x ⎧⎫-<<⎨⎬⎩⎭.故选:D.2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).【解】(1)由231x ≤-,得2301x -≤-,即5301x x -≤- 则(53)(1)0x x --≤且1x ≠,解得:5(,1)[,)3-∞+∞(2)当12a =-时,原不等式1(1)(2)02x x ⇔--+<,解的{|2}x x ≠-;当12a <-时,原不等式(1)(2)0ax x ⇔-+<,又12a >-所以解集为1(,2)(,)a -∞-+∞;当102a -<<时,因为12a <-所以解集为1(,)(2,)a-∞-+∞.综上有,12a =-时,解集为{|2}x x ≠-;12a <-时,解集为1(,2)(,)a -∞-+∞;102a -<<时,解集为1(,)(2,)a-∞-+∞. [举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5【答案】B【解析】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B2.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥【答案】B 【解析】由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R{|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤. 故选:B.3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.【解】当a +1=0即 a =-1时,原不等式变为-x +2<0,即x >2. 当a>-1时,原不等式可转化为()1201x x a ⎛⎫--< ⎪+⎝⎭, ∴方程()1201x x a ⎛⎫--= ⎪+⎝⎭的根为1,21a +. 若-1<a<12-,则11a +>2,解得2<x <11a +;若a =12-,则11a +=2,解得x ∈∅;若a >12-,则11a +<2, 解得11a +<x <2.综上,当a >12-时,原不等式的解集为{x |11a +<x <2}; 当a =12-时,原不等式的解集为∅;当-1<a <12-时,原不等式的解集为{x |2<x <11a +}. 当a =-1时,原不等式的解集为{x |x >2}.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0. 【解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根, 所以132(1)3b aa a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0, 即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-; 当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ fβ>0,f α>0.(2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,f α<0. f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( )A .15a <<B .51a -<<-C .51a -<≤-D .31a -<≤-【答案】C【解析】当10a +=,即1a =-时,()()21110a x a x +-+-<可化为10-<,即不等式10-<恒成立;当10a +≠,即1a ≠-时,因为()()21110a x a x +-+-<对一切实数x 恒成立,所以()()2101410a a a +<⎧⎪⎨+++<⎪⎩,解得51a -<<-; 综上所述,51a -<≤-. 故选:C.2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+【答案】B【解析】解:当0x =时,不等式10恒成立; 当0x >时,由题意可得12a x x-+恒成立, 由11()22f x x x x x=+⋅=,当且仅当1x =时,取得等号. 所以22a -,解得1a -.综上可得,a 的取值范围是[)1,-+∞. 故选:B .3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)【答案】C【解析】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x ∴的取值范围为()(),13,-∞⋃+∞.故选:C . [举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞ D .(),0∞-【答案】A【解析】由题意,当x ∈R 时,不等式2210x x a ---≥恒成立,故2(2)4(1)0a ∆=-++≤ 解得2a ≤-,故实数a 的取值范围是(],2-∞- 故选:A2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B【解析】当0a =时,221=10ax ax +--<,对x R ∀∈恒成立; 当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有2(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤, 故选:B3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 【答案】B【解析】∵不等式224(2)30a x a x -+-+()>的解集为R , 当a -2=0,即a =2时,不等式为3>0恒成立,故a =2符合题意; 当a ﹣2≠0,即a ≠2时,不等式224(2)30a x a x -+-+()>的解集为R , 则()()220Δ424230a a a ->⎧⎪⎨⎡⎤=---⨯<⎪⎣⎦⎩,解得1124a <<, 综合①②可得,实数a 的取值范围是1124⎡⎫⎪⎢⎣⎭,.故选:B .4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或x >12≤xx =综上,实数x 的取值范围是4x ≤-,或12x ≥. 故选:A.5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞ B .[2,)+∞ C .(,4]-∞ D .(,2]-∞【答案】A【解析】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立, 所以对任意的2[1,0],242x m x x ≥-∈--恒成立, 因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞ 故选:A6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________. 【答案】[1,4]【解析】2|()|5515f x x ax ⇔-≤--≤, ①当0x =时,a R ∈;②当0x ≠时,2|()|5515f x x ax ⇔-≤--≤64x a x x x⇔-≤≤+, min 44242x x ⎛⎫∴+=+= ⎪⎝⎭,max 6321x x ⎛⎫-=-= ⎪⎝⎭,∴14a ≤≤, 综上所述:14a ≤≤. 故答案为:[]1,4.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________. 【答案】[]0,1【解析】由题意知:2302kx x x +->,即22>-k x x 对任意的()0,2x ∈恒成立,0k ∴≥ 当()0,2x ∈,3231012x kx x x->+-得: 233210kx x x x <+--,即200+21x kx <-对任意的()0,2x ∈恒成立,即210210=2x k x x x-<-对任意的()0,2x ∈恒成立, 令()102f x x x=-,()f x 在()0,2x ∈上单减,所以()()21f x f >=,所以1k ≤ 01k ∴≤≤.故答案为:[]0,18.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围. 【解】(1)解:由已知,210mx mx --<对于一切实数x 恒成立, 当0m =时,10-<恒成立,符合题意,当0m ≠时,只需20Δ40m m m <⎧⎨=+<⎩,解得40m -<<, 综上所述,m 的取值范围是(4-,0];(2)解:由已知,215mx mx m --<-+对[1x ∈,3]恒成立, 即2(1)6m x x -+<对[1x ∈,3]恒成立,22131()024x x x -+=-+>,∴261m x x <-+对[1x ∈,3]恒成立,令2()1g x x x =-+,则只需min6()m g x ⎡⎤<⎢⎥⎣⎦即可, 而()g x 在[1x ∈,3]上是单调递增函数,()[1g x ∴∈,7],∴66[,6]()7g x ∈,67m ∴<, 所以m 的取值范围是6(,)7-∞.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.(2)一元二次不等式ax 2+bx +c <0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,Δ=b 2—4ac >0或⎩⎪⎨⎪⎧a <0,b ,c ∈R .3.在区间内有解,可以参变分离为a >f (x )或a <f (x )的形式,转化为a >f (x )min 或a <f (x )max ;也可以通过对立命题转化为在区间内无解,从而转化为恒成立问题.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3 B .[]0,3 C .()3,0-D .(,1)(3,)-∞+∞【答案】A【解析】因为方程24=0x ax -++有两根,一个大于2,另一个小于1-,所以函数 ()24f x x ax =-++有两零点,一个大于2,另一个小于1-,由二次函数的图像可知,()()2010f f ⎧>⎪⎨->⎪⎩ ,即:()()2222401140a a ⎧-+⋅+>⎪⎨--+⋅-+>⎪⎩ 解得:0<<3a 故选:A.2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+【答案】B【解析】因为不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,所以不等式22m x x >-在1,22x ⎡∈⎤⎢⎥⎣⎦上有解, 令()22211t x x x =-=--,则min 1t =-,所以1m >-,所以实数m 的取值范围是()1,-+∞ 故选:B3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈ 所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选: C[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,25)(25,)-∞-⋃+∞B .(6,25]--C .(6,2)(25,)--⋃+∞D .(,2)-∞-【答案】B【解析】解:∵关于x 的方程2(2)60x m x m +-+-=的两根都大于2,令2()(2)6f x x m x m =+-+-,可得2(2)4(6)0222(2)42(2)60m m m f m m ⎧∆=---≥⎪-⎪->⎨⎪=+-+->⎪⎩,即252526m m m m ⎧≥≤-⎪<-⎨⎪>-⎩或, 求得625m -<≤- 故选:B.2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞【答案】A【解析】2(]0,x ∈时,不等式可化为22244x a x x x<=++;令2()4f x x x =+,则max 1()2a f x <==,当且仅当2x =时,等号成立,综上所述,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.故选:A .3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤【答案】D【解析】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x=+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤, 所以实数a 的取值范围为52a ≤, 故选:D.4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞- B .(],2-∞-C .(6,)-+∞D .(,6)-∞-【答案】A【解析】不等式等价于存在()1,4x ∈,使242a x x <--成立,即()2max42a x x <--设()224226y x x x =--=-- 当()1,4x ∈时,[)6,2y ∈--所以2a <- . 故选:A5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______【答案】52⎛⎤-∞ ⎥⎝⎦,【解析】解:由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解, 设1()f x x x =+,则函数1()f x x x=+在[]1,2上单调递增,所以5(1)()(2)2f f x f ≤≤=,所以实数a 的取值范围为52⎛⎤-∞ ⎥⎝⎦,.6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下,所以不等式2210ax x ++<有实数解,符合题意;当0a >时,要使不等式2210ax x ++<有实数解,则需满足440∆=->a ,可得1a <, 所以01a <<,综上所述:a 的取值范围是(),1-∞, 故答案为:(),1-∞.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+【解析】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.【答案】57m <【解析】若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立, 即可知:250mx mx m -+-<在13{|}x x x ∈≤≤上恒成立,令()25g x mx mx m =-+-,当0m =时,50-<恒成立, 当0m ≠时,对称轴为12x =. 当0m <时,有()g x 开口向下且在[]1,3上单调递减,∴在[]1,3上()()max 150g x g m ==-<,得5m <,故有0m <. 当0m >时,有()g x 开口向上且在[]1,3上单调递增,∴在[]1,3上()()max 3750g x g m ==-<, ∴507m <<, 综上,实数m 的取值范围为57m <, 故答案为:57m <9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围. 【解】解:(1)当1a =时,2()56(2)(3)f x x x x x =-+=--, 所以函数()y f x =的零点为2,3.(2)由2()(23)60f x ax a x =-++<可得(3)(2)0ax x --<, 当302a <<时,解得32x a <<;当32a =时,x 不存在,不等式的解集为∅; 当32a >时,解得32x a <<.综上,当302a <<时,不等式的解集3{|2}x x a <<,当32a =时,不等式的解集∅, 当32a >时,不等式的解集3{2}x x a<<. (3)1a =时,()(5)3f x m x m -+++在[2,2]-有解,即230x mx m ++-在[2,2]-有解,因为23y x mx m =++-的开口向上,对称轴2m x =-, ①22m --即4m ,2x =-时,函数取得最小值4230m m -+-即73m, 4m ∴. ②222m -<-<即44m -<<时,当2m x =-取得最小值,此时2304m m -+-,解得24m <. ③当22m-即4m -时,当2x =时取得最小值,此时4230m m ++-, 解得7m -,综上,2m 或7m -。

数学高考总复习优化设计一轮-第2章-一元二次函数、方程和不等式-第1节等式性质与不等式性质【课件】

数学高考总复习优化设计一轮-第2章-一元二次函数、方程和不等式-第1节等式性质与不等式性质【课件】
D. a + b ≤ 2
解析 ∵a+b=1,∴(a+b) =1=a +b +2ab≤2(a +b ),∴a +b ≥
2
2
2
2
2
2
2
1
,当且仅当
2
1
a=b=2时,等号成立,故 A 正确;∵a+b=1,a>0,b>0,∴a+1=2a+b>b,∴a-b>-1,
1
1
a-b
-1 1
∴2 >2 = ,故 B 正确;∵a+b=1≥2 ,∴ab≤ ,当且仅当 a=b= 时,等号成
可开方性
a>b>0,n∈N,n≥2⇒

>


1 1
微思考对于非零实数a,b,如果a>b,是否一定有 <

提示 不一定.当 a>b>0
a>0>b
1
时,

>
1
.

1
时,一定有

<
1
,当

0>a>b
?
1
时,也一定有

<
1
,但当

常用结论
1.倒数性质:若 0<a<x<b 或
2.若
b
a>b>0,m>0,则a
例 1(1)(2024·山东日照模拟)若
A.a<b<cຫໍສະໝຸດ B.c<b<a
C.a<c<b
D.b<a<c
1
a=2ln

一元二次方程教案第一课时

一元二次方程教案第一课时

一元二次方程教案第一课时一、教学目标知识与技能:学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式,并能正确地识别和转换一元二次方程。

过程与方法:通过观察、分析和归纳,学生能够掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。

情感态度与价值观:培养学生对数学的兴趣和爱好,激发学生的学习热情,培养学生的逻辑思维能力和创新精神。

二、教学重点和难点教学重点:一元二次方程的概念、一般形式及其解法。

教学难点:如何正确识别和转换一元二次方程,以及如何运用一元二次方程解决实际问题。

三、教学过程导入新课:通过实例引导学生了解一元二次方程的概念,并通过对比一元一次方程,突出一元二次方程的特点和差异。

知识讲解:详细讲解一元二次方程的一般形式、解法及其在实际问题中的应用,并配以相应的例题进行说明。

练习与巩固:提供相应的练习题目,让学生在课堂上进行练习,并引导学生通过自主思考和小组讨论解决问题。

总结与回顾:对本节课的知识点进行总结和回顾,加深学生对一元二次方程的理解和应用。

布置作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。

四、教学方法和手段教学方法:采用讲解、演示、小组讨论等多种教学方法相结合的方式进行教学,以提高学生的参与度和学习效果。

教学手段:运用多媒体课件、板书等多种教学手段辅助教学,提高教学效果和学生的学习兴趣。

五、课堂练习、作业与评价方式课堂练习:提供相应的练习题目,让学生通过自主思考和小组讨论解决问题,巩固所学知识。

作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。

作业可以分为基础题目和提高题目两个层次,以满足不同学生的需求。

评价方式:通过学生的课堂表现、练习和作业等多种方式进行评价,以全面了解学生的学习情况和进步程度。

同时,鼓励学生积极参与评价,提高评价的客观性和准确性。

六、辅助教学资源与工具教学课件:提供相应的多媒体课件,包括文字、图片、视频等多种形式的内容,以辅助教学。

2024年四川省巴中中学中考数学第一轮复习课件: 一元二次方程及其应用

2024年四川省巴中中学中考数学第一轮复习课件: 一元二次方程及其应用

(1)求该基地这两年邻水脐橙种植面积的年平均增长率;
解:设该基地这两年邻水脐橙种植面积的年平均增长率为 x,则
100(1+x)2=196,
解得 x1=0.4=40%,x2=-2.4.(不合题意,舍去)
答:该基地这两年邻水脐橙种植面积的年平均增长率为 40%.
上一页
目录
下一页
2023版 物理 云南专版
上一页
目录
下一页
2023版 物理 云南专版
常用根与系数关系变形有: x21+x22=(x1+x2)2-2x1x2, x11+x12=x1x+1xx2 2=-bc, xx21+xx12=(x1+xx2)1x22-2x1x2, (x1-a)(x2-a)=x1x2-a(x1+x2)+a2, (x1-x2)2=(x1+x2)2-4x1x2, |x1-x2|= |aΔ| .(Δ=b2-4ac)

(2)上述方程中有两个相等的实数根的是xx22-4x=x=--44;
(3)上述方程中没有实数根的是22xx22-3x+55==00;
(4)用三种不同的方法解方程x2-2x-3=0;
(5)根据方程x2-2x-3=0,求xx21+xx21的值.
上一页
目录
下一页
2023版 物理 云南专版
解:(4)①公式法:a=1,b=-2,c=-3,
(2)市场调查发现,当邻水脐橙的售价为 20 元/kg 时,每天能售出 200 kg, 售价每降价 1 元,每天可多售出 50 kg,为了推广宣传,基地决定降价促 销,同时减少库存,已知该基地邻水脐橙的平均成本为 12 元/kg,若要 使销售邻水脐橙每天获利 1 750 元.则售价应降低多少元?
销售中的“每每”问题:利润=单件利润×销量;每件成本为 a 元,售

初中一元二次方程教案模板

初中一元二次方程教案模板

初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。

2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。

3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。

二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。

2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。

三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。

2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。

3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。

4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。

5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。

6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。

四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。

2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。

3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。

4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。

2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。

3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。

4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。

六、教学资源:1. 教材:一元二次方程相关章节的内容。

2. 课件:教师制作的课件,包括图片、文字和动画等。

高三一轮复习教案-一元二次不等式(数学)

高三一轮复习教案-一元二次不等式(数学)

第1节 一元二次不等式一、考纲要求⑴经历从实际情境中抽象出一元二次不等式模型的过程。

⑵ 通过函数图象了解一元二次不等式与相应函数、方程的联系。

⑶会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

⑷掌握三个“二次”之间的关系并灵活运用。

二、知识回顾1.________________________________________________,称为一元二次不等式3.一元二次不等式解法的基本步骤: (1)化成标准形式:________________(2)判断________________,进一步求方程的根;(3)根据△及a 的正负,再根据“大于取两边,小于夹中间”写解集.设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如上表:4.分式不等式的解法1)等价变形法(1)化成标准形式: (2)等价变形)()(>x g x f 0)()(≥x g x f 2)分类讨论法:三、基础检测:1、解下列不等式:(1) 01442>+-x x (2)0322>-+-x x (3)(2x+1)(x-3)>3(x 2+2) . (4)213>-+x x (5)312<<x (6)111+<-x x 2.条件甲:x 3-4x 2+3x ≤0,条件乙:x 2-3x+2≤0,那么乙是甲的( ) A . 必要不充分条件 B . 充分不必要条件 C . 充要条件 D . 既不充分也不必要条件3.不等式2)1(+-x x ≥0的解集是( )A . {x|x>1}B . {x|x ≥1}C . {x|x ≥1或x= -2}D . {x|x ≥-2且x ≠1} 四、例题精析知识点1:解一元二次不等式例题1(1)0)3)((>--x a x 练习:03222>-+a ax x知识点2 一元二次不等式与一元二次方程的关系例题2不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______.巩固练习 设不等式210ax bx ++>的解集为13{|1}x x -<<,求a +b【例题3】求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义.巩固练习本题若要使值域为全体实数,m 的范围是什么?知识点3:一元二次不等式与二次函数的关系 【例题4】不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_____巩固练习若不等式ax 2+bx+1>0的解集是{x ㄧ-2<x <3},则a ,b 值分别为 .【例题5】若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围. 【分析】对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.巩固练习设22{|430},{|280}A x x x B x x x a =-+<=-+-≤,且A B ⊆,求a 的取值范围.1.不等式2x+3-x 2>0的解集是 ( ) A .{x| -1<x<3} B .{x| x>3或x<-1} C .{x| -3<x<1} D .{x| x>1或x<-3}2.不等式ax 2+bx+2>0的解集是11(,)23-,则a -b 等于 ( ) A .-4 B .14 C .-10 D .103.若关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则 ( ) A .m ≤-3 B .m ≥3 C .-3≤m<0 D .m ≥-44.如果关于x 的不等式(a -2)x 2+2(a -2)x -4<0对一切实数x 恒成立,则实数a 的取值范围是 ( ) A .(-∞,2] B .(-∞,-2)C .(-2,2]D .(-2,2)5.不等式x 2-px -q<0的解是2<x<3,则不等式qx 2-px -1>0的解是 ( ) A .11(,)(,)23-∞-⋃-+∞ B .11(,)23--C .11(,)(,)23-∞⋃+∞D 。

2025届高考数学一轮复习教案:一元二次函数、方程、不等式-二次函数与一元二次方程、不等式

2025届高考数学一轮复习教案:一元二次函数、方程、不等式-二次函数与一元二次方程、不等式

第三节二次函数与一元二次方程、不等式课程标准1.会从实际情境中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.考情分析考点考法:本节是高考的必考内容之一,常与函数、导数、解析几何等内容相结合命题,重点考查不等式的求解等问题.核心素养:数学运算、逻辑推理、直观想象【必备知识·逐点夯实】【知识梳理·归纳】1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0(a ,b ,c 均为常数,a ≠0).2.二次函数的零点一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x叫做二次函数的零点.【微点拨】二次函数的零点为对应方程的根,是一个实数,不是点的坐标.3.三个二次的对应关系(其中a >0)判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c 的图象方程ax 2+bx +c =0的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0的解集{x |x <x 1,或x >x 2}|2⎧⎫≠-⎨⎬⎩⎭b x x a __R __ax 2+bx +c <0的解集{x |x 1<x <x 2}⌀⌀【微点拨】1.解一元二次不等式一定要结合二次函数开口方向和不等号的方向下结论.2.若关于x 的一元二次不等式ax 2+bx +c <0(a >0)的解集为(m ,n ),则x =m 与x =n 为一元二次方程ax 2+bx +c =0(a >0)的两个根.4.简单的绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞),|x |<a (a >0)的解集为(-a ,a ).【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列结论正确的是()A .若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2B .若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0C .不等式x 2≤a 的解集为[-,]D .若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R 【解析】选AB .C .对于不等式x 2≤a ,当a >0时,其解集为[-,];当a =0时,其解集为{0},当a <0时,其解集为∅.D.若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为∅.2.(必修第一册P52例3变条件)不等式-x2-5x+6≥0的解集为()A.{x|-6≤x≤1}B.{x|2≤x≤3}C.{x|x≥3或x≤2}D.{x|x≥1或x≤-6}【解析】选A.不等式-x2-5x+6≥0可化为x2+5x-6≤0,即(x+6)(x-1)≤0,解得-6≤x≤1,所以不等式的解集为{x|-6≤x≤1}.3.(必修第一册P55习题2.3T3变条件)已知集合A=U2−2−3≤0,B== 2−4,则A∩B=()A.2,3B.2,3C.2,3D.2,3【解析】选C.因为x2-2x-3≤0,所以+1−3≤0,即-1≤x≤3,所以A=U−1≤≤3,B=U≥2,所以A∩B=2,3.4.(忽略a=0的情形致误)不等式ax2-ax+a+1>0对∀x∈R恒成立,则实数a的取值范围为()A.0,+∞B.0,+∞C.−∞,−0,+∞D.−∞,−+∞)【解析】选B.①当a=0时,1>0成立,②当a≠0时,只需>0=2−4+1<0,解得a>0,综上可得a≥0,即实数a的取值范围为0,+∞.【巧记结论·速算】1.已知关于x的一元二次不等式ax2+bx+c>0的解集为R,则一定满足>0<0;2.已知关于x的一元二次不等式ax2+bx+c>0的解集为⌀,则一定满足<0≤0;3.已知关于x的一元二次不等式ax2+bx+c<0的解集为R,则一定满足<0<0;4.已知关于x的一元二次不等式ax2+bx+c<0的解集为⌀,则一定满足>0≤0.【即时练】1.“-3<m<1”是“不等式−1x2+−1x-1<0对任意的x∈R恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.当m=1时,−1x2+−1x-1<0对任意的x∈R恒成立,当m≠1时,则<1<0,解得-3<m<1,故m的取值范围为{m|-3<m≤1}.故“-3<m<1”是“-3<m≤1”的充分不必要条件.2.若关于x的不等式mx2-mx-1≥0的解集是⌀,则m的取值范围是()A.[-4,0]B.(-4,0]C.[0,4)D.(-4,0)【解析】选B.当m=0时,mx2-mx-1≥0即-1≥0,解集是⌀,当m≠0时,不等式mx2-mx-1≥0的解集是⌀,需满足<0=−2+4<0,解得-4<m<0,所以m的取值范围是(-4,0].【核心考点·分类突破】考点一一元二次不等式的解法【考情提示】一元二次不等式是高考的热点问题,它常与集合的交集、并集、补集相结合出现在选择题中.含参数的一元二次不等式常与导数、圆锥曲线相交汇出现在解答题中,重点考查分类讨论思想和推理论证能力.角度1不含参数的一元二次不等式[例1]解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)9x2-6x+1>0;(4)x2<6x-10.【解析】(1)因为Δ=49>0,所以方程2x2+5x-3=0有两个不相等的实数根,解得x1=-3,x2=12,画出函数y=2x2+5x-3的图象,如图①所示.由图可得原不等式的解集为{x−3< <12}.(2)原不等式等价于3x2-6x+2≥0.因为Δ=12>0,所以方程3x2-6x+2=0有两个不相等的实数根,解得x1=3−33,x2=3+33,画出函数y=3x2-6x+2的图象,如图②所示,由图可得原不等式的解集为{x≤3−33或≥3+33}.(3)因为Δ=0,所以方程9x2-6x+1=0有两个相等的实数根,解得x1=x2=13.画出函数y=9x2-6x+1的图象如图③所示.由图可得原不等式的解集为{x≠13}.(4)原不等式可化为x2-6x+10<0,因为Δ=-4<0,所以方程x2-6x+10=0无实数根,画出函数y=x2-6x+10的图象如图④所示,由图象可得原不等式的解集为∅.【解题技法】解一元二次不等式的一般方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式的解集为R或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.角度2含参数的一元二次不等式[例2]解关于x的不等式.(1)x2+ax+1<0(a∈R);(2)ax2-(a+1)x+1<0.【解析】(1)Δ=a2-4.①当Δ=a2-4≤0,即-2≤a≤2时,原不等式无解.②当Δ=a2-4>0,即a>2或a<-2时,方程x2+ax+1=0的两根分别为x1x2则原不等式的解集为<<综上所述,当-2≤a≤2时,原不等式无解;当a>2或a<-2时,原不等式的解集为<<(2)若a=0,原不等式等价于-x+1<0,解得x>1.若a<0,原不等式等价于−x-1)>0,解得x<1或x>1.若a>0,原不等式等价于−x-1)<0.①当a=1时,1=1,−x-1)<0无解;②当a>1时,1<1,解−x-1)<0,得1<x<1;③当0<a<1时,1>1,解−x-1)<0,得1<x<1.综上所述,当a<0时,解集为{x|x<1或x>1};当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1};当a=1时,解集为⌀;当a>1时,解集为{x|1<x<1}.【解题技法】解含参数的一元二次不等式时分类讨论的方法(1)当二次项系数中含有参数时,应讨论二次项系数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应的一元二次方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集;确定方程有两个不相等的实根时,要讨论两根的大小关系,从而确定解集形式.【对点训练】1.(2024·莆田模拟)不等式1−−3<0的解集是()A.−1,3B.−3,1C.{x<1或x>3}D.{x<-3或x>1}【解析】选C.由1−−3<0,可得(x-1)(x-3)>0,所以x<1或x>3,所以不等式的解集为{x<1或x>3}.2.不等式−2r5K2>0的解集为________.【解析】不等式−2r5K2>0等价于−2+5−2>0,即2−5−2<0,解得2<x<52,所以不等式−2r5K2>0的解集为2<<答案:2<<3.(2024·玉林模拟)已知关于x的不等式ax2-b≥2x-ax s∈R.(1)若不等式的解集为−2≤≤−1,求a,b的值;(2)若a<0,b=2,解不等式.【解析】(1)原不等式可化为ax2+−2x-b≥0,由题知,-2,-1是方程ax 2+−2x -b =0的两根,由根与系数的关系得<0−K2=−3−=2,解得=−1=2.(2)当a <0时,原不等式化为−+1≤0,当2>-1,即a <-2时,解原不等式可得-1≤x ≤2;当2=-1,即a =-2时,原不等式即为+12≤0,解得x =-1;当2<-1,即-2<a <0时,解得2≤x ≤-1,综上所述,当-2<a <0时,不等式的解集为≤≤−1;当a =-2时,不等式的解集为−1;当a <-2时,不等式的解集为−1≤≤考点二三个二次的关系[例3](1)(2024·通辽模拟)已知不等式ax 2+bx -1>0的解集为−12<<−则不等式x 2-bx -a ≥0的解集为()A .{x |x ≤-3或x ≥-2}B .{x |-3≤x ≤-2}C .{x |2≤x ≤3}D .{x |x ≤2或x ≥3}【解析】选A .因为不等式ax 2+bx -1>0的解集为−12<<−所以ax 2+bx -1=0的两根分别为-12,-13,即−12+−=−−12×−=−1,解得a =-6,b =-5.所以不等式x 2-bx -a ≥0可化为x 2+5x +6≥0,其解集为{x |x ≤-3或x ≥-2}.(2)(多选题)(2024·安庆模拟)已知不等式ax 2+bx +c >0的解集为−12<<2,则下列结论正确的是()A.b>0B.c>0C.a+b+c>0D.a-b+c>0【解析】选ABC.由题意可知,方程ax2+bx+c=0的解为x1=-12,x2=2,且a<0,则-=x1+x2=32,=x1x2=-1,解得b=-32a,c=-a,令f=ax2+bx+c=ax2-32ax-a<0,对于A,b=-32a>0,故A正确;对于B,c=-a>0,故B正确;对于C,a+b+c=f1=a-32a-a=-32a>0,故C正确;对于D,a-b+c=f−1=a+32a-a=32a<0,故D错误.【解题技法】一元二次不等式与方程的关系的解题策略1.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.2.给出一元二次不等式的解集,相当于知道了相应二次函数图象的开口方向及与x轴的交点,可以利用代入根或利用根与系数的关系求解.【对点训练】(多选题)已知不等式ax2+bx+c>0的解集为<<,其中n>m>0,则以下结论正确的有()A.a<0B.b>0C.cx2+bx+a>0的解集为<<D.cx2+bx+a>0的解集为<1或>【解析】选ABC.因为不等式ax2+bx+c>0的解集为<<,所以a<0,故A 正确;因为n>m>0,令f=ax2+bx+c,所以-2>0,即b>0,故B正确;由上所述,易知f0<0,c<0,由题意可得m,n为一元二次方程ax2+bx+c=0的两根,则m+n=-,mn=,则1·1=,1+1=r B=-,即1,1为方程cx2+bx+a=0的解,则不等式cx2+bx+a>0的解集为<<故C正确,D错误.考点三一元二次不等式恒(能)成立问题角度1在R上的恒成立问题[例4](2024·重庆模拟)当a∈(t1,t2)时,不等式2−B−21−r2<3对任意实数x恒成立,则t1+t2的值为()A.-7B.6C.7D.8【解析】选B.由于1-x+x2=(−12)2+34>0,则不等式2−B−21−r2<3等价于4x2+(a-3)x+1>0,依题意,不等式4x2+(a-3)x+1>0对任意实数x恒成立,则Δ=(a-3)2-16<0,解得-1<a<7,于是t1=-1,t2=7,所以t1+t2=6.【解题技法】ax2+bx+c>0(<0)在R上恒成立的条件1.ax2+bx+c>0的解集为R,则一定满足(1)a =b =0,c >0或(2)>0<0;2.ax 2+bx +c <0的解集为R ,则一定满足(1)a =b =0,c <0或(2)<0<0.角度2在给定区间上的恒成立问题[例5]金榜原创·易错对对碰(1)(一题多法)若对于x ∈[1,3],mx 2-mx +m -6<0(m ≠0)恒成立,则m 的取值范围是________.【解析】由已知得,m (x -12)2+34m -6<0(m ≠0)在x ∈[1,3]上恒成立.方法一:令g (x )=m (x -12)2+34m -6(m ≠0),x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增,所以g (x )max =g (3)=7m -6<0,所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上单调递减,所以g (x )max =g (1)=m -6<0,所以m <6,所以m <0.综上所述,m 的取值范围是{m 0<<67或<0}.方法二:因为x 2-x +1=(x -12)2+34>0,又因为m (x 2-x +1)-6<0,所以m <62−r1.因为函数y =62−r1=6(K 12)2+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是{m 0<<67或<0}.答案:{m 0<<67或<0}(2)若mx 2-mx -1<0对于m ∈[1,2]恒成立,则实数x 的取值范围为________.【解析】设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则o1)<0,o2)<0,即2−−1<0,22−2−1<0,解得1−32<x <1+32,故实数x 的取值范围为(1−32,1+32).答案:(1−32,1+32)【解题技法】在给定区间上的恒成立问题的求解方法(1)若f(x)>0在集合A中恒成立,即集合A是不等式f(x)>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).(2)转化为函数值域问题,即已知函数f(x)的值域为[m,n],则f(x)≥a恒成立⇒f(x)min≥a,即m≥a;f(x)≤a恒成立⇒f(x)max≤a,即n≤a.(3)对于以下两种题型,可以利用二次函数在端点m,n处的取值特点确定不等式求范围.①ax2+bx+c<0(a>0)对x∈[m,n]恒成立;②ax2+bx+c>0(a<0)对x∈[m,n]恒成立.提醒:一般地,知道谁的范围,就选谁当主元;求谁的范围,谁就是参数.如本例(1)中建立关于x的函数,m为参数,本例(2)中建立关于m的函数,x为参数.角度3不等式能成立或有解问题[例6](一题多法)若关于x的不等式x2-ax+7>0在2,7上有实数解,则a的取值范围是()A.−∞,8B.−∞,8C.−∞,27D.【解析】选A.方法一:(分离参数法)不等式x2-ax+7>0在2,7上有实数解,等价于不等式a<x+7在2,7上有实数解,因为函数f(x)=x+7在(2,7)上单调递减,在(7,7)上单调递增,又由f(2)=2+72=112,f7=7+77=8,所以f max<f7=8,所以a<8,即实数a的取值范围是−∞,8.方法二:(最值转化法)原不等式在(2,7)上有解,它的否定是不等式x2-ax+7>0在(2,7)上无解,则4−2+7≤049−7+7≤0,解得a≥8,因此不等式x2-ax+7>0在(2,7)上有解时a<8.【解题技法】一元二次不等式在给定区间上的有解问题解题策略(1)分离参数法:把不等式化为a>f(x)或a<f(x)的形式,只需a>f(x)min或a<f(x)max.(2)最值转化法;若f(x)>0在集合A中有解,则函数y=f(x)在集合A中的最大值大于0;若f(x)<0在集合A中有解,则函数y=f(x)在集合A中的最小值小于0.(3)数形结合法:根据图象列出约束条件求解.(4)最后一定要注意检验区间的开闭.【对点训练】1.(2024·大同模拟)已知命题p:∃x∈R,使得ax2+2x+1<0成立为真命题,则实数a的取值范围是()A.−∞,0B.−∞,1C.0,1D.0,1【解析】选B.命题p为真命题等价于不等式ax2+2x+1<0有解.当a=0时,不等式变形为2x+1<0,则x<-12,符合题意;当a>0时,Δ=4-4a>0,解得0<a<1;当a<0时,总存在x∈R,使得ax2+2x+1<0;综上可得实数a的取值范围为−∞,1.2.若不等式x2+a(x-1)+1≥0对一切x∈(1,2]都成立,则a的最小值为()A.0B.-22C.-22-2D.-5【解析】选D.记f(x)=x2+a(x-1)+1=x2+ax+1-a,要使不等式x2+a−1+1≥0对一切x∈(1,2]都成立,则−2≤1o1)=2≥0或1<−2<2o−2)=−24−+1≥0或−2≥2o2)=+5≥0,解得a≥-2或-4<a<-2或-5≤a≤-4,综上,a≥-5.3.已知对任意m∈1,3,mx2-mx-1<-m+5恒成立,则实数x的取值范围是()B.,+∞C.【解析】选D.对任意m∈1,3,不等式mx2-mx-1<-m+5恒成立,即对任意m∈1,3,m2−+1<6恒成立,所以对任意m∈1,3,x2-x+1<6恒成立,所以对任意m∈1,3,x2-x6=2恒成立,所以x2-x+1<2,解得1−52<x<1+5,故实数x【加练备选】已知f=x2+2−x+3a+b,若存在常数a,使f(x)≥0恒成立,则b的取值范围是________.【解析】使f(x)≥0恒成立,则Δ=(2-a)2-4×1×(3a+b)≤0,化简整理得4b≥a2-16a+4=(a-8)2-60,由于存在常数a,使f(x)≥0恒成立,可知4b≥(2−16+4)min,因此4b≥-60,解得b≥-15.答案:[-15,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (2)
(3) (4)
2.一元二次方程x2–2x = 0的解是()
A、0B、0或2 C、2 D、此方程无实数解
3.关于x的一元二次方程ax2+bx+c=0,若a+b+c=0则该方程必有一根为()
(A)1(B)—1(C)0(D)2
4.解下列方程
(1)(2x+3)2-25=0.(直接开平方法)(2) (配方法)
A.(x-4)2=9 B.(x+4)2=9; C.(x-8)2=16 D.(x+8)2=57
2.6关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根为0,则a的值为.
3.用配方法将二次函数 写成形如 的形式,则m、n的值分别是()
BA、 B、 C、 D、
4.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比( )C
3.每件商品的成本是120元,试销了一阶段后,发现每件售价(元)与产品的日销售量(件)始终存在下表中的数量关系,但每天的盈利(元)却不一样.为找到每件产品的最佳定价,商场经理请一位营销策划员通过计算,在不改变每件售价(元)与日销售量(件)之间数量关系的情况下,每件定价为 元时,每日盈利可达到最佳数1600元.若请你做这位营销策划员, 的值应是几?
(3)(x+2)2=3(x+2)(因式分解法)(4) (公式法)
4.用适当的方法解下列方程:
(1)x(3x+1)=9x+3(2)
(3)(2x+1)2=(x-1)2(4)x2+6x=1
(5)(x-2)(x+3)=66;(6)(x+1)2=3x+2.
【中考聚焦】
1.用配方法解一元二次方程x2+8x+7=0,则方程可变形为( ).
例3.已知:如图,在△ABC中,∠B=900,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?
解——解出所列的方程
验——将方程的解代入方程中检验,回到实际问题中检验
答——作答下结论
【典型例题】
例1.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少个?
例2.某电脑公司2007年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2009年经营总收入要达到2160万元,且计划从2007年到2009年,每年经营总收入的年增长率相同,问2008年预计经营总收入为多少万元?
每件售价(元)
130
150
165
每日销售(件)
70
50
35
4.(2006年重庆市)机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.
(A)只有小敏回答正确 (B)只有小聪回答正确
(C)小敏、小聪回答都正确 (D)小敏、小聪回答都不正确
3.已知关于x的一元二次方程 的一个根是零,求m的值。
4.已知多项式 .试说明:不论x为任何实数,此多项式的值总为正数。
5.用适当的方法解下列方程:
(1) (2)
(3) (4)
【当堂反馈】
1.下列方程中哪些是一元二次方程?试说明理由。
(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?
5.如图,等腰Rt△ 中, ,动点 从点 出发,沿 向点 移动.通过点 引平行于 、 的直线与 、 分别交于点R、Q,问:AP等于多少厘米时,平行四边形PQCR的面积等于16cm2?
【中考聚焦】
1.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图3-9-4所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为 cm,那么 满足的方程是()
C. D.
3.小娟家有一块矩形花园,他爸爸想把它改建成正方形,这样就必须将长减少3m,宽增加2m,同时面积减少5m2.问改建后的花园面积为m2
4.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
7.观察下表,填表后再解答问题:
(1)试完成下列表格:
序号
1
2
3

图形

的个数
8
24

的个数
1
4

(2)试求第几个图形中“ ”的个数和“ ”的个数相等?
第一轮复习教学案一元二次方程的应用
总第课时
教学过程
个人主页
【知识梳理】
解一元二次方程的数学应用题的一般步骤:
找——找出题中的等量关系
设——设未知数
列——列出方程,即根据找出的等量关系列出含有未知数的等式
(2)配方法:配方法解一元二次方程的步骤:1、把常数项移到方程右边,再在方程的两边同时除以使新方程的二次项系数为1;2、在方程的两边各加上的一半的平方,使左边成为完全平方;3、如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。
(3)公式法:一元二次方程 的求根公式。
第一轮复习教学案一元二次方程
总第课时
教学过程
个人主页
【知识梳理】
1.只含有,并且未知数的最高次数是的整式方程叫做一元二次方程).通常可写成如下的一般形式:。其中 叫做, 叫做; 叫做, 叫做, 叫做。
2.一元二次方程的解法
(1)直接开平方法:对于形如 (a≠0,a ≥0)的方程,都可以用直接开平方法解。解法的根据是。要特别注意,由于负数没有平方根,所以括号中规定了范围,否则方程无实数解。
A.增加6m2B.增加9m2C.减少9m2D.保持不变
5.在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为B
A.600m2B.551m2
C.550m2D.500m2
6.解下列方程
(1)3x2-x=0.(2)3x2-5x=2.(3)2x2+x-7=0.
A.x2+130x-1400=0B.x2+65x-350=0
C.x2-130x-1400=0D.x2-长为40米,宽为26米的矩形场地 上修建三条同样宽的甬路,使其中两条与 平行,另一条与 垂直,其余部分种草,若使每一块草坪的面积都为144米2,则甬路的宽度为。
(3)在(1)中,△PBQ的面积能否等于7cm2?说明理由.
【当堂反馈】
1.直角三角形的面积是30,两直角边的和是17,则斜边长为()
A.17 B.26 C.30 D.13
2.某型号的手机连续两次降价,每个售价由原来的1 185元降到了580元.设平均每次降价的百分率为 ,则列出方程正确的是()
A. B.
(4)因式分解法:因式分解法解一元二次方程的根据是:若A·B=0,则A=0或B=0。
【典型例题】
1.等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为()
A.8 B.10 C.8或10 D.不能确定
2.钟老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为1”,小聪回答:“方程有一根为2”。则你认为( )
相关文档
最新文档