全等三角形的判定边角边课件
合集下载
《三角形全等的判定 “角边角”、“角角边”》课件(3套)

\ DAOC DBOD (ASA)
2. 如图,点B、E、C、F在一条直线上,AB=DE,
AB∥DE,∠A=∠D.
求证:BE=CF.
AD
BE
CF
(2) (1)
小明踢球时不慎把一块 三角形玻璃打碎为两块,他是 否可以只带其中的一块碎片 到商店去,就能配一块于原来 一样的三角形玻璃呢?
如果可以,带哪块去合适 呢?为什么?
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上 的高也相等.
画法:1、画A/B/=AB; 2、在 A/B/的同旁画∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D,B/E交于点C/。
△A/B/C/就是所要画的三角形。
C
E
D
C’
A
B
通过实验你发现了什么规律?A’
B’
探究反映的规律是:
两角和它们的夹边对应相等的两个三角形全 等 (可以简写成“角边角”或“ASA”)。
第十二章 全等三角形
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法“ASA”
和“AAS”.
2.会用三角形全等的判定方法“ASA”和“AAS”
全等三角形的判定边边边课件

都相等,则这两个三角形全等。
定理应用
总结词
边边边全等判定定理在几何证明、三角形计算和实际问题中有着广泛的应用。
详细描述
在几何证明中,可以利用边边边全等判定定理来证明两个三角形全等,从而得出其他几何性质和关系。在三角形 计算中,可以利用边边边全等判定定理来找出相等的三角形并计算它们的面积、周长等。在解决实际问题时,如 测量、工程、建筑设计等领域中,也可以利用边边边全等判定定理来解决问题。
总结词
等边三角形的高、中线和角平分线三线合一。
详细描述
在等边三角形中,高、中线和角平分线是重合的。这是因 为等边三角形的每个角都是60度,所以高也是角平分线 ,同时高也是中线。
04 边边边全等判定定理的例 题解析
例题一:求证两个三角形全等
总结词
理解边边பைடு நூலகம்全等判定定理
详细描述
本例题通过展示两个三角形的三边分别相等,证明这两个三角形全等。通过此例 题,学生可以深入理解边边边全等判定定理的运用。
AAS(两角及非 HL(直角边斜边
夹边全…
公理)
如果两个三角形的三组对 应边分别相等,则这两个 三角形全等。
如果两个三角形的两组对 应边和夹角分别相等,则 这两个三角形全等。
如果两个三角形的两个角 和夹边分别相等,则这两 个三角形全等。
如果两个三角形的两个角 和非夹边分别相等,则这 两个三角形全等。
全等三角形的判定边边边课件
目录
• 全等三角形的基本概念 • 边边边全等判定定理 • 边边边全等判定定理的推论 • 边边边全等判定定理的例题解析 • 练习题及答案
01 全等三角形的基本概念
全等三角形的定义
全等三角形
两个三角形能够完全重合,则这两个 三角形称为全等三角形。
定理应用
总结词
边边边全等判定定理在几何证明、三角形计算和实际问题中有着广泛的应用。
详细描述
在几何证明中,可以利用边边边全等判定定理来证明两个三角形全等,从而得出其他几何性质和关系。在三角形 计算中,可以利用边边边全等判定定理来找出相等的三角形并计算它们的面积、周长等。在解决实际问题时,如 测量、工程、建筑设计等领域中,也可以利用边边边全等判定定理来解决问题。
总结词
等边三角形的高、中线和角平分线三线合一。
详细描述
在等边三角形中,高、中线和角平分线是重合的。这是因 为等边三角形的每个角都是60度,所以高也是角平分线 ,同时高也是中线。
04 边边边全等判定定理的例 题解析
例题一:求证两个三角形全等
总结词
理解边边பைடு நூலகம்全等判定定理
详细描述
本例题通过展示两个三角形的三边分别相等,证明这两个三角形全等。通过此例 题,学生可以深入理解边边边全等判定定理的运用。
AAS(两角及非 HL(直角边斜边
夹边全…
公理)
如果两个三角形的三组对 应边分别相等,则这两个 三角形全等。
如果两个三角形的两组对 应边和夹角分别相等,则 这两个三角形全等。
如果两个三角形的两个角 和夹边分别相等,则这两 个三角形全等。
如果两个三角形的两个角 和非夹边分别相等,则这 两个三角形全等。
全等三角形的判定边边边课件
目录
• 全等三角形的基本概念 • 边边边全等判定定理 • 边边边全等判定定理的推论 • 边边边全等判定定理的例题解析 • 练习题及答案
01 全等三角形的基本概念
全等三角形的定义
全等三角形
两个三角形能够完全重合,则这两个 三角形称为全等三角形。
全等三角形的判定角角边(共7张PPT)

∴ ∠B= ∠C(等边对等角)
ABC和△ 证明:在△ ABD中 求证: △ABC≌△ABD
边分别对应相等,那么这两个三角形是否一定全等?
D
∴△ABC≌△ABD(AAS)
例4、已知如图,∠1 = ∠2,∠C = ∠D
例1、已知如图,∠1 = ∠2,∠C = ∠D
∠1 = ∠2(已知) 已知:∠A=∠A′, ∠B=∠B′, AC=A′C′
∴△ABC≌△ABD(AAS)
C
例2、如图,已知AB=AC,∠ADB= ∠AEC,求证:
△ABD≌△ACE
证明:∵ AB=AC, 如图:如果两个三角形有两个角及其中一个角的对
∴ ∠B= ∠C(等边对等角) 例2、如图,已知AB=AC,∠ADB= ∠AEC,求证:△ABD≌△ACE
∴ ∠B= ∠C(等边对等角) 例1、已知如图,∠1 = ∠2,∠C = ∠D
∴ △ABD≌△ACE(AAS) 证明:在△ABC和△ABD中
证明:在△ABC和△ABD中 如图:如果两个三角形有两个角及其中一个角的对 证明:在△ABC和△ABD中
B
A
D
EC
例4、已知如图,∠1 = ∠2,∠C = ∠D 求证:AC = AD
证明:在△ABC和△ABD中
D
∠1 = ∠2 ∠C = ∠D
∴ △ABC≌△A′B′C′(A.S.A.)
定理: 如果两个三角形有两个角和其中 一个角的对边分别对应相等,那么这两个三角
形全等.B
CE
F
例1、已知如图,∠1 = ∠2,∠C = ∠D
(三角形的求内角证和等于:180°△) ABC≌△ABD
证明:在△ABC和△ABD中
全等三角形的判定角角边
八年级数学三角形全等的判定(边角边)优秀课件

A E
B
D
F C
小 结
两边及其夹角分别 相等的两个三角形
三角形全等的“S.A.S.〞判定:两边及其 夹角分别相等的两个三角形全等.
“S.S.A.〞不能判定两个三角形全等.
注意:1.两边,必须找“夹角〞; 2.一角和这角的一夹边,必 须找这角的另一夹边.
如果一个三角形的两边及一角,那么有几种可能的情况呢?每一种情况 得到的三角形都全等吗?
应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不 夹在两边的中间,形成两边一对角.
如果两个三角形有两边及一角对应相等时,应分为几
种情形讨论?
A
A
B
C A'
C' B'
边-角-边
第一种
B
C
A'Biblioteka 角〞AC =A′C′ ,
∴ △ABC ≌△ A′B′ C′〔S.A.S.〕.
A′
B′
典例精析
例1 如图,线段AC,BD相交于点E,AE=DE,BE=CE, 求证:△ABE≌△DCE.
证明:在△ABE和△DCE中, ∵AE=DE(已知), ∠AEB=∠DEC(对顶角相等), BE=CE(已知),
∴ △ABE≌△DCE(S.A.S.).
A B
D E
C
例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直 接到达A和B的点C,连接AC并延长到点D,使CD=CA,连结BC并延长到点E,
使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
分析: A
如果能证明△ABC≌ △DEC, 就可以得出
AB=DE.由题意知, △ABC和△DEC具备“边
B
D
F C
小 结
两边及其夹角分别 相等的两个三角形
三角形全等的“S.A.S.〞判定:两边及其 夹角分别相等的两个三角形全等.
“S.S.A.〞不能判定两个三角形全等.
注意:1.两边,必须找“夹角〞; 2.一角和这角的一夹边,必 须找这角的另一夹边.
如果一个三角形的两边及一角,那么有几种可能的情况呢?每一种情况 得到的三角形都全等吗?
应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不 夹在两边的中间,形成两边一对角.
如果两个三角形有两边及一角对应相等时,应分为几
种情形讨论?
A
A
B
C A'
C' B'
边-角-边
第一种
B
C
A'Biblioteka 角〞AC =A′C′ ,
∴ △ABC ≌△ A′B′ C′〔S.A.S.〕.
A′
B′
典例精析
例1 如图,线段AC,BD相交于点E,AE=DE,BE=CE, 求证:△ABE≌△DCE.
证明:在△ABE和△DCE中, ∵AE=DE(已知), ∠AEB=∠DEC(对顶角相等), BE=CE(已知),
∴ △ABE≌△DCE(S.A.S.).
A B
D E
C
例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直 接到达A和B的点C,连接AC并延长到点D,使CD=CA,连结BC并延长到点E,
使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
分析: A
如果能证明△ABC≌ △DEC, 就可以得出
AB=DE.由题意知, △ABC和△DEC具备“边
三角形全等的判定——边角边ppt课件

对《三角形全等的判定——边角边》的说明
精选版课件ppt
1
教材分析
精选版课件ppt
2
教材内容
本节课是人教版教材八年级上册第十一章第 二节第二课时----《三角形全等的判定----边角 边》
精选版课件ppt
3
内容解析
核心知识:
两个三角形全等的条件----边角边
课标要求:
探索并掌握两个三角形全等的条件。
精选版课件ppt
6
学情分析
精选版课件ppt
7
●知识经验:
学生在前一课时经历了探索两个三角形 全等的条件----边边边的过程,具备了利用 画图的方法构造全等三角形的活动经验,并 且对研究几何命题的过程有了初浅的认识。 但是可能有个别学生会完全照搬“边边边”, 而忽略两种方法的区别。
精选版课件ppt
充分问题思考,大胆交流观点,让学生明确 了本节课的核心内容,同时调动学生的思考积极
性,激起求知欲望。
精选版课件ppt
20
环节三
A
已知△ABC, 画△DEF,使ED=BA , EF= BC,∠E=∠B
B M
D
(怎样画△DEF?)
要求:1、利用手中工具
E
2、剪下所画的△DEF,放到△ABC上,观察是否
2、用数学语言表述
精选版课件ppt
23
设计意图:
学生的语言表述不够准确,但充分暴露了对边角 边命题的认识和理解,又能够对学生的抽象概括能力 和语言表达能力进行培养,同时类比思想方法得到渗 透。
在符号翻译的过程中,可以让学生对命题的具体 条件和结论有更进一步的深化丰富。至此,学生能够 根据边角边定理判定两个三角形全等。
环节六
1 本节课你有什么收获和感悟? 2 请构建本节课的知识框架?
精选版课件ppt
1
教材分析
精选版课件ppt
2
教材内容
本节课是人教版教材八年级上册第十一章第 二节第二课时----《三角形全等的判定----边角 边》
精选版课件ppt
3
内容解析
核心知识:
两个三角形全等的条件----边角边
课标要求:
探索并掌握两个三角形全等的条件。
精选版课件ppt
6
学情分析
精选版课件ppt
7
●知识经验:
学生在前一课时经历了探索两个三角形 全等的条件----边边边的过程,具备了利用 画图的方法构造全等三角形的活动经验,并 且对研究几何命题的过程有了初浅的认识。 但是可能有个别学生会完全照搬“边边边”, 而忽略两种方法的区别。
精选版课件ppt
充分问题思考,大胆交流观点,让学生明确 了本节课的核心内容,同时调动学生的思考积极
性,激起求知欲望。
精选版课件ppt
20
环节三
A
已知△ABC, 画△DEF,使ED=BA , EF= BC,∠E=∠B
B M
D
(怎样画△DEF?)
要求:1、利用手中工具
E
2、剪下所画的△DEF,放到△ABC上,观察是否
2、用数学语言表述
精选版课件ppt
23
设计意图:
学生的语言表述不够准确,但充分暴露了对边角 边命题的认识和理解,又能够对学生的抽象概括能力 和语言表达能力进行培养,同时类比思想方法得到渗 透。
在符号翻译的过程中,可以让学生对命题的具体 条件和结论有更进一步的深化丰富。至此,学生能够 根据边角边定理判定两个三角形全等。
环节六
1 本节课你有什么收获和感悟? 2 请构建本节课的知识框架?
全等三角形的判定(一)边角边_课件33

延长BO并延长至A使OB=OA
连接AD,
C
B
那么量出AD的长,就是B、C的距离. 为什么?
O D
A
画一个三角形,使它的一个内角45°, 夹这个角的一条边为3厘米,另一条 边长为4厘米。
画图 步骤
1.画一线段AB,使它等于4cm ; 2.画∠ MAB= 45°; 3.在射线AM上截取AC=3cm ; △ ABC就是所求的三角形。 4.连结BC.
发现:因为全等三角形的对应角相等,对应边相等, 所以,证明分别属于两个三角形的线段相等或角相 等的问题,常常通过证明两个三角形全等来解决。
练习 1:如图 19.2.4,在△ ABC中, AB= AC, AD平 分 ∠ BAC , 求 证 : △ ABD≌△ACD 。 能 证 明 ∠
ADB=∠ADC=90。吗?能,请说明理由。
不能
作业:
教材:P65 练习2、3题 作业精编:p43,p44全部
全等三角形的性质 A
若△AOC≌△BOD, 对应边: AC= BD , AO= BO , CO= DO ,
对应角有: ∠A= ∠B , ∠C= ∠D , ∠AOC= ∠BOD ;
D O
C
B
思考:
如果两个三角形有三组对应相等的元素 (边或角),那么会有哪几种可能的情况?
两边一角
两边夹一角 两边一对角 边—角—边 边—边—角
证明:
∵
∵ ∴
AD平分∠BAC, ∠BAD=∠CAD.
在△ABD与△ACD中, AB=AC,(已知) ∠BAD=∠CAD,(已证) AD=AD,(公共边)
图 19.2.4
∴△ABD≌△ACD(S.A.S.)。
∵ ∠ADB= ∠ADC(全等三角形的对应角相等)
连接AD,
C
B
那么量出AD的长,就是B、C的距离. 为什么?
O D
A
画一个三角形,使它的一个内角45°, 夹这个角的一条边为3厘米,另一条 边长为4厘米。
画图 步骤
1.画一线段AB,使它等于4cm ; 2.画∠ MAB= 45°; 3.在射线AM上截取AC=3cm ; △ ABC就是所求的三角形。 4.连结BC.
发现:因为全等三角形的对应角相等,对应边相等, 所以,证明分别属于两个三角形的线段相等或角相 等的问题,常常通过证明两个三角形全等来解决。
练习 1:如图 19.2.4,在△ ABC中, AB= AC, AD平 分 ∠ BAC , 求 证 : △ ABD≌△ACD 。 能 证 明 ∠
ADB=∠ADC=90。吗?能,请说明理由。
不能
作业:
教材:P65 练习2、3题 作业精编:p43,p44全部
全等三角形的性质 A
若△AOC≌△BOD, 对应边: AC= BD , AO= BO , CO= DO ,
对应角有: ∠A= ∠B , ∠C= ∠D , ∠AOC= ∠BOD ;
D O
C
B
思考:
如果两个三角形有三组对应相等的元素 (边或角),那么会有哪几种可能的情况?
两边一角
两边夹一角 两边一对角 边—角—边 边—边—角
证明:
∵
∵ ∴
AD平分∠BAC, ∠BAD=∠CAD.
在△ABD与△ACD中, AB=AC,(已知) ∠BAD=∠CAD,(已证) AD=AD,(公共边)
图 19.2.4
∴△ABD≌△ACD(S.A.S.)。
∵ ∠ADB= ∠ADC(全等三角形的对应角相等)
三角形全等的判定:角边角和角角边_课件

由三角形内角和定理可知,∠C =∠F. 这样一来,AAS→ASA △ABC ≌△DEF
结论
两角和其中一角对边对应相等的两个三角形全等 简写为“角角边”或“AAS”.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC与△DEF 中
∠B =∠E ∠A =∠D
一定要按“角,角, 边”的顺序列举条件
AC =DF
已知:点E 是正方形ABCD 的边CD上一点,点F 是CB 的延长 线上一点,且EA⊥AF,求证:DE=BF.
提示:证明△ABF ≌△ADE.
已知△ABC 中,BE ⊥AD 于E,CF⊥AD 于F,且BE =CF, 那么BD与DC 相等吗?
提示:证明△BDE ≌△CDF.
补充题 如图,AB∥CD,AD∥BC,那么 AB =CD 吗?为什么 ?AD 与BC 呢?
2.如图,要测量池塘两岸相对的两点A,B 的距离,可以在 池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画BF 的 垂线DE,使E与A,C在一条直线上,这时测得DE 的长就是 AB 的长.为什么?
如图,小明、小强一起踢球,不小心把一块三角形的装饰玻 璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其 中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗?
结论
两角及夹边对应相等的两个三角形全等 简写为“角边角”或“ASA”.
结论 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能 制作一张与原来同样大小的新教具吗?能恢复原来三角形 的原貌吗?
这利用的是什么原理呢?
ASA可以判定三角形全等.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC 与△DEF 中
八年级数学
精品 课件
第十二章 全等三角形:三角形全等的判定
结论
两角和其中一角对边对应相等的两个三角形全等 简写为“角角边”或“AAS”.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC与△DEF 中
∠B =∠E ∠A =∠D
一定要按“角,角, 边”的顺序列举条件
AC =DF
已知:点E 是正方形ABCD 的边CD上一点,点F 是CB 的延长 线上一点,且EA⊥AF,求证:DE=BF.
提示:证明△ABF ≌△ADE.
已知△ABC 中,BE ⊥AD 于E,CF⊥AD 于F,且BE =CF, 那么BD与DC 相等吗?
提示:证明△BDE ≌△CDF.
补充题 如图,AB∥CD,AD∥BC,那么 AB =CD 吗?为什么 ?AD 与BC 呢?
2.如图,要测量池塘两岸相对的两点A,B 的距离,可以在 池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画BF 的 垂线DE,使E与A,C在一条直线上,这时测得DE 的长就是 AB 的长.为什么?
如图,小明、小强一起踢球,不小心把一块三角形的装饰玻 璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其 中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗?
结论
两角及夹边对应相等的两个三角形全等 简写为“角边角”或“ASA”.
结论 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能 制作一张与原来同样大小的新教具吗?能恢复原来三角形 的原貌吗?
这利用的是什么原理呢?
ASA可以判定三角形全等.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC 与△DEF 中
八年级数学
精品 课件
第十二章 全等三角形:三角形全等的判定
1324全等三角形的判定角边角角角边课件

∠A +∠B +∠C=1800,
∠D +∠E +∠F =1800,
(三角形内角和 1800)
B
C ∵ ∠A =∠D, ∠B=∠E,
D
∴ ∠C=∠F,
∴ ∠B=∠E, (已知)
BC=EF, (已知)
F
∠C=∠F, (已证)
E
∴ △ABC ≌△DEF (ASA)
三角形全等判定方法(三)
等.( 边两可 ”角以)和简其写中成一角“的A对.A边.S分.”别或对“应角相角等的两个三角形全
三角形全等的应用,应注意什么? (1)找准对应边和对应角 (2)选择合适的判定方法
请大家默看一遍,再次ຫໍສະໝຸດ 忆本节课收获。你能行吗?× AB=DE可以吗?
B A
C
F
D E
1、如图∠ACB=∠DFE, BC=EF ,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△ DEF (写出 一个即可)。
知识应用
3. 如图,要测量河两岸相对的两点 A,B的距离,可以 在AB的垂线BF上取两点 C,D,使BC=CD,再定出 BF的垂线DE,使A, C,E在一条直线上, 这时测得 DE的长就是AB的长。为什么?
证明:
在△ABC和△EDC中,
A
∠B=∠EDC= 900
BC=DC, ∠1=∠2, ∴ △ABC ≌△DEF (ASA)
AD B EC
证明:∵ BE=CF(已知) ∴BC=EF(等式性质 )
∵ AB∥DE AC∥DF (已知)
F ∴ ∠B=∠DEF , ∠ACB=∠F
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F
八年级数学上册 第十三章 全等三角形 13.2 三角形全等的判定—边角边课件

解:在△AOB和△COD中 ∵ OA=OC(已知) ∠AOB=∠COD(对顶角)
OB=OD(已知)
∴ △AOB≌△COD(S.A.S.)
第十三页,共十九页。
A
B
O
D
C
证明的书写步骤:
1.准备(zhǔnbèi)条件:证全等时要用的条件 要先证好;
2.三角形全等书写(shūxiě)三步骤: ①写出在哪两个三角形中
②摆出三个条件(注意:按定理名称的顺序书写)
③写出全等结论
第十四页,共十九页。
小兰做了一个如图所示的风筝,其中∠EDH=∠FDH, ED=FD ,将上述条件标注(biāo zhù) 在图中,小明不用测量就能知道EH=FH吗?与同桌进行交流.
D
解:在△EDH和△FDH中,
∵ ED=FD(已知)
E
F
∠EDH=∠FDH(已知)
∴ △ABE≌△DCE (S.A.S.)
第九页,共十九页。
已知:如图,AD∥BC,AD=CB. 求证(qiúzhèng): △ADC≌△CBA
A
1
D
2
B
第十页,共十九页。
C
证明:∵AD∥BC
∴ ∠1=∠2(两直线(zhíxiàn)平行,内错角相等) 在△ADC和△CBA中 ∵AD=CB(已知) ∠1=∠2(已证) AC=CA(公共(gōnggòng)边) ∴ △ADC≌△CBA(S.A.S.)
∴ △ABC≌△A'B'C'(S.A.S.)第五页,共十九页。
B B'
C A'
C'
如图△ABC和△ DEF 中,AB=DE=3cm,
∠B=∠E=30°,BC=EF=5cm,它们(tā men)完全重合吗?△ABC≌△ DEF吗 ?为
全等三角形的判定角边角课件

培养逻辑思维
掌握全等三角形判定定理 对于培养学生的逻辑思维 和推理能力具有重要意义。
角边角判定定理在几何证明中的应用
解决实际问题
角边角判定定理在解决实际问题中发 挥着重要作用,如测量、计算等领域。
提高解题效率
掌握角边角判定定理有助于提高解题 效率,帮助学生更快地解决几何问题。
简化证明过程
使用角边角判定定理可以简化几何证 明的步骤,使证明过程更加简洁明了。
总结词
直角三角形全等判定定理的应用
详细描述
在直角三角形中,如果两个直角边和夹角相等,则两个三角形全等。 这个判定定理可以用于证明两个直角三角形是否全等。
实例分析
假设我们有两个直角三角形ABC和DEF,其中∠C=∠F=90°,AC=DF, AB=DE,并且∠A=∠D。根据角边角判定定理,我们可以得出 △ABC≌△DEF 。
在复杂的几何图形中,识别并证明满足角边 角定理的全等三角形。
练习3
解决涉及角边角定理的实际问题,如测量、 构造等。
05
总结与回顾
全等三角形判定定理的重要性
01
02
03
几何证明的基础
全等三角形判定定理是几 何证明中的基础工具,是 解决各种几何问题的关键。
实际应用
在实际生活中,全等三角 形判定定理的应用也非常 广泛,如建筑设计、机械 制造等领域。
04
角边角判定定理的练习题
基础练习题
01
02
03
04
总结词
理解角边角判定定理的基本应 用
练习1
给出两个三角形,其中一个角 和两条边相等,判断这两个三
角形是否全等。
练习2
根据给定的条件,构造一个全 等三角形。
新人教八年级数学上学期《三角形全等的判定边角边》优课件

1
C
CB=CE .
2
求证:AB=DE .
E
D
图5
课本第65页 第2、3题
都二
能分
运浇
用灌
好,
“八
二分
八等
定待
律;
”二
,分
我管
们教
一,
起八
,分
静放
待手
花;
开二
。分
成
➢ Pure of heart, life is full of sweet and joy!
绩 ,
八
分
方
法
。
愿
全
天
下
所
有
父
母
我们,还在路上……
AE=DE,BE=CE.求证:△ABE≌△DCE.
证明:在△ABE和△DCE中,
AD
∵ AE=DE(已知)
∠AEB=∠DEC(对顶角相等) B BE=CE(已知)
∴3. △如A图BE4,≌△在D△CEA.BE(和S.△AD.BSE.中),A AB=DB,请你添加一个适当的条件,
E 图3 C ED
使得△ABE≌△DBE,添加的条件是
___________________________.
B
图4
4. 如图5,有一池塘,要测池塘两端A、B的距离,
可先在平地上取一个可以直接到达A和B的点C,连结
AC并延长到D,使CD=CA.连结BC并延长到E,使
CE=CB.连结DE,那么DE的长就是A、B的距离.你
知道其中的道理吗?
A
B
已知:AD与BE相交于点C, CA=CD,
45°
2. 画∠ MAB= 45°; 3. 在射线AM上截取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题拓展
2 、 如 图 , 在 △ ABC 中 , AB = AC , AD 平 分
∠BAC,求证: ABDD⊥=CBDC .
证明: ∵ A=∠CAD
在△ABD与△ACD中
∵ AB=AC
∠BAD=∠CAD AD=AD
B
D
C
∴△ABD≌△ACD( S.A.S. )
∴∴∠BADD=BC=D∠(A全D等C三(角全形等的三对角应形边的相对等应)角相等)
A
解: 在△ ABD 和△ CBD中
B
AB=CB
D
∠ABD= ∠CBD C
BD=BD
∴△ ABD ≌△ CBD (S.A.S. )
巩 固 练 习
C
A
1: 如图,已知AB和CD相交与O, OA=OB, OC=OD.说明 △ OAD与
△ OBC全等的理由 解:在△OAD 和△OBC中
2
O
1
D
B
OA = OB(已知) ∠1 =∠2(对顶角相等) OD = OC (已知)
∠BAC,求证: ∠B=∠C .
证明: ∵ AD平分∠BAC
A
∴ ∠BAD=∠CAD
在△ABD与△ACD中
∵ AB=AC
∠BAD=∠CAD AD=AD
B
D
C
∴△ABD≌△ACD( S.A.S. )
∴∠B=∠C(全等三角形的对应角相等)
利用“SAS”和“全等三角形的对应角相等”这两条公 理证明了“等腰三角形的两个底角相等”这条定理。
课堂小结
今天你学到了什么? 1、今天我们学习了哪种方法判定两个三角形全等?
答:SAS(边角边)
(角夹在两条边的中间,形成两边夹一角)
通过证明三角形全等可以证明两条线段相等 等、两个角相等。
2、 “边边角”能不能判定两个三角形全等?
答:不能
作业:
P 1.必做:练习册 41 1~7题.
P 2.选做:练习册 41 8题.
(三)及时评价.
19.2.2全等三角形的判 定之 边角边(SAS)
一、教材分析 二、教学方法与手段 三、学法指导 四、教学过程 五、教学评价与反馈
一、教材分析
(一)教材的地位和作用
(二)教学目标
(1三.知)识教与学技重能点: ①证掌明掌握两握边三三角角角边形形判全全定等等方. 的法判的定内方容法,—会—运“用边边角角边边公判理定”方. 法
∴△OAD≌△OBC (S.A.S)
巩 固 练
2.点M是等腰梯形ABCD底边AB 的中点,求证△AMD≌△BMC.
证习明:∵ 点M是等腰梯形ABCD底边AB的中点
∴ AD=BC (等腰梯形的两腰相等)
∠A=∠B(等腰梯形的同一底边的两内角相等)
AM=BM (线段中点的定义)
在△ADM和△BCM中 AD=BC (已证) ∠A=∠B (已证) AM=BM (已证)
例3:已知:如图, AB=CB ,∠ ABD=
∠ CBD ,△ ABD 和△ CBD 全等吗?
A
分析: △ ABD ≌△ CBD B
(S.A.S.) 边: AB=CB(已知) 角: ∠ABD= ∠CBD(已知)
D C
边: ?
例2:已知:如图, AB=CB ,∠ ABD=
∠ CBD ,△ ABD 和△ CBD 全等吗?
C
F
A 40°
40°
D
E
B
结论:两边及其一边的对角相等,两
个三角形不一定全等
“如果两个三角形二条边和一个角对应相等 ,那么这两个三角形全等.”这个命题是真命 题吗?你能举个反例说明吗?
如图△ABC与△ABD
中,AB=AB,
AC=AD, ∠B=∠B
它们全等吗?
B
A
C
D
注:这个角一定要是这两边所夹的角
例题讲解
例1:如 图,在 △ABC中,AB=AC, AD平分
∠BAC,求证:△ABD≌△ACD.
A
证明: ∵ AD平分∠BAC
∴ ∠BAD=∠CAD
在△ABD与△ACD中
∵ AB=AC
∠BAD=∠CAD
B
D
C
AD=AD ∴△ABD≌△ACD( S.A.S. )
例题推广
1 、 如 图 , 在 △ ABC 中 , AB = AC , AD 平 分
二、教学方法与手段
(一)教学方法:
遵循“学生为主体,教师为主导”的教学原则,按照学生从 感性认识到理性认识,从特殊到一般的认知规律,采用学生操 作确认的方式及直观演示验证法,启发式引导学生展开思维、 探究证明思路,循序渐进的教学方法。最大限度提高学生的参 与度。
(二)教学手段:
借助于多媒体课件演示及学生动手操作确认发现新知。
A
B
·C
D
E
问题:
有一块三角形的玻璃打碎成如图 的两块,如果要到玻璃店去照样 配一块,带哪一块去?
联系实际
补充与实际生活相关的例题,让学 生体会到全等三角形在实际生活中的应 用,感到数学知识与实际生活密切相关, 提高学生的学习兴趣.
以2.5cm,3.5cm为三角形的两边, 长度为2.5cm的边所对的角为40° , 情况又怎样?
∴△AMD≌△BMC (S.A.S)
∴ DM=CM(全等三角形的对应边相等)
巩 固 练
2.点M是等腰梯形ABCD底边AB 的中点,求证∠MDC=∠MCD.
证习明:∵ 点M是等腰梯形ABCD底边AB的中点
∴ AD=BC (等腰梯形的两腰相等)
∠A=∠B(等腰梯形的同一底边的两内角相等)
AM=BM (线段中点的定义)
例2
如图,在△AEC和△ADB
中,已知AE=AD,AC=AB。请说明
△AEC ≌ △ADB的理由。
解:在△AEC和△ADB中
C
AE =_A__D_(已知)
D
_∠__A_= _∠__A__( 公共角)
A
E
B
_A_C___= AB ( 已知 )
∴ △_A_E_C__≌△__A_D_B__( S.A.S. )
思考 如果两个三角形有三组对应相等的元素
(边或角),那么会有哪几种可能的情况? 这时,这两个三角形一定会全等吗?
有以下的四种情况:
两边一角、两角一边、三角、三边.
思考
如果已知两个三角形有两边一角对应
相等时,应分为几种情形讨论?
A
A
B
C
B
C
A'
A'
B'
C'
边-角-边
B'
C'
边-边-角
体会分类的原则: 不重、不漏
的三角形全等吗?
动画演示
三角形全等的判定方法(1):
这是一个 公理。
如果两个三角形有两边及其夹角分别对应相等,那么
这两个三角形全等.简记为SAS(或边角边).
几何语言:
在△ABC与△A’B’C’中 ∵ AB=A’B’
∠B=∠B’
A
B
C
A’
BC=B’C’
B’
C’
∴△ABC≌△A’B’C’(S.A.S.)
并培养学生综合应用新旧知识的能力
突破难点
实际应用
某校八年级一班学生到野外活动,为测量 一池塘两端A、B的距离。设计了如下方案: 如图,先在平地上取一个可直接到达A、B 的点C,再连结AC、BC并分别延长AC至E, 使DC=BC,EC=AC,最后测得DE的距离即 为AB的长.你认为这种方法是否可行?
做 一
画一个三角形,使它的一个内角为45° ,
夹这个角的一条边为3厘米,另一条
做 边长为4厘米.
步骤:1.画一线段AB,使它等于4cm 2.画∠ MAB= 45° 3.在射线AM上截取AC=3cm 4.连结BC.
△ ABC就是所求的三角形
温馨 提示
探究新知⑴
把你画的三角形与同桌画的三角形进行比较,你们
(四②)掌教握学两难边点一角画三角形的方法. ③(体1会)证理明解两“线边段边相角等”,不两一个定角会相全等等转,化熟为练“运证用明两个三
“角边形角全边等””判来定解方决法的。数学方法. 2.过(和程2角)与相运方等用法. “:边角边公理”通过三角形全等证明线段 通过动手操作探索出三角形全等的判定方法:“边角 (边五”),教通材过处“理边角边”的应用,掌握转化的数学方法. 学3.判情生定感对三态此角度若形与产全价生等值兴的观趣“:,边后角面边的公学理习”会是容第易一一个些判,定所公以理把。 培它养定学为生重的点动内手容实,践以能此力来和引严起密学的生逻兴辑趣思,维打能下力坚,实进的一基步 激础发。学习兴趣,培养良好的思维品质.
在△ADM和△BCM中 AD=BC (已证) ∠A=∠B (已证) AM=BM (已证)
∴△AMD≌△BMC (S.A.S)
∴ DM=CM(全等三角形的对应边相等) ∴ ∠MDC=∠MCD(等边对等角)
一题多变
让学生加深对“证明两个角相等或者两条 线段相等,可以转化为证它们所在的三角形全 等而得到”的理解,
三、学法指导
通过动手操作探索出三角形全等的判定方 法:“边角边”.通过“边角边”的应用,在 探讨运用的思路中,挖掘隐含条件,体验 “转化”的数学思想方法,领悟逻辑推理的 严密性,经历知识产生、发展、形成与应用 的过程,养成言之有据的思维习惯,提高数 学语言的表达能力。
四、教学过程
上节课我们讨论了以下问题:
∴△AMD≌△BMC (S.A.S)
巩 固 练
2.点M是等腰梯形ABCD底边AB 的中点,求证DM=CM.
证习明:∵ 点M是等腰梯形ABCD底边AB的中点
∴ AD=BC (等腰梯形的两腰相等)
∠A=∠B(等腰梯形的同一底边的两内角相等)