初二下学期数学综合测试题(一)

合集下载

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级数学下学期期中复习同步练习(答题时间:60分钟)一、选择题1. 如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得三角形的周长可能是()A. 5.5B. 5C. 4.5D. 42. 如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A. S平行四边形ABCD=4S△AOBB. AC=BDC. AC⊥BDD. 平行四边形ABCD是轴对称图形3. 如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A. 1B. 2C. 3D. 44. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 80*5. 如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C. 52D. 2*6. 如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;其中正确的个数是()A. 0B. 1C. 2D. 3*7. 如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A. 53cmB. 25 cmC. 485 cmD. 245cm *8.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B. 3.5C. 2.5D. 2.8**9. 如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A. 32B. 33C. 4D. 34**10. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( )A. 2B. 3C. 4D. 5二、填空题11. 5082。

八年级数学下册各单元测试卷

八年级数学下册各单元测试卷

八年级数学下册第一章测试题(试卷满分100分,时间120分钟)请同学们认真思考、认真解答,相信你会成功!一、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ]. A .23-<k B .23<k C .23->k D .23>k2.同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,4 3.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ]. A .3组 B .4组 C .5组 D .6组 4.如果0>>a b ,那么 [ ].A .b a 11->-B .ba 11< C .b a 11-<- D .a b ->- 5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ]. A .9>x B .9≥x C .9<x D .9≤x 6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1 B .2 C .3 D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ].A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为 [ ].A .-2B .21-C .-4D .41- 9.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ]. A .4辆 B .5辆 C .6辆 D .7辆 二、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________.2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________.3.若0)3)(2(>-+x x ,则x 的取值范围是________.4.若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______.6.如果不等式组⎩⎨⎧><m x x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________.9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________.10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组):(1)1312523-+≥-x x ; (2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种: 方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg .(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10分,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.八年级数学下册期中测试题(一) (考试时间:100分钟 满分:100分)一. 填空题(每空2分,共30分)1. 用科学记数法表示0.000043为 。

八年级下册数学试题(附答案)

八年级下册数学试题(附答案)

春季八年级期末调考数 学 试 题说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 第Ⅰ卷的答案选项用2B 铅笔填涂在机读卡上;第Ⅱ卷用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 本试卷满分120分,答题时间为120分钟. 交卷时只交第Ⅱ卷,第Ⅰ卷由学生自己保存.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,共36分) 在每小题给出的四个选项中,有且仅有一项是符合题目要求的. 1. 如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是A. △ABC ≌△DEFB. ∠DEF =90°C. EC =CFD. AC =DF2. 函数中自变量x 的取值范围为A. x ≥2B. x >-2C. x <-2D. x ≥-23. 边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形. 设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分). S 随t 变化而变化的大致图象为A B C D4. 已知正比例函数y =kx (k ≠0)中,y 随x 的增大而增大. 反比例函数y =-xk过点(3,y 1),(2,y 2)和(-3,y 3),则y 1,y 2,y 3的大小关系为A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 25. 如图是学校小卖部“六一”儿童节期间儿童玩具、糖果、其它421+=x y物品等的销售额的扇形统计图. 若玩具的销售额为1800元,那么 糖果的销售额是A. 3000元B. 300元C. 30%D. 900元 6. 下列命题错误的是 A . 有三条边相等的三角形全等 B . 有两条边和一个角对应相等的三角形全等C. 有一条边和一个角对应相等的等腰三角形全等D. 有一条边和一锐角对应相等的直角三角形全等7. 如图△ABC 是等腰三角形,以两腰AB 、AC 为边向外作正方 形ABDE 和正方形ACFG ,则图中全等三角形有( )对.A. 2B. 3C. 4D. 58. 如果把分式ba ab+2中的a 和b 都扩大到原来的9倍,那么分式的值A. 扩大到原来的9倍B. 缩小9倍C. 是原来的91D. 不变9. 如图,ABCD 的周长为18cm ,点O 是对角线AC 的中点,过点O 作EF 垂直于AC ,分别交DC 、AB 于E 、F , 连结AE ,则△ADE 的周长为 A. 5cm B. 8cm C. 9cm D. 10cm10. 下列命题中,能判断四边形ABCD 是矩形的命题有 ①AC =BD ,AC ⊥BD ;②OA =OB =OC =OD ;③∠A =∠B =∠C =90°;④AB CD ,∠A =90°.A. 1个 B .2个 C .3个 D .4个11. 函数y =-kx +k (k ≠0)与y =xk的大致图象可能是A B C D12. 某服装厂准备加工300套演出服装. 在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务. 设该厂原来每天加工x 套演出服装,则可列方程A.9260300=-x B.9602300=+x x C.960260300=+-x x D.960260300=--xx2009年春季八年级期末考试数 学 试 题全卷总分表第Ⅱ卷 非选择题(84分)二、填空题(本大题共8个小题,每小题3分,共24分)将解答结果直接填在题中的横线上.13. 在四边形ABCD 中,∠A:∠:B:∠C:∠D =1:2:1:2,则四边形ABCD 是 . 14. 一个纳米粒子的直径是0.000 000 035米,用科学记数 法表示为 米.15. 如图,在正方形ABCD 中,E 在BC 的延长线上,且 EC =AC ,AE 交CD 于点F ,则∠AFC = 度.16. 已知一组数据1,3,2,5,x 的平均数为3. 则样本的标准差为 . 17. 关于x 的方程32322=--+-xmx x 有增根,则m =. 18.已知点A(2,3)和点B (m ,-3)关于原点对称,则m = ;若点C 与点B 关于y 轴对称,则点C 的坐标为 . 19. 如图是甲、乙两地5月上旬的 日平均气温统计图,则甲、乙两地 这10天的日平均气温的方差大小 关系为:S 2甲 S 2乙.20. 已知等腰三角形的周长为10,底边为y ,腰为x. 请写出y 与x 的函数关系式及自变量x的取值范围 . 三、解答题(每题6分,共24分)21. 计算:20090-2)21(--+|-2008 |.22. 先化简,再求值:1311222+-+-+-x xx x x ,其中x =2.23. 解分式方程:93132-=--x x x .24. 作图题:在△ABC 中,∠C =90°,按下列 要求作图.(尺规作图,保留痕迹,不写作法)①作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;②连结CF ,作∠CFB 的平分线,交BC于点G . 四、几何证明题(本大题满分8分)25. 如图,在梯形ABCD 中,AB ∥DC ,AC 平分∠BCD ,AE ∥BC. 求证:四边形AECB 是菱形.五、几何证明题(本大题共9分)26. 如图,在等边△DAC 和等边△EBC 中,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 三点在同一条直线上.求证:(1)AE =BD ;(2)CM =CN.六、解答题(本大题共9分)27. 如图,反比例函数y =xm(x >0)的图象经过A 、B 两点,且A 点的坐标为(2,-4),点B 的横坐标为4. 请根据图象的信息解答:(1)求反比例函数的解析式; (2)若AB 所在的直线的解析式为 y =kx +b (k ≠0),求出k 和b 的值.(3)求△ABO 的面积.七、(本大题共10分)28. 甲、乙两同学本期十次数学测验成绩如下表:(1)甲同学十次数学测验成绩的众数是;乙同学十次数学测验成绩的中位数是 .(2)甲同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的极差是 .(3)你认为甲、乙两位同学,谁的成绩更稳定?通过计算加以说明.2009年春季八年级期末调考数学试题参考答案一、选择题(本大题共12个小题,每小题3分,共36分)1.C2.B3.A4.D5.D6.B7.D8.A9.C 10.B 11.C 12.C二、填空题(本大题共8个小题,每小题3分,共24分) 13. 平行四边形 14. 3.5×10-8 15. 112.5 16.217. -1 18. -2;(2,-3) 19. < 20. y =10-2x (25<x <5)注:18题第一空1分,第二空2分. 20题的函数关系式1分,x 的取值范围2分.三、解答题(每题6分,共24分)21.(共6分)解:20090-2)21(--+|-2008 |=1-4+2008 ……………………(每项算对,各给1分)……4分 =2005 …………………………………………………………………2分22.(共6分)解:原式=13)1)(1(122+-+-++-x x x x x x ……………………………………1分 =)1)(1()1)(3()1)(1(122-+--+-++-x x x x x x x x …………………………1分 =)1)(1(34122-+-++-x x x x x=)1)(1(22-+-x x x =)1)(1()1(2-+-x x x …………………………1分=12+x ………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分另解:原式=13)1)(1()1(2+-+-+-x xx x x ………………………………………2分 =1311+-++-x xx x ………………………………………………1分 =12+x …………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分23.(共6分)解:方程两边同乘以(x +3)(x -3),约去分母,得 ……………1分 x (x +3)-(x 2-9)=3. ………………………………………2分 解这个整式方程,得x =-2. ………………………………………………………………1分 检验:把x =-2代入x 2-9,得(-2)2-9≠0,所以,x =-2是原方程的解. ………………………………………………2分 24.(共6分)作出了AB 边的垂直平分线给3分; 作出了∠CFB 的平分线给3分. 注:若未标明字母扣1分.四、几何证明题(本大题满分8分)25. 证明:∵AB ∥DC ,AE ∥BC ,∴四边形ABCD 是平行四边形. …………2分∵AC 平分∠BCD ,∴∠ACB =∠ACE. …………………………………………………………1分 又AB ∥CD ,∴∠BAC =∠ACE (两直线平行,内错角相等), ……………………1分 ∴∠ACB =∠BAC (等量代换), …………………………………………1分 ∴BA =BC (等角对等边), ………………………………………………1分∴四边形ABCE 是菱形(有一组邻边相等的平行四边形是菱形). ……2分注:①若证得AE =EC ,或证得四边相等得菱形参照给分;②未批理由可不扣分. 五、几何证明题(本大题共9分)26.(1)(5分)证明:∵△ACD 和△BCE 是等边三角形,∴∠ACD =∠BCE =60°,∴∠ACD +∠DCE =∠BCE +∠DCE , 即∠ACE =∠DCB. …………………2分 在△ACE 和△DCB 中,AC =DC ,EC =BC (等边三角形三边相等),八年级期末考试数学试题(第Ⅱ卷) 第11页(共8页)∠ACE =∠DCB (已证),∴△ACE ≌△DCB (S.A.S.), ………………………………………………2分∴AE =BD (全等三角形的对应边相等). ………………………………1分(2)(4分)证明:∵△ACE ≌△DCB (已证),∴∠EAC =∠BDC ,即∠MAC =∠NDC. ……………………………………………………1分∵∠ACD =∠BCE =60°(已证),A 、C 、B 三点共线,∴∠ACD +∠BCE +∠DCN =180°,∴∠MCN =60°,即∠ACM =∠DCN =60°. ………………………………………………1分又AC =DC ,∴△ACM ≌△DCN (A.S.A.), …………………………………………1分∴CM =CN. ……………………………………………………………1分六、解答题(本大题共9分)27. 解:(1)(2分)把A 点的坐标(2,-4)代入y =xm 得-4=2m ,m =-8, ∴反比例函数的解析式为y =x 8-(x >0).……2分 注:若解析式未标明x >0,则只给1分.(2)(3分)当x =4时,y =x8-=-2,∴B (4,-2). ………………………………1分 ∵A (2,-4),B (4,-2)在直线y =kx +b 上,∴⎩⎨⎧+=-+=-b k b k 4224 ………………………………………………………………………1分 解之得k =1,b =-6. ………………………………………………………………1分(3)(4分)解一:作辅助线如图,则C (4,-4). …………………………………1分 S △ABO =S 正方形ODCE -S △ODA -S △OEB -S △ABC ………………………………………2分 =4×4-21×2×4-21×4×2-21×2×2 =16-4-4-2=6. ……………………………………………………………………………1分解二:如图,取AB 中点M ,连结OM ,(或作OM ⊥AB )∵OA =OB =2224+=25,∴OM ⊥AB (或AM =BM ) ………………1分而AB =22BN AN +=2222+=22 …1分八年级期末考试数学试题(第Ⅱ卷) 第12页(共8页) ∴AM =21AB =2 ∴OM =22AM OA -=22)2()52(-=32 ……………………1分∴S △AOB =21AB ·OM =21×22×32=6. …………………………1分 解三:S △ABO =S 矩形ACOD +S梯ABED -S △AOC -S △BOE ……2分 =2×4+21(2+4)×2-21×4×2-21×4×2 =8+6-4-4=6. ……………………………………2分解四:延长AB 交x 轴、y 轴于M 、N ,则M (6,0),N (0,6).S △AOB =S △MON -S △AOM -S △BON= … =6. 按解一的给分方法给分.七、(本大题共10分)28.(1)、(2)小题每空1分,共5分;(3)小题共5分.(1)98;98.(2)99;99;24.(3)1012=甲S [()()()()()2222299979998999999979998-+-+-+-+- ()()()()()22222999999989910799999998-+-+-+-+-+][]01640141041101+++++++++= 6.776101=⨯= ……………………………………………………………2分 ()()()[]222299110998999108101-+⋯+-+-=乙S []222222222211)2(9)13()1(1)1()3()10(9101+-++-+-++-+-+-+= []121481169111910081101+++++++++= 8.56568101=⨯= …………………………………………………………2分 ∵22<乙甲S S ,∴甲的成绩更稳定. ………………………………………………………1分注:①若第(3)小题,不是通过计算而得出正确结论,只给2分;若计算2甲S 正确,2乙S不正确而得出正确结论共给3分.②此题旨在考查学生计算能力,引起教师对培养学生计算能力的高度重视八年级期末考试数学试题(第Ⅱ卷)第13页(共8页)。

湖北恩施龙凤民族初级中学2020-2021学年下学期八年级学第一阶段检数学测试题(图片版有答案)

湖北恩施龙凤民族初级中学2020-2021学年下学期八年级学第一阶段检数学测试题(图片版有答案)

答案一、选择题(本大题共12小题,共36.0分)1.下列根式中是最简二次根式的是A. B. C. D.【答案】D【解析】A、,即该二次根式的被开方数中含有分母,所以它不是最简二次根式故本选项错误;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式故本选项错误;C、,则该二次根式中的被开方数中含有能开得尽方的因数所以它不是最简二次根式故本选项错误;D、该二次根式符合最简二次根式的定义故本选项正确.故选D.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.适合下列条件的中,直角三角形的个数为;;;.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】解:,不能构成直角三角形;,不一定是直角三角形;,则,是直角三角形;,能构成直角三角形;能构成直角三角形的个数为2个,故选:A.根据勾股定理的逆定理:如果三角形的三边长满足,那么这个三角形就是直角三角形;三角形内角和为进行分析即可.主要考查了直角三角形的判定,关键是掌握勾股定理的逆定理.3.化简的结果为A. B. C. D.【答案】C【解析】解:原式.故选:C.利用积的乘方以及同底数幂的乘法运算法则将原式变形求出即可.主要考查了二次根式的混合运算,正确利用积的乘方进行运算是解题关键.4.【答案】B5.对任意实数a,则下列等式一定成立的是A. B. C. D.【答案】D【解析】试题分析:根据二次根式的化简、算术平方根等概念分别判断.A、a为负数时,没有意义,故本选项错误;B、a为正数时不成立,故本选项错误;C、,故本选项错误.D、故本选项正确.故选D.6.如图所示,的顶点A,B,C在边长为1的正方形网格的格点上,于点D,则BD的长为( )C.B.A.D.【答案】C【解析】解:的面积,由勾股定理得,,则,解得,故选:C.根据图形和三角形的面积公式求出的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.7.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是A. B. C. D.【答案】D【解析】解:A、,不能够成三角形,故此选项错误;B、,不能够成三角形,故此选项错误;C、,不能构成三角形,故此选项错误;D、,能够成三角形,故此选项正确;故选:D.平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.主要考查了平行四边形的性质,关键是掌握平行四边形的对角线互相平分.8.【答案】B9.若代数式在实数范围内有意义,则x的取值范围是A. B. C. D. 且【答案】A【解析】解:由题意得,,解得.故选A.根据被开方数大于等于0,分母不等于0列式计算即可得解.考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.10.某校的校园内有一块尺寸如图所示的三角形空地,现计划将这块空地建成一个花园已知每平方米的造价为30元则学校建这个花园需要投资A. 7794元B. 7820元C. 7822元D. 7921元【答案】A【解析】解:作于H,如图,,,在中,,,每平方米学校建这个花园需要投资额元.故选A.作于H,根据邻补角得到,在中,根据的正弦可计算出,再计算每平方米,然后用面积乘以单价即可得到学校建这个花园需要的投资额.考查了二次根式的应用:二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为A. 3B. 4C. 5D. 6【答案】C【解析】解:如图所示:,,大正方形的面积为13,,小正方形的面积为.故选:C.观察图形可知,小正方形的面积大正方形的面积个直角三角形的面积,利用已知,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.12.如图,平行四边形ABCD的对角线交于点平分交BC于点E,且,连接OE。

初二数学下册练习题湘教版

初二数学下册练习题湘教版

初二数学下册练习题湘教版数学是一门需要不断练习的学科,通过练习题可以帮助我们巩固和提高数学知识。

下面是初二数学下册湘教版的一些练习题,希望能够帮助大家更好地掌握数学知识。

一、填空题1. 已知一条直角边长为3,求斜边的长度为______。

2. 一只青蛙在一个深度为20米的井里,白天它每次往上跳3米,夜晚会下滑2米,问它需要跳多少次才能跳出井口?3. 小明家的电费是每度0.5元,上个月共用电100度,应缴纳的电费为______元。

4. 甲、乙两个数的和为75,乙数是甲数的2倍减去10,求甲、乙两个数各是多少?5. 一个正方形的边长为4厘米,它的周长为______厘米。

二、选择题1. 已知点A(2,3),点B(x,5),若AB的距离等于5,则x的值为:A. -1B. 1C. 3D. 72. 一个数减去它的四分之一等于15,这个数是:A. 10B. 20C. 25D. 303. 一个数的一半加上它的四分之一等于15,这个数是:A. 10B. 15C. 20D. 304. 一个长方形的长是宽的2倍,它的周长是24,求长方形的长和宽分别是多少?A. 长:6,宽:12B. 长:4,宽:6C. 长:8,宽:4D. 长:12,宽:65. A、B两个数的和为100,若B大于A,则A、B两个数可能是:A. 20、80B. 30、70C. 40、60D. 50、50三、解答题1. 用竖式计算:(1)345 + 78 = ________(2)789 - 256 = ________(3)23 × 4 = ________(4)78 ÷ 6 = ________(5)136 ÷ 17 = ________(结果保留一位小数)2. 小明每天步行上学,来回共需用时1小时40分钟,若小明来回步行时间的比为5:8,那么小明步行去学校的时间是多少分钟?3. 一个线段长14米,将它分成3段,第一段、第二段和第三段的长度之比为2:3:4,求第一段的长度。

八年级数学测试题及答案

八年级数学测试题及答案

八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是等腰三角形的性质?A. 三条边相等B. 两条边相等C. 三个角相等D. 两个角相等答案:B2. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2答案:A3. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 25πD. 50π答案:B4. 下列哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 3x^3D. y = 1/x答案:A5. 一个等差数列的首项是2,公差是3,那么第5项是:A. 14B. 17C. 20D. 23答案:A6. 如果一个三角形的两边长分别是3和4,那么第三边的长x满足:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 7D. 0 < x < 7答案:A7. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个选项是二次函数的图像?A. 一条直线B. 一个点C. 一个抛物线D. 一个圆答案:C10. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 2D. 4答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是____。

答案:±52. 一个等腰三角形的底边长是6,两腰长是5,那么它的周长是____。

答案:163. 一个圆的直径是10,那么它的半径是____。

答案:54. 一个数列的前三项是2,4,8,那么第四项是____。

答案:165. 如果一个三角形的两边长分别是5和12,那么第三边的长x满足的条件是____。

答案:7 < x < 17三、解答题(每题10分,共50分)1. 已知一个等差数列的前三项分别是2,5,8,求第10项的值。

八年级下册数学全套试卷

八年级下册数学全套试卷

八年级下册数学全套试卷一、选择题(每题3分,共30分)1. 若二次根式√(x - 3)有意义,则x的取值范围是()A. x≤slant3B. x≠3C. x≥slant3D. x > 32. 下列二次根式中,属于最简二次根式的是()A. √(frac{1){2}}B. √(0.8)C. √(4)D. √(5)3. 下列计算正确的是()A. √(2)+√(3)=√(5)B. √(2)×√(3)=√(6)C. √(8)=4√(2)D. √(4)-√(2)=√(2)4. 已知平行四边形ABCD中,∠ A = 50^∘,则∠ C的度数为()A. 50^∘B. 130^∘C. 40^∘D. 100^∘5. 直角三角形的两条直角边分别为6和8,则斜边上的高为()A. (24)/(5)B. (12)/(5)C. 5D. 106. 下列命题中,正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形。

B. 对角线互相垂直的四边形是菱形。

C. 对角线相等的四边形是矩形。

D. 对角线互相垂直平分且相等的四边形是正方形。

7. 若函数y=(m - 1)x^m^{2-3}是正比例函数,则m的值为()A. 1B. - 1C. ±1D. √(3)8. 一次函数y = kx + b(k≠0)的图象经过点(0,2),且y随x的增大而减小,则这个函数的表达式可能是()A. y = 2x + 3B. y=-3x + 2C. y = (1)/(2)x + 2D. y = x - 29. 数据1,2,3,4,5的方差是()A. 1B. 2C. (5)/(4)D. (1)/(2)10. 已知点A(x_1,y_1),B(x_2,y_2)在一次函数y = kx + b(k≠0)的图象上,当x_1时,y_1,则k的取值范围是()A. k < 0B. k>0C. k≤slant0D. k≥slant0二、填空题(每题3分,共18分)1. 计算:√(12)-√(3)=_√(3)。

重庆市缙云教育联盟2020-2021学年八年级下学期期末质量检测数学试题

重庆市缙云教育联盟2020-2021学年八年级下学期期末质量检测数学试题

绝密★启用前重庆市2020-2021学年(下)年度质量检测初二数学注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题)一、选择题(本大题共12小题,共36.0分)1.已知,平面内∠AOB=20°,∠AOC=50°,射线O M、O N分别平分∠AOB,∠AOC,求∠MON的大小是()A. 10°B. 10°或35°C. 35°D. 15°或35°2.下列说法中正确的是()A. 三角形的三条高都在三角形内B. 直角三角形只有一条高C. 锐角三角形的三条高都在三角形内D. 三角形每一边上的高都小于其他两边3.一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→e③a→b→c则正确的是()A. 仅①B. 仅③C. ①②D. ②③4.下列数据中不能确定物体位置的是()A. 某市政府位于北京路32号B. 小明住在某小区3号楼7号C. 太阳在我们的正上方D. 东经130°,北纬54°的城市5.如图1,点F从菱形ABCD的顶点A出发,沿A→B→D以1cm/s的速度匀速运动到点D,图2是点F运动时,△FDC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. √5B. 3C. 2√5D. 56.2021年2月1日,教育部印发的《关于加强中小学生手机管理工作的通知》指出,中小学生原则上不得将个人手机带入校园,禁止带入课堂.某校针对这个通知随机调查了若干名家长对带手机进校园的态度并制成了统计图(如图),赞成学生带手机进校园的家长有22人,则反对学生带手机进校园的家长有()A. 140人B. 120人C. 220人D. 100人7.如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边三角形PDQ,连接CQ.则CQ的最小值是()A. √32B. 1 C. √2 D. 328.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 19.如图1,将7张长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=bB. a=3bC. a=2bD. a=4b10.如图:在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,−1),P5(2,−1),P6(2,0)…则点P2020的坐标是()A. (673,−1)B. (673,1)C. (336,−1)D. (336,1)11.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx−a的图象可能是()A. B. C. D.12.如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC//x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m 的函数图象如图2所示.那么▱ABCD的面积为()A. 3B. 3√2C. 6D. 6√2第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)13.已知∠AOB=90∘,射线OC在∠AOB内部,且∠AOC=20∘,∠COD=50∘,射线OE、OF分别平分∠BOC、∠COD,则∠EOF的度数是________。

初二下册数学测试卷及答案

初二下册数学测试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -3B. 3C. 0D. -3.52. 下列各数中,是整数的是()A. 3.14B. -2C. 0.001D. 2.53. 下列各数中,是偶数的是()A. 3B. -2C. 1.5D. 4.54. 下列各数中,是质数的是()A. 2B. 3C. 4D. 55. 下列各数中,是合数的是()A. 2B. 3C. 4D. 56. 下列各数中,是正数的是()A. -2B. 2C. 0D. -37. 下列各数中,是分数的是()A. 2B. 3C. 0.5D. 18. 下列各数中,是实数的是()A. 2B. 3C. 0.5D. -29. 下列各数中,是正有理数的是()A. 2B. -3C. 0D. -0.510. 下列各数中,是负有理数的是()A. 2B. -3C. 0D. -0.5二、填空题(每题3分,共30分)11. 0的相反数是__________。

12. 1的倒数是__________。

13. 下列各数中,绝对值最大的是__________。

A. -3B. 2C. -1D. 014. 下列各数中,绝对值最小的是__________。

A. -3B. 2C. -1D. 015. 下列各数中,有理数范围最小的是__________。

A. 整数B. 有理数C. 实数D. 自然数16. 下列各数中,无理数范围最大的是__________。

A. 整数B. 有理数C. 实数D. 自然数17. 下列各数中,有理数范围最小的是__________。

A. 整数B. 有理数C. 实数D. 自然数18. 下列各数中,无理数范围最大的是__________。

A. 整数B. 有理数C. 实数D. 自然数19. 下列各数中,整数范围最大的是__________。

A. 整数B. 有理数C. 实数D. 自然数20. 下列各数中,自然数范围最大的是__________。

(完整版)北师大版八年级下册数学第一章测试题

(完整版)北师大版八年级下册数学第一章测试题

2017—2018 学年度第二学期阶段性测试题八年级下册数学(第一章)出题人:分数:注意事项1.本试卷满分150 分,考试时间120 分钟。

2.请将密封线内的项目填写清楚。

3.请在密封线外答题。

题号一二三总分得分一、选择题(每小题3 分,共36 分)1、已知△ABC 的三边长分别是 6cm、8cm、10cm,则△ABC 的面积是()A.24cm2B.30cm2C.40cm2D.48cm22、已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝3、面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对4、△ABC中,AB = AC,BD 平分∠ABC交AC 边于点D,∠BDC= 75°,则∠A的度数为()A 35°B 40°C 70°D 110°5、如图,△ABC中,AC=BC,直线l 经过点C,则 ( )A.l 垂直ABB.l 平分ABC.l 垂直平分ABD.不能确定6、已知△ABC中,AB=AC,AB 的垂直平分线交 AC 于D,△ABC和△DBC的周长分别是60 cm 和38 cm,则△ABC的腰和底边长分别为 ( ) A.24 cm 和12 cm B.16 cm 和22 cm C.20 cm 和16 cm D.22 cm 和 16 cm7、下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF8、下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等9、对“等角对等边”这句话的理解,正确的是( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的10、△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于点 D,∠BDC=75°,则∠A的度数为()A. 35°B. 40°C. 70°D. 110°11、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个B条件后,仍无法判断△ABE≌△ACD的是()DA E CA. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC 图 5图图12、如图,AD∥BC,∠ABC的平分线 BP 与∠BAD的平分线 AP 相交于点P,作PE⊥AB于点E,若PE=2,则两平行线 AD 与BC 间的距离为()A. 2B. 3C. 4D. 5二、填空题。

八年级初二数学下学期二次根式单元 期末复习综合模拟测评学能测试试题

八年级初二数学下学期二次根式单元 期末复习综合模拟测评学能测试试题

一、选择题1.下列计算正确的是( )A =B .2=C .(26=D ==2.若2a <3=( ) A .5a -B .5a -C .1a -D .1a --3.( )A .1B .﹣1C .D -4. )A B C D 5.下列各式中,正确的是( )A B .C =D = - 46.化简 )AB C D 7.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .① B .①② C .①③ D .①②③8.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c |-( )A .2c -bB .2c -2aC .-bD .b9.下列计算正确的是( )A =B =C 4=D 3=- 10.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0n a m=≥ 二、填空题11.使函数212y x x=+有意义的自变量x 的取值范围为_____________12.将(0)a a -<化简的结果是___________________. 13.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-14.=___________.15.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.16_____.17.已知x ,y ,则x 2+xy +y 2的值为______.18.若1+x有意义,则x的取值范围是____.19.下列各式:①25②21+n③2b④0.1y是最简二次根式的是:_____(填序号)20.代数式4x-有意义,则x的取值范围是_____.三、解答题21.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.22.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.23.计算②)21-【答案】① 【分析】 ①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.24.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.26.计算:(1)11(233÷【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=23==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】5==,=,(24312=⨯=,选项D 正确.2.D解析:D【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解.【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a ,故选:D . 【点睛】||a =这个公式是解决本题的关键.解析:C【解析】解:原式=故选C.4.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=B3C不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.5.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.6.C解析:C根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x. 故选C .7.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.8.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.9.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.10.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键.12..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.13.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.15.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).16.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可. 【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键. 17.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 18.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】②③是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

北师大版八年级数学下册第一章测试卷及答案

北师大版八年级数学下册第一章测试卷及答案

北师大版八年级数学下册第一章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是( )A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3. 已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可假设( )A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A..6,7,8 D.2,3,45.如图,已知AB⊥BD,CD⊥BD,若用"HL"判定Rt△ABD和Rt△CDB全等,则需要添加的条件是( )A.AD=CB B.∠A=∠C C.BD=DC D.AB=CD6.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( )A.40° B.50° C.60° D.75°7.如图,在△ABC中,AB=AC,AD平分∠BAC,点E是AD上的点,且AE=EC,若∠BAC=45°,BD=3,则CE的长为( )A.3 B.C.D.48.为了加快灾后重建的步伐,某市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )A.仅有一处B.有四处 C.有七处D.有无数处9.如图,在四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为( )A ..4 C ..4.510. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,过点O 作EF ∥BC 交AB 于点E,交AC 于点F,过点O 作OD ⊥AC 于点D,下列结论:①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离都相等;④设OD =m,AE +AF =n,则S △AEF =mn ;⑤S △EOB =S FOC .其中,正确的有( )A .2个B .3个C .4个D .5个二.填空题(共8小题,每小题3分,共24分)11.如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD =________.12. 如图,在△ABC 中,AB =AC =BC =4,AD 平分∠BAC ,点E 是AC 的中点,则DE 的长为________.13.已知命题:"如果两个三角形全等,那么这两个三角形的面积相等."写出它的逆命题:____________________________________________,该逆命题是________(填"真"或"假")命题.14.如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个.①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13.16.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB .若AC =2,DE =1,则S △ACD =________.17.如图,E是等边三角形ABC中AC边上的点,∠1=∠2,BE=CD ,则△ADE是________三角形.18.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E 在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.三.解答题(共7小题, 66分)19.(8分) 如图,△ABC,△CDE均为等边三角形,连接BE,AD交于点O,BE与AC交于点P.求证:∠AOB=60°.20.(8分) 如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.21.(8分) 如图,四边形ABCD是长方形,用尺规作∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连接QD,在新图形中,你发现了什么?请写出一条.22.(8分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.23.(10分)如图,已知∠1=∠2,P BN上的一点,PF⊥BC于点F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12 cm,AB=6 cm,PA=5 cm,求BP的长.24.(10分) 如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.25.(14分) 如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 c m/s,点Q运动的速度是2 c m/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为ts,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.参考答案1-5DDCBA 6-10BBABB11. 110°12. 2 13. 如果两个三角形的面积相等,那么这两个三角形全等;假14. 20°15. 316.117. 等边18. 108°19. 证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCECD=CE∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∵∠APO=∠BPC,∴∠AOP=∠BCP=60°,即∠AOB=60°.20.证明:∵AB=AC,∴∠ABC=∠ACB.∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°,在△BCE和△CBD中, {∠ABC=∠ACB∠CEB=∠BDC=90°BC=CB∴△BCE≌△CBD(AAS),∴∠BCE=∠CBD,∴BO=CO.21. 解:如图所示.发现:QD=AQ或∠QAD=∠QDA等22. 解:(1)∠ABE=∠ACD.理由:在△ABE和△ACD中,{AB=AC∠A=∠AAE=AD∴△ABE≌△ACD,∴∠ABE=∠ACD(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A,F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC23.解:(1)证明:过点P作PE⊥AB于点E,∵∠1=∠2,PF⊥BC,PE⊥AB,∴PE=PF.在△APE和△CPF中, {PA=PCPE=PF∴△APE≌△CPF(HL),∴∠PAE=∠PCB.∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°.(2)∵△APE≌△CPF,∴AE=FC,∵BC=12 cm,AB=6 cm,∴AE=12×(12-6)=3 (cm),BE=AB+AE=6+3=9(cm),在Rt△PAE中,PE 4 (cm),在Rt△PBE中,PB.24. 证明:连接PA,PB,PC,如图.∵AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G,∴S△ABC=1 2×BC×AD,S△PAB=12×AB×PE,S△PAC=12×AC×PF,S△PBC=12×BC×PG.∵S△ABC =S△PAB+S△PAC+S△PBC,∴12×BC×AD=12(AB×PE+AC×PF+BC×PG).∵△ABC是等边三角形,∴AB=BC=AC,∴BC×AD=BC×(PE+PF+PG),∴AD=PE+PF+PG.25. 解:(1)当点Q到达点C时,PQ与AB垂直.理由:∵点Q到达点C时,BQ=BC=6 cm,∴t=62=3.∴AP=3cm.∴BP=AB-AP=3 cm=AP.∴点P为AB的中点.∴PQ⊥AB.(2)能.∵∠B=60°,∴当BP=BQ时,△BPQ为等边三角形.∴6-t=2t,解得t=2.∴当t=2时,△BPQ是等边三角形.。

数学初二综合试题及答案

数学初二综合试题及答案

数学初二综合试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. -3.14B. 1/3C. πD. 0.33333答案:C2. 如果a和b是整数,且a^2 + b^2 = 25,那么a和b的可能取值是?A. a=3, b=4B. a=4, b=3C. a=1, b=4D. a=4, b=1答案:D3. 已知一个直角三角形的两条直角边分别为3和4,斜边的长度是?A. 5B. 6C. 7D. 8答案:A4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 4答案:A5. 以下哪个表达式的结果是一个分数?A. (-2)^2B. √4C. √(-1)D. 1/2答案:D二、填空题(每题2分,共10分)1. 一个数的立方根是-2,这个数是______。

答案:-82. 一个圆的直径是14厘米,那么它的半径是______厘米。

答案:73. 如果一个数的绝对值是5,那么这个数可以是______或______。

答案:5,-54. 一个数的倒数是1/4,这个数是______。

答案:45. 一个正数的平方是25,这个数是______或______。

答案:5,-5三、计算题(每题5分,共15分)1. 计算下列表达式的值:(3x - 2y)(3x + 2y),其中x = 2,y = 3。

答案:(3*2 - 2*3)(3*2 + 2*3) = (6 - 6)(6 + 6) = 0*12 = 02. 解方程:2x + 5 = 11。

答案:2x = 11 - 5 = 6,x = 6 / 2 = 33. 计算下列多项式的乘积:(x^2 - 4)(x + 2)。

答案:(x^2 - 4)(x + 2) = x^3 + 2x^2 - 4x - 8四、解答题(每题10分,共30分)1. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,求这个长方体的体积和表面积。

答案:体积 = 长 * 宽 * 高 = 6 * 4 * 3 = 72 立方厘米表面积 = 2 * (长 * 宽 + 长 * 高 + 宽 * 高) = 2 * (6 * 4 + 6 * 3 + 4 * 3) = 2 * (24 + 18 + 12) = 2 * 54 = 108 平方厘米2. 已知一个直角三角形的两条直角边分别为5厘米和12厘米,求斜边的长度。

2022-2023学年第二学期初二数学名校优选培优训练专题01 数据的收集、整理、描述

2022-2023学年第二学期初二数学名校优选培优训练专题01 数据的收集、整理、描述

2022-2023学年第二学期初二数学名校优选培优训练专题测试专题01 数据的收集、整理、描述姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•旺苍县期末)某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()A.该调查的方式是普查B.本城市只有40个成年人不吸烟C.本城市一定有20万人吸烟D.样本容量是502.(2分)(2022春•朔州期末)为节约用电,某市根据每户居民每月用电量分为三档频数户收费.第一档电价:每月用电量低于240度,每度0.48元;第二档电价:每月用电量为240~400度,每度0.53元;第三档电价:每月用电量超过400度,每度0.78元小明同学对该市有1000居民的某小区月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.估计该小区按第一档电价交费的居民户数最多C.该小区按第二档电价交费的居民有240户D.该小区按第三档电价交费的居民比例约为6%3.(2分)(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红4.(2分)(2020秋•桂林期末)在一个不透明的袋子里,有若干完全相同的蓝色玻璃球,现将只有颜色不同的10个同款红色玻璃球放入袋中,充分混合后随机倒出20个,其中红色玻璃球有2个.由此可估计袋子里原有蓝色玻璃球大约()A.50个B.80个C.90个D.100个5.(2分)(2022春•鼓楼区校级月考)为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个6.(2分)(2020春•西城区期末)甲、乙两座城市某年四季的平均气温如图所示,下列说法正确的是()A.甲城市的年平均气温在30℃以上B.乙城市的年平均气温在0℃以下C.甲城市的年平均气温低于乙城市的年平均气温D.甲、乙两座城市中,甲城市四季的平均气温较为接近7.(2分)(2020•东城区一模)党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.201720182019年份人数地区东部30014747中部1112181西部1634916323(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断不正确的是()A.2018年中部地区农村贫困人口为597万人B.2017﹣2019年,农村贫困人口数量都是东部最少C.2016﹣2019年,农村贫困人口减少数量逐年增多D.2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低8.(2分)(2021•贵阳模拟)改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高9.(2分)(2019秋•大竹县期末)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.9010.(2分)(2019•合肥模拟)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,样本中,身高在160≤x<170之间的女学生人数为()A.8B.6C.14D.16评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是鱼池.(填甲或乙)12.(2分)(2021秋•青冈县期末)学校以年级为单位开展广播操比赛,全年级有13有个班级,每个班级有50名学生,规定每班抽25名学生参加比赛,这时样本容量是.13.(2分)(2022春•高邑县期中)阳光体育运动关乎每个学生未来的幸福生活,今年四月份,我区某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班级2﹣3名选手参赛,现将80名选手比赛成绩(次/min)进行统计.绘制如图所示的频数分布直方图,则图中a的值为.14.(2分)(2021秋•鲤城区校级期末)为了解某市参加2014年中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.样本容量是.15.(2分)(2021春•孝感期末)红旗学校睿智兴趣小组在学习了《数据的分析》后,对本校九年级学生数学学业水平调研考试成绩进行了抽样调查.抽样成绩评定为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),从九年级学生中随机抽取40名学生的数学成绩进行统计分析,并绘制成如图所示扇形统计图.若该校九年级学生有720名,请你估计这次数学学业水平调研考试中,成绩达到合格以上(含合格)的人数大约有名.16.(2分)(2021春•栾城区期中)对某班最近一次数学测试成绩(得分取整数)进行统计分析,全班共50人,将50分以上(不含50分)的成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为.17.(2分)(2021春•丰台区校级期末)如图是某国产品牌手机专卖店去年1至5月高清大屏手机销售额折线统计图,根据图中信息,可以判断相邻两个月销售额变化最大的差的绝对值为万元.18.(2分)(2021春•齐齐哈尔期末)为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那么你估计池塘里有多少条鱼.19.(2分)(2022春•新乐市校级月考)某校抽取八年级学生人数的10%进行体质测试(成绩为整数),并绘制成如图6所示的不完整的统计图.已知86分及以上为优秀;76分﹣85分为良好;60分75分为及格;59分及以下为不及格.(1)在抽取的学生中不及格人数占抽取总人数的百分比是;(2)若抽取的学生中不及格学生的总分恰好等于某一个良好等级学生的分数,该校八年级学生中优秀等级的大约有人.20.(2分)(2022春•让胡路区校级期末)一个口袋中有红球、白球共20个,这些球除颜色外其他都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球个.评卷人得分三.解答题(共9小题,满分60分)21.(2022春•新华区校级期中)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分,我市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图,已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.(1)A组的频数是,B组对应扇形的圆心角的度数是;(2)补全直方图(需标明各组频数);(3)若该社区有30000户住户,请估计月信息消费额不少于200元的户数是多少?月消费额分组频数分布直方图组别消费额(元)A10≤x<100B100≤x<200C200≤x<300D300≤x<400E x≥40022.(2022春•晋州市校级期末)为了进一步了解某校八年级学生的身体素质情况,体育老师抽测了该校八年级(1)班50名学生一分钟的跳绳次数,以测试数据为样本,绘制出部分频数分布表和如图所示的不完整的频数分布直方图.组别次数x频数(人数)第1组80≤x<1006第2组100≤x<1208第3组120≤x<140a第4组140≤x<16018第5组160≤x<1806(1)本次调查为(填“普查”或“抽样调查”),样本容量为;(2)a=;频数分布直方图的组距为;(3)请把频数分布直方图补充完整;(4)若在一分钟内跳绳次数少于120次的为测试不合格,则该校八年级共1000人中,一分钟跳绳不合格的人数大约有多少?23.(2022春•雨花区校级期末)为了了解2月份某小区家庭用电情况,随机抽取了该小区部分家庭2月份电费金额进行调查,并将数据进行了如下整理,请根据所提供的信息,解答下列问题:月用电费(元)频数(户)频率10≤x<100120.24100≤x<20018n200≤x<300m0.20300≤x<40060.12400≤x<50040.08(1)求m,n,并把频数分布直方图补充完整;(2)求在被调查的家庭中,该小区2月份所用电费少于300元的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区2月份电费不少于300元的家庭大约有多少户?24.(2022春•鞍山期末)某学校开展“读书节”活动,为了解学生每周的课外阅读时间情况,随机调查了部分学生,对被抽查学生每周的课外阅读时间x(单位:时)进行分组整理,并绘制了如图所示不完整的频数分布表和频数分布直方图.阅读时间/时组中值频数百分比0≤x<211010%2≤x<432121%4≤x<654040%6≤x<878≤x≤10944%根据图中提供的信息,解答下列问题:(1)本次共随机调查了名学生;(2)请补全频数分布直方图;(3)估计该学校学生每周平均课外阅读时间;(4)请估计该校1000名学生中每周的课外阅读时间不小于6时的人数.25.(2021秋•安居区期末)某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:A、绘画;B、唱歌;C、演讲;D、书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)这次抽查的学生人数是多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求选课程D的人数所对的圆心角的度数;(4)如果该校共有1200名学生,请你估计该校报课程B的学生约有多少人?26.(2021秋•双峰县期末)尚志市某中学为了了解学生的课余生活情况,学校决定围绕“A:欣赏音乐、B:体育运动、C:读课外书、D:其他活动中,你最喜欢的课余生活种类是什么?(只写一类)“的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后绘制成如图所示的不完整的条形统计图,其中喜欢欣赏音乐的学生占被抽取学生的10%,请你根据以上信息解答下列问题:(1)在这次调查中一共抽取了多少名学生?(2)通过计算,补余条形统计图;(3)已知该校有学生2400人,请根据调查结果估计该校喜欢体育运动的学生有多少名?27.(2022春•临湘市期末)某校为加强学生安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分100分)进行统计,请根据尚未完成的频率和频数分布直方图,解答下列问题:分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?28.(2022•永善县模拟)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?29.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?答案与解析一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•旺苍县期末)某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()A.该调查的方式是普查B.本城市只有40个成年人不吸烟C.本城市一定有20万人吸烟D.样本容量是50解:A.该调查的方式是抽样调查,此选项说法错误;B.本城市成年人不吸烟的约有100×=20(万人),此选项错误;C.本城市大约有20万成年人吸烟,此选项错误;D.样本容量是50,此选项正确;故选:D.2.(2分)(2022春•朔州期末)为节约用电,某市根据每户居民每月用电量分为三档频数户收费.第一档电价:每月用电量低于240度,每度0.48元;第二档电价:每月用电量为240~400度,每度0.53元;第三档电价:每月用电量超过400度,每度0.78元小明同学对该市有1000居民的某小区月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.估计该小区按第一档电价交费的居民户数最多C.该小区按第二档电价交费的居民有240户D.该小区按第三档电价交费的居民比例约为6%解:本次抽样调查的样本容量=4+12+14+11+6+3=50(户),故A不符合题意.估计该小区按第一档电价交费的居民户数占=60%,第二档占=34%,第三档占=6%,故B,D不符合题意.该小区按第二档电价交费的居民约为1000×34%=340(户),故C符合题意,故选:C.3.(2分)(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红解:根据题意得:5÷10%=50(人),(16÷50)×100%=32%,则喜欢红色的人数是:50×28%=14(人),50﹣16﹣5﹣14=15(人),∵柱的高度从高到低排列,∴图2中“()”应填的颜色是红色.故选:D.4.(2分)(2020秋•桂林期末)在一个不透明的袋子里,有若干完全相同的蓝色玻璃球,现将只有颜色不同的10个同款红色玻璃球放入袋中,充分混合后随机倒出20个,其中红色玻璃球有2个.由此可估计袋子里原有蓝色玻璃球大约()A.50个B.80个C.90个D.100个解:设袋子中蓝色玻璃球的个数为x,根据题意,得:=,解得x=90,经检验x=90是分式方程的解,所以估计袋子中蓝色玻璃球的个数约为90个,故选:C.5.(2分)(2022春•鼓楼区校级月考)为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个解:本题中的总体是指这批日光灯管的全体的使用寿命,样本容量是30,所以①④不正确.个体是指每只日光灯管的使用寿命,样本是指从中抽取的30只日光灯管的使用寿命,所以②和③正确.故选:B.6.(2分)(2020春•西城区期末)甲、乙两座城市某年四季的平均气温如图所示,下列说法正确的是()A.甲城市的年平均气温在30℃以上B.乙城市的年平均气温在0℃以下C.甲城市的年平均气温低于乙城市的年平均气温D.甲、乙两座城市中,甲城市四季的平均气温较为接近解:由折线图可知,甲的年平均气温==20.25℃.故选项A不符合题意,乙的年平均气温==3.5℃,故选项B,C不符合题意.故选:D.7.(2分)(2020•东城区一模)党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.年份201720182019人数地区东部30014747中部1112181西部1634916323(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断不正确的是()A.2018年中部地区农村贫困人口为597万人B.2017﹣2019年,农村贫困人口数量都是东部最少C.2016﹣2019年,农村贫困人口减少数量逐年增多D.2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低解:A、2018年中部地区农村贫困人口为:1660﹣147﹣916=597(万人).故A的说法正确;B、由统计表可知B选项说法正确;C、∵4335﹣3046=1289,3046﹣1660=1386,1660﹣551=1109,∴1109<1289<1386,故C不正确,D、∵≈0.843,≈0.837,≈0.802,∴0.802<0.837<0.843,∴D说法正确.∴只有C推断不正确.故选:C.8.(2分)(2021•贵阳模拟)改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高解:2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C 错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所提高,故D正确;故选:C.9.(2分)(2019秋•大竹县期末)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.90解:总数是:90÷45%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选:A.10.(2分)(2019•合肥模拟)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,样本中,身高在160≤x<170之间的女学生人数为()A.8B.6C.14D.16解:女生的人数是:4+12+10+8+6=40(人),则身高在160≤x<170之间的女学生人数为40×(25%+15%)=16(人).故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是甲鱼池.(填甲或乙)解:由题意可得,甲鱼池中的鱼苗数量约为:100÷=2000(条),乙鱼池中的鱼苗数量约为:100÷=1000(条),∵2000>1000,∴初步估计鱼苗数目较多的是甲鱼池,故答案为:甲.12.(2分)(2021秋•青冈县期末)学校以年级为单位开展广播操比赛,全年级有13有个班级,每个班级有50名学生,规定每班抽25名学生参加比赛,这时样本容量是325.解:25×13=325,样本容量是325,故答案为:325.13.(2分)(2022春•高邑县期中)阳光体育运动关乎每个学生未来的幸福生活,今年四月份,我区某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班级2﹣3名选手参赛,现将80名选手比赛成绩(次/min)进行统计.绘制如图所示的频数分布直方图,则图中a的值为4.解:根据题意得:a=80﹣8﹣40﹣28=4,故答案为:4.14.(2分)(2021秋•鲤城区校级期末)为了解某市参加2014年中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.样本容量是1600.解:为了解某市参加2014年中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.样本容量是1600,故答案为:1600.15.(2分)(2021春•孝感期末)红旗学校睿智兴趣小组在学习了《数据的分析》后,对本校九年级学生数学学业水平调研考试成绩进行了抽样调查.抽样成绩评定为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),从九年级学生中随机抽取40名学生的数学成绩进行统计分析,并绘制成如图所示扇形统计图.若该校九年级学生有720名,请你估计这次数学学业水平调研考试中,成绩达到合格以上(含合格)的人数大约有504名.解:由题意,720×(25%+25%+20%)=504(名).故答案为:504.16.(2分)(2021春•栾城区期中)对某班最近一次数学测试成绩(得分取整数)进行统计分析,全班共50人,将50分以上(不含50分)的成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为82%.解:在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为×100%=82%,故答案为:82%.17.(2分)(2021春•丰台区校级期末)如图是某国产品牌手机专卖店去年1至5月高清大屏手机销售额折线统计图,根据图中信息,可以判断相邻两个月销售额变化最大的差的绝对值为10万元.解:1、2月销售额变化的差的绝对值为7,2、3月销售额变化的差的绝对值为5,3、4月销售额变化的差的绝对值为10,4、5月销售额变化的差的绝对值为4,故答案为:10.18.(2分)(2021春•齐齐哈尔期末)为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那么你估计池塘里有多少条鱼2000条.解:设湖中有x条鱼,则100:5=x:100,解得x=2000.故答案为:2000条.19.(2分)(2022春•新乐市校级月考)某校抽取八年级学生人数的10%进行体质测试(成绩为整数),并绘制成如图6所示的不完整的统计图.已知86分及以上为优秀;76分﹣85分为良好;60分75分为及格;59分及以下为不及格.(1)在抽取的学生中不及格人数占抽取总人数的百分比是4%;(2)若抽取的学生中不及格学生的总分恰好等于某一个良好等级学生的分数,该校八年级学生中优秀等级的大约有100人.解:(1)在抽取的学生中不及格人数所占的百分比是1﹣44%﹣32%﹣20%=4%,故答案为:4%.(2)因为一个良好等级学生分数为76~85分,而不及格学生平均分为40分,由此可以知道不及格学生仅有2人,将一个良好等级的分数当成78分估算出此结果也可,抽取优秀等级学生人数是:2÷4%×20%=10人,八年级优秀人数约为:10÷10%=100人.故该校八年级学生中优秀等级的人数大约是100人.故答案为:100.20.(2分)(2022春•让胡路区校级期末)一个口袋中有红球、白球共20个,这些球除颜色外其他都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回,不断重复这一过程,共摸了。

八下初中数学试题及答案

八下初中数学试题及答案

八下初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bx + cD. y = ax^2 + bx + d答案:A2. 已知函数f(x) = 2x - 3,求f(-1)的值。

A. -5B. -1C. 1D. 5答案:A3. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 7C. 9D. 12答案:A4. 以下哪个选项是不等式的基本性质?A. 若a > b,则a + c > b + cB. 若a > b,则ac > bc(c > 0)C. 若a > b,则a^2 > b^2D. 若a > b > 0,则1/a < 1/b答案:A5. 一个圆的半径为5,求该圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 已知一个等腰三角形的底边长为6,两腰长为5,求该三角形的周长。

A. 16B. 21C. 26D. 31答案:B7. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 0D. 6答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 一个二次函数的顶点坐标为(2, -3),且开口向上,求该函数的对称轴。

A. x = 1B. x = 2C. x = 3D. x = 4答案:B10. 一个数列的前三项为2, 4, 6,求该数列的第四项。

A. 8B. 10C. 12D. 14答案:A二、填空题(每题3分,共15分)11. 已知一个等差数列的第二项为5,公差为3,求该数列的第五项。

答案:1412. 一个平行四边形的两对边长分别为8和6,求该平行四边形的周长。

答案:2813. 一个数的立方根是2,求这个数。

初二下册数学考试卷可打印

初二下册数学考试卷可打印

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √9B. √16C. √-4D. π2. 下列等式中,正确的是()A. a² + b² = (a + b)²B. a² - b² = (a - b)²C. a² + 2ab + b² = (a + b)²D. a² - 2ab + b² = (a - b)²3. 已知一次函数y = kx + b的图象经过点(2,3),则k和b的值可能是()A. k = 1, b = 1B. k = 2, b = 3C. k = -1, b = 3D. k = 0, b = 34. 在梯形ABCD中,AD ∥ BC,若AB = 10cm,CD = 8cm,梯形的高为6cm,则梯形面积是()A. 48cm²B. 60cm²C. 72cm²D. 80cm²5. 若一个等边三角形的边长为a,则它的周长是()B. 4aC. 5aD. 6a6. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x²C. y = 1/xD. y = 2x7. 若一个圆的半径为r,则它的直径是()A. 2rB. r/2C. 4rD. r/48. 在直角三角形ABC中,∠C = 90°,∠A = 30°,则∠B的度数是()A. 60°B. 45°C. 30°D. 90°9. 下列各数中,属于无理数的是()A. √4B. √9C. √1610. 已知二次函数y = ax² + bx + c的图象开口向上,则a的值应该是()A. a > 0B. a < 0C. a = 0D. a ≠ 0二、填空题(每题3分,共30分)11. 2的平方根是______,-2的平方根是______。

2022届太原市名校初二下期末学业水平测试数学试题含解析

2022届太原市名校初二下期末学业水平测试数学试题含解析

2022届太原市名校初二下期末学业水平测试数学试题一、选择题(每题只有一个答案正确)1.正方形的一条对角线之长为3,则此正方形的边长是( )A .322B .3C .32D .322.如图,四边形OABC 是矩形,(2,1)A ,(0,5)B ,点C 在第二象限,则点C 的坐标是( )A .(1,3)-B .(1,2)-C .(2,3)-D .(2,4)-3.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( )A .2个B .3个C .4个D .5个4.《九章算术》中的“折竹抵地”问题:一根竹子高1丈(1丈10=尺),折断后竹子顶端落在离竹子底端6尺处,折断处离地面的高度是多少?( )A .3.2B .4.2C .5D .85.在一次学生田径运动会上.参加男子跳高的15名运动员的成绩如下表所示:成绩(m )1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数是( )A .1.65,1.70B .1.70,1.70C .1.70,1.65D .3,4 6.二元一次方程组45(1)3x y kx k y +=⎧⎨+-=⎩的解中x 、y 的值相等,则k=( ) A .1 B .2 C .-1 D .-27.如图,平行四边形ABCD 中,∠BDC=30°,DC=4,AE ⊥BD 于E ,CF ⊥BD 于F ,且E 、F 恰好是BD 的三等分点,AE 、CF 的延长线分别交DC 、AB 于N 、M 点,那么四边形MENF 的面积是( )A .2B .3C .22D .238.当2x =时,函数41=-+y x 的值是( )A .-3B .-5C .-7D .-99.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A .邻边不等的矩形B .等腰梯形C .有一角是锐角的菱形D .正方形10.如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ;把正方形1111A B C D 边长按原法延长一倍得到正方形2222A B C D ;以此进行下去⋯,则正方形n n n n A B C D 的面积为( )A .n 5)B .n 5C .n 15-D .n 15+二、填空题 11.数据1x ,2x ,3x ,4x 的平均数是40,方差是3,则数据11x +,21x +,31x +,41x +的平均数和方差分别是_____________.12.用换元法解方程3242x x x x ---+3=0时,如果设2x x -=y ,那么将原方程变形后所得的一元二次方程是_____. 13.如图,123////l l l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知4AB =,3BC =,9DF =,EF 的长为_______.14.如图,直线AB ,IL ,JK ,DC ,相互平行,直线AD ,IJ 、LK 、BC 互相平行,四边形ABCD 面积为18,四边形EFGH 面积为11,则四边形IJKL 面积为____.15.不等式--3x >-1的正整数解是_____. 16.一个多边形的每一个内角都等于它相邻外角的2倍,则这个多边形的边数是__________. 17.若分式方程211x m x x+=--无解,则m =__________. 三、解答题18.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60˚的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,则A 城遭受这次台风影响有多长时间?19.(6分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元? 20.(6分)如图,Rt ABC ∆中,90C ∠=︒,D 是AB 上一点,DE AC ⊥于点E ,F 是AD 的中点,FG BC ⊥于点G ,与DE 交于点H ,若FG AF =,AG 平分CAB ∠,连结GE ,GD .(1)求证:ECG GHD ∆∆≌;(2)求证:AD AC EC =+.(3)若30B ∠=︒,判定四边形AEGF 是否为菱形,并说明理由.21.(6分)如图,在正方形ABCD 中,点E 是BC 边上的一动点,点F 是CD 上一点,且CE DF =,AF 、DE 相交于点G .(1)求证:ADF DCE ≌;(2)求AGD ∠的度数(3)若BG BC =,求DG AG的值.22.(8分)解方程:(1)x 2-4x =3(2)x 2-4=2(x +2)23.(8分)在研究反比例函数y =﹣1x 的图象时,我们发现有如下性质: (1)y =﹣1x的图象是中心对称图形,对称中心是原点. (2)y =﹣1x的图象是轴对称图形,对称轴是直线y =x ,y =﹣x . (3)在x <0与x >0两个范围内,y 随x 增大而增大;类似地,我们研究形如:y =﹣12x -+3的函数: (1)函数y =﹣12x -+3图象是由反比例函数y =﹣1x 图象向____平移______个单位,再向_______平移______个单位得到的.(2)y =﹣12x -+3的图象是中心对称图形,对称中心是______. (3)该函数图象是轴对称图形吗?如果是,请求出它的对称轴,如果不是,请说明理由. (4)对于函数y =3224x x ---,x 在哪些范围内,y 随x 的增大而增大? 24.(10分)如图,在四边形ABCD 中,90BAC ∠=︒,E 是BC 的中点,//AD BC ,//AE DC ,EF CD ⊥于点F .(1)求证:四边形AECD 是菱形;(2)若5AB =,12AC =,求EF 的长.25.(10分)如图,在四边形ABCD 中,//, 2,90AD BC BC AD BAC ︒=∠=,点E 为BC 的中点.(1)求证:四边形AECD 是菱形;(2)联结BD ,如果BD 平分,2ABC AD ∠=, 求BD 的长.参考答案一、选择题(每题只有一个答案正确)1.A【解析】【分析】根据正方形的性质和勾股定理列方程求解即可.【详解】解:设正方形的边长为a ,∵正方形的一条对角线之长为3,∴a 2+a 2=32,∴a=322(负值已舍去), 故选:A .【点睛】本题考查了正方形的性质和勾股定理,熟练掌握正方形的性质是解决问题的关键.2.D【解析】过C 作CE ⊥y 轴于E ,过A 作AF ⊥y 轴于F ,得到∠CEO=∠AFB=90°,根据矩形的性质得到AB=OC ,AB ∥OC ,根据全等三角形的性质得到CE=AF ,OE=BF ,BE=OF ,于是得到结论.【详解】解:过C 作CE y ⊥轴于E ,过A 作AF y ⊥轴于F ,90CEO AFB ∴∠=∠=︒,四边形ABCO 是矩形,AB OC ∴=,//AB OC ,ABF COE ∴∠=∠,()OCE ABF AAS ∴∆≅∆,同理BCE OAF ∆≅∆,CE AF ∴=,OE BF =,BE OF =,(2,1)A ,(0,5)B ,2AF CE ∴==,1BE OF ==,5OB =,4OE ∴=,∴点C 的坐标是(2,4)-;故选:D .【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.3.C【解析】【分析】先分别以点O 、点A 为圆心画圆,圆与x 轴的交点就是满足条件的点P ,再作OA 的垂直平分线,与x 轴的交点也是满足条件的点P ,由此即可求得答案.【详解】如图,当OA=OP 时,可得P 1、P 2满足条件,当OA=AP 时,可得P 3满足条件,当AP=OP 时,可得P 4满足条件,【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键.4.A【解析】【分析】根据题意画出图形,设折断处离地面的高度为x ,则AB=10-x ,AC=x ,BC=6,进而根据勾股定理建立方程求解即可.【详解】根据题意可得如下图形:设折断处A 离地面的高度为x ,则AB=10-x ,AC=x ,BC=6,∴()222610x x +=-,解得: 3.2x =,故选:A.【点睛】本题主要考查了勾股定理的运用,熟练掌握相关公式是解题关键.5.C【解析】【分析】根据中位数的定义与众数的定义,结合图表信息解答.【详解】15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.1,共有4人,所以,众数是1.1.因此,中位数与众数分别是1.70,1.1.故选:C .6.B【解析】【分析】由x 与y 的值相等得到y=x ,代入方程组中计算即可求出k 的值.【详解】解:由题意得:y=x ,把y=x 代入方程组,得()5513x kx k x =⎧⎨+-=⎩, 解得:k 2=,故选择:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 7.B【解析】【分析】由已知条件可得EN 与EF 的长,进而可得Rt △NEF 的面积,即可求解四边形MENF 的面积.【详解】解:∵E ,F 为BD 的三等分点,∴DE=EF=BF ,∵AE ⊥BD ,CF ⊥BD ,∴EN ∥FC ,∴EN 是△DFC 的中位线,∴EN=12FC. ∵在Rt △DCF 中,∠BDC=30°,DC=4,∴FC=2,∴EN=1,∴在Rt △DEN 中,∠EDN=30°,∴DN=2EN=2,DE=22DN -EN =3,∴EF=DE=3,∴S △ENF = 12×1×3=32, 四边形MENF 的面积=32×2=3. 故选B.【点睛】本题考查了平行四边形的性质,三角形中位线定理.8.C【解析】【分析】将2x =代入函数解析式即可求出.【详解】解:当2x =时,函数414217y x =-+=-⨯+=-,故选C.【点睛】本题考查函数值的意义,将x 的值代入函数关系式按照关系式提供的运算计算出y 的值即为函数值. 9.D【解析】如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选D .10.B【解析】【分析】根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.【详解】解:如图,已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,11AA D 的面积21212AB AB AB =⨯⨯==, 新正方形1111A B C D 的面积是4115⨯+=,从而正方形2222A B C D 的面积为5525⨯=,以此进行下去⋯,则正方形n n n n A B C D 的面积为5n .故选:B .【点睛】此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.二、填空题11.41,3【解析】试题分析:根据题意可知原数组的平均数为1234414x x x x x +++==,方差为()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦=3,然后由题意可得新数据的平均数为1234+1+1+1+1414x x x x x +++==,可求得方程为2=3s . 故答案为:41,3.12.3y 2+3y ﹣2=1【解析】【分析】设2x y x =-,则原方程化为3y ﹣+3=1,,再整理即可. 【详解】﹣+3=1, 设=y ,则原方程化为:3y ﹣+3=1,即3y 2+3y ﹣2=1,故答案为:3y 2+3y ﹣2=1.【点睛】本题考查了解分式方程,能够正确换元是解此题的关键.13.277【解析】【分析】根据平行线分线段成比例定理得到比例式,代入计算即可.【详解】解:∵l 1∥l 2∥l 3, ∴AB DE BC EF=,即493EF EF -=, 解得,EF =277, 故答案为:277. 【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.14.1【解析】【分析】由平行四边形的性质可得EHB EIH S S ∆∆=,AEF EFJ S S ∆∆=,DFG FKG S S ∆∆=,GCH GHL S S ∆∆=,由面积和差关系可求四边形IJKL 面积.【详解】解://AB IL ,//IJ BC ,∴四边形EIHB 是平行四边形,EHB EIH S S ∆∆∴=,同理可得:AEF EFJ S S ∆∆=,DFG FKG S S ∆∆=,GCH GHL S S ∆∆=,∴四边形IJKL 面积=四边形EFGH 面积-(四边形ABCD 面积-四边形EFGH 面积)11(1811)4=--=,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出EHB EIH S S ∆∆=是解题的关键. 15.1,1【解析】【分析】首先确定不等式的解集,然后再找出不等式的特殊解.解:解不等式得:x <3,故不等式的正整数解为:1,1.故答案为1,1.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.16.1【解析】【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】设外角为x ,则相邻的内角为2x ,由题意得,2x+x=180°,解得,x=10°,310÷10°=1,故答案为:1.【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键. 17.1【解析】【分析】先把m 看作已知,解分式方程得出x 与m 的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m 的值.【详解】 解:在方程211x m x x+=--的两边同时乘以x -1,得2(1)x m x -=- , 解得2x m =-.因为原方程无解,所以原分式方程有增根x=1,即21m -=,解得m=1.故答案为1.【点睛】本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.三、解答题18.(1)A 城受台风影响;(2)DA=200千米,AC=160千米试题分析:(1)由A点向BF作垂线,垂足为C,根据勾股定理求得AC的长,与200比较即可得结论;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.试题解析:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,22DA AC-22200160-千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).19.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x元,则:16006000 32x x⨯=+解得:8x=经检验:8x=是分式方程的解答:第一批饮料进货单价为8元. (2)设销售单价为m元,则:()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.20.(1)见解析;(2)证明见解析;(3)四边形AEGF 是菱形,证明见解析.【解析】【分析】(1)依据条件得出∠C=∠DHG=90°,∠CGE=∠GED ,依据F 是AD 的中点,FG ∥AE ,即可得到FG 是线段ED 的垂直平分线,进而得到GE=GD ,∠CGE=∠GDE ,利用AAS 即可判定△ECG ≌△GHD ;(注:本小题也可以通过证明四边形ECGH 为矩形得出结论)(2)过点G 作GP ⊥AB 于P ,判定△CAG ≌△PAG ,可得AC=AP ,由(1)可得EG=DG ,即可得到Rt △ECG ≌Rt △DPG ,依据EC=PD ,即可得出AD=AP+PD=AC+EC ;(3)依据∠B=30°,可得∠ADE=30°,进而得到AE=12AD ,故AE=AF=FG ,再根据四边形AEGF 是平行四边形,即可得到四边形AEGF 是菱形.【详解】解:(1)∵AF=FG ,∴∠FAG=∠FGA ,∵AG 平分∠CAB ,∴∠CAG=∠FAG ,∴∠CAG=∠FGA ,∴AC ∥FG ,∵DE ⊥AC ,∴FG ⊥DE ,∵FG ⊥BC ,∴DE ∥BC ,∴AC ⊥BC ,∴∠C=∠DHG=90°,∠CGE=∠GED ,∵F 是AD 的中点,FG ∥AE ,∴H 是ED 的中点,∴FG 是线段ED 的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△DPG,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:∵∠B=30°,∴∠ADE=30°,∴AE=12 AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AEGF是平行四边形,∴四边形AEGF是菱形.【点睛】此题考查菱形的判定,全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质,利用全等三角形的对应边相等,对应角相等是解题的关键.21.(1)见解析;(2)∠AGD=90°;(3)12 DGAG=.【解析】【分析】(1)直接利用正方形的性质得到AD=DC,∠ADF=∠DCE,CE DF=,结合全等三角形的判定方法得出答案;(2)根据∠DAF=∠CDE和余角的性质可得∠AGD=90°;(3)利用全等三角形的判定和性质得出△ABH ≌△ADG (AAS ),即可得出DG AG的值. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,∠ADF =∠DCE =90°,在△ADF 和△DCE 中 AD DC ADF DCE DF EC =⎧⎪∠=∠⎨⎪=⎩;∴△ADF ≌△DCE (SAS );(2)解:由(1)得△ADF ≌△DCE ,∴∠DAF =∠CDE ,∵∠ADG+∠CDE =90°,∴∠ADG+∠DAF =90°,∴∠AGD =90°,(3)过点B 作BH ⊥AG 于H∵BH ⊥AG ,∴∠BHA =90°,∴∠BHA =∠AGD ,∵四边形ABCD 是正方形,∴AB =AD =BC ,∠BAD =90°,∵∠ABH+∠BAH =90°,∠DAG+∠BAH =90°,∴∠ABH =∠DAG ,在△ABH 和△ADG 中BHA AGD ABH DAG BA DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△ADG (AAS ),∴AH =DG ,∵BG =BC ,BA =BC ,∴BA=BG,∴AH=12 AG,∴DG=12 AG,∴12 DGAG=.【点睛】此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.22.(1)x1=2x2=2(2)x1=-2,x2=4【解析】【分析】(1)观察方程的特点:二次项系数为1,一次项系数为4,因此利用配方法解方程;(2)观察方程的左边可以利用平方差公式分解因式,此时方程两边都含有公因式(x+2),因此利用因式分解法解方程.【详解】(1)解:配方得,x2-4x+4=3+4(x-2)2=7解之:∴x1=2+x2=2(2)解:(x+2)(x-2)-2(x+2)=0(x+2)(x-2-2)=0∴x+2=0或x-4=0解之:x1=-2,x2=4.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.23.(1)右,2,上,1;(2)(2,1);(1)是轴对称图形,对称轴是:y=x+1和y=﹣x+2;(4)x<2或x >2.【解析】【分析】(1)根据图象平移的法则即可解答;(2)根据平移的方法,函数y=﹣1x的中心原点平移后的点就是对称中心;(1)图象平移后与原来的直线y=x和y=-x平行,并且经过对称中心,利用待定系数法即可求解;(4)把已知的函数y=3224xx---变形成的形式43x-22--,类比反比例函数性质即可解答.【详解】解:(1)函数y=﹣12x-+1图象是由反比例函数y=﹣1x图象向右平移2个单位,再向上平移1个单位得到的.故答案为:右2上1.(2)y=﹣12x-+1的图象是中心对称图形,对称中心是(2,1).故答案为:(2,1).(1)该函数图象是轴对称图形.∵y=﹣1x的图象是轴对称图形,对称轴是直线y=x,y=﹣x.设y=﹣12x-+1对称轴是y=x+b,把(2,1)代入得:1=2+b,∴b=1,∴对称轴是y=x+1;设y=﹣12x-+1对称轴是y=﹣x+c,把(2,1)代入得:1=﹣2+c,∴c=2.∴对称轴是y=﹣x+2.故答案为:y=x+1和y=﹣x+2.(4)对于函数y=3224xx---,变形得:y=3224xx---=3(2)82(2)xx---=43x-22--,则其对称中心是(2,32 -).则当x<2或x>2时y随x的增大而增大.故答案为:x<2或x>2【点睛】本题考查了反比例函数的图象与性质,以及待定系数法求函数的解析式,正确理解图象平移的方法是关键.24.(1)见解析;(2)6013 EF=.【解析】【分析】(1)先证明四边形AECD 是平行四边形,再由直角三角形斜边的中线等于斜边的一半可得AE CE =,从而可证四边形AECD 是菱形;(2)作AH BC ⊥,垂足为H ,根据勾股定理求出BC 的长,再利用菱形的性质和三角形的面积公式解答即可.【详解】解:(1)//AD BC ,//AE DC ,∴四边形AECD 是平行四边形,90BAC ∠=︒,E 是BC 的中点,∴12AE CE BC ==, ∴AECD 是菱形;(2)作AH BC ⊥,垂足为H ,90BAC ∠=︒,5AB =,12AC =,∴22=51213BC +=. 1122ABC S BC AH AB AC ∆=⋅=⋅, ∴6013AH =. 四边形AECD 是菱形,∴CD CE =,AECD S CE AH CD EF =⋅=⋅,∴6013EF AH ==. 【点睛】 此题考查菱形的判定和性质、直角三角形斜边的中线等于斜边的一半、勾股定理、平行四边形的判定,证明四边形AECD 是菱形是解题的关键.25.(1)见解析;(2)3【解析】【分析】(1)根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.(2)此题有两种解决方法,方法一:证明四边形ABCD 是等腰梯形,方法二:证明∠BDC 为直角.【详解】(1)证明:90BAC ︒∠=,点E 为BC 的中点,12AE EC BC ∴== 12, , 2BC AD AD BC AD EC =∴=∴=, 又//,AD BC ∴四边形AECD 是平行四边形AE EC ∴=,∴四边形AECD 是菱形(2)解:方法一//,AD BC AD BC <∴四边形ABCD 是梯形. BD 平分1,2ABD ABD DBC ABC ∠∴∠=∠=∠ //,,AD BC ADB DBC ∴∠=∠,ABD ADB AB AD ∴∠=∠∴=四边形AECD 是菱形,2AD DC ∴==.2AB DC ∴==∴四边形ABCD 是等腰梯形,AC BD ∴=24,BC AD ∴==BD AC ∴==方法二:BD 平分1,2ABD ABD DBC ABC ∠∴∠=∠=∠ //,,AD BC ADB DBC ∴∠=∠,ABD ADB AB AD ∴∠=∠∴=224,30BC AD AB ACB ∴===∴∠=18060ABC ACB ∴∠=-∠=,即1302DBC ABC ∠=∠=, 四边形AECD 是菱形,2,AD DC DAC DCA ∴==∴∠=∠//,AD BC DAC ACB ∴∠=∠,即30DCA DAC ACB ∠=∠=∠=,18090BDC DBC DCA ACB ∴∠=-∠-∠-∠=BD ∴==【点睛】此题考查菱形的判定与性质,解题关键在于结结合题意运用菱形的判定与性质即可.。

初二数学下试题及答案

初二数学下试题及答案

初二数学下试题及答案一、选择题(每题3分,共30分)1. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是()。

A. 11B. 13C. 16D. 无法确定2. 一个数的平方根是2,那么这个数是()。

A. 4B. -4C. 2D. -23. 下列哪个选项是方程2x + 3 = 11的解()。

A. x = 4B. x = 2C. x = 1D. x = 34. 一个正数的倒数是它本身,那么这个数是()。

A. 1B. 0C. -1D. 25. 一个数的绝对值是它本身,那么这个数()。

A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或06. 计算(-2)^3的值是()。

A. 8B. -8C. 2D. -27. 一个数的立方根是3,那么这个数是()。

A. 27B. -27C. 3D. -38. 计算(-5)×(-3)的值是()。

A. 15B. -15C. 5D. -59. 一个数的平方是25,那么这个数是()。

A. 5B. -5C. 5或-5D. 010. 计算2^2 × 2^3的值是()。

A. 16B. 8C. 32D. 64二、填空题(每题4分,共20分)1. 一个数的平方是36,那么这个数是______。

2. 一个数的立方是-8,那么这个数是______。

3. 一个数的绝对值是5,那么这个数可以是______。

4. 如果一个数的倒数是1/3,那么这个数是______。

5. 一个数的平方根是4,那么这个数是______。

三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 14。

2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边长。

3. 计算:(-2)^2 × (-3)^3。

4. 已知一个数的平方是100,求这个数。

5. 计算:(-5) × (-2) × 3。

四、答案一、选择题答案:1. B2. A3. A4. A5. C6. B7. A8. A9. C10. C二、填空题答案:1. ±62. -23. ±54. 35. 16三、解答题答案:1. 解:3x - 7 = 143x = 21x = 7答:x = 7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二下学期数学综合测试题(一)
班别 姓名 座号 成绩
一.选择题(每小题3分,共24分)
1.下列式子中,y x +15、8a 2
b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、6
5xy 中分式的个
数为( )
(A ) 2 (B ) 3 (C ) 4 (D) 5 2.要使分式
5
1
-x 有意义则x 应满足( ) (A )X ≠5 (B )X ≠-5 (C )X ≠5或X ≠-5 (D )X ≠5且X ≠-5 3.反比例函数:2
m y x
+=
y 随x 的增大而减小,则m 的取值范畴是( ) (A)m>-2 (B)m<-2 (C)m>2 (D)m<2
4.当路程s 一定时,速度V 与时刻T 之间的函数关系是( )
(A )正比例函数. (B )反比例函数; (C )一次函数. (D )以上都不是. 5.在⊿ABC 中, a,b,c 分别是∠A 、∠B 、∠C 的对边,在满足下列条件的三角形中,不是直角三角形的是:( )
(A )∠A :∠B :∠C=3:4:5 (B )a :b :c=1:2:
3
(C )a :b :c=3:4:5 (D )∠A :∠B :∠C=1:2:3 6. 下列图形中是中心对称图形而不是轴对称图形的是( )
(A )平行四边形 (B )矩形 (C )菱形 (D )正方形 7.下面各条件中,能判定四边形是平行四边形的是 ( )
(A )对角线互相垂直 (B )对角线互相平分 (C )一组对角相等 (D )一组对边相等 8.数据1、3、3、-1、-2、-3、0的众数、中位数是( ) (A )3、0 (B )0、3 (C )1、3 (D )3、1 二、填空题(每小题4分,共24分)
1.用科学记数法表示:-0.00002005= . 2.运算
24
a a
÷的正确结果是: . 3.若2
2
(1)k
y k x -=-是反比例函数,则k = .
4.如图,在ABCD中E、F是对角线BD上的两点,要使四边形AECF为平行四边形,
则需添加的一条件是.
(第4题)
5.命题:“全等三角形的对应边相等”的逆命题是。

6.已知正方形的一条对角线长为4cm,求它的边长是面积是.三.解答题(每题5分共20分)
1. 230
1
()20.1252005|1|
2
-
--⨯++- 2.
1
2
-
x
x
-x-1
3.一个长10米的梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由。

4.化简求值:
x
x
x
x
x
x1
1
1
32-
⋅⎪




+
-
-
,其中x=2.
B
C
A
A’
B’
四.解下列方程(6分)
1.14
12
222=--+-x x x
五.列方程解应用题(6分)
1.我部队到某桥头阻击敌人,动身时敌人离桥头24千米,我部队离桥头30千米,我部队急行军,速度是敌人的1.5倍,结果比敌人提早48分到达,求我部队的速度?
六. 由物理学知识明白,在力F (牛)的作用下,物体会在F 的方向上发生位移s (米),力F 所做的功W (焦)满足W=Fs ,当W 为定值时,F 与s 之间的函数图象如图所示:(6分) (1)试确定F 与s 之间的函数关系式; (2)当F=3牛时,s 是多少?
F/
七. 如图,△ABC 中,∠A=90°, ∠B 的平分线交AC 于D ,AH 、DF 都垂直于BC ,H 、F 为垂足,求证:四边形AEFD 为菱形。

(6分)
A
B
C
D
E F H
八. 某公司聘请职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔
试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:(8分)
(1)若公司依照经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:
4:6的比确定,请运算甲、乙两人各自的平均成绩,看看谁将被录用?
(2)若公司依照经营性质和岗位要求认为:面试成绩中形体占,口才占,笔试成绩中专业
水平占,创新能力占,那么你认为该公司应该录用谁?。

相关文档
最新文档