2020年浙江省金华市婺城区中考数学三模试题

合集下载

2020年浙江省金华市中考数学三调试卷附解析

2020年浙江省金华市中考数学三调试卷附解析

2020年浙江省金华市中考数学三调试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切2.已知反比例函数2y x=-过两点 (x 1,y 1)、(x 2,y 2),当120x x <<时,y, 与 y 2 大小关 系为( )A .12y y =B .12y y >C .12y y <D . y 1与 y 2 大小不确定3.抛物线212y x =的函数值是( ) A . 大于零 B .小于零 C . 不大于零 D . 不小于零4.如图是一个礼品包装盒的表面展开图,将它折成立方体后,“祝”的对面是( )A .“牛”字B .“年”字C .“大”字D .“吉”字 5.一个均匀的正方体骰子的六个面上分别标有一个1,二个2,三个3,则掷出3在上面的概率是( )A .61B .31 C .21 D .32 6.33422232481632a bc a b c a b c +-在分解因式时,应提取的公因式是( ) A .316s a bc B .2228a b cC . 228a bcD .2216a bc 7.关于一条线段,下列判断正确的是( )A .只有一个端点B .有两个端点C .有两个以上端点D .没有端点二、填空题8.如图,口袋中有5张完全相同的卡片,分别写有1cm ,2cm ,3cm ,4cm 和5cm ,口袋外有2张卡片,分别写有4cm 和5cm .现随机从袋内取出一张卡片,与口袋外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成直角三角形的概率;(3)求这三条线段能构成等腰三角形的概率.解答题9.如果一扇形的半径为15,弧长为4π,则此扇形的面积是 。

2020年浙江省金华市婺城区中考数学模拟试卷(三) (含答案解析)

2020年浙江省金华市婺城区中考数学模拟试卷(三) (含答案解析)

2020年浙江省金华市婺城区中考数学模拟试卷(三)一、选择题(本大题共10小题,共30.0分)1.−13的倒数是()A. −3B. −13C. 13D. 32.下面计算正确的是()A. a4⋅a2=a8B. (a3)2=a9C. a6÷a2=a3D. a2+a2=2a23.2019年10月1日上午,庆祝中华人民共和国成立70周年大会在北京天安门广场隆重举行,20余万军民以盛大的阅兵仪式和群众游行欢庆共和国70华诞.20万用科学记数法表示为()A. 2×102B. 2×104C. 2×105D. 2×1064.已知∠α=35°,则∠α的余角的度数是()A. 35°B. 55°C. 65°D. 145°5.一个正比例函数的图象经过(2,−1),则它的表达式为()A. y=−2xB. y=2xC. y=−12x D. y=12x6.要使代数式√1−xx+2有意义,则x的取值范围是()A. x≥1B. x≤1C. x≥1且x≠−2D. x≤1且x≠−27.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,OA=3,那么∠AOB所对弧的度数为()A. 60°B. 80°C. 120°D. 140°8.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:则这15名同学一周在校参加体育锻炼的时间的中位数和众数分别为()锻炼时间(小时)5678人数2652A. 6,7B. 7,7C. 7,6D. 6,69.如图,DE垂直平分AB,交AC于点D,交AB于点E,连接BD,若AC=6cm,BC=4cm,则△BCD的周长为()A. 6cmB. 8cmC. 10cmD. 12cm10.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在(x>0)x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx的图象上,若AB=1,则k的值为()A. 1B. √22C. √2D. 2二、填空题(本大题共6小题,共24.0分)11.分解因式:3a2+6a+3=______.12.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=____.13.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数例如图一,即4+3=7,则图二当y=−2时,n的值为_____.图一图二14.如图,在平行四边形ABCD中,E是DC边延长线上的点,且CE=CD,连接AE分别交BC,BD于点F,G,则AG:GF=________.15.如图,在直角坐标中,⊙O的半径为2,圆心是原点,点A的坐标为(2,2√3),P是⊙O上的动点,连接AP,当∠OAP最大时,则点P的坐标为.16.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.三、解答题(本大题共8小题,共66.0分))−217.π0+2cos30°−|2−√3|−(1218.解不等式组{2x−1>−2+x3x+2>4x19.如图,在单位长度为1个单位长度的小正方形组成的正方形网格中,点A,B,C在小正方形的顶点上.在图中画出与关于直线l成轴对称的△A'B'C'.20.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为______,图①中m的值为______;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.21.如图,已知⊙O的直径AB=10,AC是⊙O的弦.过点C作⊙O的切线DE交AB的延长线于点E,过点A作AD⊥DE,垂足为D,与⊙O交于点F,设∠DAC、∠CEA的度数分别为α,β,且0°<α<45°(1)用含α的代数式表示β;(2)连结OF交AC于点G,若AG=CG,求AC的长.22.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?23.定义:点P为△ABC内部或边上的点,若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(点P不与△ABC顶点重合),则称点P为△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P 为△ABC的自相似点.在平面直角坐标系xOy中,(1)点A坐标为(2,2√3),AB⊥x轴于B点,在E(2,1),F(32,√32),G(12,√32)这三个点中,其中是△AOB自相似点的是______(填字母);(2)若点M是曲线C:y=kx(k>0,x>0)上的一个动点,N为x轴正半轴上一个动点;①如图2,k=3√3,M点横坐标为3,且NM=NO,若点P是△MON的自相似点,求点P的坐标;②若k=1,点N为(2,0),且△MON的自相似点有2个,则曲线C上满足这样条件的点M共有______个,请在图3中画出这些点(保留必要的画图痕迹).24. 已知在Rt △ABC 中,∠BAC =90°,AB ≥AC ,D 、E 分别为AC 、BC 边上的点(不包括端点),且DC BE =ACBC =m ,连结AE ,过点D 作DM ⊥AE ,垂足为点M ,延长DM 交AB 于点F .(1)如图1,过点E 作EH ⊥AB 于点H ,连结DH .①求证:四边形DHEC 是平行四边形;②若m =√22,求证:AE =DF ; (2)如图2,若m =35,求DFAE 的值.-------- 答案与解析 --------1.答案:A解析:.本题考查了倒数的定义:a(a≠0)的倒数为1a的倒数为−3.根据倒数的定义可得到−13解:−1的倒数为−3.3故选A.2.答案:D解析:根据同底数幂相乘、幂的乘方、同底数幂相除及合并同类项法则逐一判断即可得.本题主要考查整式的运算,解题的关键是掌握同底数幂相乘、幂的乘方、同底数幂相除及合并同类项法则.解:A.a4⋅a2=a6,错误;B.(a3)2=a6,错误;C.a6÷a2=a4,错误;D.a2+a2=2a2,正确;故选D.3.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:20万=200000=2×105.故选C.4.答案:B解析:本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单;根据互为余角的两个角的和为90度作答.解:根据定义∠α的余角度数是90°−35°=55°.故选B.5.答案:C解析:本题考查的是正比例函数解析式有关知识,把(2,−1)代入函数解析式中即可解答.解:设正比例函数解析式为y=kx,把(2,−1)代入函数解析式中可得:−1=2k,,解得:k=−12x.则该正比例函数解析式为y=−12故选C.6.答案:D解析:根据二次根式有意义的条件可得1−x≥0,根据分式有意义的条件可得x+2≠0,再解即可.此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.解:由题意得:1−x≥0,且x+2≠0,解得:x≤1,且x≠−2,故选D.7.答案:C解析:本题主要考查了切线的性质定理有关知识,根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求解.解:∵PA是圆的切线,∴∠OAP=90°,同理∠OBP=90°,根据四边形内角和定理可得:∠AOB=360°−∠OAP−∠OBP−∠P=360°−90°−90°−60°=120°.∴∠AOB所对弧的度数为120°.故选C.8.答案:D解析:本题考查中位数、众数的意义及求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数,在一组数据中出现次数最多的数是众数.从15个学生体育锻炼的时间中,找出出现次数最多的数是众数,排序后处在第8位的数是中位数.解:15名学生的锻炼时间从小到大排列后处在第8位的是6小时,因此中位数是6小时,6小时的出现次数最多,是6次,因此众数是6小时,故选D.9.答案:C解析:【试题解析】解:∵DE垂直平分AB,∴AD=BD,∵AC=6cm,BC=4cm,∴△BDC的周长为:BC+CD+BD=BC+CD+AD=BC+AC=6+4=10(cm).故选:C.由DE垂直平分AB,根据线段垂直平分线的性质,可得AD=BD,继而可求得△BDC的周长.此题考查了线段垂直平分线的性质.10.答案:A解析:解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x 轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=√2,AC=√2,2∴点C的坐标为(√2,√2),2(x>0)的图象上,∵点C在函数y=kx×√2=1,∴k=√22故选A.根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:3(a+1)2解析:解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.先提取公因式3,再对余下的多项式利用完全平方公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.答案:94解析:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.首先根据原方程根的情况,利用根的判别式求出m的值即可.解:∵关于x的一元二次方程x2+3x+m=0有两个相等的实数根,∴△=b2−4ac=32−4×1×m==0,∴m=94.故答案为94.13.答案:1解析:本题考查了解一元一次方程和求代数式的值,解题的关键是掌握列代数式的约定方法.根据约定的方法即可求出n.解:根据约定的方法得:x+2x+2x+3=m+n=y.即5x+3=y当y=−2时,5x+3=−2.解得x=−1.∴n=2x+3=−2+3=1.故答案为1.14.答案:2:1解析:本题主要考查的是相似三角形的判定与性质,平行四边形的性质有关知识,先证明△ABG∽△EDG,△ABF≌△ECF,利用三角形相似,对应边成比例可得AGGE =ABDE=12,即可算出AGGE=AGEF+GF=AGAF+GF=AGAG+GF+GF =AGAG+2GF=12,解得AG=2GF,从而求解.解:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∠ABG=∠EDG,∠BAG=∠DEA,∴△ABG∽△EDG,又∵CE=CD,∴AB=CD=CE,即ED=2AB,∴AGGE=ABDE=12∵AB//CD,即AB//ED,∴∠ABF=∠ECF,∠BAF=∠CEF,在△ABF和△ECF中,∵{∠ABF=∠ECFAB=CE∠BAF=∠CEF,∴△ABF≌△ECF(ASA),∴AF=EF,∴AGGE =AGEF+GF=AGAF+GF=AGAG+GF+GF=AGAG+2GF=12,解得2AG=AG+2GF,AG=2GF,∴AG:GF=2GF:GF=2:1,故答案为2:1.15.答案:(2,0)或(−1,√3)解析:解:∵点A的坐标为(2,2√3),∴AO=√22+(2√3)2=4,由题意当∠OAP最大时,则AP和圆相切,过点A作圆的切线AP′,AP″,连接OP′,过P′作P′B⊥OP″,∵点A的横坐标为2,OP″⊥AP″,∴P″的坐标为(2,0);∵AO=4,OP′=2,∴∠P′AO=30°,∴∠BP′O=30°,∵P′O=2,∴BO=1,∴P′B=√3,∴点P″的坐标为(−1,√3),综上可知,点P的坐标为(2,0)或(−1,√3).由题意可知当∠OAP最大时,则AP和圆相切,由此即可求出满足题意的点P坐标;本题考查了切线的性质、勾股定理的运用、特殊角的三角函数值,解题的关键是确定点P的位置,做到不重不漏.16.答案:10√3−10解析:解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA= 10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10√3−10;③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;综上所述,PA的最小值为10√3−10(cm);故答案为:10√3−10.分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC为底.分别求出PA的最小值,即可判断.本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.答案:解:π0+2cos30°−|2−√3|−(12)−2=1+2×√32−(2−√3)−4=1+√3−2+√3−4=2√3−5解析:首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 18.答案:解:{2x −1>−2+x ①3x +2>4x ②, 解不等式①得:x >−1,解不等式②得:x <2,所以不等式组的解集为:−1<x <2.解析:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.19.答案:解:如图所示;解析:本题考查的是作图−轴对称变换,熟知轴对称的性质是解答此题的关键.根据轴对称的性质画出图形即可.20.答案:解:(Ⅰ)50;32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有3+32=3, ∴这组数据的中位数是3;由条形统计图可得x −=1×4+2×10+3×14+4×16+5×650=3.2,∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人).答:该校1500名学生家庭中拥有3台移动设备的学生人数约为420人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(Ⅰ)根据家庭中拥有1台移动设备的人数及所占百分比可得查的学生人数,将拥有4台移动设备的人数除以总人数可得m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可.解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人),图①中m 的值为1650×100=32,故答案为:50、32;(Ⅱ)见答案;(Ⅲ)见答案. 21.答案:解:(1)连接OC ,∵CE 是⊙O 的切线,∴OC ⊥DE ,又AD ⊥DE ,∴OC//AD ,∴∠ACO=α,∵OA=OC,∴∠OAC=∠ACO=α,∴∠EOC=2α,∴β=90°−2α;(2)∵AG=CG,∴OF⊥AC,∠AGF=∠AGO=90°,由(1)得∠FAG=∠OAG=α,在△AGF和△AGO中,{∠FAG=∠OAG AG=AG∠AGF=∠AGO,∴△AGF≌△AGO(ASA)∴OG=GF,∴OG=12OA=52,由勾股定理得,AG=√OA2−OG2=5√32,∴AC=2AG=5√3.解析:本题考查的是切线的性质、勾股定理、垂径定理、全等三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.(1)连接OC,根据切线的性质得到OC⊥DE,得到OC//AD,根据平行线的性质、圆周角定理计算即可;(2)证明△AGF≌△AGO,根据全等三角形的性质得到OG=GF,根据勾股定理求出AG,根据垂径定理解答即可.22.答案:解:(1)设第一批饮料进货单价为x元,则第一批饮料进货单价为(x+2)元,依题意,得:5400x+2=3×1200x,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y元,依题意,得:(300+900)y−(1200+5400)≥5400,解得:y≥10.答:销售单价至少为10元.解析:(1)设第一批饮料进货单价为x元,则第一批饮料进货单价为(x+2)元,根据数量=总价÷单价结合第二批饮料购进数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可分别求出前两批饮料的购进数量,设销售单价为y元,根据利润=销售收入−进货成本,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.答案:(1)F,G;(2)解:①如图2,过点M作MG⊥x轴于G点.∵M点的横坐标为3,=√3,∴y=3√33∴M(3,√3),∴OM=2√3,∠MON=∠NMO=30°,∠ONM=120°,x,直线OM的表达式为y=√33在Rt△MNG中,∠MGN=90°,MN2=MG2+NG2,设NM=NO=m,则NG=3−m,∴m2=(3−m)2+(√3)2,∴ON =MN =m =2,∵△P 1ON∽△NOM ,△MP 2N∽△MNO ,∴∠OP 1N =∠MNO =120°,∠MP 2N =∠MNO =120°,∴∠NP 1P 2=∠NP 2P 1=60°,∴△NP 1P 2是等边三角形,∴OP 1=P 1P 2=P 2M ,∴P 1的横坐标为1,P 2的横坐标为2,代入y =√33x , 可得P 1(1,√33),P 2(2,2√33). 综上所述,P 点坐标为(1,√33)或(2,2√33). ②4.解析:本题考查反比例函数的图象,性质和应用,锐角三角函数的定义,相似三角形的判定和性质、一次函数的应用、等腰三角形的性质和判定等知识.(1)如图1中,连接OF 、OE 、GB 、FB ,作GM ⊥OB 于M ,FN ⊥OB 于N.只要证明△OBG∽△OAB ,可得点F 是自相似点,△FOB∽△BAO ,可得点F 是自相似点.(2)①如图2,过点M 作MG ⊥x 轴于G 点.由△P 1ON∽△NOM ,△MP 2N∽△MNO ,推出∠OP 1N =∠MNO =120°,∠MP 2N =∠MNO =120°,推出∠NP 1P 2=∠NP 2P 1=60°,推出△NP 1P 2是等边三角形,推出OP 1=P 1P 2=P 2M ,推出P 1的横坐标为1,P 2的横坐标为2,代入y =√33x ,即可解决问题; ②以O 为圆心2为半径作圆交反比例函数于M 1,M 2,以N 为圆心2为半径作圆交反比例函数的图象于M 3,M 4.满足条件的点M 有4个.解:(1)如图1中,连接OF 、OE 、GB 、FB ,作GM ⊥OB 于M ,FN ⊥OB 于N .由题意可知点G在OA上,∵tan∠AOB=ABOB=√3,∴∠AOB=60°,∵tan∠GBM=GMBM =√3232=√33,∴∠OBG=30°,∴∠BOG=∠AOB,∠OBG=∠A,∴△OBG∽△OAB,∴点F是自相似点,同理可得∠FON=∠A=30°,∠FBO=∠AOB=60°,∴△FOB∽△BAO,∴点F是自相似点,故答案为F,G;(2)①见答案;②如图3中,满足条件的点M有4个.以O为圆心2为半径作圆交反比例函数于M1,M2,以N为圆心2为半径作圆交反比例函数的图象于M3,M4.故答案为4.24.答案:解:(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH//CA,∴△BHE∽△BAC,∴BEBC =HEAC,∵DCBE =ACBC,BC AC∴HEAC =DCAC,∴HE=DC,∵EH//DC,∴四边形DHEC是平行四边形;②∵ACBC =√22,∠BAC=90°,∴AC=AB,∵DCBE =√22,HE=DC,∴HEBE =√22,∵∠BHE=90°,∴BH=HE,∵HE=DC,∴BH=CD,∴AH=AD,∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°,∴∠HEA=∠AFD,∵∠EHA=∠FAD=90°,∴△HEA≌△AFD,∴AE=DF;(2)如图2,过点E作EG⊥AB于G,∵CA⊥AB,∴EG//CA,∴△EGB∽△CAB,CA BC∴EGBE =CABC=35,∵CDBE =35,∴EG=CD,设EG=CD=3x,AC=3y,∴BE=5x,BC=5y,∴BG=4x,AB=4y,∵∠EGA=∠AMF=90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG,∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴DFAE=ADAG=3y−3x4y−4x=34解析:(1)①先判断出△BHE∽△BAC,进而判断出HE=DC,即可得出结论;②先判断出AC=AB,BH=HE,再判断出∠HEA=∠AFD,即可得出结论;(2)先判断出△EGB∽△CAB,进而求出CD:BE=3:5,再判断出∠AFM=∠AEG进而判断出△FAD∽△EGA,即可得出结论.此题是相似形综合题,主要考查了平行四边形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出∠HEA=∠AFD是解本题的关键.。

2020年浙江省中考数学第三次模拟考试试卷附解析

2020年浙江省中考数学第三次模拟考试试卷附解析

2020年浙江省中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列语句中,属于命题的是( ) A .任何一元二次方程都有实数解 B .作直线AB 的平行线 C .1与2相等吗D .若229a =,求a 的值 2.用直接开平方法解方程2(3)8x -=,得方程的根为( ) A .322x =+B .322x =-C .1323x =+,2323x =-D .1322x =+,2322x =-3.若|1|1||x x -=+,则2(1)x -等于( ) A . 1x -B .1x -C .1D .814.一个物体由多个完全相同的小立方体组成,它的三视图如图所示,那么组成这个物体的小立方体的个数为( ) A .2B .3C .4D .55.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB 的依据是( ) A .SSS B .SAS C .ASA D .AAS 6.如图中的物体的形状属于( )A . 棱柱B .圆柱C .圆锥D .球体二、填空题7.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性相同,则它停在 5 号板上的概率为 .8.如图,△ABC 中,AD是 BC 上中线,M 是AD 的中点,BM 延长线交AC 于 N,则AN= .NC9.已知函数①21y x x=-,函数 (填序号)有最小值,当x 时,该函数最2+5=-;②2y x小值是.10.一批款式、型号均相同的胆装单价在 100元/件至 150 元/件之间,小李拿了 900 元钱去买,可买件这样的服装.11.已知矩形的对角线长为4cm,一条边长为2cm,则面积为 .12.已知□ABCD中,∠ABC的平分线交AD于点E,且AE=2,DE=1,则□ABCD的周长等于______.13.在□ABCD中,∠A比∠B大20°,则∠C为度.14.已知一个样本1,3,2,5,x,其平均数是3,则x= .15.已知△ABC的三边长分别是8 cm,10 cm ,6 cm,则△ABC的面积是 cm2.16.如图,AD=AE,DB=EC,则图中一共有对全等三角形.17.如图所示,是用笔尖扎重叠的纸得到的关于直线l成轴对称的两个图形,连结CE交l于0,则⊥,且 = ,AB的对应线段是,EF的对应线段是,∠DC0的对应角是.18.已知∠A=40°,则∠A 的余角是 .19.当m= ,n= 时,32m x y与3xy-是同类项.3n20.如图,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).三、解答题A BCD21.如图所示的相似四边形中,求未知边 x 、y 的长度和角度α的大小.22.某1电影院有 1000 个座位,门票每张 3元,可达客满,根据市场统计,若每张门票提 高x 元,将有 200x 张门票.不能售出.(1)求提价后每场电影的票房收入 y(元)与票价提高量 x(元)之间的函数关系式及自变量x 的取值范围;(2)为增加收入,电影院应做怎样的决策(提价还是降价?若提价,提价多少为宜?)23.已知:如图,在□ABCD 中,对角线AC 平分∠DAB.求证:AB =BC.24.如图,已知□ABCD .(1)写出□ABCD 四个顶点的坐标;(2)画出□A 1B 1C 1D 1,使□A 1B 1C 1D 1与□ABCD 关于y 轴对称,并写出 □A 1B 1C 1D 1四个顶点的坐标;(3)画出□A2B2C2D2,使□A2B2C2D2与□ABCD关于原点中心对称,并写出□A2B2C2D2的四个顶点的坐标;(4)□A1B1C1D1与□A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.25.若不等式2123x ax b-<⎧⎨->⎩的解集为11x-<<,求(1)(1)a b+-的值.26.第一组数据8,8,8,第二组数据8,9,9,10,第三组数据l5,20,25.(1)每一组数据的平均数分别是多少?(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?27.某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?28.已知,如图,点B,F,C,E在同一直线上,AC,DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.试说明:(1)△ABC≌△DEF;(2)GF=GC.EDCBA29.已知:如图,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ; (2)222DE AE AD =+.30.现在各学校都采用政府统一采购行为,教育局对各个学校的校服征订也采用了统一征订的办法.在教育局的样品室里摆放着12个样品,有l2种不同的价位,分别为50,60,70,80,90,100,110,120,130,140,150,160元.现要对全校1500名学生统一征订校服,由于价格相差甚远,学校于是采取征求家长意见,制作了一张调查表,对家长的意见进行调查,请问,你该怎样设计这张调查表格(要求家长用打“√”的形式来表达).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.C5.A6.A二、填空题7.18.819.2①,一 110.6~911.212.1013.10014.415.2416.417.l ,CE ,OC ,O)E ,GH .CD ,∠FE018.50°19.1,120.4三、解答题 21.由于两个四边形相似,它们的对应边成比例,对应角相等, 所以18467y x==,解得 x=31.5,y=27. α= 360°- (77°+83°+ 117°) =83°.22.(1)y=(3+x)(1000-200x),化简得22004003000y x x =-++, x 的取值范围是 0≤x ≤5.(2)22004003000y x x =-++2200(-2)3000x x =-+2200(1)3200x =--+ ∴当 x=1 时,票房收入最大.即提价 1 元为宜.23.提示:∠DAC =∠BAC =∠BCA .24.(1)A(-1,3),B(-3,2),C(-2,1),D(0,2); (2)A l (1,3),B l (3,2),C l (2,1),D l (0,2); (3)A 2(1,-3),B 2(3,-2),C 2(2,-l),D 2(0,-2) (4)关于x 轴对称25.-626.(1)第一组:8,第二组:9,第三组:20 (2)平均数为12,中位数为9,众数为827.(1)601.6x =甲cm ,597.3x =乙cm ;(2)265S =甲.84cm 2,2221.41S =乙cm 2 ;(3)略; (4)为了夺冠,应选甲参赛,为了打破纪录,应选乙参赛28.(1)略 (2)∵△ABC ≌△DEF ,∴∠DFC=∠ACF29.证明:(1) ∵ DCE ACB ∠=∠ ∴ ACE ACD BCD ACD ∠+∠=∠+∠ 即 ACE BCD ∠=∠ ∵ EC DC AC BC ==, ∴ △BCD ≌△ACE (2)∵ BC AC ACB =︒=∠,90, ∴ ︒=∠=∠45BAC B ∵ △BCD ≌△ACE ∴ ︒=∠=∠45CAE B∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE ∴ 222DE AE AD =+30.。

(浙江卷)2020年中考数学第三次模拟考试-数学(A4考试版)

(浙江卷)2020年中考数学第三次模拟考试-数学(A4考试版)

2020届九年级第三次模拟考试【浙江卷】数 学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.为了实现街巷硬化工程高质量“全覆盖”,某地今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为 A .9.27×910 B .0.927×1010C .92.7×1010D .9.27×11102.下列计算正确的是A .523x x x -=B .()23536x x -= C .2321836x y yx xy ÷= D .2332321459m n n m n m -=3.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于A .30°B .35°C .40°D .50°4.不等式组2841x x x -<⎧⎨+<-⎩的解集是A .3x <B .3x >C .2x >D .2x <5.暑假期间,“精英”班将组织学生进行研学活动,小雨和小雪两个同学要从“红色抗战足迹”“故宫历史遗迹”“科技成果展览”三个活动中各选择一个参加,则两人恰好选择同一个研学活动的概率是 A .19B .29C .13D .236.丽丽用手机软件记录了30天中每天所走的步数,并记录结果绘制成了如下统计表.这期间丽丽平均每天走1.3万步,则这组数中,众数和中位数分别是步数/万步 1.1 1.2 1.3 1.4 1.5 天数3 95mnA .1.4,1.3B .9,5C .1.3,1.4D .1.3,1.37.如图,四边形ABCD 内接于⊙O ,AB 是直径,BC ∥OD ,若∠C =130°,则∠B 的度数为A .50°B .60°C .70°D .80°8.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是A .3mB .30mC .3mD .40m9.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是A.22B.1C.2D.210.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12 BC,连接OE,下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=14BC,成立的个数有A.1个B.2个C.3个D.4个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)11.因式分解:2312x-=__________.12.不等式组2614xx<⎧⎨+-⎩…的解集是__________.13.若分式方程x a2x4x4=+--的解为正数,则a的取值范围是__________.14.如图,已知点C处有一个高空探测气球,从点C处测得水平地面上A,B两点的俯角分别为30°和45°.若AB=2km,则A,C两点之间的距离为__________km.15.如图,AB是⊙O的直径,BC是⊙O的弦,∠ABC的平分线交⊙O于点D.若AB=6,∠BAC=30°,则»AD 的长等于__________.16.如图,在ABC △中,90AC BC C =∠=︒,,点D E F ,,分别在边BC AC AB ,,上,四边形DCEF为矩形,P Q ,分别为DE AB ,的中点,若12BD DC ==,,则PQ =__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)先化简,再求值:221a b ba b a b +⎛⎫-÷ ⎪--⎝⎭,其中a 32=-,53b =-. 18.(本小题满分8分)某区八年级有3000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计.成绩x (分) 频数 频率 50≤x <60 10 a 60≤x <70 16 0.08 70≤x <80b0.20请你根据以上的信息,回答下列问题: (1)a =__________,b =__________;(2)在扇形统计图中,“成绩x 满足50≤x <60”对应扇形的圆心角大小是__________;(3)若将得分转化为等级,规定:50≤x <60评为D ,60≤x <70评为C ,70≤x <90评为B ,90≤x <100评为A .这次全区八年级参加竞赛的学生约有学生参赛成绩被评为“B ”?19.(本小题满分8分)如图,AB 是⊙O 的弦,半径OE ⊥AB ,P 为AB 的延长线上一点,PC 与⊙O 相切于点C ,连结CE ,交AB 于点F ,连结O C . (1)求证:PC =PF .(2)连接BE ,若∠CEB =30°,半径为8,tan P43,求FB 的长.20.(本小题满分10分)如图,在△ABC 中,点P 是AC 边上的一点,过点P 作与BC 平行的直线PQ ,交AB 于点Q ,点D 在线段BC 上,连接AD 交线段PQ 于点E ,且CP QECD BD=,点G 在BC 延长线上,∠ACG 的平分线交直线PQ 于点F .(1)求证:PC =PE ;(2)当P 是边AC 的中点时,求证:四边形AECF 是矩形. 21.(本小题满分10分)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于点A (﹣1,4)和点B (4,n ).(1)求这两个函数的解析式;(2)已知点M 在线段AB 上,连接OA ,OB ,OM ,若S △AOM =12S △BOM ,求点M 的坐标.22.(本小题满分12分)在Rt △ABC 中,∠B =90°,BC =4,AB =8,点D 是边AC 的中点,动点P 在边AB上(点P 不与点A 重合),连接PD 、PC ,将△PDC 沿直线PD 翻折,点C 落在点E 处得△PDE . (1)如图①,若点E 恰好与点A 重合,求线段AP 的长;(2)如图②,若ED 交AB 于点F ,四边形CDEP 为菱形,求证:△PFE ≌△AFD ; (3)连接AE ,设△PDE 与△ABC 重叠部分的面积为S 1,△P AC 的面积为S 2,若S 1=14S 2时,请直接写出tan ∠AED 的值.23.(本小题满分12分)如图,在平面直角坐标系中,直线533y =+x 轴交于点B ,与y 轴交于点C ,抛物线23y x bx c =++经过点B 和点C ,且与x 轴交于另一点A ,连接AC ,点D 在BC 上方的抛物线上,设点D 的横坐标为m ,过点D 作DH ⊥BC 于点H . (1)求抛物线的函数表达式;(2)线段DH 的长为(用含m 的代数式表示);(3)点M 为线段AC 上一点,连接OM 绕点O 顺时针旋转60°得线段ON ,连接CN ,当CN 21m =6时,请直接写出此时线段DM 的长.。

2020年中考数学第三次模拟考试及答案(A3考试版含答题卡)

2020年中考数学第三次模拟考试及答案(A3考试版含答题卡)

数学试题 第1页(共12页) 数学试题 第2页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2020年中考数学第三次模拟考试数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列所给图形是中心对称图形但不是轴对称图形的是A .B .C .D .2.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .a >﹣4B .bd >0C .|a |>|b |D .b +c >03.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为 A .0.13×105 B .1.3×104 C .1.3×105D .13×1034.已知关于x 的方程mx +3=4的解为x =1,则直线y =(m ﹣2)x ﹣3一定不经过的象限是 A .第一象限 B .第二象限 C .第三象限D .第四象限5.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2的度数是A .64°B .65°C .66°D .67°6.抛物线y =–x 2+bx +c 上部分点的横坐标x 、纵坐标y 的对应值如下表所示:x … –2 –1 0 1 2 … y…4664…从上表可知,下列说法错误的是A .抛物线与x 轴的一个交点坐标为(–2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x =0D .抛物线在对称轴左侧部分是上升的7.某校羽毛球队有若干名队员,任意两名队员之间进行一场友谊赛,共进行了36场比赛.如果全队有x 名队员,根据题意下列方程正确的是 A .(1)36x x -=B .(1)36x x +=C .(1)362x x -= D .(1)362x x += 8.如图,在△ABC 中,AB =AC ,AD ,BE 是△ABC 的两条中线,P 是AD 上的一个动点,则下列线段的长等于CP +EP 最小值的是A .ACB .ADC .BED .BC数学试题第3页(共12页)数学试题第4页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………9.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为A.13B.5C.22D.410.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm 的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.因式分解:x3﹣4xy2=______.12.关于x的不等式组10x ax->⎧⎨->⎩的整数解共有3个,则a的取值范围是_____.13.二次函数y=ax2﹣12ax+36a﹣5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为_____.14.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:08(2019)4sin45|2|︒+--+-.16.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)18.如图,认真观察下面这些算式,并结合你发现的规律,完成下列问题:①32﹣12=(3+1)(3﹣1)=8=8×1,②52﹣32=(5+3)(5﹣3)=16=8×2,③72﹣52=(7+5)(7﹣5)=24=8×3,④92﹣72=(9+7)(9﹣7)=32=8×4.…(1)请写出:算式⑤______________;数学试题 第5页(共12页) 数学试题 第6页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________算式⑥______________;(2)上述算式的规律可以用文字概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n ﹣1和2m +1(n 为整数),请说明这个规律是成立的;(3)你认为“两个连续偶数的平方差能被8整除”这个说法是否也成立呢?请说明理由. 五、(本大题共2小题,每小题10分,满分20分)19.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B 处时,发现灯塔C 在它的东北方向,轮船继续向北航行,30分钟后到达A 处,此时发现灯塔C 在它的北偏东75°方向上,求此时轮船与灯塔C 的距离.(结果保留根号)20.如图,AB 是⊙O 的直径,点P 在AB 的延长线上,弦CE 交AB 于点D .连接OE 、AC ,且∠P =∠E ,∠POE =2∠CAB . (1)求证:CE ⊥AB ; (2)求证:PC 是⊙O 的切线;(3)若BD =2OD ,PB =9,求⊙O 的半径及tan ∠P 的值.六、(本题满分12分)21.如图,点D 、E 分别在△ABC 的边AC 、AB 上,延长DE 、CB 交于点F ,且AE •AB =AD •AC .(1)求证:∠FEB =∠C ;(2)连接AF ,若FB CDAB FD,求证:EF •AB =AC •FB .七、(本题满分12分)22.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x (1≤x <90)天的函数图象如图所示(销售利润=(售价–成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?八、(本题满分14分)23.如图(1)在正方形ABCD 中,点E 是CD 边上一动点,连接AE ,作BF ⊥AE ,垂足为G 交AD 于F .(1)求证:AF =DE ;(2)连接DG ,若DG 平分∠EGF ,如图(2),求证:点E 是CD 中点; (3)在(2)的条件下,连接CG ,如图(3),求证:CG =CD .数学试题 第7页(共12页) 数学试题 第8页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………2020年中考数学第三次模拟考试数学·参考答案1 2 3 4 5 6 7 8 9 10 DCBACCCCAA11.x (x +2y )(x ﹣2y ) 12.32a -≤<- 13.54 14.2343+或6 15.【解析】原式=22+1﹣4×22+2, =22+1﹣22+2, =3.16.【解析】设该兴趣小组男生有x 人,女生有y 人,依题意得:2(1)13(1)5y x x y =--⎧⎪⎨=-⎪⎩, 解得:1221x y =⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人. 17.【解析】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)三角形的形状为等腰直角三角形,OB =OA 1=224117+=,A 1B =2253+=34, 即OB 2+OA 12=A 1B 2,所以三角形的形状为等腰直角三角形.18.【解析】(1)112﹣92=(11+9)(11﹣9)=40=8×5,132﹣112=(13+11)(13﹣11)=48=8×6,(2)(2n +1)2﹣(2n ﹣1)2=(2n +1+2n ﹣1)(2n +1﹣2n +1)=2×4n =8n , ∵n 为整数,∴两个连续奇数的平方差能被8整除; 故答案为40=8×5;48=8×6; (3)不成立;举反例,如42﹣22=(4+2)(4﹣2)=12, ∵12不是8的倍数, ∴这个说法不成立;19.【解析】过点A 作AD ⊥BC 于点D .由题意,AB =3060×40=20(海里). ∵∠PAC =∠B +∠C ,∴∠C =∠PAC ﹣∠B =75°﹣45°=30°. 在Rt △ABD 中,sin B =AD AB, ∴AD =AB •sin B =20×22(海里). 在Rt △ACD 中,∵∠C =30°, ∴AC =2AD 2(海里).答:此时轮船与灯塔C 的距离为2海里.20.【解析】(1)证明:连接OC ,数学试题 第9页(共12页) 数学试题 第10页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________∴∠COB =2∠CAB , 又∠POE =2∠CA B . ∴∠COD =∠EOD , 又∵OC =OE ,∴∠ODC =∠ODE =90°, 即CE ⊥AB ;(2)证明:∵CE ⊥AB ,∠P =∠E , ∴∠P +∠PCD =∠E +∠PCD =90°, 又∠OCD =∠E ,∴∠OCD +∠PCD =∠PCO =90°, ∴PC 是⊙O 的切线;(3)解:设⊙O 的半径为r ,OD =x ,则BD =2x ,r =3x , ∵CD ⊥OP ,OC ⊥PC ,∴Rt △OCD ∽Rt △OPC ,∴OC 2=OD •OP ,即(3x )2=x •(3x +9),解得x =32,∴⊙O 的半径r =92, 同理可得PC 2=PD •PO =(PB +BD )•(PB +OB )=162, ∴PC 2,在Rt △OCP 中,tan ∠P =24OC PC =. 21.【解析】(1)∵AE •AB =AD •A C .∴AE ADAC AB=, 又∵∠A =∠A , ∴△AED ∽△ACB ,∴∠AED =∠C ,又∵∠AED =∠FEB , ∴∠FEB =∠C .(2)∵∠FEB =∠C ,∠EFB =∠CFD , ∴△EFB ∽△CFD , ∴∠FBE =∠FDC ,∵FB CDAD FD =, ∴FB ABCD FD=, ∴△FBA ∽△CDF , ∴∠FEB =∠C , ∴AF =AC , ∵∠FEB =∠C , ∴∠FEB =∠AFB , 又∵∠FBE =∠ABF , ∴△EFB ∽△FAB ,∴EF FBAF AB=, ∵AF =AC , ∴EF •AB =AC •FB .22.【解析】(1)当1≤x <50时,设y 1=kx +b ,将(1,41),(50,90)代入, 得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x +40,当50≤x <90时,y 1=90, 故y 1与x 的函数解析式为y 1=x 40(1x 50),90(50x 90);+≤<⎧⎨≤<⎩ 设y 2与x 的函数解析式为y 2=mx +n (1≤x <90), 将(50,100),(90,20)代入, 得50m n 100,90m n 20,+=⎧⎨+=⎩解得:m 2,n 200,=-⎧⎨=⎩数学试题第11页(共12页)数学试题第12页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………故y2与x的函数关系式为y2=–2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40–30)(–2x+200)=–2x2+180x+2000;当50≤x<90时,W=(90–30)(–2x+200)=–120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=–2x2+180x+2000=–2(x–45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=–120x+12000,∵–120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.23.【解析】(1)如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3BA=AD∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA),∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=12BP=BC,∴CG=CD.12020年中考数学第三次模拟考试【安徽卷】数学·答题卡第Ⅰ卷(请用2B 铅笔填涂)第Ⅱ卷请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!二、填空题(每小题4分,共20分)11.____________________ 12.____________________13.____________________ 14.____________________三、(本大题共2小题,每小题8分,满分16分)15.一、选择题(每小题4分,共40分) 1.[ A ] [ B ] [ C ] [ D ] 2.[ A ] [ B ] [ C ] [ D ] 3.[ A ] [ B ] [ C ] [ D ] 4.[ A ] [ B ] [ C ] [ D ]5.[ A ] [ B ] [ C ] [ D ]6.[ A ] [ B ] [ C ] [ D ]7.[ A ] [ B ] [ C ] [ D ]8.[ A ] [ B ] [ C ] [ D ]9.[ A ] [ B ] [ C ] [ D ] 10.[ A ] [ B ] [ C ] [ D ]姓 名:__________________________ 准考证号:贴条形码区考生禁填: 缺考标记 违纪标记以上标志由监考人员用2B 铅笔填涂选择题填涂样例: 正确填涂错误填涂 [×] [√] [/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。

浙江省金华市2020年中考数学仿真模拟考试题(含答案)

浙江省金华市2020年中考数学仿真模拟考试题(含答案)

浙江省金华市2020年中考数学仿真模拟考试题一.选择题(共10小题,满分30分,每小题3分)1.向北行驶3km,记作+3km,向南行驶2km记作()A.+2 km B.﹣2 km C.+3 km D.﹣3 km2.计算a6÷a2的结果是()A.a2B.a3C.a4D.a53.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.04.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.3、1、1D.4、6、95.从一个物体的不同方向看到的是如图所示的三个图形,则该物体的形状为()A.圆柱B.棱柱C.球D.圆锥6.在一个不透明的口袋中装有2个红球和若干个黑球,这些球除颜色外其他都相同,将袋中的球搅匀,从中任意摸出一个球,是黑球的概率是,则袋中原有黑球()A.2B.3C.4D.67.在如图所示的网格中有M,N,P,Q四个点,鹏鹏在该网格中建立了一个平面直角坐标系,然后得到点M的坐标为(﹣3,﹣1),点P的坐标为(0,﹣2),则点N和点Q的坐标分别为()A.(2,1),(1,﹣2)B.(1,1),(2,﹣2)C.(2,1),(﹣1,2)D.(1,1),(﹣2,2)8.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1B.k<1C.k≥1D.k≤19.如图,将直角三角形ABC(∠BAC=90°)绕点A逆时针旋转一定角度得到直角三角形ADE,若∠CAE=65°,若∠AFB=90°,则∠D的度数为()A.60°B.35°C.25°D.15°10.如图①,一个立方体铁块放置在圆柱形水槽内,现以每秒固定的流量往水槽中注水,28秒时注满水槽,水槽内水面的高度y(厘米)与注水时间x(秒)之间的函数图象如图②所示,则圆柱形水槽的容积(在没放铁块的情况下)是()A.8000cm3B.10000 cm3C.2000πcm3D.3000πcm3二.填空题(共6小题,满分24分,每小题4分)11.分解因式:4﹣m2=.12.一组数据30,18,24,26,33,28的中位数是.13.若x﹣2y=4,则4x﹣8y﹣2=.14.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为米.15.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC =60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三.解答题(共8小题,满分66分)17.计算:4cos30°﹣+20180+|1﹣|18.解分式方程:﹣=1.19.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△P AB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△P AB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.如图①,在平行四边形OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求∠OAB的度数;(2)如图②,点E在⊙O上,连接CE与⊙O交于点F,若EF=AB,求∠COE的度数.22.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.23.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.浙江省金华市2020年中考数学仿真模拟考试题参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:向北行驶3km,记作+3km,向南行驶2km记作﹣2km,故选:B.2.解:a6÷a2=a4,故选:C.3.解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.4.解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.5.解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:D.6.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故选:C.7.解:如图建立平面直角坐标系,则点N和点Q的坐标分别为(1,1),(﹣2,2),故选:D.8.解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠BAD=∠CAE=65°,∠B=∠D,∵∠AFB=90°,∴∠B=90°﹣∠BAD=25°,∴∠B=∠D=25°.故选:C.10.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正方体的棱长为10cm;∴正方体的体积为:103=1000cm3设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:解得:∴圆柱形水槽的容积为:400×20=8000 cm3故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).12.解:数据30,18,24,26,33,28的中位数是,故答案为:2713.解:∵x﹣2y=4,∴原式=4(x﹣2y)﹣2=16﹣2=14.故答案为:14.14.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==(米).故答案为:.15.解法一:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法二:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法三:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,设BD=a,则EF=a,∵点A(2,3)和点B(0,2),∴DF=2﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴2﹣a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).16.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共8小题,满分66分)17.解:原式==2﹣2+1+﹣1=.18.解:去分母得:4x2+10x﹣2x+5=4x2﹣25,解得:x=﹣,经检验x=﹣是分式方程的解.19.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.20.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△P AB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△P AB如图所示.21.解:(1)如图①,连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠OAB=45°;(2)如图②,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°,∴∠COE=180°﹣45°﹣30°=105°.22.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;23.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.。

2020年浙江金华中考模拟试卷数学试题

2020年浙江金华中考模拟试卷数学试题

2020年浙江金华中考模拟卷数学考试题号一二三总分评分一、选择题(本题有10小题,每小题3分,共30分)1.下列各组数中,不是互为相反数的是()A. 与B. 与C. 与D. 与2.下列运算正确的是()A. B. C. D.3.下列各组数中,能作为一个三角形的三边边长的是()A. 1,2,3B. 2,3,4C. 2,4,1D. 2,5,24.已知一组数据的方差是3,则这组数据的标准差是()A. B. 3 C. D. 95.同时掷两枚质地均匀的硬币,出现结果是“一正一反”的概率为()A. B. C. D.6.如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是()A. AB. BC. CD.D7.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A. (x+1)2=6B. (x﹣1)2=6C. (x+2)2=9D. (x﹣2)2=98.如图,点是矩形的对角线上一点,正方形的顶点、都在边上,,,则的值为( )A. B. C. D.9.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A. 3B. 4C. 5D.710.如图所示,把一个正方形三次对折后沿虚线剪下,将剩余部分展开所得的图形是()A. B. C. D.二、填空题(本题有6小题,每小题4分,共24分)11.当m________时,一次函数y=(m+1)x+6的函数值随x的增大而减小.12.某校开展了主题为“青春˙梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是________。

13.分解因式:a2﹣2ab+b2﹣c2=________.y2﹣7y+12=________.14.如图,在△ABC中,∠ABO=20°,∠ACO=25°,∠A=65°,则∠BOC的度数________.15.元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________ .16.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.( ≈1.4)三、解答题(本题有8小题,共66分)17.计算或化简(1)﹣22+(﹣)﹣2﹣(π﹣5)0﹣|﹣3|(2)(﹣3a)3+(﹣2a4)2÷(﹣a)5(3)(a+3b﹣2c)(a﹣3b﹣2c)(4)y(x+y)+(x﹣y)2﹣(x+y)(﹣y+x),其中x=﹣、y=3.18.解方程组.19.某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:用户季度用水量频数分布表平均用水量(吨)频数频率3<x≤6 10 0.16<x≤9 m 0.29<x≤12 36 0.3612<x≤15 25 n15<x≤18 9 0.09(1)在频数分布表中:m=________,n=________;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?20.如图,已知△ABC,请用尺规作△ABC的中位线EF,使EF∥BC.21.已知:如图,在平面直角坐标系中,直线AB分别与x,y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO= ,OB=8,OE=4.(1)求BC的长;(2)求反比例函数的解析式;(3)连接ED,求tan∠BED.22.如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N 为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.23.对于二次函数y=x2﹣4x+3和一次函数y=﹣x+1,我们把y=t(x2﹣4x+3)+(1﹣t)(﹣x+1)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E上的点B(2,n),请完成下列任务:(1)【尝试】判断点A是否在抛物线E上;(2)求n的值.(3)【发现】通过(1)和(2)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,请你求出定点的坐标.(4)【应用】二次函数y=﹣3x2+8x﹣5是二次函数y=x2﹣4x+3和一次函数y=﹣x+1的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.24.(1)【初步探究】如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.(2)【解决问题】如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.(3)【拓展应用】如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是________.(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C 按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是________.答案解析部分一、选择题(本题有10小题,每小题3分,共30分)1.D2.D3.B4.A5.A6.C7.A8.A9.B10.C二、填空题(本题有6小题,每小题4分,共24分)11. m<-1∵一次函数y=(m+1)x+6的函数值随x的增大而减小,∴m+1<0,解得:m<−1.故答案为:m<−1.【分析】由于一次函数的函数值随x的增大而减小,所以一次项的系数m+1<0,解一元一次不等式即可。

浙江省金华市2019-2020学年中考数学三模试卷含解析

浙江省金华市2019-2020学年中考数学三模试卷含解析

浙江省金华市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.9的值是()A.±3 B.3 C.9 D.812.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a23.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.32πB.43πC.4 D.2+32π4.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,505.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A.36°B.45°C.72°D.90°6.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负责校园足球工作.2018 年2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到2020 年要达到85000 块.其中85000 用科学记数法可表示为()A.0.85 ⨯ 105B.8.5 ⨯ 104C.85 ⨯ 10-3D.8.5 ⨯ 10-47.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<08.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.49.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体10.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.31011.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.﹣12<m<2 D.54<m<212.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB ∥CD ,BE 交CD 于点D ,CE ⊥BE 于点E ,若∠B=34°,则∠C 的大小为________度.14.抛物线y =2x 2+3x+k ﹣2经过点(﹣1,0),那么k =_____.15.如图为二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =.若其与x 轴一交点为A(3,0)则由图象可知,不等式20ax bx c ++<的解集是_______.16.在实数范围内分解因式:226x - =_________17.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.18.如图,△ABC 中,AB=AC ,以AC 为斜边作Rt △ADC ,使∠ADC=90°,∠CAD=∠CAB=26°,E 、F 分别是BC 、AC 的中点,则∠EDF 等于__________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?20.(6分)如图,AB 、AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D .过点A 作⊙O 的切线与OD 的延长线交于点P ,PC 、AB 的延长线交于点F .(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.21.(6分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=23.(I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;(II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.(III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).22.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.23.(8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)24.(10分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=2,求∠BAD的大小.25.(10分)(1)计算:8﹣2sin45°+(2﹣π)0﹣(13)﹣1;(2)先化简,再求值2aa ab•(a2﹣b2),其中a=2,b=﹣22.26.(12分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.27.(12分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】33故选C.2.C【解析】【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.3.B【解析】【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯.故选B.4.A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.5.C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.故选C.点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.6.B【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,等于这个数的整数位数减1.【详解】解:85000用科学记数法可表示为8.5×104,此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D【解析】【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax 2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a 与b 的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax 2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0∵y=ax 2+bx ﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-2b a<0. ∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t <0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.8.B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B .9.D本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.10.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC=3,故选A.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.11.D【解析】【分析】根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2) >0,解得m>54且m≠﹣2,再利用根与系数的关系得到2mm-1-2,m﹣2≠0,解得12<m<2,即可求出答案.【详解】解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>54且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,∴﹣2mm-1-2>0,m﹣2≠0,∴12<m<2,∵m>54,∴54<m<2,故选:D.本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.12.A【解析】【分析】【详解】解:分析题中所给函数图像,O E -段,AP 随x 的增大而增大,长度与点P 的运动时间成正比.E F -段,AP 逐渐减小,到达最小值时又逐渐增大,排除C 、D 选项,F G -段,AP 逐渐减小直至为0,排除B 选项.故选A .【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.56【解析】【详解】解:∵AB ∥CD,34B ∠=o ,∴34CDE B ∠=∠=o ,又∵CE ⊥BE ,∴Rt △CDE 中,903456C ∠=-=o o o ,故答案为56.14.3.【解析】试题解析:把(-1,0)代入2232y x x k =++-得:2-3+k-2=0,解得:k=3.故答案为3.15.﹣1<x <1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)∴图象与x 轴的另一个交点坐标为(-1,0)利用图象可知:ax 2+bx+c <0的解集即是y <0的解集,∴-1<x <1.考点:二次函数与不等式(组).16.2()(.【解析】【分析】先提取公因式2后,再把剩下的式子写成x 2-2,符合平方差公式的特点,可以继续分解.【详解】2x 2-6=2(x 2-3)=2((.故答案为2((.【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.17.6013【解析】【分析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.【详解】解:∵直角三角形的两条直角边的长分别为5,12,=13,∵三角形的面积=12×5×12=12×13h (h 为斜边上的高),∴h=6013. 故答案为:6013. 【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.18.51【解析】Q E 、F 分别是BC 、AC 的中点.12EF AB ∴P , Q ∠CAB=26°26EFC ∴∠=︒又90ADC ∠=︒Q12DF AC AF ∴== Q ∠CAD =26°52CFD ∴∠=︒78EFD ∴∠=︒AB AC =QEF FD ∴=18078512EDF ︒-︒∴∠==︒ !三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】【分析】(1)设文学书的单价为x 元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进m 本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m 的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x 元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.(1)证明见解析(2)13【解析】【分析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.【详解】(1)连接OC.∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵OA OCPA PCOP OP=⎧⎪=⎨⎪=⎩,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC•tan∠COB=13.【点睛】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.21.(Ⅰ)D′(3+3,3);(Ⅱ)当BB'=3时,四边形MBND'是菱形,理由见解析;(Ⅲ)P(1533,22-).【解析】【分析】(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;(Ⅱ)当BB'=3时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大. 【详解】(Ⅰ)如图①中,作DH⊥BC于H,∵△AOB是等边三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等边三角形,∵3DH⊥CB,∴3,DH=3,∴D(633),∵C′B=3,∴CC′=23﹣3,∴DD′=CC′=23﹣3,∴D′(3+3,3).(Ⅱ)当BB'=3时,四边形MBND'是菱形,理由:如图②中,∵△ABC是等边三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分线,∴∠NBB′'=12∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四边形MBND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等边三角形,∴MC=CE',NC=CC',∵3,∵四边形MBND'是菱形,∴BN=BM,∴BB'=123(Ⅲ)如图连接BP,在△ABP中,由三角形三边关系得,AP<AB+BP,∴当点A,B,P三点共线时,AP最大,如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=3,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=22AP PD+'=221.此时P(152,﹣33).【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.22.(1)①证明见解析;②25;(2)为253或503+1.【解析】【分析】(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=12AB=5,∵点F是AB的中点,∴AF=12AB=5, ∴AC=AF ,∵△ADE 是等边三角形,∴AD=AE ,∠EAD=60°, ∵∠CAB=∠EAD ,即∠CAD+∠DAB=∠FAE+∠DAB ,∴∠CAD=∠FAE ,∴△AEF ≌△ADC (SAS );②∵△AEF ≌△ADC ,∴∠AEF=∠C=90°,EF=CD=x ,又∵点F 是AB 的中点,∴AE=BE=y ,在Rt △AEF 中,勾股定理可得:y 2=25+x 2,∴y 2﹣x 2=25.(2)①当点在线段CB 上时, 由∠DAB=15°,可得∠CAD=45°,△ADC 是等腰直角三角形, ∴AD 2=50,△ADE 的面积为21253sin 602ADE S AD ∆=⋅⋅︒=; ②当点在线段CB 的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt △ACD 中,勾股定理可得AD 23 21sin 60503752ADE S AD ∆=⋅⋅︒= 综上所述,△ADE 253或50375. 【点睛】 此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.23.54小时【解析】【分析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题24.(1)见解析;(2) 60°.【解析】【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.【详解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)连结BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.25.(1)2-2 (2)-2【解析】试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到(2)先把2a ab原式的值.解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1=2﹣2×+1﹣3=2﹣+1﹣3=﹣2;(2)•(a2﹣b2)=•(a+b)(a﹣b)=a+b,当a=,b=﹣2时,原式=+(﹣2)=﹣.26.答案见解析【解析】【分析】首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.【详解】解:如图所示:.【点睛】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..27.作图见解析.【解析】【分析】由题意可知,先作出∠ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.【详解】∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:【点睛】此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.。

2020年浙江省金华市婺城区中考数学模拟试卷(三)

2020年浙江省金华市婺城区中考数学模拟试卷(三)

2020年浙江省金华市婺城区中考数学模拟试卷(三)一、选择题(本题有10小题,每小题3分,共30分)1.(3分)12020-的倒数是( ) A .2020- B .12020- C .12020 D .20202.(3分)下面的计算正确的是( )A .236a a a ⨯=B .235()a a =C .325a a a +=D .632a a a ÷=3.(3分)2019年10月1日在北京天安门广场举行隆重的国庆70周年庆祝活动,在阅兵和群众游行活动中,共有约15万人参加.则15万用科学记数法表示为( )A .1.510⨯B .41510⨯C .51.510⨯D .61.510⨯4.(3分)如果60α∠=︒,那么α∠的余角的度数是( )A .30︒B .60︒C .90︒D .120︒5.(3分)一个正比例函数的图象过点(2,3)-,它的表达式为( )A .32y x =-B .23y x =C .32y x =D .23y x =- 6.(3分)若代数式1x -有意义,则x 的取值范围是( ) A .1x >且2x ≠ B .1x C .2x ≠ D .1x 且2x ≠7.(3分)如图,PA 、PB 是O 的切线,切点分别是A ,B ,如果60P ∠=︒,那么AOB∠等于( )A .60︒B .90︒C .120︒D .150︒8.(3分)某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如表,则这35名学生在校一周体育锻炼时间的中位数和众数分别为( )锻炼时间/h5 6 7 8 人数6 15 10 4 A .6h ,6h B .6h ,15hC .6.5h ,6hD .6.5h ,15h9.(3分)如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .2010.(3分)如图,在OAP ∆、ABQ ∆均是等腰直角三角形,点P 、Q 在函数4(0)y x x=>的图象上,直角顶点A 、B 均在x 轴上,则点B 的坐标为( )A .(21+,0)B .(51-,0)C .(51+,0)D .(3,0)二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:269mn mn m ++= .12.(4分)关于x 的一元二次方程210x mx ++=有两个相等的实数根,则m 的取值为 .13.(4分)约定:上方相邻两数之和等于这两数下方箭头共同指向的数.例如,在图1中,即437+=.则在图2中,当2y =-时,n 的值为 .14.(4分)如图,ABCD ,E 是BA 延长线上一点,AB AE =,连接CE 交AD 于点F ,若CF 平分BCD ∠,3AB =,则BC 的长为 .15.(4分)如图,已知A 、B 两点的坐标分别为(2,0)-、(0,1),C 的圆心坐标为(0,1)-,半径为1.若D 是C 上的一个动点,射线AD 与y 轴交于点E ,则ABE ∆面积的最大值是 .16.(4分)如图1,剪刀式升降平台由三个边长为4m 的菱形和两个腰长为4m 的等腰三角形组成,其中,0//AM A N ,B ,0B 在AM 和0A N 上可以滑动,1A 、1C 、0B 始终在同一条直线上.(1)这种升降平台设计原理利用了四边形的 性质;(2)如图2是一个抛物线型的拱状建筑物,其底部最大跨度为83米,顶部的最大高度为242米.如图3,当该平台在完成挂横幅作业时,其顶部A ,M 两点恰好同时抵住抛物线,且8AM =米,则此时1B ∠的度数为 .三、解答题(本题有8小题,共66分)17.(6分)计算:101()(1)2cos6092π-++-︒18.(6分)解不等式组:564,841xx x->⎧⎨-<+⋅⎩①②19.(6分)如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.(1)在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的顶点上:(2)在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的顶点上,90AEC∠=︒,EC EA>;直接写出四边形ABCE的面积为.20.(8分)垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了“垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图1中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.21.(8分)如图,以ABCD的边BC为直径的O交对角线AC于点E,交CD于点F.连结BF.过点E作EG CD⊥于点G,EG是O的切线.(1)求证:ABCD是菱形;(2)已知2EG=,1DG=.求CF的长.22.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?23.(10分)对于平面直角坐标系xOy中的任意点(P x,)y,如果满足(0x y a x+=,a为常数),那么我们称这样的点叫做“特征点”.(1)当23a时,①在点(1,2)A,(1,3)B,(2.5,0)C中,满足此条件的特征点为;②W的圆心为(,0)W m,半径为1,如果W上始终存在满足条件的特征点,请画出示意图,并直接写出m的取值范围;(2)已知函数1(0)Z x xx=+>,请利用特征点求出该函数的最小值.24.(12分)如图,在ABC∆中,ACB R∠=∠,6BC=,8AC=,点D是AC的中点,点P 为AB边上的动点,(0)AP t t=,PH AC⊥于点H,连结DP并延长至点E,使得PE PD=,作点E关于AB的对称点F,连结FH.(1)当点P与点A重合时,求证:DEF ABC∆∆∽;(2)连结PF,若12DH AD=,求线段PF的长;(3)在点P的运动过程中,是否存在某一时刻,使得以D、F、H为顶点的三角形是等腰三角形?若存在请求出所有符合条件的t的值;若不存在,请说明理由.2020年浙江省金华市婺城区中考数学模拟试卷(三)参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)12020-的倒数是( ) A .2020- B .12020- C .12020 D .2020【分析】根据倒数之积等于1可得答案.【解答】解:12020-的倒数是2020-, 故选:A .【点评】此题主要考查了倒数,解题的关键是掌握倒数的定义.2.(3分)下面的计算正确的是( )A .236a a a ⨯=B .235()a a =C .325a a a +=D .632a a a ÷= 【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,合并同类项法则以及同底数幂的除法法则逐一判断即可.【解答】解:A .235a a a ⨯=,故本选项不合题意;B .236()a a =,故本选项不合题意;.325C a a a +=,故本选项符合题意;D .633a a a ÷=,故本选项不合题意.故选:C .【点评】本题主要考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.3.(3分)2019年10月1日在北京天安门广场举行隆重的国庆70周年庆祝活动,在阅兵和群众游行活动中,共有约15万人参加.则15万用科学记数法表示为( )A .1.510⨯B .41510⨯C .51.510⨯D .61.510⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:15万用科学记数法表示为51.510⨯.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(3分)如果60α∠=︒,那么α∠的余角的度数是( )A .30︒B .60︒C .90︒D .120︒【分析】本题考查角互余的概念:和为90度的两个角互为余角.【解答】解:根据定义α∠的余角度数是906030︒-︒=︒.故选:A .【点评】此题属于基础题,较简单,主要记住互为余角的两个角的和为90度.5.(3分)一个正比例函数的图象过点(2,3)-,它的表达式为( )A .32y x =-B .23y x =C .32y x =D .23y x =- 【分析】利用待定系数法即可求解.【解答】解:设函数的解析式是y kx =.根据题意得:23k =-. 解得:32k =-. 故函数的解析式是:32y x =-. 故选:A .【点评】本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上的点一定满足函数解析式.6.(3有意义,则x 的取值范围是( ) A .1x >且2x ≠ B .1x C .2x ≠ D .1x 且2x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:由分式及二次根式有意义的条件可得:10x -,20x -≠,解得:1x ,2x ≠,故选:D .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.7.(3分)如图,PA、PB是O的切线,切点分别是A,B,如果60P∠=︒,那么AOB∠等于()A.60︒B.90︒C.120︒D.150︒【分析】根据切线的性质定理,切线垂直于过切点的半径,即可求得OAP∠,OBP∠的度数,根据四边形的内角和定理即可求解.【解答】解:PA是圆的切线.90OAP∴∠=︒同理90OBP∠=︒根据四边形内角和定理可得:360360909060120AOB OAP OBP P∠=︒-∠-∠-∠=︒-︒-︒-︒=︒故选:C.【点评】本题主要考查了切线的性质定理,对定理的正确理解是解题的关键.8.(3分)某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如表,则这35名学生在校一周体育锻炼时间的中位数和众数分别为()锻炼时间/h5678人数615104A.6h,6h B.6h,15h C.6.5h,6h D.6.5h,15h【分析】直接利用中位数和众数的概念求解可得.【解答】解:这组数据的中位数为第18个数据,即中位数为6h;6出现次数最多,众数为6h.故选:A.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的概念.9.(3分)如图,在ABC∆中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若ADC∆的周长为10,7AB=,则ABC∆的周长为()A .7B .14C .17D .20【分析】首先根据题意可得MN 是AB 的垂直平分线,即可得AD BD =,又由ADC ∆的周长为10,求得AC BC +的长,则可求得ABC ∆的周长.【解答】解:在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .MN ∴是AB 的垂直平分线,AD BD ∴=,ADC ∆的周长为10, 10AC AD CD AC BD CD AC BC ∴++=++=+=,7AB =,ABC ∴∆的周长为:10717AC BC AB ++=+=.故选:C .【点评】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.10.(3分)如图,在OAP ∆、ABQ ∆均是等腰直角三角形,点P 、Q 在函数4(0)y x x=>的图象上,直角顶点A 、B 均在x 轴上,则点B 的坐标为( )A .(21,0)B .(51,0)C .(51,0)D .(3,0)【分析】若OAP ∆是等腰直角三角形,那么45POA ∠=︒,即直线:OP y x =,联立双曲线解析式可求得(2,2)P ,即(2,0)A ,然后结合直线OP 求得直线AQ 的解析式,联立反比例函数解析式即可得到点Q 点坐标,由于B 、Q 的横坐标相同,即可得解.【解答】解:OAP ∆是等腰直角三角形,∴直线:OP y x =,联立4(0)y x x=>可得(2,2)P , (2,0)A ∴,由于直线//OP AQ ,可设直线:AQ y x h =+,则有:20h +=,2h =-;∴直线:2AQ y x =-;联立4(0)y x x=>可得(1Q +1),即(1B +,0). 故选:C .【点评】本题考查了反比例函数的图象的性质以及等腰直角三角形的性质,利用形数结合解决此类问题,是非常有效的方法.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:269mn mn m ++= 2(3)m n + .【分析】先提取公因式m ,再对余下的多项式利用完全平方公式继续分解.【解答】解:269mn mn m ++2(69)m n n =++2(3)m n =+.故答案为:2(3)m n +.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)关于x 的一元二次方程210x ++=有两个相等的实数根,则m 的取值为 4 .【分析】要使方程有两个相等的实数根,即△240b ac =-=,则利用根的判别式即可求得一次项的系数.【解答】解:由题意,△22440b ac =-=-=得4m =故答案为4【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=-可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当b ac24)△0=时,方程有两个相等的实数根;③当△>时,方程有两个不相等的实数根;②当△0<时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.13.(4分)约定:上方相邻两数之和等于这两数下方箭头共同指向的数.例如,在图1中,即437y=-时,n的值为1.+=.则在图2中,当2【分析】根据图形,可以用含x的式子表示出m、n;再用x的代数式表示出y,从而可以求得x的值,进而得到n的值.【解答】解:由图可得,23n x=+=+=,23m x x x∴=+y m n=+++x x x(2)(23)=++x x323=+,x53y=-,2∴+=-,532x解得,1x=-,∴=+=⨯-+=-+=,n x232(1)3231故答案为:1.【点评】本题考查列代数式、解一元一次方程,解答本题的关键是明确题意,列出相应的代数式,求出方程的解.14.(4分)如图,ABCD,E是BA延长线上一点,AB AE=,连接CE交AD于点F,若CF平分BCDAB=,则BC的长为6.∠,3【分析】平行四边形的对边平行,//AD BC ,AB AE =,所以2BC AF =,若CF 平分BCD ∠,可证明AE AF =,从而可求出结果.【解答】解:CF 平分BCD ∠,BCE DCF ∴∠=∠,//AD BC ,BCE DFC ∴∠=∠,BCE EFA ∴∠=∠,//BE CD ,E DCF ∴∠=∠,E BCE ∴∠=∠,//AD BC ,BCE EFA ∴∠=∠,E EFA ∴∠=∠,3AE AF AB ∴===,AB AE =,//AF BC ,AEF BEC ∴∆∆∽, ∴3162AE AF BE BC ===, 26BC AF ∴==.故答案为:6.【点评】本题考查平行四边形的性质,平行四边形的对边平行,以等腰三角形的判定和性质.15.(4分)如图,已知A、B两点的坐标分别为(2,0)-、(0,1),C的圆心坐标为(0,1)-,半径为1.若D是C上的一个动点,射线AD与y轴交于点E,则ABE∆面积的最大值是113.【分析】当射线AD与C相切时,ABE∆面积的最大.设EF x=,由切割线定理表示出DE,可证明CDE AOE∆∆∽,根据相似三角形的性质可求得x,然后求得ABE∆面积.【解答】解:当射线AD与C相切时,ABE∆面积的最大.连接AC,90AOC ADC∠=∠=︒,AC AC=,OC CD=,Rt AOC Rt ADC(HL)∴∆≅∆,2AD AO∴==,连接CD,设EF x=,2DE EF OE∴=,1CF=,(2)DE x x∴=+,CDE AOE∆∆∽,∴CD CE AO AE=,即122(2)x x=++解得23x=,22(12)113223ABE BE AOS ∆⨯++⨯===.故答案为:11 3【点评】本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AD 与C 相切时,ABE ∆面积的最大.16.(4分)如图1,剪刀式升降平台由三个边长为4m 的菱形和两个腰长为4m 的等腰三角形组成,其中,0//AM A N ,B ,0B 在AM 和0A N 上可以滑动,1A 、1C 、0B 始终在同一条直线上.(1)这种升降平台设计原理利用了四边形的 不稳定性 性质;(2)如图2是一个抛物线型的拱状建筑物,其底部最大跨度为83米,顶部的最大高度为242米.如图3,当该平台在完成挂横幅作业时,其顶部A ,M 两点恰好同时抵住抛物线,且8AM =米,则此时1B ∠的度数为 .【分析】(1)根据四边形具有不稳定性,可以解答本题;(2)根据题意,画出合适的平面直角坐标系,然后利用二次函数的性质、菱形的性质和勾股定理的逆定理,即可得到1B ∠的度数.【解答】解:(1)这种升降平台设计原理利用了四边形的具有不稳定性.故答案为:不稳定性;(2)以地面为x 轴,顶部所在垂直于地面的直线为y 轴,建立平面直角坐标系,设22y ax =+点(43,0)在该抛物线上,20(43)242a ∴=⨯+, 解得,2a =-, 222422y x ∴=-+, 当4x =-时,22(4)242162y =-⨯-+=, ∴菱形竖直的对角线长为162442÷=,又菱形的边长为4,22244(42)+=,190B ∴∠=︒,故答案为:90︒.【点评】本题考查二次函数的应用、菱形的性质、勾股定理的逆定理,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(本题有8小题,共66分)17.(6分)计算:101()(1)2cos6092π-++-︒ 【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:101()(1)2cos6092π-++-︒121232=+-⨯+ 313=-+5=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)解不等式组:564,841xx x->⎧⎨-<+⋅⎩①②【分析】分别解两个不等式得到2x>和3x>-,然后根据同大取大确定不等式组的解集.【解答】解:解①得2x>,解②得3x>-,所以不等式组的解集为2x>.【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.(1)在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的顶点上:(2)在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的顶点上,90AEC∠=︒,EC EA>;直接写出四边形ABCE的面积为7.【分析】(1)根据轴对称的性质画出图形即可;(2)画出四边形ABCDE,再求出其面积即可.【解答】解:(1)如图1,四边形ABCD即为所求;(2)如图2,四边形ABCE即为所求,S四边形11193411331272222ABCE=⨯-⨯⨯-⨯⨯=--=.故答案为:7.【点评】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.20.(8分)垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了“垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为50,图1中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.【分析】(1)根据条形图可得接受随机抽样调查的学生人数,用5元的人数除以总数可得m,进而可得m的值;%(2)根据平均数、众数和中位数定义进行计算即可;(3)利用样本估计总体的方法进行计算.【解答】解:(1)接受随机抽样调查的学生人数为:4121610850++++=(人),16m=⨯=,%100%32%50则32m=,故答案为:50;32;(2)平均数:(411221*********)50 6.56⨯+⨯+⨯+⨯+⨯÷=(元),众数:5元;中位数:5元;(3)210024%504⨯=(人)答:该校本次活动捐款金额为5元的学生人数为504人.【点评】此题主要考查了条形统计图和扇形统计图的综合应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.21.(8分)如图,以ABCD 的边BC 为直径的O 交对角线AC 于点E ,交CD 于点F .连结BF .过点E 作EG CD ⊥于点G ,EG 是O 的切线.(1)求证:ABCD 是菱形;(2)已知2EG =,1DG =.求CF 的长.【分析】(1)如图,连接OE ,根据切线的性质得到OE EG ⊥,根据平行四边形的性质得到////OE CD AB ,推出AB BC =,于是得到结论;(2)如图,连接BD ,由(1)得,:1:2CE AC =,得到点E 是AC 的中点,根据圆周角定理得到BF CD ⊥,根据相似三角形的性质得到2DF =,4BF =,由勾股定理即可得到结论.【解答】(1)证明:如图,连接OE , EG 是O 的切线,OE EG ∴⊥,EG CD ⊥,四边形ABCD 是平行四边形,////OE CD AB ∴,CEO CAB ∴∠=∠,OC OE =,CEO ECO ∴∠=∠,ACB CAB ∴∠=∠,AB BC ∴=,ABCD ∴是菱形;(2)如图,连接BD ,由(1)得,//OE CD ,OC OB =,AE CE ∴=,:1:2CE AC ∴=,∴点E 是AC 的中点,四边形ABCD 是菱形,BD ∴经过点E , BC 是O 的直径,BF CD ∴⊥,EG CD ⊥,//EG BF ∴,DGE DFB ∴∆∆∽,:::1:2DG DF GE BF DE BD ∴===,2DF ∴=,4BF =,在Rt BFC ∆中,设CF x =,则2BC x =+,由勾股定理得,2224(2)x x +=+,解得:3x =,3CF ∴=.【点评】本题考查了切线的性质,相似三角形的判定和性质,勾股定理,菱形的判定和性质,平行四边形的性质,正确的识别图形是解题的关键.22.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(2)x+元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(2)x+元,根据题意得:1600600032x x=+,解得:8x=,经检验,8x=是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(8)600(10)1200m m-+-,解得:11m.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.23.(10分)对于平面直角坐标系xOy中的任意点(P x,)y,如果满足(0x y a x+=,a为常数),那么我们称这样的点叫做“特征点”.(1)当23a时,①在点(1,2)A,(1,3)B,(2.5,0)C中,满足此条件的特征点为A,C;②W的圆心为(,0)W m,半径为1,如果W上始终存在满足条件的特征点,请画出示意图,并直接写出m的取值范围;(2)已知函数1(0)Z x xx=+>,请利用特征点求出该函数的最小值.【分析】(1)①根据“特征点”的定义判断即可.②如图2中,当1W 与直线2y x =-+相切时,1(22W -,0),当2W 与直线3y =-相切时,2(32W +,0),结合图象,W 与图中阴影部分有交点时,W 上存在满足条件的特征点.(2)特征点的图象是由原点向外扩大,当与反比例函数的图象第一次有交点时,1x x+的值最小(如图3中).【解答】解:(1)①123+=,134+=,2.50 2.5+=,又23a , A ∴,C 是特征点.故答案为:A ,C .②如图2中,当1W 与直线2y x =-+相切时,1(22W 0),当2W 与直线3y =-相切时,2(32W +0),观察图象可知满足条件的m 取值范围为:2232m -+.(2)0x >, 1y x∴=的图象在第一象限,这个图象上的点的坐标为1(,)x x , 特征点满足(0x y a x +=,a 为常数),1x a x ∴+=,特征点的图象是由原点向外扩大,当与反比例函数的图象第一次有交点时,1x x+的值最小(如图3中),此时交点的坐标为(1,1),1Z x x∴=+的值最小,最小值为2. 【点评】本题属于反比例函数综合题,考查了一次函数的性质,直线与圆的位置关系,反比例函数的性质等知识,解题的关键是理解题意,学会两条图象法解决问题,属于中考压轴题.24.(12分)如图,在ABC ∆中,ACB R ∠=∠,6BC =,8AC =,点D 是AC 的中点,点P 为AB 边上的动点,(0)AP t t =,PH AC ⊥于点H ,连结DP 并延长至点E ,使得PE PD =,作点E 关于AB 的对称点F ,连结FH .(1)当点P 与点A 重合时,求证:DEF ABC ∆∆∽;(2)连结PF ,若12DH AD =,求线段PF 的长; (3)在点P 的运动过程中,是否存在某一时刻,使得以D 、F 、H 为顶点的三角形是等腰三角形?若存在请求出所有符合条件的t 的值;若不存在,请说明理由.【分析】(1)由PD PE =,PE PF =,推出PE PF PD ==,进而推出EFD ∆是直角三角形,推出90EFD ∠=︒,再证明E B ∠=∠即可解决问题.(2)解直角三角形求出PA 即可解决问题.(3)分三种情形进行讨论:①当DH DF =时,②当FD FH =时,③当DH DF =时,用t 表示PM 、DF ,根据2DF PM =列出方程,即可求得t 的值.【解答】(1)证明:如图1中,延长BA 交EF 于H .E ,F 关于AB 对称,AE AF ∴=,BH EF ⊥,AD AE =,AD AE AF ∴==,EFD ∴∆是直角三角形,90B BAC ∠+∠=︒,90EAH E ∠+∠=︒,BAC EAH ∠=∠,E B ∴∠=∠,90C EFD ∠=∠=︒,DEF ABC ∴∆∆∽.(2)解:如图2中,4AD DC ==,12DH AD =, 2AD DH ∴==,PH AD ⊥,PA PD ∴=,90AHP C ∠=∠=︒,//PH BC ∴, ∴PH AH BC AC =, ∴268PH =, 32PH ∴=, 2222352()22PA PD AH PH ∴=++=, PF PE PD PA ===,52PF PA ∴==.(3)当0t =时,DFH ∆是等腰三角形.//DF AB ,A FDA ∴∠=∠,90AMN C DFN PHA ∠=∠=∠=∠=︒,AMN ACB DFN ∴∆∆∆∽∽,::::::::3:4:5BC AC AB NM AM AN NF DF DN PH AH AP ∴====,①如图31-中,当DH DF =时,AP t =,45AH t ∴=,35PH t =,445DH DF t ==-,54(4)545DN t t =-=-,41AN DN t =-=-,4(1)5AM t =-, 441(1)555PM PA AM t t t ∴=-=--=+, PF PD =,//PM DF ,EM FM ∴=,2DF PM ∴=,44142()555t t ∴-=+, 2t ∴=.②如图32-中,当FD FH =时,445DH t =-, 515451(4)428522DF FH DH t t ∴===-=-,5255488DN DF t ==-, 2557548888AN t t ∴=-+=+,4175210PM AP AM t AN t =-=-=-, 2DF PM =,∴51172()22210t t -=-, 135t ∴=. ③如图33-中,当DH DF =时,445DF DH t ==-, 554DN DF t ∴==-, 49AN DN t ∴=+=-,4364555AM AN t ==-,36955PM AM AP t ∴=-=-, 2DF PM =,436942()555t t ∴-=-, 267t ∴=, 综上所述,符合条件的t 值为:0t =或2t =或135t =或267t =. 【点评】本题属于相似形综合题,主要考查了相似三角形的判定和性质、直角三角形的判定、等腰三角形的判定和性质、三角形的中位线定理等知识的综合应用,解题的关键是学会用分类讨论的思想思考问题,学会用转化的思想思考问题,学会构建方程解决问题.。

2020年浙江省金华市婺城区中考数学三模试题(word无答案)

2020年浙江省金华市婺城区中考数学三模试题(word无答案)

2020年浙江省金华市婺城区中考数学三模试题一、单选题(★) 1. ﹣的倒数是()A.﹣2020B.﹣C.D.2020(★) 2. 下面的计算正确的是()A.a2×a3=a6B.(a2)3=a5C.3a+2a=5a D.a6÷a3=a2(★) 3. 2019年10月1日在北京天安门广场举行隆重的国庆70周年庆祝活动,在阅兵和群众游行活动中,共有约15万人参加.则15万用科学记数法表示为()A.1.5×10B.15×104C.1.5×105D.1.5×106(★) 4. 如果一个角是60°,那么它的余角的度数是( )A.30°B.60°C.90°D.120°(★) 5. 一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.(★) 6. 若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2(★★) 7. 如图,PA、PB是O的切线,切点分别是A、B,如果∠P=60°,那么∠AOB等于()A.60°B.90°C.120°D.150°(★) 8. 某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如表,则这35名学生在校一周体育锻炼时间的中位数和众数分别为()锻炼时间/h5678人数615104A.6h,6h B.6h,15h C.6.5h,6h D.6.5h,15h(★★) 9. 如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,连接,交于点,连接,若的周长为,,则的周长为()A.B.C.D.(★★) 10. 如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y= (x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为()A.(,0)B.(,0)C.(3,0)D.(,0)二、填空题(★) 11. 分解因式:mn 2+6mn+9m=_____.(★★) 12. 关于的一元二次方程有两个相等的实数根,则的取值为__________ .(★) 13. 约定:上方相邻两数之和等于这两数下方箭头共同指向的数.例如,在图1中,即4+3=7.则在图2中,当y=﹣2时,n的值为_____.(★★) 14. 如图,□ ABCD中, E是 BA延长线上一点, AB= AE,连结 CE交 AD于点 F,若CF平分∠ BCD, AB=3,则 BC的长为_____.(★★) 15. 如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是.(★★★★) 16. 如图1,剪刀式升降平台由三个边长为4m的菱形和两个腰长为4m的等腰三角形组成,其中,AM∥A 0N,B,B 0在AM和A 0N上可以滑动,A 1、C 1、B 0始终在同一条直线上.(1)这种升降平台设计原理利用了四边形的_____性质;(2)如图2是一个抛物线型的拱状建筑物,其底部最大跨度为8 米,顶部的最大高度为24 米.如图3,当该平台在完成挂横幅作业时,其顶部A,M两点恰好同时抵住抛物线,且AM=8米,则此时∠B 1的度数为_____.三、解答题(★) 17. 计算:(★) 18. 解不等式组:(★★) 19. 如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.(1)在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的项点上:(2)在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的项点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的面积为________.(★★) 20. 垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了“垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图1中 m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.(★★) 21. 如图,以▱ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连结BF.过点E作EG⊥CD于点G,EG是⊙O的切线.(1)求证:▱ABCD是菱形;(2)已知EG=2,DG=1.求CF的长.(★★) 22. 某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?(★★★★★) 23. 对于平面直角坐标系 xOy中的任意点,如果满足( x≥0, a为常数),那么我们称这样的点叫做“特征点”.(1)当2≤ a≤3时,①在点中,满足此条件的特征点为__________________;②⊙ W的圆心为,半径为1,如果⊙ W上始终存在满足条件的特征点,请画出示意图,并直接写出 m的取值范围;(2)已知函数,请利用特征点求出该函数的最小值.(★★★★) 24. 如图,在中,∠ACB=Rt∠,BC=6,AC=8,点D是AC的中点,点P为AB边上的动点,AP=t(t≥0),PH⊥AC于点H,连结DP并延长至点E,使得PE=PD,作点E关于AB的对称点F,连结FH.(1)当点P与点A重合时,求证:;(2)连结PF,若DH=AD,求线段PF的长;(3)在点P的运动过程中,是否存在某一时刻,使得以D、F、H为顶点的三角形是等腰三角形?若存在请求出所有符合条件的t的值;若不存在,请说明理由.。

浙江省金华市2020年中考数学仿真模拟考试题(参考答案)

浙江省金华市2020年中考数学仿真模拟考试题(参考答案)

浙江省金华市2020年中考数学仿真模拟考试题参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:向北行驶3km,记作+3km,向南行驶2km记作﹣2km,故选:B.2.解:a6÷a2=a4,故选:C.3.解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.4.解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.5.解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:D.6.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故选:C.7.解:如图建立平面直角坐标系,则点N和点Q的坐标分别为(1,1),(﹣2,2),故选:D.8.解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠BAD=∠CAE=65°,∠B=∠D,∵∠AFB=90°,∴∠B=90°﹣∠BAD=25°,∴∠B=∠D=25°.故选:C.10.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正方体的棱长为10cm;∴正方体的体积为:103=1000cm3设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:解得:∴圆柱形水槽的容积为:400×20=8000 cm3故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).12.解:数据30,18,24,26,33,28的中位数是,故答案为:2713.解:∵x﹣2y=4,∴原式=4(x﹣2y)﹣2=16﹣2=14.故答案为:14.14.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==(米).故答案为:.15.解法一:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法二:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法三:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,设BD=a,则EF=a,∵点A(2,3)和点B(0,2),∴DF=2﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴2﹣a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).16.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共8小题,满分66分)17.解:原式==2﹣2+1+﹣1=.18.解:去分母得:4x2+10x﹣2x+5=4x2﹣25,解得:x=﹣,经检验x=﹣是分式方程的解.19.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.20.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△P AB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△P AB如图所示.21.解:(1)如图①,连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠OAB=45°;(2)如图②,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°,∴∠COE=180°﹣45°﹣30°=105°.22.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;23.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.。

2020年浙江省金华市中考数学模拟试卷(3月份)

2020年浙江省金华市中考数学模拟试卷(3月份)

2020年浙江省金华市中考数学模拟试卷(3月份)一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)3的倒数是()A.﹣3B.3C.D.2.(3分)如图是由5个大小相同的小正方体搭成的几何体,它的左视图是()A.B.C.D.3.(3分)根据国家统计局最新数据,2019年1至2月份全国房地产开发投资12000亿元,同比增长11.6%.数12000用科学记数法表示为()A.1.2×103B.12×103C.1.2×104D.0.12×1054.(3分)下列计算正确的是()A.a2•a3=a6B.(2a2)3=6a6C.2a﹣a=2D.(a2)3=a6 5.(3分)有20张背面完全一样的卡片,其中8张正面印有双龙洞风光,7张正面印有仙华山风光,5张正面印有方岩风光,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是双龙洞风光卡片的概率是()A.B.C.D.6.(3分)近期气候温暖湿润很适合春笋生长,某农林基地预计2019年春笋产量将由2017年的45万吨提升到50万吨,设每年春笋产量年平均增长率为x,则可列方程为()A.45+2x=50B.45(1+x)2=50C.50(1﹣x)2=45D.45(1+2x)=507.(3分)如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°8.(3分)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm9.(3分)如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A.B.C.D.10.(3分)如图,抛物线y=x+2交x轴于点A,B,交y轴于点C,当△ABC纸片上的点C沿着此抛物线运动时,则△ABC纸片随之也跟着水平移动,设纸片上BC的中点M坐标为(m,n),在此运动过程中,n与m的关系式是()A.n=(m﹣)2﹣B.n=(m﹣)2C.n=(m﹣)2﹣D.n=(m﹣)2﹣二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:x3﹣x=.12.(4分)已知关于x的方程x2﹣2x+2k=0的一个根是1,则k=.13.(4分)某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历十二月三十正月初一正月初二正月初三正月初四正月初五正月初六人数 1.2 2.32 2.3 1.2 2.30.6表中表示人数的一组数据中,众数和中位数分别是和.14.(4分)如图,已知半⊙O的直径AB为3,弦AC与弦BD交于点E,OD⊥AC,垂足为点F,AC=BD,则弦AC的长为.15.(4分)如图,在矩形纸片ABCD中,AB=4,点G是BC边上一点,且BG=5(BG<CG).将矩形纸片沿过点G的折痕GE折叠,使点B恰好落在AD边上,折痕与矩形纸片ABCD的边相交于点E,则折痕GE的长为.16.(4分)如图,在平面直角坐标系中,点A,点B分别是x轴正半轴和直线y=x(x>0)上的动点,以AB为边在右侧作矩形ABCD,AB=2,BC=1.(1)若OA=时,则△ABO的面积是;(2)若点A在x轴正半轴移动时,则CO的最大距离是.三、解答题(本题有8小题,共66分,每题都必须写出解答过程)17.(6分)计算:﹣2sin60°+|1﹣|+20190.18.(6分)解方程:.19.(6分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8),B (﹣4,m).(1)求m和一次函数解析式;(2)求△AOB的面积.20.(8分)某校教职工为庆祝“建国70周年”开展学习强国知识竞赛,本次知识竞赛分为甲、乙、丙三组进行.下面两幅统计图反映了教师参加学习强国知识竞赛的报名情况,请你根据图中的信息回答下列问题:(1)该校教师报名参加本次学习强国知识竞赛的总人数为人,并补全条形统计图;(2)该校教师报名参加丙组的人数所占圆心角度数是;(3)根据实际情况,需从甲组抽调部分教师到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名教师到丙组?21.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)22.(10分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作CE⊥AC交AD的延长线于点E,F为CE的中点,连结DB,DF.(1)求∠CDE的度数.(2)求证:DF是⊙O的切线.(3)若tan∠ABD=3时,求的值.23.(10分)正方形ABCD的边长为4,以B为原点建立如图1平面直角坐标系中,E是边CD上的一个动点,F是线段AE上一点,将线段EF绕点E顺时针旋转90°得到EF'.(1)如图2,当E是CD中点,时,求点F'的坐标.(2)如图1,若,且F',D,B在同一直线上时,求DE的长.(3)如图3,将正边形ABCD改为矩形,AD=4,AB=2,其他条件不变,若,且F',D,B在同一直线上时,则DE的长是.(请用含n的代数式表示)24.(12分)如图1,抛物线y1=﹣x2﹣tx﹣t+2与x轴交于点A,B(点A在点B的左侧),过y轴上的点C(0,4),直线y2=kx+3交x轴,y轴于点M、N,且ON=OC.(1)求出t与k的值.(2)抛物线的对称轴交x轴于点D,在x轴上方的对称轴上找一点E,使△BDE与△AOC 相似,求出DE的长.(3)如图2,过抛物线上动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标;若不存在,请说明理由.2020年浙江省金华市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)3的倒数是()A.﹣3B.3C.D.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可知.【解答】解:3的倒数是.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)如图是由5个大小相同的小正方体搭成的几何体,它的左视图是()A.B.C.D.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.(3分)根据国家统计局最新数据,2019年1至2月份全国房地产开发投资12000亿元,同比增长11.6%.数12000用科学记数法表示为()A.1.2×103B.12×103C.1.2×104D.0.12×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.a2•a3=a6B.(2a2)3=6a6C.2a﹣a=2D.(a2)3=a6【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则、合并同类项法则分别判断得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(2a2)3=8a6,故此选项错误;C、2a﹣a=a,故此选项错误;D、(a2)3=a6,故此选项正确;故选:D.【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则是解题关键.5.(3分)有20张背面完全一样的卡片,其中8张正面印有双龙洞风光,7张正面印有仙华山风光,5张正面印有方岩风光,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是双龙洞风光卡片的概率是()A.B.C.D.【分析】依据桂林山水卡片的张数除以卡片的总张数即为所求的概率.【解答】解:根据题意,20张卡抽到的可能性相同,8张印有双龙洞风光卡片,抽到桂林山水的概率为==.故选:C.【点评】本题考查了简单概率法的计算,概率等于所求情况数与总情况数之比.6.(3分)近期气候温暖湿润很适合春笋生长,某农林基地预计2019年春笋产量将由2017年的45万吨提升到50万吨,设每年春笋产量年平均增长率为x,则可列方程为()A.45+2x=50B.45(1+x)2=50C.50(1﹣x)2=45D.45(1+2x)=50【分析】本题可根据题意列出去年的春笋产量,2018年的春笋产量为:45(1+x),则2019年的春笋产量为:45(1+x)(1+x),令其等于50即可.【解答】解:依题意得:去年的春笋产量为:45(1+x)则今年的春笋产量为:45(1+x)(1+x)=45(1+x)2=50;故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目常常要先列出前一年的产量,再根据题意列出所求年份的产量.7.(3分)如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°【分析】根据等腰三角形的性质、三角形的外角的性质计算,得到答案.【解答】解:∵OE=OD,DC=OE,∴DC=DO,∴∠C=∠DOC,∴∠ODE=2∠C,∵OD=OE,∴∠ODE=∠OED,∴∠OED=2∠C,∵∠BOE=∠C+∠OED,∴∠C+2∠C=72°,解得,∠C=24°,故选:A.【点评】本题考查的是圆周角定理、三角形的外角的性质,掌握等腰三角形的性质、三角形的外角的性质是解题的关键.8.(3分)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【分析】设扇形的半径为R,根据扇形面积公式得=4π,解得R=4;设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•4=4π,然后解方程即可.【解答】解:设扇形的半径为R,根据题意得=4π,解得R=4,设圆锥的底面圆的半径为r,则•2π•r•4=4π,解得r=1,即所围成的圆锥的底面半径为1cm.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.(3分)如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A.B.C.D.【分析】利用P A+PC=AC,PB+PC=AC得到P A=PB,则根据线段垂直平分线的逆定理得到点P在线段AB的垂直平分线上,于是可判断C正确.【解答】解:∵点P在AC上,∴P A+PC=AC,而PB+PC=AC,∴P A=PB,∴点P在线段AB的垂直平分线上,所以作线段AB的垂直平分线交AC于点P.故选:C.【点评】本题考查了作图﹣复杂作图:结合了几何图形的性质和基本作图方法解决问题.10.(3分)如图,抛物线y=x+2交x轴于点A,B,交y轴于点C,当△ABC纸片上的点C沿着此抛物线运动时,则△ABC纸片随之也跟着水平移动,设纸片上BC的中点M坐标为(m,n),在此运动过程中,n与m的关系式是()A.n=(m﹣)2﹣B.n=(m﹣)2C.n=(m﹣)2﹣D.n=(m﹣)2﹣【分析】先求出抛物线与x轴、y轴交点B,C的坐标,再由中点坐标公式求出M点的坐标;把抛物线的表达式配方成顶点式,通过比较点C与点M的相对位置,利用平移思想即可求出n与m的关系式.【解答】解:∵抛物线y=x+2交x轴于点A,B,交y轴于点C,∴点B的坐标为(4,0),点C的坐标为(0,2),∴BC的中点M坐标为(,),即点M坐标为(2,1).∵y=x+2=,点C沿着此抛物线运动,点M也随之运动,∴n与m的关系式为:n=(m﹣)2﹣.故选:D.【点评】本题考查了坐标与图形的变化﹣﹣平移在解题中的应用,解题的基础是求出抛物线与坐标轴的交点,进而求出BC中点M的坐标.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.12.(4分)已知关于x的方程x2﹣2x+2k=0的一个根是1,则k=.【分析】根据一元二次方程的解的定义,将x=1代入关于x的方程,列出关于k的一元一次方程,通过解该方程,即可求得k的值.【解答】解:根据题意,得x=1满足关于x的方程x2﹣2x+2k=0,则1﹣2+2k=0,解得,k=;故答案是:.【点评】本题考查了一元二次方程的解的定义.解答该题时,实际上是通过待定系数法求得k的值.13.(4分)某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历十二月三十正月初一正月初二正月初三正月初四正月初五正月初六人数 1.2 2.32 2.3 1.2 2.30.6表中表示人数的一组数据中,众数和中位数分别是 2.3和2.【分析】将数据重新排列,再依据众数和中位数的定义求解可得.【解答】解:将这组数据重新排列为0.6,1.2,1.2,2,2.3,2.3,2.3,∴这组数据的众数为2.3,中位数为2,故答案为:2.3,2.【点评】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数与中位数的定义.14.(4分)如图,已知半⊙O的直径AB为3,弦AC与弦BD交于点E,OD⊥AC,垂足为点F,AC=BD,则弦AC的长为.【分析】由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AO sin∠AOF可得答案;【解答】解:∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=3,∴AO=BO=,∴AF=AO sin∠AOF=×=,则AC=2AF=;【点评】本题考查圆心角,弧,弦之间的关系,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(4分)如图,在矩形纸片ABCD中,AB=4,点G是BC边上一点,且BG=5(BG<CG).将矩形纸片沿过点G的折痕GE折叠,使点B恰好落在AD边上,折痕与矩形纸片ABCD的边相交于点E,则折痕GE的长为或2.【分析】两种情况:①当折痕的另一端点E在AB边上时,利用翻折变换的性质以及勾股定理求出AF的长,再利用勾股定理求出AE和EF的长,根据勾股定理即可得出结论;②当折痕的另一端点E在AD边上时,首先证明四边形BGFE是平行四边形,再利用BG =FG,得出四边形BGFE是菱形,再利用菱形性质求出GE的长.【解答】解:①当折痕的另一端点E在AB边上时,点B落在AD边上的点F处,如图①所示:过G作GH⊥AD交AD于H,在Rt△GHF中,GF=BG=5,GH=4,∴FH==3,AF=5﹣3=2,设AE=x,则EF=BE=4﹣x,则AE2+AF2=EF2,∴x2+22=(4﹣x)2,解得:x=,∴AE=,BE=EF=4﹣=,在Rt△BFG中,根据勾股定理得,GE===;②当折痕的另一端点E在AD边上时,点B落在AD边上的点F处,如图②所示:过E作EK⊥BG于K,∵ABCD是矩形,∴AD∥BC,BH∥FG,∴四边形BGFE是平行四边形;由对称性知,BG=FG,∴四边形BGFE是菱形.∴BG=BE=5,AB=4,AE=3,∴KG=2,GE==2;综上所述,GE的长为或2;故答案为:或2.【点评】本题考查了翻折变换的性质、矩形的性质、菱形的判定与性质、平行四边形的判定以及勾股定理等知识;利用翻折变换的性质得出对应线段之间的关系是解题关键,注意分类讨论.16.(4分)如图,在平面直角坐标系中,点A,点B分别是x轴正半轴和直线y=x(x>0)上的动点,以AB为边在右侧作矩形ABCD,AB=2,BC=1.(1)若OA=时,则△ABO的面积是;(2)若点A在x轴正半轴移动时,则CO的最大距离是.【分析】(1)由于点B是直线y=x(x>0)上的点,设B(a,a),解直角三角形得到BE=,根据三角形的面积公式即可得到结论;(2)根据点B在一次函数y=x(x>0)的图象上,得到tan∠AOB=1,作△AOB的外接圆⊙P,连接OP、P A、PB、PC,作PG⊥CD,交AB于H,垂足为G,推出AB∥CD,四边形BHGC是矩形,得到PG⊥AB,GH=BC=1,根据勾股定理得到PC===,OP=PB===,于是得到结论.【解答】解:(1)∵点B是直线y=x(x>0)上的点,∴设B(a,a),∴BE=OE=a,∵AB=2,∴AE=,∵OA=,∴OE+AE=a+=,∴a=,a=,∴BE=,∴△ABO的面积=OA•BE=××=;故答案为:;(2)∵点B在一次函数y=x(x>0)的图象上,∴tan∠AOB=1,作△AOB的外接圆⊙P,连接OP、P A、PB、PC,作PG⊥CD,交AB于H,垂足为G,∵四边形ABCD是矩形,∴AB∥CD,四边形BHGC是矩形,∴PG⊥AB,GH=BC=1,∵∠APB=2∠AOB,∠BPG=∠APB,BH=AB=1=CG,∴∠BPH=∠AOB,∴tan∠BPH=tan∠AOB=1,∴=1,∴PH=1,∴PG=1+1=2,∴PC===,OP=PB===,在△OPC中,OP+PC≥OC,∴OC的最大值为+,故答案为:+.【点评】本题考查了一次函数图象上点的坐标特征,圆心角和圆周角的关系,垂径定理以及勾股定理的应用,三角形三边关系等,作出辅助线是解题的关键.三、解答题(本题有8小题,共66分,每题都必须写出解答过程)17.(6分)计算:﹣2sin60°+|1﹣|+20190.【分析】本题涉及二次根式化简、特殊角的三角函数值、绝对值、零指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣2sin60°+|1﹣|+20190=2﹣2×﹣1++1=2﹣﹣1++1=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、特殊角的三角函数值、绝对值、零指数幂等考点的运算.18.(6分)解方程:.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母得:3(x﹣1)=5(x+1),(2分)3x﹣3=5x+5,(3分)3x﹣5x=5+3,(4分)﹣2x=8,(5分)x=﹣4.(6分)经检验:x=﹣4是原方程的解.故原方程的解是:x=﹣4.【点评】本题主要考查了分式方程的解法,解方程时要主要:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(6分)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8),B (﹣4,m).(1)求m和一次函数解析式;(2)求△AOB的面积.【分析】(1)利用待定系数法求得k1、k2、b的值;(2)求得一次函数与y轴的交点坐标,把△AOB的面积分成两个三角形的面积和即可.【解答】解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8),B (﹣4,m).∴k1=8,m=﹣2,则B(﹣4,﹣2),由题意得,解得:k2=2,b=6;∴一次函数解析式为:y=2x+6.综上所述,m的值为﹣2,一次函数解析式为y=2x+6;(2)∵一次函数y=2x+6与y轴的交点坐标为(0,6),∴△AOB的面积=×6×4+×6×1=15.【点评】此题考查一次函数与反比例函数的交点问题,待定系数法求函数解析式,反比例函数的性质,三角形的面积计算,注意数形结合的思想运用.20.(8分)某校教职工为庆祝“建国70周年”开展学习强国知识竞赛,本次知识竞赛分为甲、乙、丙三组进行.下面两幅统计图反映了教师参加学习强国知识竞赛的报名情况,请你根据图中的信息回答下列问题:(1)该校教师报名参加本次学习强国知识竞赛的总人数为50人,并补全条形统计图;(2)该校教师报名参加丙组的人数所占圆心角度数是180°;(3)根据实际情况,需从甲组抽调部分教师到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名教师到丙组?【分析】(1)根据条形统计图得到甲组有15人,根据扇形图得到甲组人数所占的百分比为30%,计算求出总人数,求出乙组人数,补全条形统计图;(2)根据丙组人数所占的百分比,求出丙组的人数所占圆心角度数;(3)根据题意列出一元一次方程,解方程得到答案.【解答】解:(1)由条形图可知,甲组有15人,由扇形图可知,甲组人数所占的百分比为30%,∴该校教师报名参加本次学习强国知识竞赛的总人数为:15÷30%=50(人),则乙组人数为:50×20%=10(人),补全条形统计图如图所示:故答案为:50;(2)参加丙组的人数所占圆心角度数为:360°×(1﹣20%﹣30%)=180°,故答案为:180°;(3)设应从甲组抽调x名教师到丙组,由题意得,25+x=3(15﹣x),解得,x=5,答:应从甲组抽调5名教师到丙组,丙组人数是甲组人数的3倍.【点评】本题考查的是条形统计图、扇形统计图、一元一次方程的应用,读懂条形图和扇形图、掌握解一元一次方程应用题的一般步骤是解题的关键.21.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)【分析】(1)作BH⊥AF于点K,交MN于点H,则△ABK∽△ACG,设圆形滚轮的半径AD的长是xcm,根据相似三角形的对应边的比相等,即可列方程求得x的值;(2)求得CG的长,然后在直角△ACG中,求得AC即可解决问题;【解答】解:(1)作BH⊥AF于点K,交MN于点H.则BK∥CG,△ABK∽△ACG.设圆形滚轮的半径AD的长是xcm.则=,即=,解得:x=8.则圆形滚轮的半径AD的长是8cm;(2)在Rt△ACG中,CG=80﹣8=72(cm).则sin∠CAF=,∴AC=80,(cm)∴BC=AC﹣AB=80﹣50=30(cm).【点评】本题考查解直角三角形的应用,切线的性质,锐角三角函数等知识,关键把实际问题转化为数学问题加以计算.22.(10分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作CE⊥AC交AD的延长线于点E,F为CE的中点,连结DB,DF.(1)求∠CDE的度数.(2)求证:DF是⊙O的切线.(3)若tan∠ABD=3时,求的值.【分析】(1)因为对角线AC为⊙O的直径,可得∠ADC=90°,即∠CDE=90°;(2)连接OD,证明DF=CF,可得∠FDC=∠FCD,因为OD=OC,可得∠ODC=∠OCD,即∠ODF=∠OCF=90°,可得DF是⊙O的切线;(3)证明∠E=∠DCA=∠ABD,可得tan∠E=tan∠DCA=tan∠ABD=3,设DE=x,则CD=3x,AD=9x,在Rt△ADC中,求得AC的长,即可得出的值.【解答】解:(1)∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠CDE=180°﹣90°=90°;(2)如图,连接OD,∵∠CDE=90°,F为CE的中点,∴DF=CF,∴∠FDC=∠FCD,∵OD=OC,∴∠ODC=∠OCD,∴∠FDC+∠ODC=∠FCD+∠OCD,即∠ODF=∠OCF,∵CE⊥AC,∴∠ODF=∠OCF=90°,即OD⊥DF,∴DF是⊙O的切线.(3)∵∠E=90°﹣∠ECD=∠DCA=∠ABD,∴tan E=tan∠DCA=tan∠ABD=3,设DE=x,则CD=3x,AD=9x,∴AC=,∴=.【点评】本题考查圆的切线的判定,圆周角定理,锐角三角函数的定义.解题的关键是掌握圆的切线的判定方法.23.(10分)正方形ABCD的边长为4,以B为原点建立如图1平面直角坐标系中,E是边CD上的一个动点,F是线段AE上一点,将线段EF绕点E顺时针旋转90°得到EF'.(1)如图2,当E是CD中点,时,求点F'的坐标.(2)如图1,若,且F',D,B在同一直线上时,求DE的长.(3)如图3,将正边形ABCD改为矩形,AD=4,AB=2,其他条件不变,若,且F',D,B在同一直线上时,则DE的长是.(请用含n的代数式表示)【分析】(1)如图2中,作EM⊥AB于M,F′H⊥CD交CD的延长线于H.证明△AME ≌△F′HE(AAS),可得AM=F′H,EM=EH解决问题.(2)如图1中,作FM⊥CD于M,F′H⊥CD交CD的延长线于H,连接BF′.设DE =x.首先证明FM是三角形的中位线,再利用全等三角形的性质构建方程即可解决问题.(3)如图3中,作FM⊥CD于M,F′H⊥CD交CD的延长线于H,连接BF′.设DE =x.AE=1,AF=n,利用平行线分线段成本定理定理求出FM,EM,再利用全等三角形的性质求出EH,HF′,再求出DH,构建方程即可解问题.【解答】解:(1)如图2中,作EM⊥AB于M,F′H⊥CD交CD的延长线于H.∵∠AME=∠AEF=∠H=90°,∴∠AEM+∠HEF′=90°,∠AEM+∠MAE=90°,∴∠MAE=∠HEF′,∵EA=EF′,∴△AME≌△F′HE(AAS),∴AM=F′H,EM=EH,∵DE=EC=2,四边形ADEM是矩形,∴AM=DE=2,EM=AD=4,∴EH=4,HF′=2,∴F′(6,6).(2)如图1中,作FM⊥CD于M,F′H⊥CD交CD的延长线于H,连接BF′.设DE =x.∵EF:AE=1:2,∴AF=EF,∵FM⊥AD,∴DM=ME=x,FM=AD=2,同法可证:△FME≌△EHF′(AAS),∴HF′=EM=x,EH=FM=2,∵四边形ABCD是正方形,∴∠BDC=45°,∵B,D,F′共线,∴∠HDF′=∠BDC=45°,∴DH=HF′=x,∴x+x=2,∴x=,∴DE=.(3)如图3中,作FM⊥CD于M,F′H⊥CD交CD的延长线于H,连接BF′.设DE =x.AE=1,AF=n,∵FM∥AD,∴==,∴FM=4﹣4n,EM=x﹣nx,∵△FME≌△EHF′(AAS),∴HF′=EM=x﹣nx,EH=FM=4﹣4n,∵tan∠HDF′=tan∠CDB=2=,∴DH=(x﹣nx),∴(x﹣nx)+x=4﹣4n,∴x=,∴DE=.故答案为.【点评】本题属于相似三角形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.24.(12分)如图1,抛物线y1=﹣x2﹣tx﹣t+2与x轴交于点A,B(点A在点B的左侧),过y轴上的点C(0,4),直线y2=kx+3交x轴,y轴于点M、N,且ON=OC.(1)求出t与k的值.(2)抛物线的对称轴交x轴于点D,在x轴上方的对称轴上找一点E,使△BDE与△AOC 相似,求出DE的长.(3)如图2,过抛物线上动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标;若不存在,请说明理由.【分析】(1)将C(0,4)代入抛物线y1=﹣x2﹣tx﹣t+2即可求出t的值,由ON=OC可写出点N坐标,将其代入直线y2=kx+3即可求出k的值;(2)由条件知∠AOC=∠EDB=90°,故分两种情况讨论△BDE与△AOC相似,通过对应边的比相等可求出DE的长;(3)先根据题意画出图形,通过轴对称的性质等证明四边形QMQ'G为菱形,分别用字母表示出Q,G的坐标,分两种情况讨论求出GQ'的长度,利用三角函数可求出点G的横坐标.【解答】解:(1)将点C(0,4)代入抛物线y1=﹣x2﹣tx﹣t+2,得,﹣t+2=4,∴t=﹣2,∴抛物线y1=﹣x2+x+4,∵C(0,4),ON=OC,∴N(﹣4,0),将N(﹣4,0)代入直线y2=kx+3,得,﹣4k+3=0,∴,∴直线,∴t的值为﹣2,k的值为;(2)如图1,连接BE,在y1=﹣x2++4中,当y=0时,x1=﹣1,x2=3,∴A(﹣1.0),B(3,0),对称轴为x=﹣=1,∴D(1,0),∴AO=1,CO=4,BD=2,∵∠AOC=∠EDB=90°,①∴当△AOC∽△BDE时,∴,∴,∴DE=8,②当△AOC∽△EDB时,∴,∴,∴,综上所述,DE的长为8或.(3)如图2﹣1,点Q′是点Q关于直线MG的对称点,且点Q′在y轴上时,由轴对称的性质知,QM=Q'M,QG=Q'G,∠Q'MG=∠QMG,∵QG⊥x轴,∴QG∥y轴,∴∠Q'MG=∠QGM,∴∠QMG=∠QGM,∴QM=QG,∴QM=Q'M=QG=Q'G,∴四边形QMQ'G为菱形,设G(a,﹣a2++4),则Q(a,a+3),过点G作GK⊥y轴于点K,∵GQ'∥QN,∴∠GQ'K=∠NMO,在Rt△NMO中,NM==5,∴sin∠NMO=,∴sin∠GQ'K=,①当点G在直线MN下方时,QG=Q'G=a2﹣﹣1,∴,解得,a1=,a2=,②如图2﹣2,当点G在直线MN上方时,QG=Q'G=﹣(),∴,解得,,,综上所述,点G的横坐标为,,或.【点评】本题是二次函数综合题,考查了待定系数法求解析式,三角形相似的判定与性质,菱形的判定与性质,轴对称的性质及三角函数等,解题关键是能够根据题意画出图形及灵活运用分类讨论的思想解题.。

2020年金华市中考数学仿真模拟试题(附答案)

2020年金华市中考数学仿真模拟试题(附答案)

2020年金华市中考数学仿真模拟试题(附答案)考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D四个选项,其中只有一个是正确的。

)1.计算:20200﹣|﹣2|=()A.2020 B.2019 C.﹣1 D.32.下列计算正确的是()A.a3+a3=a6 B.3a﹣a=3 C.(a3)2=a5 D.a•a2=a33.在△ABC中,∠C=90°.若AB=3,BC=1,则sinA的值为()A. B. C. D.34.如图,线段BD,CE相交于点A,DE∥BC.若AB=4,AD=2,DE=1.5,则BC的长为()A.1 B.2 C.3 D.45. 已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )A. 图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)=0的两个根D.当x<1时,y随x的增大而增大7.如图是一个空心圆柱体,其俯视图是()8.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30 B.x(x+1)=30C.=30 D.=309.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④10.近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A.10% B.15% C.20% D.25%第Ⅱ卷非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分)11.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x、y)落在直线y=﹣x+5 上的概率为.12.科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美.某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为cm.(精确到0.1cm)13.如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=.14.抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为.15.如图,在计算机白色屏幕上有一个矩形画刷ABCD,它的边AB=1,AD=,以B点为中心,将矩形ABCD按顺时针方向转动到A′B′C′D′的位置(A′点在对角线BD上),则与线段A′D及线段A′D′所围成的图形的面积为(结果保留π).16.在平面直角坐标系中,对于点P(a,b),我们把Q(﹣b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为.三、解答题(共7小题,计72分)17.(本题8分)化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.18.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点).请你根据统计图解答下列问题:(1)此次抽样调查的总户数是100 户;扇形图中“10吨﹣15吨”部分的圆心角的度数是36 度;(2)求“15吨﹣20吨”部分的户数,并补全频数分布直方图;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区120万用户中约有多少用户的用水全部享受基本价格?19.(本题10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.20.(本题10分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)21.(本题12分)为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y 万元,x 个月还清贷款,若y 是x 的反比例函数,其图象如图所示:(1)求y 与x 的函数解析式;(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?22.(本题12分)如图,在平面直角坐标系中,抛物线32++=bx ax y 与y 轴交于点A ,与x 轴交于点B 和点C (3,0),且图象过点D (2,3),连结AD ,点P 是线段AD 上一个动点,过点P 作y 轴平行线分别交抛物线和x 轴于点E ,F .连结AE ,过点F 作FG //AE 交AD 的延长线于点G . (1)求抛物线的函数表达式; (2)若tan ∠G =43,求点E 的坐标; (3)当△AFG 是直角三角形时,求DG 的长.23.(本题12分)在正方形中,,点在边上,,点是在射线上的一个动点,过点作的平行线交射线于点,点在射线上,使始终与直线垂直.(1)如图1,当点与点重合时,求的长;(2)如图2,试探索:的比值是否随点的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点在线段上,设,,求关于的函数关系式,并写出它的定义域.参考答案第Ⅰ卷选择题(共30分)一、选择题(每小3分,共计30分。

浙江省金华市2020年中考数学仿真模拟考试题

浙江省金华市2020年中考数学仿真模拟考试题

浙江省金华市2020年中考数学仿真模拟考试题一.选择题(共10小题,满分30分,每小题3分)1.向北行驶3km,记作+3km,向南行驶2km记作()A.+2 km B.﹣2 km C.+3 km D.﹣3 km2.计算a6÷a2的结果是()A.a2B.a3C.a4D.a53.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.04.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.3、1、1D.4、6、95.从一个物体的不同方向看到的是如图所示的三个图形,则该物体的形状为()A.圆柱B.棱柱C.球D.圆锥6.在一个不透明的口袋中装有2个红球和若干个黑球,这些球除颜色外其他都相同,将袋中的球搅匀,从中任意摸出一个球,是黑球的概率是,则袋中原有黑球()A.2B.3C.4D.67.在如图所示的网格中有M,N,P,Q四个点,鹏鹏在该网格中建立了一个平面直角坐标系,然后得到点M的坐标为(﹣3,﹣1),点P的坐标为(0,﹣2),则点N和点Q的坐标分别为()A.(2,1),(1,﹣2)B.(1,1),(2,﹣2)C.(2,1),(﹣1,2)D.(1,1),(﹣2,2)8.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1B.k<1C.k≥1D.k≤19.如图,将直角三角形ABC(∠BAC=90°)绕点A逆时针旋转一定角度得到直角三角形ADE,若∠CAE =65°,若∠AFB=90°,则∠D的度数为()A.60°B.35°C.25°D.15°10.如图①,一个立方体铁块放置在圆柱形水槽内,现以每秒固定的流量往水槽中注水,28秒时注满水槽,水槽内水面的高度y(厘米)与注水时间x(秒)之间的函数图象如图②所示,则圆柱形水槽的容积(在没放铁块的情况下)是()A.8000cm3B.10000 cm3C.2000πcm3D.3000πcm3二.填空题(共6小题,满分24分,每小题4分)11.分解因式:4﹣m2=.12.一组数据30,18,24,26,33,28的中位数是.13.若x﹣2y=4,则4x﹣8y﹣2=.14.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为米.15.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB 绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD 方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三.解答题(共8小题,满分66分)17.计算:4cos30°﹣+20180+|1﹣|18.解分式方程:﹣=1.19.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△P AB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△P AB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.如图①,在平行四边形OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求∠OAB的度数;(2)如图②,点E在⊙O上,连接CE与⊙O交于点F,若EF=AB,求∠COE的度数.22.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.23.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.浙江省金华市2020年中考数学仿真模拟考试题参考答案一.选择题(共10小题,满分30分,每小题3分)1.B.2.C.3.A.4.D.5.D.6.C.7.D.8.C.9.C.10.A.二.填空题(共6小题,满分24分,每小题4分)11.(2+m)(2﹣m).12.2713.14.14..15.(﹣1,﹣6).16.30,10﹣10,三.解答题(共8小题,满分66分)17.解:原式==2﹣2+1+﹣1=.18.解:去分母得:4x2+10x﹣2x+5=4x2﹣25,解得:x=﹣,经检验x=﹣是分式方程的解.19.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.20.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△P AB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△P AB如图所示.21.解:(1)如图①,连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠OAB=45°;(2)如图②,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°,∴∠COE=180°﹣45°﹣30°=105°.22.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;23.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴S△PMN最大=PM2=×72=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.计算:
18.解不等式组:
19.如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.
(1)在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的项点上:
(2)在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的项点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的面积为________.
(1)当2≤a≤3时,
①在点 中,满足此条件的特征点为__________________;
②⊙W的圆心为 ,半径为1,如果⊙W上始终存在满足条件的特征点,请画出示意图,并直接写出m的取值范围;
(2)已知函数 ,请利用特征点求出该函数的最小值.
24.如图,在 中,∠ACB=Rt∠,BC=6,AC=8,点D是AC的中点,点P为AB边上的动点,AP=t(t≥0),PH⊥AC于点H,连结DP并延长至点E,使得PE=PD,作点E关于AB的对称点F,连结FH.
∴点B的坐标为( +1,0),
故选:B.
【点睛】
本题考查了反比例函数的图象的性质以及等腰直角三角形的性质,解决此类问题常用的方法就是利用形数结合进行解答.
11.m(n+3)2
【解析】
【分析】
先提取公因式m,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:mn2+6mn+9m
=m(n2+6n+9)
故选:A.
【点睛】
本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.
2.C
【解析】
【分析】
分别根据同底数幂的乘法法则,幂的乘方运算法则,合并同类项法则以及同底数幂的除法法则逐一判断即可.
【详解】
解:A.a2×a3=a5,故本选项不合题意;
B.(a2)3=a6,故本选项不合题意;
C.3a+2a=5a,故本选项符合题意;
【分析】
根据待定系数法求解即可.
【详解】
解:设函数的解析式是y=kx,
根据题意得:2k=﹣3,解得:k=﹣ .
故函数的解析式是:y=﹣ x.
故选:A.
【点睛】
本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.
6.D
【解析】
试题解析:由分式及二次根式有意义的条件可得:x-1≥0,x-2≠0,
5.一个正比例函数的图象过点(2,﹣3),它的表达式为()
A. B. C. D.
6.若代数式 有意义,则x的取值范围是()
A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2
7.如图,PA、PB是O的切线,切点分别是A、B,如果∠P=60°,
那么∠AOB等于()
A.60°B.90°C.120°D.150°
【详解】
15万用科学记数法表示为1.5×105.故选:C.
【点睛】
本题考查科学记数法,解题的关键是掌握科学记数法的应用.
4.A
【解析】
【分析】
【详解】
解:∵一个角是60°,
∴它的余角的度数是:90°-60°=30°,
故选:A.
【点睛】
本题考查了余角的定义,解决本题的关键是熟记余角的定义.
5.A
【解析】
(1)当点P与点A重合时,求证: ;
(2)连结PF,若DH= AD,求线段PF的长;
(3)在点P的运动过程中,是否存在某一时刻,使得以D、F、H为顶点的三角形是等腰三角形?若存在请求出所有符合条件的t的值;若不存在,请说明理由.
参考答案
1.A
【解析】
【分析】
根据倒数之积等于1可得答案.
【详解】
解:- 的倒数是﹣2020,
解:∵若CF平分∠BCD,∴∠BCE=∠DCF,
∵AD∥BC,∴∠BCE=∠DFC,
∴∠BCE=∠EFA,∵BE∥CD,∴∠E=∠DCF,
∴∠E=∠BCE,∵AD∥BC,∴∠BCE=∠EFA,
∴∠E=∠EFA,∴AE=AF=AB=3,
∵AB=AE,AF∥BC,
∴BC=2AF=6.
故答案为:6
【点睛】
故选:A.
【点睛】
本题主要考查众数和中位数,解题的关键是掌握众数和中位数的概念.
9.C
【解析】
【分析】
本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.
【详解】
解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.
故选C.
【点睛】
本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.
10.B
【解析】
【分析】
由△OAP是等腰直角三角形可以得到PA=OA,可以设P点的坐标是(a,a),把(a,a)代入反比例函数解析式即可求出a=2,然后求出P的坐标,从而求出OA,再根据△ABQ是等腰直角三角形用同样的方法即可求出点B的坐标.
A. B. C. D.
10.如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y= (x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为( )
A.( ,0)B.( ,0)C.(3,0)D.( ,0)
11.分解因式:mn2+6mn+9m=_____.
12.关于 的一元二次方程 有两个相等的实数根,则 的取值为__________.
8.某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如表,则这35名学生在校一周体育锻炼时间的中位数和众数分别为()
锻炼时间/h
5
6
7
8
人数
6
15
10
4
A.6h,6hB.6h,15hC.6.5h,6hD.6.5h,15h
9.如图,在 中,分别以点 和点 为圆心,大于 的长为半径画弧,两弧相交于点 , ,连接 ,交 于点 ,连接 ,若 的周长为 , ,则 的周长为( )
解得:x≥1,x≠2,
故选D.
7.C
【解析】
∵PA是圆的切线.
∴∠OAP=90°
同理∠OBP=90°
根据四边形内角和定理可得:∠AOB=360°-∠OAP-∠OBP-∠P=360°-90°-90°-60°=120°
故选C.
8.A
【解析】
【分析】
直接利用中位数和众数的概念求解可得.
【详解】
解:这组数据的中位数为第18个数据,即中位数为6h;6出现次数最多,众数为6h.
D.a6÷a3=a3,故本选项不合题意.
故选:C.
【点睛】
本题考查合并同类项、幂的乘方、同底数幂的乘法以及同底数幂的除法的计算法则,掌握计算法则是正确计算的前提.
3.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
2020年浙江省金华市婺城区中考数学三模试题
学校:___________姓名:___________班级:___________考号:___________
1.﹣ 的倒数是()
A.﹣2020B.﹣ C. D.2020
2.下面的计算正确的是()
A.a2×a3=a6B.(a2)3=a5C.3a+2a=5aD.a6÷a3=a2
20.垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了“垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为,图1中m的值是;
3.2019年10月1日在北京天安门广场举行隆重的国庆70周年庆祝活动,在阅兵和群众游行活动中,共有约15万人参加.则15万用科学记数法表示为()
A.1.5×10B.15×104C.1.5×105D.1.5×106
4.如果一个角是60°,那么 它的余角的度数是( )
A.30°B.60°C.90°D.120°
16.如图1,剪刀式升降平台由三个边长为4m的菱形和两个腰长为4m的等腰三角形组成,其中,AM∥A0N,B,B0在AM和A0N上可以滑动,A1、C1、B0始终在同一条直线上.
(1)这种升降平台设计原理利用了四边形的_____性质;
(2)如图2是一个抛物线型的拱状建筑物,其底部最大跨度为8 米,顶部的最大高度为24 米.如图3,当该平台在完成挂横幅作业时,其顶部A,M两点恰好同时抵住抛物线,且AM=8米,则此时∠B1的度数为_____.
13.1
【解析】
【分析】
根据约定,可以用含x的式子表示出m、n,再用x的代数式表示出y,进而可得关于x的方程,解方程即可求得x的值,从而可得n的值.
【详解】
解:由图可得=m+n,
∵y=﹣2,
∴3x+(2x+3)=﹣2,
解得:x=﹣1,
∴n=2x+3=2×(﹣1)+3=﹣2+3=1,
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.
21.如图,以▱ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连结BF.过点E作EG⊥CD于点G,EG是⊙O的切线.
(1)求证:▱ABCD是菱形;
相关文档
最新文档