完整版有限差分方法概述.doc
高等计算流体力学-02
( j 3)
j 1
k
a j bk
k 1 other
k 0,1,2,3
( 2) 0 a1 (1) 0 a2 a3 (1) 0 a4 0 1 2 2 2 2 ( 2) a1 (1) a2 0 a3 (1) a4 0 ( 2)1 a1 ( 1)1 a2 01 a3 (1)1 a4
物理坐标 计算坐标
常用的一维坐标变换函数: 指数函数 双曲正切函数
x j tanh( bg j ) / tanh( bg )
要求: 坐标变换必须足够 光滑,否则会降低精度 网格间距变化要缓慢,否则 会带来较大误差
9
方法2) 在非等距网格上直接构造差分格式 原理: 直接进行Taylor展开,构造格式 格式系数是坐标(或网格间距)的函数
守恒性的例子: 环形管道里的流动 —— 总质量保持不变
j 1
N
n n n n g g 1 g 1 g 1 / 2 j 1 j N 2 2 2
特点: 消去了中间点上的值,只保留两端 物理含义: 只要边界上没有误差,总体积分 方程不会有任何误差。
n 1 j j
前差 后差 中心差
… j-2
后
j-1 j
前
j+1 …
其他: 向前(后)偏心差分;
c.
差分方程 经差分离散后的方程,称为差分方程
u u a 0 t x
1 un un j j
t
a
n un j u j 1
x
0
如何确定精度? 1) 理论方法, 给出误差表达式 2)数值方法, 给出误差对 x 的数值依赖关系
n 1 n un un g g j j 1 1 j j h 2 2
3第二章有限差分方法基础解读
3第二章有限差分方法基础解读有限差分方法是数值计算中常用的一种方法,用于求解偏微分方程的数值解。
它的基本思想是将连续的空间或时间域离散化为有限的点,然后用差分近似代替导数,将偏微分方程转化为差分方程,从而得到问题的数值解。
有限差分方法的基础概念有三个:差分节点、差分近似和差分方程。
差分节点是指将连续的自变量区域划分为离散的点,这些点被称为节点。
差分近似是指用函数在差分节点上的函数值来近似代替它们的导数值。
差分方程是指在差分节点上建立的方程,用来表示问题的数值解。
在有限差分方法中,常用的几种差分格式有:向前差分、向后差分和中心差分。
其中,向前差分是将函数在节点$x_i$处的导数近似为$f'(x_i)≈\frac{f(x_i+h)-f(x_i)}{h}$,向后差分是将函数在节点$x_i$处的导数近似为$f'(x_i)≈\frac{f(x_i)-f(x_i-h)}{h}$,中心差分是将函数在节点$x_i$处的导数近似为$f'(x_i)≈\frac{f(x_i+h)-f(x_i-h)}{2h}$。
这些差分格式的选择要根据问题的具体情况和求解的精度要求来确定。
有限差分方法中,差分方程的建立是非常重要的一步。
一般来说,差分方程的建立需要利用边界条件和初始条件。
对于初始条件,通常是指给定问题在初始时刻或初始位置上的条件;而边界条件是指给定问题在边界上的条件。
缺乏良好的边界条件和初始条件会导致差分方程无法建立或无法得到合理的数值解。
因此,在使用有限差分方法求解偏微分方程时,需要仔细考虑问题的边界条件和初始条件,并将其合理地纳入差分方程中。
有限差分方法还包括时间步长和空间步长的选择。
时间步长是指时间域上的离散间隔,空间步长是指空间域上的离散间隔。
时间步长和空间步长的选取要兼顾问题的稳定性和精度要求。
一般来说,时间步长和空间步长越小,计算的精度越高,但计算量也会增加。
因此,在具体应用中,需要根据问题的特点和计算资源的限制来选择合适的步长。
亥姆霍兹方程有限差分法
亥姆霍兹方程有限差分法
亥姆霍兹方程是一个描述电磁波的椭圆偏微分方程,以德国物理学家亥姆霍兹的名字命名。
有限差分法是求解亥姆霍兹方程的一种常用数值方法。
有限差分法的基本思想是将求解区域离散为网格,然后使用中心差分格式来逼近微分算子。
这种方法的优势在于其简单性和易于实现,通过适当选择网格分辨率,可以获得足够的精度。
同时,研究者们也在不断探索如何构造高精度、收敛快且针对大波数问题有效的有限差分格式。
然而,有限差分法在求解高波数问题时可能会遇到一些困难,因为Helmholtz方程的解在高波数时会出现严重的震荡,导致数值解的精度随着波数的增加而逐渐变差,即所谓的“污染效应”。
为了解决这个问题,研究者们提出了各种优化差分系数的方法来提高数值精度。
总的来说,有限差分法是一种有效且实用的求解亥姆霍兹方程的方法,但在实际应用中需要根据具体问题的特点和要求进行选择和调整。
有限差分法的基本原理
f (x) ≈
2h
中心二阶差商
′′
f (x+h)−2f (x)+f (x−h)
f (x) ≈
h2
O(h) O(h)
2
O(h )
2
O(h )
其中,h表示网格间距,O(hn)表示截断误差与hn成正比。可以看出,中心差商比前向或后向差商具有更高的精度。
误差分析
有限差分法求得的数值解与真实解之间存在误差,这些误差主要来源于以下几个方面:
常用差分格式
有限差分法中最重要的步骤是构造合适的差分格式来近似微分项。根据泰勒展开式,可以得到以下常用的一阶和二阶差分格式:
差分格式
表达式
截断误差
前向一阶差商
′
f (x+h)−f (x)
f (x) ≈
h
后向一阶差商
′
f (x)−f (x−h)
f (x) ≈
h
中心一阶差商
′
f (x+h)−f (x−h)
截断误差:由于使用有限项级数来近似无穷级数而产生的误差; 舍入误差:由于计算机对小数进行四舍五入而产生的误差;
离散误差:由于对连续区域进行离散化而产生的误差; 稳定性误差:由于数值格式的稳定性不足而导致误差的累积或放大。
为了减小误差,一般可以采取以下措施:
选择更高阶或更精确的差分格式; 减小网格间距或时间步长; 选择合适的初始条件和边界条件; 选择稳定且收敛的数值格式。
+
。 2
h)
为了验证上述方法的正确性,我们取M = 10, N = 100,则原问题可以写为如下形式:
则该问题对应的递推关系式为:
⎧ut (x, t) − uxx (x, t) = 0,
微分方程数值求解——有限差分法
1. 引言有限差分法(Finite Difference Method,FDM)是一种求解微分方程数值解的近似方法,其主要原理是对微分方程中的微分项进行直接差分近似,从而将微分方程转化为代数方程组求解。
有限差分法的原理简单,粗暴有效,最早由远古数学大神欧拉(L. Euler 1707-1783)提出,他在1768年给出了一维问题的差分格式。
1908年,龙格(C. Runge 1856-1927)将差分法扩展到了二维问题【对,就是龙格-库塔法中的那个龙格】。
但是在那个年代,将微分方程的求解转化为大量代数方程组的求解无疑是将一个难题转化为另一个难题,因此并未得到大量的应用。
随着计算机技术的发展,快速准确地求解庞大的代数方程组成为可能,因此逐渐得到大量的应用。
发展至今,有限差分法已成为一个重要的数值求解方法,在工程领域有着广泛的应用背景。
本文将从有限差分法的原理、基本差分公式、误差估计等方面进行概述,给出其基本的应用方法,对于一些深入的问题不做讨论。
2. 有限差分方法概述首先,有限差分法是一种求解微分方程的数值方法,其面对的对象是微分方程,包括常微分方程和偏微分方程。
此外,有限差分法需要对微分进行近似,这里的近似采取的是离散近似,使用某一点周围点的函数值近似表示该点的微分。
下面将对该方法进行概述。
2.1. 有限差分法的基本原理这里我们使用一个简单的例子来简述有限差分法的基本原理,考虑如下常微分方程\begin{cases} u'(x)+c(x)u(x)=f(x), \quad x \in [a, b]; \\u(x=a) = d \end{cases} \tag{1}微分方程与代数方程最大的不同就是其包含微分项,这也是求解微分方程最难处理的地方。
有限差分法的基本原理即使用近似方法处理微分方程中的微分项。
为了得到微分的近似,我们最容易想到的即导数定义u'(x)=\lim_{\Delta x\rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x}\approx \frac{u(x+\Delta x)-u(x)}{\Delta x} \tag{2}上式后面的近似表示使用割线斜率近似替代切线斜率,\Delta x 即为步长,如图 1(a)所示。
有限差分法基本原理
流体力学
模拟流体在各种情况下的运动和传输现象, 如空气动力学、水力学等。
热传导
用于研究材料中的热传导现象,如传热设 备的设计和材料的热特性分析。
结构力学
分析结构中的应力、应变等力学性质,用 于优化结构设计和评估结构的稳定性。
电磁场
分析电磁场的分布和变化规律,用于电磁 波传播、电路设计等领域。
有限差分法的优缺点
有限差分法在实际工程中的应用
流体动力学
模拟流体在航空、航天等领 域的流动性能,评估气动设 计和分 析材料的热传导特性、预测 温度场的分布。
结构分析
评估结构的稳定性和强度, 优化结构设计,分析材料的 力学性能。
3 差分法程式
利用节点上的差分近 似替代连续的偏微分 方程,从而得到离散 的差分方程。
有限差分法的基本步骤
网格划分
将求解域划分为离散的节 点,构建求解网格。
边界条件
明确边界上的条件,用于 确定差分方程的边界值。
离散方程
利用节点上的差分近似, 将偏微分方程转化为离散 的差分方程。
有限差分法的应用领域
有限差分法基本原理
有限差分法是一种数值计算方法,用于求解偏微分方程的数值逼近解。它通 过将连续的偏微分方程转化为差分方程,从而实现数值求解。
有限差分法的概述
1 定义
有限差分法是一种将 连续的偏微分方程离 散化为差分方程的数 值方法。
2 离散化
通过在网格上对偏微 分方程进行离散化, 将求解域划分为有限 个离散的节点。
隐式-显式格式
结合了显式和隐式格式的 优点,兼顾计算速度和稳 定性。
有限差分法的误差分析
1
稳定误差
2
主要由数值格式和边界条件的选择 引起,不会随网格精度改变而改变。
4第四讲 有限差分方法基础
3u 3 x
8
(二). 微商(偏导数)的差商近似:待定系数法
3)待定系数方法
9
(二). 微商(偏导数)的差商近似:差分算子
4) 差分算子方法 ●定义以下差分算子:
n n u u 移位算子: E x j j
(当移位为+1时可省略)
n n 1 E t1 u n E u u j t j j
1 2u 1 3u 2 x x T , E o( x ) 2 3 2 x 3! x
由于T.E.是 o( x ) 为一阶小量,故上述差商近似(差分格式) 称为一阶(精度)格式
7
(二). 微商(偏导数)的差商近似: Taylor’s公式 类似地可得;
1 2 1 2 x
算术平均算子:
xu
n j
1 1 n n (u 1 u 1 ) (E j j 2 2 2 2
x
E
)u
n j
1 2 2) x (Ex Ex 2
1
1
n n n n 前差算子: x u j u j 1 u j ( E x 1)u j n n 1 n 后差算子: x un j u j u j 1 (1 E x )u j
x n n!
( x0 x0 x )
u x
( x0 , y0 )
u( x0 x , y0 ) u( x0 , y0 ) T .E . x
T.E.=Truncation Error
T . E.
u 采用差分格式中的记法: x
其中:
(i, j)
ui 1, j ui , j x
第二章 有限差分法的基本概念
x
间距h > 0称为空间步长,间距τ > 0称为时间步长.
2 用Taylor级数展开方法建立差分格式
设 f ( x) 在 x0 的某个邻域 U ( x0 , δ ) 内具有直 到n + 1阶的导数,则 ∀x ∈ U ( x0 , δ ) 有 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + + f ( n ) ( x0 ) ( x − x0 ) n + Rn ( x) n! Rn ( x)是余项,且Rn ( x) = o(( x − x0 ) n )( x → x0 ).
∫
xj +h 2
xj −h 2
[u (tn + τ , x) − u (tn , x)]dx
tn+1
∂u ∂u h = a ∫ [ (t , x j + 2 ) − (t , x j − h )]dt 2 tn ∂x ∂x 应用数值积分可得: [u (tn + τ , x j ) − u (tn , x j )]h ∂u ∂u h ≈ a[ (tn , x j + 2 ) − (tn , x j − h τ 2 )] ∂x ∂x
∂t = O(τ + h)
−(
∂u ( x j , tn )
我们也用“精度”一词说明截断误差. 一般,如果一个差分格式的截断误差T = O(τ q + h p ), 就说差分格式对时间t (τ )是q阶精度的, 对空间x(h)是p阶精度的. 特别,当p = q时,说差分格式是p阶精度的. 差分格式(1.13),(1.15),(1.17)都是对t (τ )一阶精度, 对x(h)二阶精度.而差分格式(1.11)是一阶精度格式.
3第二章-有限差分方法基础
2.1.1 基本方程和定解问题
u t
2u x2
( 0)
求解域: (x, t) [0,1][0, ]
(2.1.1)
初始条件: u(x, 0) f (x)
边界条件: u(0, t) a(t), u(1, t) b(t)
(2.1.2)
方程(2.1.1)和初边条件(2.1.2)构成了一个适定的定解问题。
根据数学分析中的知识,我们知道
2u (x,t) lim u(x x,t) 2u(x,t) u(x x,t)
x2
x0
x2
所以,二阶导数可以近似为
2u
x
2
n
k
un k 1
2ukn x2
ukn
un k 1
2ukn
un k 1
称为二阶中心差分。
容易证明:
un k 1
2ukn
un k 1
t
)
ut
(
x,
t
)
lim
t 0
u(
x,
t
t
)u 2t
(
x,
t
t
)
其中,lim 后面的项称为差商(difference quotient)。 t 0
当t足够小时,可以用差商来近似导数。
即:
u(x,t t) u(x,t)
ut (x,t)
t
u(x,t) u(x,t t)
ut (x,t)
t
u(x,t t) u(x,t t)
The Elements of Computational Fluid Dynamics
第二章 有限差分方法基础
§2.1 有限差分方法概述 §2.2 导数的数值逼近方法 §2.3 差分格式的性质 §2.4 发展方程的稳定性分析
有限差分法
u xxx
xr
+
(1.5a) (1.5b)
进而,在点 xr 处的一阶导数的两个近似公式可由(1.5)给出
ux
xr
= (ux )r
≈
u ( xr
+ h) − u(xr ) h
=
ur+1 − ur h
ux
xr
= (ux )r
≈
u(xr ) − u(xr h
− h)
=
ur
− ur−1 h
(1.6a) (1.6b)
有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微 分方程和定解条件。对于求解的偏微分方程定解问题,有限差分方法的主要步骤如下:利用 网格线将定解区域化为离散点集;在此基础上,通过适当的途径将微分方程离散化为差分方 程,并将定解条件离散化,这一过程叫做构造差分格式,不同的离散化途径一般会得到不同 的差分格式;建立差分格式后,就把原来的偏微分方程定解问题化为代数方程组,通过解代 数方程组,得到出定解问题的解在离散点上的近似值组成的离散解,应用插值方法可从离散 解得到定解问题在整个定解区域上的近似解。由此可见,有限差分方法有大体固定的模式, 它有较强的通用性。但是,不能误认为不去了解这种逼近方法的基本知识,只是单纯模仿, 便能轻易获得满意的结果。因为在应用这种逼近方法时会发生许多重要的但有时还是相当困 难的数学问题,包括精度、稳定性与收敛性等。
− hD exp( 2 )ur
由(*1)式与(*2)相减得到
ur+1/ 2
− ur−1/ 2
=
exp(
hD 2
)ur
−
exp(
−
hD 2
)ur
= δur
有限差分法基础
B(u(P)) g(P), P DB
设
DI
和 DB
分别表示区域D的北部节点和边界节点,则下式表示了以
上偏微分方程的有限差分方程(finite-difference equations, or finite-
difference scheme):
有限差分法基础
• f(xi+h)-f(xi): 节点xi的一阶向前差分 • f(xi)-f(xi-h): 节点xi的一阶向后差分 • f(xi+h)-f(xi-h): 节点xi的一阶中心差分
• 前后是相对x轴正方向而言
f (x x)
f (x) x d dx
f (x) (x)2 2!
d2 dx2
• 有限差分法以变量离散取值后对应的函数值来近似微分方程中独立变 量的连续取值。
• 我们放弃了微分方程中独立变量可以取连续值的特征,而关注独立变 量离散取值后对应的函数值。
• 有限差分法的具体操作分为两个部分: • (1)用差分代替微分方程中的微分,将连续变化的变量离散化,从而得
到差分方程组的数学形式; • (2)求解差分方程组。
有限差分法基础
第二章 有限差分法
• 2.1 有限差分法基础 • 2.2 网格剖分 • 2.3 差分格式 • 2.4 差分方程 • 2.5 应用实例
有限差分法基础
解析方法的局限性
1. 地球内部介质,不仅存在纵向非均匀结构(一维地球模型), 也存在横向非均匀结构(不同块体、断层系统); 2. 几何模型也呈现出相当的复杂性; 3. 另外,边界条件和初始条件对于不同问题具有特殊性。
d4 dx4
f (x)
有限差分法
一阶导数
第4章 有限差分法
即是无限小的微分
除以无限小的微分
应用差分,显然,它可近似地表达为
的商,
即有限小的差分Δf(x)除以有限小的差分Δx 的商,称为差商。同理,一阶导数
f ' (x) 还可近似表达为
第4章 有限差分法
式(4-2)、 式(4-3)和式(4-4)分别称为一阶向前、 向后和中心差商。 如图 4-1 所示, 对应于点 P 的一阶向前、 向后和中心差商,在几何意义上 可分别表征为弧线 PB、 AP 和 AB的斜率,而在理论上它们对于该点一阶导 数的逼近度则分别可从以下泰勒公式的展开式中得知,即由
第4章 有限差分法
对于场域内典型的内节点 o (xi,yj), 如图 4-2 所示, 它与周围相邻的节 点 1、 2、 3 和 4构成一个所谓对称的星形。今采用双下标(i,j)的识别方法, 设在这些离散节点上的待求位函数 u 的 近 似 值 分 别 记 作 uo = u(i,j)、 u1 = u(i+1,j)、 u2 = u(i,j+1)、 u3 = u(i-1,j) 和u4 = u(i,j-1), 则参照式 (4-7),二维泊松方程(4-8)可近似离散化表示为
同样,相应的二阶偏导数可以近似表达为
第4章 有限差分法
4.3 差分格式的构造
现以二维静态电、 磁场泊松方程的第一类边值问题为例, 来具体阐明有 限差分法的应用。设具有平行平面场特征的电磁场场域 D, 如图 4-2 所示, 为一由闭合边界 L 所界定的平面域,其定解问题可表述为
4.3.1 偏微分方程的离散化—五点差分格式
对于包括电磁场在内的各种物理场,应用有限差分法进行数值计算的 步骤通常是:
1)采用一定的网格剖分方式离散化场域;
第4章 有限差分法
第 4 章
有 限 差 分 法
4.3.2 定解条件的离散化——各类差分计算格式
对于场域边界上给定的三类边界条件(见 1.7 节), 由于第二类边界条 件可以看作为第三类边界条件的特殊情况,因此,这里只需讨论第一、第三 类边界条件的差分离散化处理。 (1) 第一类边界条件的差分离散化 若如图 4-2 点 M 所示, 划分网格时相应的网格节点恰好落在边界 L 上,则 只要直接把位函数 u| M∈ L = f(rM)的值赋给该对应的边界节点 M 即可。 若划分网格时引入的节点不落在边界 L 上, 则如图 4-3所示, 对于邻近边界的典型节点 o, 由于 h1≠ h2≠ h, 这样, o点及其周围相邻的 1、 2、 3 和 4 点构成一个不对称的星形。此时, 可仿照 4.2 节, 采用泰勒公式进行差分离散化 处理,即能相当精确地导出关于 o 点的差分计 算格式。
截断于 2hf′(x0)项, 略去了 h3项以及更高幂次的项。很明显,三种差商表达 式中以式(4-4)所示的中心差商的截断误差最小,其误差大致和 h 的二次方 成正比。 二阶导数同样可近似为差商的差商,即
这相当于把泰勒公式
截断于 h2f″(x)项, 略去了 h4项以及更高幂次的项,其误差亦大致和 h 的 二次方成正比。
理方法是依据式(4-3), 这样, 第三类边界条件在此情况下的差分计算 格式为
第 4 章
有 限 差 分 法
当边界 L 在边界节点 o 处的外法向 n 与网格线不重合时,如图 4-5 所 示, 显然有
于是, 关于 o 点的差分计算格式是
第 4 章
有 限 差 分 法
第二种情况是在边界处引入的相应节点不落在边界 L 上, 这时如图 4-6 所示,可在邻近边界的节点 o 上仍按上述方法列出差分计算格式,只是需引 入与节点 o 相关的边界节点 o′,取点 o′处的外法向 n 作为点 o 处的“外法向 n”, 且近似地认为边界条件中给定的函数f1(ro)和 f2(ro)均在点 o′上取值。这 样,将式(4-14)中的 f1(ro)和 f2(ro)改记为 f1(ro′)和f2(ro′),即得此种情况下关 于 o 点的差分计算格式。
有限差分方法
有限差分方法有限差分方法一种求偏微分(或常微分)方程和方程组定解问题的数值解的方法,简称差分方法。
微分方程的定解问题就是在满足某些定解条件下求微分方程的解。
在空间区域的边界上要满足的定解条件称为边值条件。
如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。
不含时间而只带边值条件的定解问题,称为边值问题。
与时间有关而只带初值条件的定解问题,称为初值问题。
同时带有两种定解条件的问题,称为初值边值混合问题。
定解问题往往不具有解析解,或者其解析解不易计算。
所以要采用可行的数值解法。
有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。
此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。
偏微分方程初值问题的差分法许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。
描述这些过程的偏微分方程具有这样的性质:若初始时刻t=t0的解已给定,则t t0时刻的解完全取决于初始条件和某些边界条件。
利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。
双曲型方程的差分方法最简单的双曲型方程的初值问题是:式中嫓(x)为已知初值函数。
这初值问题的解是:u(x,t)=嫓(x-at)。
(2)由(2)可见,(1a)(1b)的解(2)当a>0时代表一个以有限的速度a沿特征线x-at=常数向右传播的波,而解u(x,t)在P(慜,惭)点的值完全由嫓(x)在x轴上的点A(慜-а惭,0)的值决定。
A点就是双曲型方程(1a)在P点的依赖域(图1)。
有限差分法
y2 (k 2 a 2 2) y1 0 (k 2 a 2 2) y2 2 y1 0
在分点2
y3 (k 2 a 2 2) y2 y1 0
且y3=y1
由上两式得到构件的屈曲条件为
1 (k 2 a 2 2) 0 2 2 (k a 2) 2源自得 k 2a2 0.586
a
y 0 1
(a) 2 3 4
a
a
(b)
a
a
且y0=y2 =0
2P
ymax Ma 2 y1 2 2 EI (2 k a ) Ml 2 Pl 2 8EI (1 ) 8EI 8PE M 2P P 1 8PE
2P
理论值
ymax
8 PE M P 1 P 8 PE
yi 2 4 yi 1 6 yi 4 yi 1 yi 2 a4 可见曲线上任一点函数的导数是由高阶导数转化为低阶导数,直至最终形 成函数值的表达式。差分是也可用插值数y=a1x2+b1x+c1导出。如果采用更 高阶次的插值函数,可以得到更精确的差分式。 y '''i y IV i
2)第二次近似将构件分为4段,a=l/4
2 2 2 在分点1, y2 (k a 2) y1 y0 Ma / EI 0 且y0=0
y2 (k 2 a 2 2) y1 Ma 2 / EI 0 2 2 2 在分点2, y3 (k a 2) y2 y1 Ma / EI 0 且y3=y1 =0 y1 (k 2 a 2 2) y2 / 2 Ma 2 / EI
Pcr 16 0.586 EI / l 2 9.376 EI / l 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限差分法( Finite Difference Method,简称FDM)是数值方法中最经典的方法,也是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
下面我们从有限差分方法的基本思想、技术要点、应用步骤三个方面来深入了解一下有限差分方法。
1.基本思想有限差分算法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
在采用数值计算方法求解偏微分方程时,再将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。
2.技术要点如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行性和计算结果的正确性,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1 层的近似值时要用到第 n 层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
关于差分格式的构造一般有以下 3 种方法。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
3.基本步骤有限差分法求解偏微分方程的步骤如下:① 区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;② 近似替代,即采用有限差分公式替代每一个格点的导数;③ 逼近求解。
换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。
换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。
在第一步中,我们通过所谓的网络分割法,将函数定义域分成大量相邻而不重合的子区域。
通常采用的是规则的分割方式。
这样可以便于计算机自动实现和减少计算的复杂性。
网络线划分的交点称为节点。
若与某个节点 P 相邻的节点都是定义在场域内的节点,则 P 点称为正则节点;反之,若节点 P 有处在定义域外的相邻节点,则 P 点称为非正则节点。
在第三步中,数值求解的关键就是要应用适当的计算方法,求得特定问题在所有这些节点上的离散近似值。
差分方程,又叫做差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式;从差分的空间形式来考虑,可分为中心格式和逆风格式;考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
向前差分 (forword difference):i 1ix x i 1 x i向后差分 (backword difference):i i 1x x i x i 1中心差分 (cential difference):i 1i 1x x i 1 x i 1下面以一个例子解释其他差分格式:设求解区域内一个节点A,坐标x j, t n。
根据微商定义和中值定理,把偏微分方程写成差分格式。
对流方程:ua u0(2-1)t x或u t a u x0 可以将其化为三种不同的差分方程:1)时间前差、空间中心差u n j 1 u n j u n j 1 u n j 1a2 0t x或u n j1 r u nj 1 u n j 1 t 1u n j, r a2x2)时间前差、空间前差unj1u nja u nj 1u njtx或u n j 1u n j r u nj 1 u n j3)时间前差、空间后差u n j 1 u n ja u n j u n j 1 0tx或u n j 1u n j r unjunj 1差分方程的时间微商采用前差, 称为显式差分格式; 时间微商采用后差,称为隐式差分格式。
显式差分方程可以直接求解,隐式差分方程需要迭代求解。
除此之外,它还可以构造其他形式的差分格式。
不同的差分格式具有不同的计算精度。
用差分方程代替偏微分方程时必然有误差, 称为截断误差,用 R n j 表示。
差分方程的截断误差等于各项差商逼近微商时所产生误差的总和。
用差分方程的定解条件来代替偏微分方程的定解条件也会产生误差,称为定解条件的截断误差,用 r j n 来表示。
差分方程的截断误差可以用 Taylor 展开法得到。
如上述例子中时间前差、空间中心差分格式,通过 Taylor 展开可得:unj1u n j u n j 1 u n j 1utax t2 n2unu 1tt 2aj2jxn1 3 ux 2 j3! x 3u a utxn O t, x 2j它的截断误差为: R n j O t , x 2 ,即时间上是一节精度,空间上是二阶精度。
构造差分的方法有多种形式, 直接差分逼近法、 Taylor 级数展开法、控制体积元法和积分方法等。
目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、 一阶中心差分和二阶中心差分等, 其中前两种格式为一阶计算精度, 后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
首先讨论 Taylor 级数展开法:给定任意连续方程u x,对于u xx ,令步长 x h ,可写出 Taylor 级数展开式:u x h u x hu h 22uh 33uh n nuh nnux2! x 23! x 3n!x nn 0n!x n给出有限差分表达式是反过来: 对有限的 x h 给出 u的近似表达式:x记 u j 1 u x x ,由 Taylor 级数表达式可得u表达式xu u x h u x h2 uh 2 3ux h 2! x 2 3! x 3对于上述提到的对流方程 2-1 ,Taylor 展开法是将 u n j 1 在 u n j 点上进行展开,再利用方程把u、22u、3u3变换为 u 、2u 2、tttx x3u 3 ,并把u 、 2u 2、3u 3 用差商表示,就可以得到各种不同 xxxx的差分方程。
对式 2-1 首先将 u n j 1在 u n j 点上进行 Taylor 展开,可得:unj1u jnutn1 2u ntt 2 O t3j2 t 2j(2-2)利用原方程关系:u a u,2u a2 2utxt 2x 2将上式代入式 2-2,得到:n 1n 1n n 12nn nu ju j r u j 1uj 1ruj 12u juj 12 2其中, r at,这就是著名的 Lax-Wendroff 差分方程。
x直接差分逼近法由微商定义:ulim u n j 1u n jttt 0u lim u n j 1 u n jxxx 0和中值定理得到:n 1nn2 ntu ju ju 1 t utt j 2 t 2 j u j n 1 u n ju n1 2u nxxx2x2jjxnnn2n4nu j 12u j u j 1 u 1 x 2 ux 2x 2j12x 4 j x其中, 为 0 1之间的常数。
把这些表达式代入到对流方程式 2-1 中,取一阶近似,并略去 R j n的小量得到相应的差分方程。
如上式可得: unj1u j nu n j 1 u n juan tn t2uuana x 2untxtj2 t2jxj2x 2jx略去等式右边 R n j 项后,得到差分方程:时间前差、空间前差:u n j 1 u n j r u n j 1u n j其中, r at。
采用相同的差分逼近法,也可以得到其它差分方程。
x例如:时间前差、空间后差:时间前差、空间中心差:积分方法u n j 1 u n j r u n j u n j 1u n j 1 u n j1r u n j 1 u n j 12计分方法是把偏微分方程在一定的控制体内进行积分,得到相应的差分方程。
以对流方程 2-1 为例,在矩形网格的控制体单元d内,对时间和空间取前差,并从 t n到 t n t ,从 x j到 x j x 进行积分:u t au x dxdt 0通过积分运算:x j x t n t t n t x j xx j t n u t dtdx a t n x j u x dxdt 0 则得到 ;x j xu n t ntu n 1 dx a n u j 1 u j dt 0x j t把上式用数值积分近似表示,整理后可得:u n j1u n j r u n j 1u n j其中, r a t 。
x差分方程的有效性分析一个偏微分方程可以得到不同的差分方程。