材料力学-第十一章

合集下载

第十一章材料力学课程课件PPT

第十一章材料力学课程课件PPT

2.18
BC
第11章
表达式为
变 型能法
11.3 卡 氏 定 理
δ1 =
证明如下: 设 FP1 , FP 2 , , FPn 作用于弹性体上(图11.6),这些力产生的相应位移 为 δ1 , δ 2 ,δ n ,在变形过程中,外力所做的功等于弹性体的变形能,于 是变形能 U 为 FP1 , FP 2 , , FPn 的函数.
M θB W = 0 ,而外力 2
偶所做的功为 M0
M 02 l U = ,由 2 EI
W =可得 U
M 0θ B M 02l = 2 2 EI
θB =
M 0l EI
2.17
第11章
变 型能法
11.3 卡 氏 定 理
其结果与梁的变形一章中计算结果一致.从上面的计算可以看出,由于 变形能为力的函数,若将变形能对力求偏导数,则
与集中力对应的是线位移,与集中力偶对应的是角位移.在线弹性体的 情况下,广义力和广义位移是线性关系,运用胡克定理,上式还可以写 成: FP2 l Cδ 2 U= = (11.11) 2C 2l 式中,C是杆的刚度,从上式可以看出,弹性变形能是广义力或广义位 移的二次函数.
2.13
第11章
变 型能法
(a) (b) 图11.1 轴向受拉杆外力的功 (a) 受拉直杆;(b) 与关系
2.4
P
第11章
W=
变 型能法
1 FP l 2
11.2 变形能的计算
(11.2)
根据式(11.1)可知,受拉杆的弹性变形能为
U =W = 1 FP l 2
因,上式可写成
l = FP l EA
(11.3)
2.5
第11章

材料力学C11_交变应力

材料力学C11_交变应力
M 70 50 M
对称循环,r=-1 ②查图表求各影响系数,计算构件持久限。 求K:
D r 1.4 ; 0.15 ; b 600MPa 查图 d d 求 :查图得 0.79
r=7.5
K 1.4
求 :表面精车, =0.94 0 1 0.79 0.94 1 250 69.8MPa 1 1
第11章 交变应力
11.1 交变应力与疲劳失效 11.2 交变应力的循环特征、应力幅和平均应力 11.3 持久极限 11.4 影响持久极限的因素 11.5* 对称循环下构件的疲劳强度计算 11.6* 持久极限曲线 11.7* 不对称循环下构件的疲劳强度计算 11.8* 弯扭组合交变应力的强度计算 11.9* 变幅交变应力 11.10 提高构件疲劳强度的措施 11.* 习题**
2 max min 应力幅(~ Amplitude): a 2 min 循环特征、 r max /应力比(~ ratio):
5特征量仅2个独立,如m+a 或max+r
不稳定
max m min max m min a
t t
a
对称循环(symmetric reversed
加工方法 磨 削 车 削 粗 车 未加工的表面 轴表面粗糙度 Ra/m 0.4~0.2 3.2~0.8 1.25~6.3
b/MPa
400 1 0.95 0.85 0.75 800 1 0.90 0.80 0.65 1200 1 0.80 0.65 0.45
下降明显
b高者
表面越差,下降越多 b越高,影响越显著
m, ra
K
1
a rm m
a rm

材料力学(柴国钟、梁利华)第11章

材料力学(柴国钟、梁利华)第11章

如何处理合伙企业的协议纠纷1. 引言合伙企业是一种常见的商业组织形式,它由两个或更多个人或公司共同投资、经营和分享利润。

在合伙企业中,协议起着至关重要的作用,它规定了合伙人之间的权利和义务,为企业的稳定运行提供了法律保障。

然而,由于合伙人之间在商业活动中存在不可避免的分歧和冲突,协议纠纷也时有发生。

本文将详细介绍如何处理合伙企业的协议纠纷,帮助您在遇到类似问题时能够做出明智的决策。

2. 协议纠纷的可能原因合伙企业的协议纠纷多种多样,常见的原因包括但不限于以下几点:2.1 权益分配不均当合伙人对于利润分配不满意或出现争议时,很容易产生协议纠纷。

例如,某一合伙人认为自己付出的努力较多,应该获得更大的份额;或者某一合伙人未按照协议约定履行义务,导致其他合伙人减少了收益。

2.2 决策权分歧合伙企业中的重大决策通常需要通过合伙人会议进行讨论和表决。

当合伙人对于重要决策意见不一致时,容易产生协议纠纷。

例如,在扩大经营规模、投资新项目或解散企业等事项上各方意见分歧。

2.3 违反协议条款当一方合伙人违反协议约定时,比如未按时支付资金或未履行其他义务,可能引发其他合伙人抱怨并导致协议纠纷。

此外,如果协议中存在模糊或含糊不清的条款,也可能会给争端解决带来困难。

3. 协议纠纷解决方式当出现协议纠纷时,及时采取适当的解决方式是关键。

以下是几种常用的解决方式:3.1 协商解决作为最基本也是最常见的方式,双方可以尝试通过协商解决争端。

在协商过程中,建议通过积极沟通、充分表达各自诉求,并寻找双赢解决方案。

为了保证协商的效果和公平性,在这一过程中有必要制定明确的规则或采用中立第三方担任调解人。

3.2 仲裁程序如果协商无法达成一致或无法公正解决争端,则可转向仲裁程序。

仲裁是一种非诉讼形式,通过由专门机构组织的公正第三方仲裁员进行裁决来解决争端。

仲裁程序通常比诉讼程序简单、快速且成本较低,并且裁决结果具有强制性。

3.3 诉讼程序如果仲裁不能解决争端或一方坚持要求进行诉讼,则可以通过司法程序解决。

材料力学第11章——交变应力

材料力学第11章——交变应力

用尺寸因数

表示。
1d , 1d 为光滑大试件 且 1, 1 ,d 越大, 越小, r 愈小。
其中: 1 , 1 为光滑小试件
材料力学
第十一章 交变应力
构件表面质量的影响
构件上的最大应力常发生于表层,疲劳裂纹也多生成于 表层。故构件表面的加工缺陷(划痕、擦伤)等将引起应力 集中,降低疲劳极限。
2
max
1
3
4
1
min
t
车轴每转一周,某点处的材料即经历一次由拉伸到压缩的 应力循环。
材料力学
第十一章 交变应力
④电机转子偏心惯性力引起强迫振动梁上的危险点正 应力随时间作周期性变化。
st
的静应力,最大应力和最小应力分别表示梁在最大和 最小位移时的应力。
st 表示电机的重力W以静载方式作用于梁上引起
第十一章 交变应力
min r 1 max
2
max
1
m
min
3
4
1
t
1 max min 0 2
1 a max min max 2
如:机车车轴
材料力学
2.脉动循环
min 0
第十一章 交变应力
1 1 m max min max 2 2 1 max min 1 max a 2 2

第十一章 交变应力
a a
max min
o
m
min 循环特征:r max
m
t
1 a max min 2
1 max min 2
max m a

材料力学 第十一章解读

材料力学 第十一章解读
半波正弦曲线的一段长度。 长为L的一端固定一端自由的压杆的挠曲线与长为2L的 两端铰支的细长杆相当。 长为L的一端固定、另端铰支的压杆,约与长为0.7L 的两端铰支压杆相当。 长为L的两端固定压杆与长为0.5L的两端铰支压杆相当;
讨论:
(2)横截面对某一形心主惯性轴的惯性矩 I
Fcr 与抗弯刚度( EI )成正比。
压杆失稳时,总是绕抗弯刚度最小的轴发生弯曲变形。
因此,对于各个方向约束相同的情形
I
应是截面最小的形心主惯性矩。
l 1、两端为铰支座的细长杆
2、线弹性,小变形
公式的推导中应用了弹性小挠度微分方程,因 此公式只适用于弹性稳定问题。
Fcr
2 EI用边界条件
xl
w0
即压杆没有弯曲变形;
A sin kl 0
kl n
A0
n 1 ,2,3,.... .
n 2 2 EI Fcr l2
实际工程中有意义的是最小的临界力值,即
n 1
Fcr
EI
2
l2
两端铰支细长压杆临界压力的欧拉公式。
压杆的极限承载能力
压杆失稳后,压力的微小增量会引起屈服变形的显 著增大,杆件丧失了继续增大荷载的能力。 且由失稳造成的失效可以导致整个结构的坍塌。 为了保证压杆安全可靠的工作,必须使压杆处于 直线平衡形式,因而压杆是以临界力为其极限承 载能力。
§11-2
支细长压杆的临界压力 欧拉公式
=Fcr
M
FN=Fcr
4、压杆的失稳
压杆丧失其直线形状的平衡而过渡为曲线形状平衡 (弯曲平衡) 屈曲: 压杆从直线平衡到弯曲平衡的转变过程; 屈曲位移:由于屈曲,压杆产生的侧向位移; 通常,屈曲将使构件失效,并导致相关的结构发生坍塌。 由于这种失效具有突发性,常常带来灾难性后果。

《材料力学》第11章典型习题解析

《材料力学》第11章典型习题解析

第11章典型习题解析1.用卡氏第二定理求图12.3所示刚架A 截面的位移和B 截面的转角。

略去剪力Q 和轴力N 的影响,E Ⅰ为已知.解:(1)A 截面的位移AB 段弯矩:M(x)=-Px (0≤x ≤l ) ∂M(x) /∂P=-x在A 处虚加一水平力向右的力Q,之后,再令其为0.那么,BC 段弯矩:M(y)=-2P l - Q l +(P+Q)y∂M(y) /∂P=-2l +y ∂M(y) /∂ Q=-l +yA 截面的竖直位移:Y A ==∂∂∑⎰EI P Mdx ML 0 ()()()()⎰⎰+-+-+--L LEIdy y L Py PL EI dx x Px 00222 =EIPL 223A 截面的水平位移: X A =EI Q M M L ∂∂∑⎰0dx=()()EI dy y L Qy Py QL PL L 200+-++--⎰ 积分,令Q=0得 ()()EIPL EI dy y L Py PL XA L 1252230=+-+-=⎰(2)B 截面的转角在B 处虚加一力偶M B,AB 段弯矩:M(x)=-Px (0≤x<l )BC 段弯矩:M(y)=-2P l -B M +Py (0<y<l )∂M(x) /∂MB=0 ∂M(y) /∂MB =-1 ∑⎰∂∂=L B B EI dx M M M 0θ =()()⎰-+--L B EI dxPy M PL 0212 EIPL 432= 2.用卡氏第二定理求图示的A 截面的位移和B 截面的转角。

略去剪力Q 和轴力N 的影响,E Ⅰ为已知。

解:(1)A 截面的位移在A 点虚加一向下的力F ,支反力2qL F P Y B ++= (L 为AB 和AD 的长度) P X qL P Y C C -=--=,2AB 段弯矩: M1=0∂ M1 /∂F=0AD 段弯矩:M2(x)=2qL P F qx 2++⋅1()x-2∂M2(x) /∂F=xCD 段弯矩:M3(y)=PyaⅠⅠ2ⅠC DA 截面的竖直位移:∑⎰∂∂=L A EIdx F M M Y 0=⎰⋅⎥⎦⎤⎢⎣⎡-⋅⎪⎭⎫ ⎝⎛++L EI xdx qx x F qL P 02222 积分,令F=0得34A PL qL Y 6EI 24EI =+求A 截面的水平位移时, 在A 处虚加一水平力向右的力Q, 再令其为0.那么, 支反力B qL Y P Q 2=++ (L 为AB 和AD 的长度)C C qL Y P Q X P Q 2=-+=-+()+,() AB 段弯矩: M1=0∂ M1 /∂Q=0AD 段弯矩:M2(x)=(P+Q)x ⋅∂M2(x) /∂Q=xCD 段弯矩:M3(y)=(P+Q )y∂M3(y) /∂Q=yA 截面的水平位移∑⎰∂∂=L A EI dx Q M M X 0=()⎰⋅+L EIdx x Q P 022=()⎰⋅+L EI ydy y Q P 0积分,令Q=0得 EIPL X A 23= (2) B 截面的转角在B 处虚加一顺时针的力偶M B, 积分,并令其为零。

材料力学 第十一章 连续分段独立一体化积分法

材料力学 第十一章 连续分段独立一体化积分法
##################求之者也。# #######################################
第11章电脑求解弯曲变形 的一种快速解析法
提出了一种求解复杂载荷作用下梁弯曲变形 问题的连续分段独立一体化积分法。连续分段独 立一体化积分法首先将梁进行分段,独立建立具 有4阶导数的挠曲线近似微分方程,然后分段独 立积分4次,得到挠度的通解。根据边界条件和 连续性条件,确定积分常数,得到剪力、弯矩、 转角和挠度的解析函数,同时绘出剪力图、弯矩 图、转角图和挠度图。工程实例表明,连续分段 独立一体化积分法建立方程简单,计算编程程式化, 利用计算机求解速度快,与有限元法相比其优点 是可以得到精确的解析解。
图11-1复杂载荷作用下的简支梁
解:利用连续分段独立一体化积分法求解步骤为:
第一步:本题分为两段 n 2,各段的挠曲线近似微分方程如下:
d 4v1 0, 0 x L 4 dx d 4v2 q , L x 2L 4 dx EI
(1a)
(1b)
第二步:对(1)式各段的挠曲线近似微分方程分别积分四次, 得到剪力、弯矩、转角和挠度的通解。在通解中,包含有 8个积分常数 Ci i 1,2,,8。
(11-5)
(iii)利用位移边界条件、力边界条件和连续性条件建立 4n
个边界条件约束方程
f Ci , j 0
i 1,2,, n, j 1,2,3,4
(11-6)
(iv)将积分常数 Ci, j i 1,2,, n, j 1,2,3,4
代入(11-2)~(11-5)式就可得到剪力、弯矩、转角和挠度 的解析表达式。
1 x 0
解得 x 0.963L ,代入第一段挠度函数 v1 x , 即得最大挠度。 求出剪力、弯矩、转角和挠度的最大值如下:

材料力学第五版第十一章 交变应力

材料力学第五版第十一章 交变应力

(Alternating Stress)
ωt

静平衡位置
st min
max
t
(Alternating Stress) 例题2 火车轮轴上的力来自车箱.大小,方向基本不变.
即弯矩基本不变.
假设轴以匀角速度 转动. 横截面上 A点到中性轴的距 离却是随时间 t 变化的.
P
P

A
t
z
(Alternating Stress)
构件横截面尺寸的影响
试验:弯、扭疲劳极限随构件横截面尺寸增大而减小
1 -标准试样的疲劳极限 1 d -大尺寸试样的疲劳极限
max
O
min=0
t
(Alternating Stress) 例题3 发动机连杆大头螺钉工作时最大拉力Pmax =58.3kN,最小 拉力Pmin =55.8kN,螺纹内径为 d=11.5mm,试求 a 、m 和 r. 解:
max
Pmax 4 58300 561MPa 2 A 0.0115
(Alternating Stress)
P P a
P
P
a Pa
第一根试件 max,1 b
第二根试件 r表示循环特征
N1
max
max,2 略小于 max,1 N2
max,1 max,2
1
2
如-1 表示对称循环材料的疲劳极限.
N1 N2
-1
N
(Alternating Stress)
(Alternating Stress)
应尽量减小应力集中,特别对于高强度材料构件 增大圆角半径 减小相连杆段的尺寸差别 将必要的孔与沟槽等备置在低应力区 采用凹槽与卸荷糟等

材料力学-第11章 压杆稳定new

材料力学-第11章 压杆稳定new

引言
压杆稳定的利用 - 柔性电子器件
材料力学-第11章 压杆稳定
引言
基本概念
F
压杆失稳(屈曲): 受压杆件由直线平衡状态变为弯曲平衡状态 临界载荷:
使得受压杆件由直线平衡态转为弯曲平衡态的临界力
材料力学-第11章 压杆稳定 受压杆件为什么会失稳?
F
引言
杆件压力超过临界载荷时,弯曲构型具有更 小的应变能
Fcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length);
为反映不同支承影响的系数,称为长度因数(coefficient of
1ength),可由屈曲后的正弦半波长度确定。
材料力学-第11章 压杆稳定
FPcr
π 2 EI
l
2
需要注意的是, 临界载荷公式只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的。
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
例题
图示四根压杆,已知杆件横截面和材料完全相同。 试:将压杆按承载能力大小排序
5m
7m
(a)
(b)
3m
(c)
§11-3 两端非铰支细长压杆的临界载荷 长度因数 由屈曲后的正弦半波长度确定
欧拉公式可写为:
2 EI
正弦半波长
2
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
两端固定 =0.5
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
F
Fcr

材料力学:第11章:组合变形

材料力学:第11章:组合变形

2
≤[σ]
2
M + 0.75T W
3
≤[σ]
πd
32
例:图示悬臂梁的横截面为等边三角形, 图示悬臂梁的横截面为等边三角形, C为形心,梁上作用有均布载荷q,其作用方 为形心,梁上作用有均布载荷q,其作用方 为形心 q, 向及位置如图所示,该梁变形有四种答案: 向及位置如图所示,该梁变形有四种答案: A)平面弯曲; (√ )平面弯曲; (C)纯弯曲; )纯弯曲; (B)斜弯曲; )斜弯曲; (D)弯扭结合。 )弯扭结合。
Mz y My σ′=− =− sin ϕ Iz Iz
σ ′′ = −
ቤተ መጻሕፍቲ ባይዱ
My z Iy
Mz =− cos ϕ Iy
Py
Mz
Pz
My
y z σ = σ ′ + σ ′′ = − M sin ϕ + cos ϕ I Iy z
下面确定中性轴的位置: 下面确定中性轴的位置: 设中性轴上某一点的坐标为 y0 、 z0,则
α
ϕ
中性轴
ϕ
中性轴
二、位移计算 斜弯曲概念 为了计算梁在斜弯曲时的挠度, 为了计算梁在斜弯曲时的挠度,仍应用叠加法
fy = Py l
3
3EI Z
Pl3 = sin ϕ 3EI Z
Pl3 Pz l 3 fz = = cosϕ 3EI y 3EI y
ϕ
f =
2 fy
+f
2 z
tg β =
fy fz
=
Iy Iz
tg ϕ
tg β = tgα
α
β =α
ϕ
中性轴 总挠度f与中 总挠度 与中 性轴垂直

材料力学-第十一章交变应力

材料力学-第十一章交变应力

在一定的循环特征 r 下:
max , N ; max , N
疲劳极限或有限寿命持久极限:
材料在规定的应力循环次数N下,不发生疲劳破环的最
大应力值,记作

N r
(
N r
)

无限寿命疲劳极限或持久极限 r :


m
a
不超过某一极限值,材料可以经受“无数次”应力
x
循环而不发生破坏,此极限值称为无限寿命疲劳极限或持久极限。
r 1
(2)脉动循环:如齿轮
max 2 m 2 a min 0
r 0

max
a
m in
t
max m
a t
材料力学 2019/10/30
8
(3)静应力:如拉压杆
max min m
a 0
r 1
(4)非对称循环:
max min 0
甚至小于屈服极限 s 。
2、破坏时,不论是脆性材料和塑性材料,均无明显的塑性变形, 且为突然断裂,通常称疲劳破坏。
3、疲劳破坏的断口,可分为光滑区及晶粒粗糙区。在光滑区可 见到微裂纹的起始点(疲劳源),周围为中心逐渐向四周扩 展的弧形线。
材料力学 2019/10/30
3
材料力学 2019/10/30
劳极限),疲劳曲线不出现水平渐近线。
步骤:
max

min

M W

Pa/ 2
1 d 3

16Pa
d 3
32
材料力学 2019/10/30
11
材料力学 2019/10/30
12
步骤:

第十一章结构的极限荷载详解

第十一章结构的极限荷载详解
18
强调:
塑性铰——能承受弯矩并能单方向转动的铰。 塑性铰与普通铰的区别:
1)普通铰不能承受弯矩,塑性铰能承受 M u
2)普通铰为双向铰,塑性铰为单向铰。
破坏机构— 结构由于出现塑性铰而变成
? 若梁的左半瞬部变分或截可面变高时度的增体加系一。倍(变截
面静梁定)梁,,塑塑性性铰铰出出现现在在何弯处矩?(绝对值)最大处。
Ms W
矩形 圆形
=1.5 =1.7
工字形
1.15
薄壁圆环形 1.3
历程: 加载初期 → 弹性极限荷载 →塑性区扩大→ 形成塑性铰(机构)→ 极限荷载
下面介绍一下塑性铰的概念:
第十一章 结构的极限荷载
当截面达到塑性流动阶段,在极限弯矩保持不变的情况下,两 个无限靠近的相邻截面可以产生相对转角,类似带铰的截面, 称此截面为塑性铰。在简化分析中认为塑性区仅集中在塑性铰 截面,杆件的其它区段都是弹性的。
极限弯矩: Fx 0 s A1 s A2 0
S
M0 0
A1
A2
A 2
中性轴等 分截面积
Mu s y dA
(对中性轴的矩 )
或M u
2 S
A 2
h 4
S
bh2 4
2b
h
2
0
s
ydy
1 4
bh2 s
sWs
(Ws 塑性抗弯截面系数)
第十一章 结构的极限荷载
截面形状系数: M u Ws
塑性铰只能沿极限弯矩方向发生转动;由理想弹塑性假设知, 一旦截面弯矩减小,截面立即恢复弹塑性或弹性状态,塑性铰
即告消失,因此,塑性铰是单向铰。
普通铰和塑性铰的异同:都可产生绕铰的相对转动;普通铰在 转动过程中不能传递、承受弯矩,而塑性铰能承受对应截面的 极限弯矩;普通铰为双向铰,塑性铰为单向铰。 破坏机构:当结构出现若干塑性铰而成为几何可变或瞬变体系

材料力学课件第11章 交变应力zym

材料力学课件第11章  交变应力zym
理论应力集中因数只与构件外形有关。 有效应力集中因数不但与构件外形有关还与材料有关。
( 1 )d k ( 1 )k
(11.5)
二、构件尺寸的影响: 1、影响趋势: •构件的持久极限随尺寸的增 大而降低。 2、修正因数:

( 1 )d
1
(11.6)


( 1 )d
k
1
1 n
• n 构件在弯曲单独作用时的工作安全系数 • n 构件在扭转单独作用时的工作安全系数
整理上三式得:
n n n n
2 2
n
或:
n
n n n n
2 2
n
(11.19)
二、强度计算步骤: 1、确定工作应力; 2、确定修正因数; 3、强度条件计算; 4、结论。
第十一章
交变应力
§11—1 交变应力与疲劳失效 一、交变应力 •随时间作周期变化的应力称为交变应力或循环应力。
2 3 4 2 3 1 4 1
二、疲劳失效 1、疲劳失效的定义: •构件在交变应力作用下发生的脆性 断裂失效称为疲劳失效或称为疲劳 破坏。 2、疲劳失效的特点: (1)破坏时名义应力值远小于静荷载 作用下的强度极限值; (2)呈脆性断裂;
•结构构件持久极限: r , r
4、持久极限的确定: •试件的持久极限由试验确定。 •构件的持久极限由材料持久极限修正确定。
二、标准试件对称循环弯曲正应力持久极限的测定
1、试验装置: 2、试件:
d 7 10mm
3、试验方法: •应力-寿命曲线。 •循环基数: 钢制试件: 0 107 N 应力-寿命曲线
§11—3 持久极限 一、持久极限的概念 1、定义: •杆件在无限次应力循环作用下而不发生疲劳破坏的最大应 力称为杆件的疲劳极限或持久极限。 2、影响持久极限的因素: •应力循环类型、外形、尺寸和表面质量等等。 3、持久极限的表示符号: •材料持久极限(光滑小试件持久极限): r , r(r为循环特征) •非标准试件持久极限: 如光滑大试件: ( 1 ) d

材料力学第十一章

材料力学第十一章

解超静定梁的基本步骤如下。 (1)判断超静定次数,去掉多余约束,得到静定基。 (2)用未知的多余约束力代替去掉的多余约束加到静定基上(即得到相 当系统)。 (3)根据多余约束处的变形条件及其相应的物理条件建立补充方程,解 出多余未知约束力。 (4)由静定基的平衡条件求出其他约束力,画出内力图,并作强度或刚度 计算。
Fl2 M Al 0 16EI 3EI
所以
MA
3Fl 16
(
)
这里与按图 11-5(b)所示的静定基求得的结果相同(负号表明 MA 实际方 向与图上所设方向相反)。
多余约束力求出后,可对超静定梁进行强度或刚度计算。一般在静定基
上进行。如图
11-5(b)所示的悬臂梁,在
F

FB(
FB
5 16
图 11-5(a)所示的梁,也可选 MA 作为多余约束力,即去掉 A 处的 转角约束,使 A 处变成固定铰支座,其静定基将变成简支梁 AB ,如图 116(a)所示,上面作用有载荷 F 和多余约束力矩 MA 。
(a)
(b) (c)
图11-6
A 处的变形协调条件可由叠加法写出,可得
θAF θAM A 0 式中, θAF 和 θAM A 分别为 F 和 MA 单独作用时 A 处的转角,如图 11-6(b)、(c) 所示。再由物理条件,代入式(a),得补充方程为
材料力学
第十一章 超静定系统

超静定系统的概念
二 弯曲超静定问题

力法解超静定系统

对称及反对称性质的应用

连续梁及三弯矩方程
第一节 超静定系统的概念
在图 11-1(a)中,将被车削的工件简化成悬臂梁。当车削力 F 作用时, 固定端(卡盘)有三个未知约束力 FAx , FAy 和 MA ,如图 11-1(b)所示。独 立的静力平衡方程式也有三个,即

材料力学第11章 压杆稳定

材料力学第11章 压杆稳定

长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔

度度

压压

杆杆

可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800

材料力学课件第十一章应力状态分析和强度理论

材料力学课件第十一章应力状态分析和强度理论

n
薄壁圆筒的横截面面积
πD 2 F p 4

p
A πD
πD 2 F p 4 pD A πD 4
n
D
第十一章
"
p
应力状态和强度理论
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
直径平面
FN

FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2 l plD 0 2
2
3 1
1
3 2
第十一章
4.主平面 切应力为零的截面 5.主应力
应力状态和强度理论
主面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面 均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按 代数值大小的顺序来排列, 即
1 2 3

F k
n
(2)当 = 45°时, max 2 min (3)当 = -45° 时, (4)当 = 90°时, 0,


x
2 0
k
11.2
二向和三向应力状态的实例
m n
分析薄壁圆筒受内压时的应力状态

z
y
D
p
m
l
n
(1)沿圆筒轴线作用于筒底的总压力为F
F

k
F
k n
p cos cos
2
F
沿截面切线方向的切应力

k pα
x
p sin

2
sin2


材料力学(单辉祖)第十一章压杆稳定问题

材料力学(单辉祖)第十一章压杆稳定问题
形心主惯矩I的选取准则
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −

1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l

x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

把物体在原来位置上和现在位置上所处的平衡状态 称为临界平衡
实际上不属稳定平衡。
4、压杆的失稳
压杆丧失其直线形状的平衡而过渡为曲线形状平衡 (弯曲平衡)
屈曲: 压杆从直线平衡到弯曲平衡的转变过程;
屈曲位移:由于屈曲,压杆产生的侧向位移;
通常,屈曲将使构件失效,并导致相关的结构发生坍塌。 由于这种失效具有突发性,常常带来灾难性后果。
非线性稳定理论已经证明:对于细长压杆,临界平衡是稳定的。
压杆的极限承载能力 压杆失稳后,压力的微小增量会引起屈服变形的显 著增大,杆件丧失了继续增大荷载的能力。
且由失稳造成的失效可以导致整个结构的坍塌。
为了保证压杆安全可靠的工作,必须使压杆处于 直线平衡形式,因而压杆是以临界力为其极限承 载能力。
5临界压力 使中心受压的直杆由直线平衡形式转变为曲线
平衡形式时所受的轴向压力; Fcr
★当F=Fcr时有两种可能的平衡状态:
即:屈曲位移ω =0的直线状态; 屈曲位移为无穷小的无限接近于直线的弯曲状态;
故临界压力可以理解为:
压杆保持直线形态平衡的最大载荷;
或压杆处于微弯状态(丧失稳定)的最小载荷。
稳定平衡 当球受到微小干扰,偏离其平 衡位置后,经过几次摆动,它 会重新回到原来的平衡位置。
不稳定平衡
处于凸面的球体,当球受到 微小干扰,它将偏离其平衡 位置,而不再恢复原位;
临界平衡
物体处于平衡状态,受到干扰后 离开原来的平衡位置;
干扰撤掉后:
既不回到原来的平衡位置,也 不进一步离开;
而是停留在一个新的位置上平衡;
§11-2 支细长压杆的临界压力 欧拉公式 =Fcr
M FN=Fcr
w(x)
弯矩
M ( x ) Fcrw( x )
挠曲线近似微分方程
w'' M ( x ) EI

k 2 Fcr
EI
w'' Fcr w EI
w'' k 2w 0
此方程的通解为 w Asin kx Bcos kx
非圆对称
当压力超过一定数值时,圆环将 不能保持圆对称的平衡形式,而 突然变为非圆对称的平衡形式
失稳或屈曲
上述各种关于平衡形式的突然变化,统称为稳定失效
压杆 承受轴向压力的杆件。
工程中的压杆
工程中的压杆
柱、桁架的压杆、薄壳结构及薄壁容器等、在有 压力存在时,都可能发生失稳。
提升 油缸
3、稳定平衡、临界平衡(随遇平衡)、不稳定平衡
Fcr

2 EI
(2l )2
两端铰支
一端固定、一端铰支
Fcr
l
Fcr

2 EI
(1.0 l )2
C
Fcr

2 EI
(0.7l )2
两端铰支
Fcr

2 EI
(1.0 l )2
两端固定
Fcr
D
L
C
Fcr

2 EI
(0.5l )2
长度系数
一端固定、一端自由 两端铰支
一端固定、一端铰支
3、理想压杆
(轴线为直线,压力与轴线重合,材料均匀)
实际使用的压杆
轴线的初曲率、压力的偏心、材料的缺陷和不均匀 等因素总是存在的,为非理想受压直杆。
4、Euler解、精确解、实验结果的比较:
F
B
C 精确解
D
E
A F
Fcr
G
A’ Euler解 H 实验结果
δ
O
截面惯性矩 临界力
269103 N 269kN
.
§11-1 压杆稳定的概念 1、杆件在轴向拉力的作用下:
塑性材料:工作应力达到屈服极限时出现屈服失效; 脆性材料: 工作应力达到强度极限时断裂;
粗短杆在轴向压力的作用下
塑性材料的低碳钢短圆柱 被压扁; 铸铁短圆柱 脆断;
2、工程中的某些细长杆在轴向压力的作用下
表现出与强度完全不同的失效形式;
细长竹片受压时
开始轴线为直线,接着必被压弯,发生较大的弯曲变形; 最后被折断;
两端承受压力的细长杆:
当压力超过一定的数值时,压杆会由原来的直线平衡形式, 突然变弯,致使结构丧失承载力;
狭长截面梁在横向力的作用下:
线弹性范围 铅锤面内的弯曲;
P Pcr
弯曲和扭转
受均匀压力的薄圆环:
p pcr
圆对称的平衡
2EI
Fcr l 2
两端铰支细长压杆临界压力的欧拉公式。
Fcr 与抗弯刚度( EI )成正比。
压杆失稳时,总是绕抗弯刚度最小的轴发生弯曲变形。 因此,对于各个方向约束相同的情形
I 应是截面最小的形心主惯性矩。
Fcr

2EI
l2
适用范围:
1、两端为铰支座的细长杆
2、线弹性,小变形
公式的推导中应用了弹性小挠度微分方程,因 此公式只适用于弹性稳定问题。
Fcr

(
2 EI
2.0 l )2
2 EI
Fcr ( 1.0 l )2
Fcr

(
2 EI
0.7 l )2
两端固定
Fcr

2 EI ( l )2
Fcr

2 EI
( 0.5 l )2
欧拉公式普遍形式
长度系数
l 相当长度
2
1
0.7
0.5
§11-3其他支座条件下细长压杆的临界压力
类比法:
根据力学性质将某些点类比为支座点。 其它约束——折算成两端铰支。 对于其它约束情况的压杆,将挠曲线形状与两端铰支 压杆的挠曲线形状加以比较,用几何类比的方法,求 它们的临界力。
两端铰支
一端固定、一端自由
Fcr
L 2L
Fcr

2 EI(1.0 源自 )2利用杆的边界条件,x0 w0
B0
可知压杆的微弯挠曲线为正弦函数:
w Asin Kx
利用边界条件
xl w0
Asin kl 0 A 0 即压杆没有弯曲变形;
kl n
n 1 ,2,3,.....
Fcr

n2 2 EI
l2
实际工程中有意义的是最小的临界力值,即 n 1
长为L的一端固定、另端铰支的压杆,约与长为0.7L 的两端铰支压杆相当。
长为L的两端固定压杆与长为0.5L的两端铰支压杆相当;
讨论:
(2)横截面对某一形心主惯性轴的惯性矩 I
若杆端在各个方向的约束情况相同(球形铰等),则 I 应取最小的形心主惯性矩。
杆端的约束愈强,则µ值愈小,压杆的临界力愈高; 杆端的约束愈弱,则值µ愈大,压杆的临界力愈低。
讨论:
(1)相当长度 l 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆相当长度 l 。
l 是各种支承条件下,细长压杆失稳时,挠曲线中相当于
半波正弦曲线的一段长度。 长为L的一端固定一端自由的压杆的挠曲线与长为2L的 两端铰支的细长杆相当。
相关文档
最新文档