第五章万有引力
2013高考一轮复习优秀课件:第五章万有引力定律及其应用第二单元 第3课时

祝
您
必修2 第五章:万有引力定律及其应用
第二单元 经典力学的局限与适用范围
第3课时 时空相对论
考点
时空相对论
基础回顾 1.20世纪初,著名物理学家爱因斯坦提出了________,改 变了经典力学的一些结论.在经典力学中,物体的质量是 ________的,而相对论指出质量随着速度变化而________. 2.20世纪初期,建立了________,它能够正确地描述微观 粒子的运动规律. 3.经典力学有它的适用范围:只适用于________运动,不 适 用 于 ________ 运 动 ; 只 适 用 于 ________ 世 界 , 不 适 用 于 ________世界. 答案:1.相对论 不变 高速 宏观 微观 变化 2.量子力学 3.低速
要点深化 1.从低速到高速:在经典力学中,物体的质量m是不随运 动状态改变的,而狭义相对论指出,质量要随着物体的运动速度 的增大而增大. 2.从宏观到微观:相对论和量子力学的出现,并不说明经 典力学失去了意义.只说明它有一定的适用范围,即只适用于低 速运动_____引力的情况下,牛顿引力理论将不再适用.
5.当物体的运动速度远小于________(________ m/s)时,相 对论物理学与经典物理学的结论没有区别;当另一个重要常数 “普朗克常数”h(6.63×10-34 J· s)可以忽略不计时,量子力学和 经典经典力学的结论没有区别.相对论与量子力学都没有 ________过去的科学,而只认为过去的科学是在一定________下 的特殊情形. 答案:4.强 5.光速c 3×108 否定 条件
(完整版)万有引力知识点详细归纳

第五章:万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值)丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数学才华,开普勒在其导师弟谷连续20年对行星的位置进行观测所记录的数据研究的基楚上,通过四年多的刻苦计算,最终发现了三个定律。
第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k Tr =23开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。
2.万有引力定律及其应用(1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。
(1687年)2r MmGF =叫做引力常量,它在数值上等于两个质量都是1kg 的物体2211/1067.6kg m N G ⋅⨯=-相距1m 时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。
万有引力常量的测定——卡文迪许扭秤实验原理是力矩平衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。
万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有(式中R E 为地球半径或物体到地球球心间的距离),可得到。
2EE R m m G mg =G gR m EE 2=(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。
第五章《万有引力定律及其应用》知识导图

第五章《万有引力定律及其应用》知识导图
第一宇宙速度(环绕速度):s km gR v /9.71
== 万有引力定律及其应用 开普勒三大定律
轨道定律:椭圆轨道
面积定律 周期定律:k T
r =23
万有引力定律
表达式:221r m m G F =
适用条件:质点或均匀球体
引力常量G 的测定:卡文迪许实验
万有引力定律的应用 万有引力提供天体做圆周运动的向心力
黄金代换:2gR GM = 轨道重力加速度:2')(h R GM g += 计算天体质量:2324GT r M π= 计算天体密度:343R M πρ= 发现未知天体:海王星
三个宇宙速度
第二宇宙速度(脱离速度):s km v /2.112
= 第三宇宙速度(逃逸速度):s km v /7.163=
人造地球卫星
万有引力提供卫星做圆周运动的向心力 线速度:r GM v
= 角速度:3r GM =ω 周期:
GM r T 32π= 同步卫星
固定周期:h T
24=
固定轨道:轨道在赤道平面上 固定高度:运行高度为km 4106.3⨯
固定速率:运行速率为s km /07.3
双星问题的求解 人类对太空的不懈追求。
第五章万有引力定律会考练习

第五章 万有引力定律一.选择题1.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( )A.只与行星的质量有关B.只与恒星的质量有关C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关2.把太阳系各行星的运动都近似看做匀速圆周运动,则对离太阳越远的行星说法错误..的是( ) A .周期越小 B .线速度越小C .角速度越小D .加速度越小3.若地球表面处的重力加速度为g ,而物体在距地球表面3R (R 为地球半径)处,由于地球作用而产生的加速度为g',则g'/g 为 ( )A .1B . 1/9C .1/4D . 1/164.人造卫星绕地球做匀速圆周运动,其绕行速率( )A .一定等于7.9km/sB .等于或小于7.9km/sC .一定大于7.9km/sD .介于7.9km/s ~11.2km/s 之间5.一个半径是地球的3倍,质量是地球的36倍的行星,它表面的重力加速度是地球表面的重力加速度的( )A .6倍B .18倍C .4倍 D.135倍6.已知地球绕太阳公转周期及公转轨道半径分别为T 和R ,月球绕地球公转周期及公转轨道半径分别为t 和r ,则太阳质量与地球质量之比为( )A .R 3t 2/r 3T 2B .R 3T 2/r 3t 2C .R 2t 3/r 2T 3D . R 2T 3/r 2t 37.地球表面重力加速度为g ,地球半径为R ,引力常量为G ,下列关于地球密度的估算式正确的是( )A .RG g πρ43=B .G R g 243πρ=C .RG g =ρD .2GR g =ρ 8.两个行星质量分别为M 1.M 2,绕太阳运行轨道的半径之比为R 1.R 2,那么它们绕太阳公转的周期之比T 1:T 2为( )A .212221R M R M B .222211R M R M C .2/322/31R R D .2/312/32R R9.若已知某行星绕太阳公转的半径和公转周期,万有引力恒量为G ,则由此可求出以下物理量中的( )A.某行星的质量B.太阳的质量C.某行星的密度D.太阳的密度10.两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA:TB=1:8,轨道半径之比和运动速率之比分别为( )A. R A :R B =4:1; V A :V B =1:2B. R A :R B =4:1; V A :V B =2:1C. R A :R B =1:4; V A :V B =1:2D. R A :R B =1:4; V A :V B =2:1二.填空题11.两颗人造卫星,它们的质量之比为1:2,它们的轨道半径之比为1:3,那么它们所受的向心力之比____________;它们的角速度之比______________。
第五章 微专题32 开普勒行星运动定律 万有引力定律

第五章万有引力与宇宙航行微专题32开普勒行星运动定律万有引力定律1.开普勒第三定律同样适用于卫星围绕地球的运动,其中k 由中心天体决定.2.万有引力和重力的关系:(1)考虑星球自转时,物体所受重力为万有引力的分力.赤道上:mg =GMmR 2-mRω自2;两极处:mg =GMm R 2.(2)忽略星球自转时,重力等于万有引力,即mg =G MmR 2.3.天体质量和密度的估算:(1)由g 、R 估算:mg =G Mm R 2;(2)由T 、r 估算:G Mm r 2=m 4π2rT2.1.2020年7月,我国用长征运载火箭将“天问一号”探测器发射升空,探测器在星箭分离后,进入地火转移轨道,如图所示,2021年5月在火星乌托邦平原着陆.则探测器()A .与火箭分离时的速度小于第一宇宙速度B .每次经过P 点时的速度相等C .绕火星运行时在捕获轨道上的周期最大D .绕火星运行时在不同轨道上与火星的连线每秒扫过的面积相等答案C解析与火箭分离即脱离地球束缚进入太阳系,应为第二宇宙速度即速度大于第一宇宙速度,故A 错误;由题图可知,探测器做近心运动,故每次经过P 点的速度越来越小,故B 错误;由题图可得,绕火星运行时在捕获轨道上的轨道半径最大,则由开普勒第三定律知在捕获轨道上的周期最大,故C 正确;由开普勒第二定律可知,绕火星运行时在同一轨道上与火星的连线每秒扫过的面积相等,故D 错误.2.飞船运行到地球和月球间某处时,飞船所受地球、月球引力的合力恰好为零.已知地球与月球质量之比为k ,则在该处时,飞船到地球中心的距离与到月球中心的距离之比为()A .k 2B .k C.kD.1k答案C解析设地球质量与月球质量分别为m 1、m 2,飞船到地球中心的距离与到月球中心的距离分别为R 1、R 2,飞船质量为m ,飞船所受地球、月球引力大小相等,则有Gm 1m R 12=G m 2mR 22,解得R1 R2=m1m2=k,故选C.3.(多选)如表格中列出一些地点的重力加速度,表中数据的规律可表述为:随着地面上地点纬度的增大,该处的重力加速度增大.已知地面不是标准球面,纬度越大的地点半径越小,是形成表格所示规律的原因,以下说法正确的有()地点纬度重力加速度赤道海平面0°9.780m/s2马尼拉14°35′9.784m/s2广州23°06′9.788m/s2上海31°12′9.794m/s2东京35°43′9.798m/s2北京39°56′9.801m/s2莫斯科55°45′9.816m/s2北极90°9.832m/s2A.地面物体的重力等于所受地球引力的大小与随地球自转所需向心力大小之差B.地面物体受到地球引力的大小随所在地纬度的增大而增大C.地面物体随地球自转所需向心力随所在地纬度的增大而增大D.地面物体受地球引力的方向与随地球自转所需向心力的方向的夹角随所在地纬度的增大而增大答案BD解析地面物体的重力等于所受地球引力与随地球自转所需向心力矢量之差,故A错误;由题意可知,地面物体受到地球引力的大小随所在地纬度的增大而增大,故B正确;由F向=mω2r且纬度越高的地点半径越小可得地面物体随地球自转所需向心力随所在地纬度的增大而减小,故C错误;如图所示,可得出地面物体受地球引力的方向与随地球自转所需向心力的方向的夹角随所在地纬度的增大而增大,故D正确.4.假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g0,在赤道的大小为g;地球自转的周期为T,引力常量为G.地球的密度为()A.3π(g 0-g )GT 2g 0B.3πg 0GT 2(g 0-g )C.3πGT 2D.3πg 0GT 2g答案B解析物体在地球的两极时有mg 0=GMm R 2,物体在赤道时有mg +m (2πT )2R =G MmR 2,其中M =ρ·43πR 3,联立解得地球的密度ρ=3πg 0GT 2(g 0-g ),故B 正确,A 、C 、D 错误.5.(多选)如图,某次发射火箭的过程中,当火箭距地面的高度恰好为地球半径的3倍时,火箭的加速度大小为a ,方向竖直向上,火箭内有一电子台秤,物体在该台秤上显示的示数为发射前在地面上静止时示数的一半.已知地球的第一宇宙速度为v ,忽略地球自转,引力常量为G ,则下列说法正确的是()A .距地面高度恰好为地球半径的3倍处的重力加速度大小为地球表面重力加速度大小的116B .地球表面的重力加速度大小约为16a C .地球的半径为R =7v 216a D .地球的质量为M =9v 416aG 答案AC解析设地球表面的重力加速度为g ,距地面高度恰好为地球半径的3倍处的重力加速度为g 1,由G Mm R 2=mg ,得g g 1=(R +H )2R 2,解得g 1=g16,A 项正确;设台秤上物体的质量为m ,火箭在地面上时台秤显示的示数F N1=mg ,距地面3R 时台秤显示的示数F N2=12F N1=ma +mg 1,解得a =716g ,同时得到g =16a 7,B 项错误;在地球表面,设近地卫星质量为m 0,有m 0g =m 0v 2R ,解得R =7v 216a ,C 项正确;由G Mm 0R 2=m 0g ,解得M =7v 416aG,D 项错误.6.(2023·上海市松江区模拟)2020年5月22日,“祝融号”火星车驶离着陆平台,到达火星表面,开始巡视探测,火星的质量和半径分别约为地球110和12,忽略地球和火星的自转,则火星表面的重力加速度与地球表面的重力加速度之比约为()A .0.2B .0.4C .2.5D .5答案B解析在天体的表面,根据万有引力等于重力有G MmR 2=mg ,可得火星表面的重力加速度为g 火=Gm 火R 火2=G ·110m 地(12R 地)2=2Gm 地5R 地2=0.4g 地,则火星表面的重力加速度与地球表面的重力加速度之比约为0.4,故选B.7.若将地球看作质量分布均匀的球体(半径为R ),且不计地球的自转.地球表面处的重力加速度为g 1,地球表面下方深R 2处的重力加速度为g 2,地球表面上方高R2处的重力加速度为g 3,下列说法正确的是()A .g 3<g 2<g 1B .g 2<g 3<g 1C .g 1<g 2<g 3D .g 1<g 3<g 2答案A解析在地球表面的物体,万有引力近似等于重力,有GMm R 2=mg 1;在地球表面下方深R2处的重力加速度相当于半径为R -R 2=R 2的球体在其表面产生的加速度,由球的体积公式V =43πr 3及M =ρV 可知,半径为R 2的球体质量为半径为R 的球体的18,故G 18Mm =G Mm2R2=mg 2;地球表面上方高R 2处的重力加速度为Mm=G 4Mm9R2=mg 3.由上面的分析可知g 3<g 2<g 1,故选A.8.(多选)(2023·河北保定市模拟)设想宇航员随飞船绕火星飞行,飞船贴近火星表面时的运动可视为绕火星做匀速圆周运动.若宇航员测试飞船在靠近火星表面的圆形轨道绕行n 圈的时间为t ,飞船在火星上着陆后,宇航员用弹簧测力计测得质量为m 的物体受到的重力大小为F ,引力常量为G ,将火星看成一个球体,不考虑火星的自转,则下列说法正确的是()A .火星的半径为Ft 2n 2mB .火星的质量为F 3t 416π4Gn 4m 3C .飞船贴近火星表面做圆周运动的线速度大小为2πnFmt D .火星的平均密度为3πn 2Gt 2答案BD解析靠近火星表面的圆形轨道绕行的周期T =tnm 的物体受到的重力大小为F ,即F =mg ,根据万有引力提供向心力有G Mm R 2=m 4π2T 2R ,G MmR 2=mg =F ,联立求得火星半径R =Ft 24π2n 2m ,火星质量M =F 3t 416π4Gn 4m 3,A 错误,B 正确;线速度大小满足v =2πRT ,联立解得v =Ft 2πmn ,C 错误;火星的平均密度为ρ=M V =M 43πR 3,解得ρ=3πn 2Gt 2,D 正确.9.(多选)(2023·山东省模拟)为了探测某未知星球,探测飞船载着登陆舱先是在离该星球中心距离为r 1的圆轨道上运动,经测定周期为T 1;随后登陆舱脱离飞船,变轨到该星球的近地圆轨道上运动.已知该星球的半径为R ,引力常量为G .则()A .登陆舱在近地圆轨道上运行的周期为T 1R 3r 13B .登陆舱在近地圆轨道上运行的周期为T 1r 13R 3C .该未知星球的平均密度为3πr 13GT 12R 3D .该未知星球的平均密度为3πGT 12答案AC解析根据G Mm r 2=m 4π2T 2r ,解得T =2πr 3GM道上运行的周期T 2=T 1R 3r 13,故A 正确,B 错误;根据G Mm R 2=m 4π2T 22R ,结合V =43πR 3,和密度公式ρ=M V ,联立解得ρ=3πr 13GT 12R 3,故C 正确,D 错误.。
第五章 第1节 万有引力定律及引力常量的测定

转周期T的_平__方_成正比
首页
上一页
下一页
末页
二、万有引力定律
结束
1.万有引力定律
内容 公式
自然界中任何两个物体都是相互吸引的,引力的方向
沿两物体的连线,引力的大小F与这两个物体质量的 乘积m1m2正成比____,与这两个物体间距离r平的方____成反比 F= Gmr21m2,G= 6.67×10-11 m3/(kg·s2) ,r 指两个质点 间的距离,对于匀质球体,就是两球心间的距离
首页
上一页
下一页
末页
结束
3.地球到太阳的距离为水星到太阳距离的 2.6 倍,那么地球和
水星绕太阳运转的线速度之比为多少?
解析:设地球绕太阳的运行周期为 T1,水星绕太阳的运行周期
为 T2,根据开普勒第三定律有RT1123=RT2223
①
因地球和水星绕太阳做匀速圆周运动,故有 T1=2πvR1 1
②
首页
上一页
下一页
末页
结束
解析:火星和木星在椭圆轨道上运行,太阳位于椭圆轨道的 一个焦点上,选项 A 错误;由于火星和木星在不同的轨道上 运行,且是椭圆轨道,速度大小变化,火星和木星的运行速 度大小不一定相等,选项 B 错误;由开普勒第三定律可知, Ta火火32=Ta木木32=k ,即TT火 木22=aa火 木33,选项 C 正确;由于火星和木星 在不同的轨道上,因此它们与太阳的连线在相同的时间内扫 过的面积不相等,选项 D 错误。 答案:C
T2=2πvR2 2
③
由①②③式联立求解得vv12=
RR21=
21.6=
1= 2.6
5= 13
1635。
2013高考一轮复习优秀课件:第五章万有引力定律及其应用第一单元 第1课时

(4)统一性:在表达式中古各物理量均统一使用国际单位制 单位时,万有引力常量才可以取G=6.67×10-11 N· 2/kg2. m
(5)宏观性:在通常情况下万有引力非常小(比如两块磁铁之 间存在磁力,也存在万有引力,但是万有引力远远小于他们之间 的磁力,万有引力可不考虑).只有在质量巨大的星体间或天体 与天体附近的物体间,它的存在才有实际的物理意义.故在分析 地球表面的物体受力时,不考虑地面其他物体对其的万有引力, 只考虑地球对地面物体间的万有引力.
该物体在行星表面上时,有:GMm′/R=m′g行② g卫 m R行2 1 3.62 4 ①②联立解得 : = =81 1 =25. g行 MR卫 4 答案: 25
祝
您
(1)设天体表面的重力加速度为g,天体的半径为R,不计
天体本身自转的影响,GMm=mg,即 g=GM 2 2
R R
Mm (2)若物体距星球表面高度为h,则 G ,即该处 =mg′ R+h2 M 的重力加速度 g′=GR+h2 ,可以这样理解:g′和星球质量成
正比,和该处到球心距离的平方成反比.
r
(2)计算距地面高度为h处的重力加速度.由于忽略地球自转 和将地球理想化为一球体(其他星球也一样),重力加速度只与高 M 度和地球密度有关.重力加速度与高度h的关系为g′=GR+h2 , 由此看出:距地面越高,物体的重力加速度越小.
3.地球中心处物体所受到的引力大小
万有引力定律适用于质点间引力大小的计算,如对均匀球体, 可视为质量全部集中于球心处的质点.但这并不意味着处在地球 中心处的物体由于与地心间距为零而导致所受到的地球引力趋于 无限大.事实上此时由于对称性的原因,使地球各部分对球心处 的物体的引力的矢量和为零.
第5章 第1讲 万有引力定律及应用 2023年高考物理一轮复习(新高考新教材)

自主命题卷全国卷考情分析2021·山东卷·T5万有引力定律2021·湖南卷·T7人造卫星宇宙速度2021·河北卷·T4人造卫星2021·浙江1月选考·T7人造卫星2020·山东卷·T7万有引力定律2020·浙江1月选考·T9人造卫星2020·天津卷·T2人造卫星2021·全国甲卷·T18万有引力定律2021·全国乙卷·T18万有引力定律2020·全国卷Ⅰ·T15万有引力定律2020·全国卷Ⅱ·T15人造卫星2020·全国卷Ⅲ·T16人造卫星2019·全国卷Ⅱ·T14万有引力定律2018·全国卷Ⅰ·T20双星模型试题情境生活实践类地球不同纬度重力加速度的比较学习探究类开普勒第三定律的应用,利用“重力加速度法”、“环绕法”计算天体的质量和密度,卫星运动参量的分析与计算,人造卫星,宇宙速度,天体的“追及”问题,卫星的变轨和对接问题,双星或多星模型第1讲万有引力定律及应用目标要求 1.理解开普勒行星运动定律和万有引力定律,并会用来解决相关问题.2.掌握计算天体质量和密度的方法.考点一开普勒定律定律内容图示或公式开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律) 所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等a 3T 2=k ,k 是一个与行星无关的常量1.围绕同一天体运动的不同行星椭圆轨道不一样,但都有一个共同的焦点.( √ ) 2.行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大.( × )1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r 2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同,且该定律只能用在同一中心天体的两星体之间.例1 (多选)如图所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( )A .T A >TB B .E k A >E k BC .S A =S B D.R A 3T A 2=R B 3T B2 答案 AD解析 根据开普勒第三定律知,A 、D 正确;由GMm R 2=m v 2R 和E k =12m v 2可得E k =GMm2R ,因R A >R B ,m A =m B ,则E k A <E k B ,B 错误;根据开普勒第二定律知,同一轨道上的卫星绕地球做匀速圆周运动,与地心连线在单位时间内扫过的面积相等,对于卫星A 、B ,S A 不等于S B ,C 错误.例2 某行星沿椭圆轨道绕太阳运行,如图所示,在这颗行星的轨道上有a 、b 、c 、d 四个对称点.若行星运动周期为T ,则该行星( )A .从a 到b 的运动时间等于从c 到d 的运动时间B .从d 经a 到b 的运动时间等于从b 经c 到d 的运动时间C .a 到b 的时间t ab >T4D .c 到d 的时间t cd >T4答案 D解析 据开普勒第二定律可知,行星在近日点的速度最大,在远日点的速度最小,行星由a 到b 运动时的平均速率大于由c 到d 运动时的平均速率,而弧长ab 等于弧长cd ,故从a 到b 的运动时间小于从c 到d 的运动时间,同理可知,从d 经a 到b 的运动时间小于从b 经c 到d 的运动时间,A 、B 错误;从a 经b 到c 的时间和从c 经d 到a 的时间均为T 2,可得t ab =t da <T 4;t bc =t cd >T4,C 错误,D 正确.例3 (2021·安徽六安市示范高中教学质检)国产科幻巨作《流浪地球》开创了中国科幻电影的新纪元,引起了人们对地球如何离开太阳系的热烈讨论.其中有一种思路是不断加速地球使其围绕太阳做半长轴逐渐增大的椭圆轨道运动,最终离开太阳系.假如其中某一过程地球刚好围绕太阳做椭圆轨道运动,地球到太阳的最近距离仍为R ,最远距离为7R (R 为加速前地球与太阳间的距离),则在该轨道上地球公转周期将变为( ) A .8年 B .6年 C .4年 D .2年 答案 A解析 由开普勒第三定律得:R3T 2=(R +7R2)3T 12,解得T 1=8年,选项A 正确.考点二 万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r 2,G 为引力常量,通常取G =6.67×10-11 N·m 2/kg 2,由英国物理学家卡文迪什测定.3.适用条件(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离.1.只有天体之间才存在万有引力.( × )2.只要知道两个物体的质量和两个物体之间的距离,就可以由F =G m 1m 2r 2计算物体间的万有引力.( × )3.地面上的物体所受地球的万有引力方向一定指向地心.( √ ) 4.两物体间的距离趋近于零时,万有引力趋近于无穷大.( × )1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近两极,向心力越小,g 值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR2=mg .2.星体表面及上空的重力加速度(以地球为例)(1)地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)地球上空的重力加速度g ′地球上空距离地球中心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2.所以gg ′=(R +h )2R 2.3.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)星体内部万有引力的两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力,即F =G M ′mr 2.考向1 万有引力定律的理解和简单计算例4 (2019·全国卷Ⅱ·14)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )答案 D解析 在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律F =G Mm(R +h )2,可知随着h 的增大,探测器所受的地球引力逐渐减小,但不是均匀减小的,故能够描述F 随h 变化关系的图像是D.考向2 不同天体表面引力的比较与计算例5 (2020·全国卷Ⅰ·15)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A .0.2 B .0.4 C .2.0 D .2.5 答案 B解析 万有引力表达式为F =G Mmr 2,则同一物体在火星表面与在地球表面受到的引力的比值为F 火引F 地引=M 火r 地2M 地r 火2=0.4,选项B 正确.考向3 重力和万有引力的关系例6 一火箭从地面由静止开始以5 m/s 2的加速度竖直向上匀加速运动,火箭中有一质量为1.6 kg 的科考仪器,在上升到距地面某一高度时科考仪器的视重为9 N ,则此时火箭离地球表面的距离为地球半径的(地球表面处的重力加速度g 取10 m/s 2)( ) A.12倍 B .2倍 C .3倍 D .4倍 答案 C解析 在上升到距地面某一高度时,根据牛顿第二定律可得F N -mg ′=ma ,解得g ′= 1016 m/s 2=g 16,因为G Mr 2=g ′,可得r =4R ,则此时火箭离地球表面的距离为地球半径R 的3倍,选C.例7 某类地天体可视为质量分布均匀的球体,由于自转的原因,其表面“赤道”处的重力加速度为g 1,“极点”处的重力加速度为g 2,若已知自转周期为T ,则该天体的半径为( ) A.4π2g 1T2 B.4π2g 2T 2 C.(g 2-g 1)T 24π2D.(g 1+g 2)T 24π2答案 C解析 在“极点”处:mg 2=GMm R 2;在其表面“赤道”处:GMm R 2-mg 1=m (2πT)2R ;解得:R =(g 2-g 1)T 24π2,故选C.考向4 地球表面与地表下某处重力加速度的比较与计算例8 假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d ,已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为( ) A .1-dRB .1+dRC.⎝⎛⎭⎫R -d R 2D.⎝⎛⎭⎫R R -d 2答案 A解析 如图所示,根据题意,地面与矿井底部之间的环形部分对处于矿井底部的物体引力为零.设地面处的重力加速度为g ,地球质量为M ,地球表面的物体m 受到的重力近似等于万有引力,故mg =G Mm R 2,又M =ρ·43πR 3,故g =43πρGR ;设矿井底部的重力加速度为g ′,图中阴影部分所示球体的半径r =R -d ,则g ′=43πρG (R -d ),联立解得g ′g =1-dR,A 正确. 考点三 天体质量和密度的计算应用万有引力定律估算天体的质量、密度 (1)利用天体表面重力加速度已知天体表面的重力加速度g 和天体半径R .①由G Mm R 2=mg ,得天体质量M =gR 2G .②天体密度ρ=M V =M 43πR 3=3g4πGR.(2)利用运行天体(以已知周期为例)测出卫星绕中心天体做匀速圆周运动的半径r 和周期T . ①由G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT2.②若已知天体的半径R ,则天体的密度ρ=M V =M 43πR 3=3πr 3GT 2R 3.③若卫星绕天体表面运行,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2,故只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.考向1 利用“重力加速度法”计算天体质量和密度例9 宇航员在月球表面将一片羽毛和一个铁锤从同一高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R .求:(不考虑月球自转的影响) (1)月球表面的自由落体加速度大小g 月; (2)月球的质量M ; (3)月球的密度ρ.答案 (1)2h t 2 (2)2hR 2Gt 2 (3)3h2πRGt 2解析 (1)月球表面附近的物体做自由落体运动,有h =12g 月t 2月球表面的自由落体加速度大小g 月=2ht 2(2)不考虑月球自转的影响,有G MmR 2=mg 月得月球的质量M =2hR 2Gt2(3)月球的密度ρ=M V =2hR 2Gt 24π3R 3=3h2πRGt 2.考向2 利用“环绕法”计算天体质量和密度例10 (多选)已知引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( ) A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 23GT 22C .月球的质量m 月=4π2L 13GT 12D .太阳的平均密度ρ=3πGT 22答案 AB解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,故A项正确;地球绕太阳运动,有Gm 太m 地L 22=m 地4π2L 2T 22,则m 太=4π2L 23GT 22,故B 项正确;同理,月球绕地球运动,能求出地球质量,无法求出月球的质量,故C 项错误;由于不知道太阳的半径,不能求出太阳的平均密度,故D 项错误.例11 (2021·全国乙卷·18)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104MB .4×106MC .4×108MD .4×1010M答案 B课时精练1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 由开普勒第一定律(轨道定律)可知,太阳位于木星运行椭圆轨道的一个焦点上,故A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,故B 错误;根据开普勒第三定律(周期定律)知,太阳系中所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,故C 正确;对于太阳系某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同时间内扫过的面积不相等,故D 错误.2.(多选)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 答案 CD解析 根据开普勒第二定律,行星与太阳的连线在相等时间内扫过的面积相等,所以从P 到M 所用的时间小于从M 到Q 所用的时间,而从P 到Q 所用的时间为T 02,所以从P 到M 所用的时间小于T 04,选项A 错误;从Q 到N 阶段,只有万有引力对海王星做功,机械能保持不变,选项B 错误;从P 到Q 阶段,海王星从近日点运动至远日点,速率逐渐减小,选项C正确;从M 到Q 阶段,万有引力做负功,从Q 到N 阶段,万有引力做正功,选项D 正确. 3.2020年7月23日,我国第一个火星探测器“天问一号”成功升空,飞行约7个月抵达火星,已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,则火星表面的重力加速度为( ) A .0.2g B .0.4g C .2g D .4g 答案 B解析 根据地球表面的物体受到的万有引力近似等于重力,有G Mm R 2=mg 得g =GMR 2;同理,火星表面的重力加速度为g ′=GM ′R ′2=G ×0.1×M (0.5×R )2=0.4×GMR 2=0.4g ,故选B.4.(2017·北京卷·17)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转)B .人造卫星在地面附近绕地球做圆周运动的速度及周期C .月球绕地球做圆周运动的周期及月球与地球间的距离D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 答案 D解析 因为不考虑地球的自转,所以地球表面物体所受的万有引力等于重力,即GM 地mR 2=mg ,得M 地=gR 2G ,所以根据A 中给出的条件可求出地球的质量;根据GM 地m 卫R 2=m 卫v 2R 和T =2πRv ,得M 地=v 3T 2πG ,所以根据B 中给出的条件可求出地球的质量;根据GM 地m 月r 2=m 月4π2T 2r ,得M地=4π2r 3GT 2,所以根据C 中给出的条件可求出地球的质量;根据GM 太m 地r 02=m 地4π2T 2r 0,得M 太=4π2r 03GT 2,所以根据D 中给出的条件可求出太阳的质量,但不能求出地球质量,故选D. 5.(多选)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处.若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面附近的重力加速度为g ′,空气阻力不计.则( ) A .g ′∶g =1∶5 B .g ′∶g =5∶2 C .M 星∶M 地=1∶20 D .M 星∶M 地=1∶80答案 AD解析 设初速度为v 0,由对称性可知竖直上抛的小球在空中运动的时间t =2v 0g ,因此得g ′g =t 5t =15,选项A 正确,B 错误;由G Mm R 2=mg 得M =gR 2G ,则M 星M 地=g ′R 星2gR 地2=15×⎝⎛⎭⎫142=180,选项C 错误,D 正确.6.(2018·浙江4月选考·9)土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径为1.2×106 km.已知引力常量G =6.67×10-11N·m 2/kg 2,则土星的质量约为( )A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg答案 B解析 根据“泰坦”的运动情况,由万有引力提供向心力,则G Mm r 2=m ⎝⎛⎭⎫2πT 2r ,化简得到M =4π2r 3GT2,代入数据得M ≈5×1026 kg ,故选B.7.假设某探测器在着陆火星前贴近火星表面运行一周用时为T ,已知火星的半径为R 1,地球的半径为R 2,地球的质量为M ,地球表面的重力加速度为g ,引力常量为G ,则火星的质量为( )A.4π2R 13M gR 22T 2B.gR 22T 2M 4π2R 13C.gR 12GD.gR 22G 答案 A解析 对绕地球表面运动的物体,由牛顿第二定律可知: G MmR 22=mg 对绕火星表面做匀速圆周运动的物体有: GM 火m R 12=m (2πT)2R 1 结合两个公式可解得:M 火=4π2R 13M gR 22T 2,故A 对.8.若在某行星和地球上相对于各自的水平地面附近相同的高度处以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7.已知该行星质量约为地球的7倍,地球的半径为R ,不考虑气体阻力.由此可知,该行星的半径约为( ) A.12R B.72R C .2R D.72R 答案 C解析 由平抛运动规律:x =v 0t ,h =12gt 2,得x =v 02hg,两种情况下,抛出的速率相同,高度相同,故g 行g 地=74;由G Mm R 02=mg ,可得g =GMR 02,故g 行g 地=M 行R 行2M 地R 2=74,解得R 行=2R ,选项C正确.9.(2020·山东卷·7改编)质量为m 的着陆器在着陆火星前,会在火星表面附近经历一个时长为t 0、速度由v 0减速到零的过程.已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,忽略火星大气阻力.若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为( ) A .m ⎝⎛⎭⎫0.4g -v 0t 0B .m ⎝⎛⎭⎫0.4g +v 0t 0C .m ⎝⎛⎭⎫0.2g -v 0t 0D .m ⎝⎛⎭⎫0.2g +v 0t 0答案 B解析 着陆器向下做匀减速直线运动时的加速度大小a =v 0t 0.在天体表面附近,有mg =G mMR 2,则g 火g =M 火M 地·(R 地R 火)2,整理得g 火=0.4g ,由牛顿第二定律知,着陆器减速运动时有F -mg 火=ma ,则制动力F =m (0.4g +v 0t 0),选项B 正确.10.将一质量为m 的物体分别放在地球的南、北两极点时,该物体的重力均为mg 0;将该物体放在地球赤道上时,该物体的重力为mg .假设地球可视为质量均匀分布的球体,半径为R ,已知引力常量为G ,则由以上信息可得出( ) A .g 0小于g B .地球的质量为gR 2GC .地球自转的角速度为ω=g 0-gRD .地球的平均密度为3g4πGR答案 C解析 设地球的质量为M ,物体在赤道处随地球自转做圆周运动的角速度等于地球自转的角速度,轨道半径等于地球半径,物体在赤道上的重力和物体随地球自转的向心力是万有引力的分力.有G Mm R 2-mg =mω2R ,物体在两极受到的重力等于万有引力G MmR 2=mg 0,所以g 0>g ,故A 错误;在两极mg 0=G Mm R 2,解得M =g 0R 2G ,故B 错误;由G MmR 2-mg =mω2R ,mg 0=G MmR2,解得ω=g 0-g R ,故C 正确;地球的平均密度ρ=M V =g 0R 2G 43πR 3=3g 04πGR,故D 错误. 11.(2021·全国甲卷·18)2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105 s 的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m .已知火星半径约为3.4×106 m ,火星表面处自由落体的加速度大小约为3.7 m/s 2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A .6×105 m B .6×106 m C .6×107 m D .6×108 m答案 C解析 忽略火星自转,设火星半径为R , 则火星表面处有GMmR 2=mg ①可知GM =gR 2设与周期为1.8×105 s 的椭圆形停泊轨道周期相同的圆形轨道半径为r ,由万有引力提供向心力可知 GMm r 2=m 4π2T2r ② 设近火点到火星中心的距离为R 1=R +d 1③ 设远火点到火星中心的距离为R 2=R +d 2④ 由开普勒第三定律可知r3T 2=(R 1+R 22)3T 2⑤联立①②③④⑤可得d 2≈6×107 m ,故选C.12.若地球半径为R ,把地球看作质量分布均匀的球体.“蛟龙号”下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度大小之比为(质量分布均匀的球壳对内部物体的万有引力为零)( ) A.R -d R +hB.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2答案 C解析 设地球的密度为ρ,则在地球表面,物体受到的重力和地球的万有引力大小相等,有g =G M R 2.由于地球的质量为M =ρ·43πR 3,所以重力加速度的表达式可写成g =GMR 2=G ·ρ43πR 3R 2=43πGρR .质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙号”的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力有G Mm(R +h )2=ma ,“天宫一号”所在处的重力加速度为a =GM (R +h )2,所以a g =R 2(R +h )2,g ′a =(R -d )(R +h )2R 3,故C 正确,A 、B 、D 错误.。
物理练习(新教材粤教版)第五章万有引力与宇宙航行专题强化练七卫星变轨问题双星模型副本

1.(多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是()A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于稀薄气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服稀薄气体阻力做的功小于引力势能的减小量2.2021年5月15日,中国火星探测工程执行探测任务的飞船“天问一号”着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区.若飞船“天问一号”从地球上发射到着陆火星,运动轨迹如图中虚线椭圆所示,飞向火星过程中,太阳对飞船“天问一号”的引力远大于地球和火星对它的吸引力,认为地球和火星绕太阳做匀速圆周运动.下列说法正确的是()A.飞船“天问一号”椭圆运动的周期小于地球公转的周期B.在与火星会合前,飞船“天问一号”的向心加速度小于火星公转的向心加速度C.飞船“天问一号”在无动力飞向火星过程中,引力势能增大,动能减少,机械能守恒D.飞船“天问一号”在地球上的发射速度介于第一宇宙速度和第二宇宙速度之间3.(2023·广东省六校联盟联考)天宫二号在离地343 km圆形轨道上运行1 036天后,受控离轨并进入大气层,少量残骸落入南太平洋预定安全海域.天宫二号“回家”,标志着我国载人航天工程空间实验室阶段全部任务圆满完成.关于天宫二号绕地球的运动,下列说法正确的是()A.天宫二号受控离轨瞬间,应加速前进B.天宫二号进入大气层后,它的引力势能越来越小,机械能守恒C.天宫二号绕地球做匀速圆周运动的周期小于地球自转的周期D.天宫二号绕地球做匀速圆周运动向心加速度小于地球赤道物体自转的向心加速度4.(多选)(2023·广东潮州市模拟)2021年9月20日,“天舟三号”在文昌航天发射中心成功发射升空.图中P、Q分别是“天舟三号”和“天和核心舱”对接前各自在预定轨道运行的情景,下列说法正确的是()A.在预定轨道运行时,P的周期小于Q的周期B.在预定轨道运行时,P的速率小于Q的速率C.为了实现对接,P应减速D.为了实现对接,P应加速5.(多选)宇宙中两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.设某双星系统A、B绕其连线上的某固定点O做匀速圆周运动,如图所示.若A、B两星球到O点的距离之比为3∶1,则()A.星球A与星球B所受引力大小之比为1∶1B.星球A与星球B的线速度大小之比为1∶3C.星球A与星球B的质量之比为3∶1D.星球A与星球B的动能之比为3∶16.(2023·安徽蚌埠市检测)2022年7月24日14时22分,中国“问天”实验舱在海南文昌航天发射场发射升空,准确进入预定轨道,任务取得圆满成功.“问天”实验舱入轨后,顺利完成状态设置,于北京时间2022年7月25日3时13分,成功对接于离地约400 km的“天和”核心舱.“神舟”十四号航天员乘组随后进入“问天”实验舱.下列判断正确的是() A.航天员在核心舱中完全失重,不受地球的引力B.为了实现对接,实验舱和核心舱应在同一轨道上运行,且两者的速度都应大于第一宇宙速度C.对接后,组合体运动的加速度大于地球表面的重力加速度D.若对接后组合体做匀速圆周运动的周期为T,运行速度为v,引力常量为G,利用这些条件可估算出地球的质量7.(多选)(2023·广东珠海市第一中学月考)“天舟二号”货运飞船是中国空间站货物运输系统的第一次应用性飞行,在距地面400千米高空精准对接于天和核心舱后向端口,为空间站送去吨补给物资.为避免占用轨道资源,已于北京时间2022年3月31日18时40分采用分次控制的方式,依次从400千米高度的圆轨道变至近地点为200千米高度的椭圆轨道,然后从近地点变至大气层高度90千米以下,受控再入大气层烧蚀销毁,展现了中国航天的责任和担当,树立了负责任大国形象.下列说法正确的是( )A .“天舟二号”需要与天和核心舱在同一高度轨道上加速以实现对接B .“天舟二号”对接天和核心舱后,空间站由于质量增大,轨道半径将变小C.“天舟二号”从400千米高度的圆轨道变至近地点为200千米高度的椭圆轨道,周期变小D .“天舟二号”从400千米高度的圆轨道变至近地点为200千米高度的椭圆轨道,机械能减少8.(2023·贵州省贵阳一中高三检测)宇宙中有很多恒星组成的双星运动系统,两颗恒星仅在彼此的万有引力作用下绕共同点做匀速圆周运动,如图所示.假设该双星1、2的质量分别为m 1、m 2,圆周运动的半径分别为r 1、r 2,且r 1小于r 2,共同圆周运动的周期为T ,引力常量为G .则下列说法正确的是( )A .恒星1做圆周运动所需的向心加速度大小为G m 2r 12 B .恒星1表面的重力加速度一定大于恒星2表面的重力加速度C .恒星1的动量一定大于恒星2的动量D .某些双星运动晚期,两者间距逐渐减小,一者不断吸食另一者的物质,则它们在未合并前,共同圆周运动的周期不断减小9.(2023·广东深圳市模拟)如图所示为嫦娥五号着陆月球前部分轨道的简化示意图,Ⅰ是地月转移轨道,Ⅱ、Ⅲ是绕月球运行的椭圆轨道,Ⅳ是绕月球运行的圆形轨道.P 、Q 分别为椭圆轨道Ⅱ的远月点和近月点,忽略嫦娥五号在Ⅱ、Ⅲ、Ⅳ轨道上运行时地球以及其他天体对嫦娥五号的影响,下列关于嫦娥五号说法正确的是( )A .在Ⅱ轨道运行的周期小于在Ⅲ轨道运行的周期B .由Ⅰ轨道进入Ⅱ轨道需在P 处向前喷气,由Ⅱ轨道进入Ⅲ轨道需在Q 处向前喷气C .在Ⅱ轨道上经过Q 点时的加速度小于在Ⅳ轨道经过Q 点时的加速度D .在Ⅲ轨道上的机械能比Ⅳ轨道上小10.(多选)(2023·广东省模拟)如图所示为发射某卫星的情景图,该卫星发射后,先在椭圆轨道Ⅰ上运动,卫星在椭圆轨道Ⅰ的近地点A 的加速度大小为a 0,线速度大小为v 0,A 点到地心的距离为R ,远地点B 到地心的距离为3R ,卫星在椭圆轨道的远地点B 变轨进入圆轨道Ⅱ,卫星质量为m ,则下列判断正确的是( )A .卫星在轨道Ⅱ上运行的加速度大小为13a 0B .卫星在轨道Ⅱ上运行的线速度大小为3a 0R 3C .卫星在轨道Ⅱ上运行周期为在轨道Ⅰ上运行周期的33倍D .卫星从轨道Ⅰ变轨到轨道Ⅱ发动机需要做的功为ma 0R 6-m v 021811.(2023·广东珠海市调研)宇宙中存在一些离其他恒星较远的,由质量相等的三颗星组成的三星系统,可忽略其他星体对三星系统的影响.稳定的三星系统存在两种基本形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的轨道上运行,如图甲所示,周期为T 1;另一种是三颗星位于边长为r 的等边三角形的三个顶点上,并沿等边三角形的外接圆运行,如图乙所示,周期为T 2.若每颗星的质量都相同,则T 1∶T 2为( )A.R 2r 3R 5rB.r R 3r 5RC.r R 3R 5rD.2R r 3R 5r12.(多选)如图为一种四颗星体组成的稳定系统,四颗质量均为m 的星体位于边长为L 的正方形四个顶点,四颗星体在同一平面内围绕同一点做匀速圆周运动,忽略其他星体对它们的作用,引力常量为G .下列说法中正确的是( )A .星体做匀速圆周运动的圆心不一定是正方形的中心B.每颗星体做匀速圆周运动的角速度均为(4+2)Gm2L3C.若边长L和星体质量m均是原来的两倍,星体做匀速圆周运动的加速度大小是原来的两倍D.若边长L和星体质量m均是原来的两倍,星体做匀速圆周运动的线速度大小不变。
高考物理二轮复习 100考点千题精练 第五章 万有引力定

专题5.5 卫星的发射和回收一.选择题1.(2018湖南怀化期中联考)2017年6月19号,长征三号乙遥二十八火箭发射中星9A卫星过程中出现变故,由于运载火箭的异常,致使卫星没有按照原计划进入预定轨道。
经过航天测控人员的配合和努力,通过多次轨道调整,卫星成功变轨进入同步卫星轨道。
卫星变轨原理图如图所示,卫星从椭圆轨道Ⅰ远地点Q 改变速度进入地球同步轨道Ⅱ,P点为椭圆轨道近地点。
下列说法正确的是A. 卫星在椭圆轨道Ⅰ运行时,在P点的速度等于在Q点的速度B. 卫星耗尽燃料后,在微小阻力的作用下,机械能减小,轨道半径变小,动能变小C. 卫星在椭圆轨道Ⅰ的Q点加速度大于在同步轨道Ⅱ的Q点的加速度D. 卫星在椭圆轨道Ⅰ的Q点速度小于在同步轨道Ⅱ的Q点的速度【参考答案】D2.(2018天星金考卷)假设将来一艘飞船靠近火星时,经历如图所示的变轨过程,则下列说法正确的是( )A.飞船在轨道Ⅱ上运动到P点的速度小于在轨道Ⅰ上运动到P点的速度B.若轨道Ⅰ贴近火星表面,测出飞船在轨道Ⅰ上运动的周期,就可以推知火星的密度C.飞船在轨道Ⅰ上运动到P点时的加速度大于飞船在轨道Ⅱ上运动到P点时的加速度D.飞船在轨道Ⅱ上运动时的周期小于在轨道Ⅰ上运动时的周期【参考答案】B3.中国国家航天局目前计划于2020年发射嫦娥工程第二阶段的月球车“嫦娥四号”。
中国探月计划总工程师吴伟仁近期透露,此台月球车很可能在离地球较远的月球背面着陆,假设运载火箭先将“嫦娥四号”月球探测器成功送入太空,由地月转移轨道进入100千米环月轨道后成功变轨到近月点为15千米的椭圆轨道,在从15千米高度降至月球表面成功实现登月。
则关于“嫦娥四号”登月过程的说法正确的是( )A .“嫦娥四号”由地月转移轨道需要减速才能进入100千米环月轨道B .“嫦娥四号”在近月点为15千米的椭圆轨道上各点的速度都大于其在100千米圆轨道上的速度C .“嫦娥四号”在100千米圆轨道上运动的周期小于其在近月点为15千米的椭圆轨道上运动的周期D .从15千米高度降至月球表面过程中,“嫦娥四号”处于失重状态 【参考答案】A【名师解析】“嫦娥四号”由地月转移轨道实施近月制动才能进入100千米环月圆轨道上,A 正确;由卫星变轨条件可知近月点为15千米的椭圆轨道上远月点的速度小于圆轨道上的速度,B 错误;由开普勒第三定律可得“嫦娥四号”在100千米圆轨道上运动的周期大于其在椭圆轨道上运动的周期,C 错误;从15千米高度降至月球表面过程“嫦娥四号”需要减速下降,处于超重状态,D 错误。
高中物理复习书稿:第五章万有引力定律

第五章万有引力定律高考要求:内容要求说明万有引力定律Ⅱ万有引力定律的应用、人造地球卫星的运动( 限于圆轨道 ) Ⅱ宇宙速度Ⅰ本章特色:牛顿运动定律与天体运动的的联合在近几年高考取还是热门,因为它切合科技发展的认识需要,万有引力定律的考点有三个(见上表),波及并用于议论天体运动的知识点是高考的重点内容,近几年高考取出现率达100% ,可能会是一道选择题,也可能是一道中等难度的计算题,近几年高考对万有引力定律的观察主要表此刻两个方面:一是重申基础的同时加大与其余部分的综合,如在其余星球上做自由落体、平抛、竖直上抛、单摆,近似地球上的实验,与g 有关的知识,与天体有关的地理知识等;二是应用万有引力定律解决实质问题,固然考点不多,但需要利用这个定律解决的习题题型多,综合性强,波及到的题型以天体运动为中心,如估量天体质量或均匀密度问题,变轨问题,能量问题,中心是:( 1 )行星绕恒星的圆周运动,二者之间的万有引力供应向心力;( 2 )星球表面重力在忽视星球自转的状况低等于万有引力,即可推出常用的黄金代换:2 GMgR近几年高考取出题的特色是以近几年中国及世界上空间技术的飞快发展为背景的天体问题,一方面能够使学生认识近几年这方面的大事,如:火星、土星探测,“神五”“神六”发射与回收,“金星快车”的发射,人类撞击彗星等,另一方面还能够观察学生从资料信息中获得“有效信息”的能力,第一单元万有引力定律知识重点一、万有引力定律1 .内容 : 宇宙间全部物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式: F G m1 m2其G = 6.67 ×10-11222N·m /kg r3.合用条件:公式只合用于质点间的互相作用.当两个物体间的距离远远大于物体自己大小时公式也近似合用,但此时它们间距离r 应为两物体质心间距离.均匀的球体可视为质点,r 是两球心间的距离.4 .注意:公式中 F 是两物体间的引力, F 与两物体质量乘积成正比与两物体间距离的平方成反比,不要理解成 F 与两物体质量分别成正比、与距离成反比.二、划分万有引力和重力1.因为地球的吸引而使物体遇到的力称为重力,但重力不是万有引力,不过万有引力的一个分力,另一个分力是物体随处球自转而绕地轴做匀速圆周运动所需要的向心力 f , 如下图,因为纬度的变化,物体做圆周运动的向心力 f 不停变化, 所以地球表面物体的重力随纬度的变化而变化,即重力加快度g 随纬度变化而变化,从赤道到两极渐渐增大。
2025年高考物理总复习第五章万有引力定律第2讲宇宙航行

近地卫星
联系
等于
地心
6.地球同步卫星
特点
理解
轨道平面一定
周期一定
角速度一定
高度一定
赤道
自转
相同
特点
理解
速率一定
向心加速度一定
绕行方向一定
相同
续表
7.近地卫星、同步卫星与地球赤道上的物体的联系与区别
项目
近地卫星
同步卫星
地球赤道上的物体
图示
C
A. B. C. D.
【解析】依题意可知卫星的绕行周期 ,对卫星根据牛顿第二定律可得,根据黄金代换式,联立解得 ,C正确。
4.[多选][鲁科版必修二P108第5题设问变式]羲和号是我国发射的首颗太阳探测科学技术试验卫星,用于实现太阳 波段光谱成像的空间探测,该卫星轨道为圆轨道,通过地球南、北两极上方,离地高度约为。如图所示,为羲和号,为地球同步卫星, 为赤道上随地球一起转动的物体。已知地球半径约为 ,下列说法正确的是( )
A
A.以的速度抛出的物体可能落在 点B.以的速度抛出的物体可能沿 轨道做圆周运动C.以的速度抛出的物体可能沿 轨道做圆周运动D.以的速度抛出的物体可能沿 轨道运动
【解析】物体抛出速度时必落回地面,可能落在点,物体抛出速度 时,物体刚好能不落回地面,绕地球做圆周运动,故A正确,B错误;当物体抛出速度 时,物体在抛出点做离心运动,但物体不能脱离地球引力束缚,故物体的运动轨迹为椭圆,可能沿 轨道运动,故C错误;当物体抛出速度时,物体会脱离地球引力束缚,不可能沿 轨道运动,故D错误。
CD
A.的发射速度大于第二宇宙速度 B.、、的线速度大小关系为 C.的向心加速度大于的向心加速度 D.的运行周期小于
第五章第二节:万有引力定律的应用

第五章第二节课堂导学案《万有引力定律的应用》第一课时高一( )班 姓名:____________ 号数:______________[学习目标]1、掌握研究天体运动的基本方法:万有引力作圆周运动的向心力2、初步了解火箭的发射、运行情况及三个速度3、回顾历史上万有引力定律在解决天体问题方面的运动4、学会运用万有引力定律解决简单的天体问题5、培养对太空的探索精神重点:掌握研究天体运动的基本方法:万有引力作圆周运动的向心力难点:学会运用万有引力定律解决简单的天体问题[学习过程]一、人造卫星与宇宙速度1、宇宙速度(1) 第一宇宙速度:v 1 =_________,又称_________ .(2) 第二宇宙速度:v 2 =_________,又称_________ .(3) 第三宇宙速度:v 3 = ________,又称_________ .2、人造卫星的工作原理卫星绕地球做匀速圆周运动时,_________提供向心力,即G Mm r 2=______=_____.其中r 为卫星到_____的距离.3、探索人造卫星的向心加速度、线速度、角速度、周期与半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⎪⎪⎩⎪⎪⎨⎧=________________________________________________________________________________________________2r Mm G 针对练习:1.我国1970年4月发射了第一颗人造地球卫星——“东方红”一号,是当时世界上第五个用自制火箭发射卫星的国家。
那么发射一颗绕地球运行的卫星的发射速度范围为( )A .v 发<7.9 km/sB .v 发≥7.9 km/sC .7.9 km /s ≤v 发<11.2 km/sD .v 发≥11.2 km/s2.高度不同的三颗人造卫星,某一瞬间的位置恰好与地心在同一条直线上,如图所示,则此时它们的线速度大小、角速度大小、周期和向心加速度的大小比较为()A.ω1>ω2>ω3B.v1<v2<v3C.T1=T2=T3D.a1>a2>a33、已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响。
第五章 万有引力定律及其应用

③若天体的卫星在天体表面附近环绕天体运动,可 3π 认为其轨道半径r等于天体半径R,则天体密度ρ= , GT2 可见,只要测出卫星环绕天体表面运动的周期T,就可估 测出中心天体的密度。
专 题 归 类 探 究
知 能 综 合 提 升
物理(广东专版)
目 录
第1单元
万有引力定律与航天
[例2]
扫 清 认 知 障 碍 解 密 高 频 考 点
1.地球同步卫星的特点 (1)轨道平面一定:轨道平面和 赤道 平面重合。 (2)周期一定:与地球 自转 周期相同,即T=24h= 86 400 s。
专 题 归 类 探 究
(3)角速度一定:与地球自转的角速度相同。
知 能 综 合 提 升
物理(广东专版)
目 录
第1单元
万有引力定律与航天
扫 清 认 知 障 碍 解 密 高 频 考 点
专 题 归 类 探 究
知 能 综 合 提 升
物理(广东专版)
目 录
第1单元
万有引力定律与航天
天体质量和密度的估算
扫 清 认 知 障 碍 解 密 高 频 考 点
(1)利用天体表面的重力加速度 g 和天体半径 R。 Mm gR2 由于 G R2 =mg,故天体质量 M= G ,天体密度 ρ M M 3g = V =4 =4πGR。 3 π R 3 (2)通过观察卫星绕天体做匀速圆周运动的周期 T 和
专 题 归 类 探 究
(3)两种卫星的轨道平面一定通过 地球的球心 。
知 能 综 合 提 升
物理(广东专版)
目 录
第1单元
万有引力定律与航天
[试一试]
扫 清 认 知 障 碍 解 密 高 频 考 点
2.由于通讯和广播等方面的需要,许多国家发射了地 球同步轨道卫星,这些卫星的 ( )
第五章:万有引力定律及引力常量的测定练习

《万有引力定律及引力常量的测定》同步练习高一( )班 姓名:____________ 号数:______________一、选择题1.关于行星绕太阳运动的下列说法中正确的是( )A .所有行星都在同一椭圆轨道上绕太阳运动B .行星绕太阳运动时太阳位于行星轨道的中心处C .离太阳越近的行星的运动周期越长D .所有行星的轨道半长轴的立方跟公转周期的平方的比值都相等2.行星绕太阳的运动轨道如果是圆形,它轨道半径R 的三次方与公转周期T 的二次方的比为常数,设R 3/ T 2=k ,则( )A .常数k 的大小只与太阳的质量有关B .常数k 的大小与太阳的质量及行星的质量有关C .常数k 的大小只与行星的质量有关D .常数k 的大小与恒星的质量及行星的速度有关3.宇宙飞船围绕太阳在近似圆形的轨道上运动,若轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是 ( )A .3年B .9年C .27年D .81年4.对于质量为m 1和质量为m 2的两个物体间的万有引力的表达式F =G m 1m 2r 2,下列说法正确的是( )A .公式中的G 是引力常量,是牛顿根据计算的需要人为规定的B .当两物体间的距离r 趋于零时,万有引力趋于无穷大C .m 1和m 2所受引力大小总是相等的D .两个物体间的引力总是大小相等、方向相反,是一对平衡力5.要使两物体间的万有引力减小到原来的1/4,下列做法不正确的是( )A .使两物体的质量各减小一半,距离不变B .使其中一个物体的质量减小到原来的1/4,距离不变C .使两物体间的距离增为原来的2倍,质量不变D .距离和质量都减为原来的1/46.两个大小相同的实心小铁球紧靠在一起时,它们之间的万有引力为F 。
若两个半径为原来2倍的实心大铁球紧靠在一起,则它们之间的万有引力为( )A .4FB .2FC .8FD .16F7.如图5-1-3所示,两个质量分布均匀的实心球,半径分别为r 1=0.40 m 、r 2=0.60 m ,质量分别为m 1=4.0 kg 、m 2=1.0 kg ,两球间距离为r =2.0 m ,则两球间相互引力的大小为( )A .6.67×10-11 NB .大于6.67×10-11图5-1-3 C .小于6.67×10-11 ND .不能确定二、填空题 8.1609年和1619德国的_____________先后提出了太阳系行星运行的三大定律;在总结前人研究成果的基础上,于___________1687年在《自然哲学的数学原理》中正式提出万有引力定律;1798年英国物理学家______________测出了精确度很高的引力常量G 。
第五章第二节:万有引力定律的应用 练习

《万有引力定律的应用》同步练习高一()班姓名:____________ 号数:______________一、选择题1、下列说法正确的是()A. 第一宇宙速度是人造卫星环绕地球运动的速度B. 第一宇宙速度是人造卫星在地面附近绕地球做匀速圆周运动所必须具有的速度C. 如果需要,地球同步通讯卫星可以定点在地球上空的任何一点D. 地球同步通讯卫星的轨道可以是圆的也可以是椭圆的2、关于环绕地球运转的人造地球卫星,有如下几种说法,其中正确的是()A. 轨道半径越大,速度越小,周期越长B. 轨道半径越大,速度越大,周期越短C. 轨道半径越大,速度越大,周期越长D. 轨道半径越小,速度越小,周期越长3、同步卫星是指相对于地面不动的人造地球卫星()A.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同值B.它可以在地面上任一点的正上方,但离地心的距离是一定的C.它只能在赤道的正上方,但离地心的距离可按需要选择不同值D.它只能在赤道的正上方,且离地心的距离是一定的4、若已知行星绕太阳公转的半径为r,公转的周期为T,万有引力恒量为G,则由此可求出()A.某行星的质量B.太阳的质量C.某行星的密度D.太阳的密度5、在轨道上运行的人造地球卫星的天线突然折断,天线将()A.做自由落体运动B.做平抛运动C.沿原轨道的切线运动D.相对卫星静止,和卫星一起在原轨道上绕地球运动6、一个半径比地球大3倍,质量是地球36倍的行星,它表面的重力加速度是地球表面的重力加速度的( )A.6倍B.18倍C.4倍D.13.5倍7.下列有关行星运动的说法中,正确的是()A.由 = v/r,行星轨道半径越大,角速度越小B.由a = r 2,行星轨道半径越大,行星的加速度越大 C.由a = v 2/r ,行星轨道半径越大,行星的加速度越小D.由G 2rMm = mv 2/R ,行星轨道半径越大,线速度越小 8.有质量相等的两个人造地球卫星A 和B ,分别在不同的轨道上绕地球做匀速圆周运动.两卫星的轨道半径分别为r A 和r B ,且r A >r B .则A 和B 两卫星相比较,以下说法正确的是( )A.卫星A 的运行周期较小B.卫星A 受到的地球引力较大C.卫星A 的动能较大D.卫星A 的机械能较大9.如图4—3—1所示,a 、b 、c 是在地球大气层外圆形轨道上运行的三颗人造卫星.下列说法中正确的是( )图4—3—1A.b 、c 的线速度大小相等,且大于a 的线速度B.b 、c 的向心加速度大小相等,且小于a 的向心加速度C.b 、c 运行周期相同,且小于a 的运行周期D.由于某种原因,a 的轨道半径缓慢减小,a 的线速度将变小10.某人造卫星绕地球做匀速圆周运动,设地球半径为R ,地面重力加速度为g ,下列说法错误的是( )A.人造卫星的最小周期为2πg R /B.卫星在距地面高度R 处的绕行速度为2/RgC.卫星在距地面高度为R 处的重力加速度为g /4D.地球同步卫星的速率比近地卫星速率小,所以发射同步卫星所需的能量较少二、填空题11、已知地球的质量为 M ,万有引力恒量为G ,地球半径为R .用以上各量表示,在地球表面附近运行的人造地球卫星的第一宇宙速度=υ .12、已知地球和月球的质量之比为81∶1,半径之比为4∶1,求地球和月球表面的重力加速度之比为___________,月球表面的重力加速度值为_________________。
2013高考一轮复习优秀课件:第五章万有引力定律及其应用第一单元 第2课时

2.卫星变轨问题
在卫星发射和回收的过程中卫 星轨道发生变化.那么,卫星在变 轨的过程中,在关键点上其线速度 是怎样变化的呢? 如下图所示,在发射神舟七号 的过程中,卫星从地面的P发射,首 先进入椭圆轨道Ⅰ,然后在Q点通 过瞬间增大卫星速度,让卫星进入 圆周轨道Ⅱ(这种情况叫做轨道维持, 即维持其不再被万有引力拉回,因 为按原来在Q的速度,其向心力将 小于万有引力).
答案:1.静止 2.(1)赤道 (2)自转周期
要点深化 1.地球同步卫星高度的推导
根据万有引力定律和牛顿第二定律 Mm 4π2 G 2=m 2 (R+h)① T自 R+h 设地球表面小物体的质量为m0.
3 gR2T2 自 7 ①②式解得 h= 2 -R≈3.6×10 m 4π
Mm0 G 2 =m0g② R
解析:因为b、c在同一轨道上运行,故其线速度大小、加 速度大小均相等.又b、c轨道半径大于a的轨道半径,由v = GM 知,Vb=Vc<Va,故A选项错;由加速度a=GM/r2可 r 知ab=ac<aa,故B选项错. 当c加速时,c受到的万有引力F<mv2/r,故它将偏离原轨道 做离心运动;当b减速时,b受到的万有引力F>mv2/r, 故它 将偏离原轨道做向心运动.所以无论如何c也追不上b,b 也等不到c,故C选项错.对这一选项,不能用v= GM 来分 r 析b、c轨道半径的变化情况. 对a卫星,当它的轨道半径缓慢减小时,在转动一段较短 时间内,可近似认为它的轨道半径未变,视为稳定运行, 由v= GM 知,r减小时v逐渐增大,故D选项正确. r 答案:D
考点三
宇宙速度
基础回顾 1.定义:所谓地球同步卫星,即是相对于地面________的
卫星.
2.地球同步卫星有“三定” (1)所有同步卫星的轨道平面一定和地球的________平面重 合. (2)所有同步卫星转动的周期一定与地球的________相同. (3)所有同步卫星离地面的高度h一定,速度v一定.
22 第五章 第1讲 开普勒定律与万有引力定律

第1讲 开普勒定律与万有引力定律
内容 索引
➢考点一 开普勒定律的理解 ➢考点二 万有引力定律的理解 ➢考点三 天体质量和密度的计算 ➢聚焦学科素养 拓展视野提能力——“填补法”求解万有引力 ➢课时精练(二十二) 开普勒定律与万有引力定律
01
考点一 开普勒定律的理解
(基础自研类)
√A.在北极地面称量时,弹簧测力计读数为 F0=GMRm2
B.在赤道地面称量时,弹簧测力计读数为 F1=GMRm2
√C.在北极上空高出地面 h 处称量时,弹簧测力计读数为 F2=G(RM+mh)2
D.在赤道上空高出地面 h 处称量时,弹簧测力计读数为 F3=G(RM+mh)2
AC [在北极地面称量时,物体不随地球自转,万有引力等于重力,
则有 F0=GMRm2 ,故 A 正确;在赤道地面称量时,万有引力等于重力
加上物体随地球一起自转所需要的向心力,则有
Mm F1<G R2
,故
B
错
误;在北极上空高出地面 h 处称量时,万有引力等于重力,则有 F2
=G(RM+mh)2 ,故 C 正确;在赤道上空高出地面 h 处称量时,万有
引力大于重力,则弹簧测力计读数
Gmr1m2 2 计算物体间的万有引力。( × ) (3)地面上的物体所受地球的万有引力方向一定指向地心。√( ) (4)两物体间的距离趋近于零时,万有引力趋近于无穷大。(×)
【重难诠释】 1.万有引力与重力的关系 地球对物体的万有引力F表现为两个效果:一是产生重 力mg,二是提供物体随地球自转的向心力Fn,如图所示。 (1)在赤道上:GMRm2 =mg1+mω2R。
的运行时间为公转周期的12 ,由于从冬至到春分地球的运行速度大于 从春分到夏至地球的运行速度,可知从冬至到春分的运行时间小于从
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章万有引力
第一节行星的运动
专题1:开普勒三定律
专题2:万有引力定律公式的推导
第二节万有引力定律及应用
专题1:重力的产生
专题2:近地卫星和同步卫星
第三节天体运动
专题1:宇宙速度
专题2:变轨
专题3:双星和三星问题
专题4:拉格朗日点
一:高考统一考试大纲(2019)
万有引力定律:万有引力定律及其应用Ⅱ
环绕速度Ⅱ
第二宇宙速度和第三宇宙速度Ⅰ
航天技术的发展和宇宙航行Ⅰ
二:思维导图
第一节行星的运动
专题一:开普勒三定律
一、基本内容
1.开普勒第一定律:所有行星绕太阳运行的轨道都是_______,太阳处在所有椭圆的_______上.
2.开普勒第二定律:对于每一个行星,太阳和行星的连线在相等的时间内扫过的_______相等.
3.开普勒第三定律:所有行星的半长轴的_____次方跟公转周期的______的比值都相等。
注意:对同一星系中的所有行星,k值____等;对不同星系间的两颗行星,k值____等.也就是说,只有对于同一个中心天体,其k值才是相同的。
课堂习题
【题1】证明:由开普勒第二定律可知v1R1=v2R2,
【题2】把火星和地球绕太阳运行的轨道视为圆周。
由火星和地球绕太阳的周期之比可求得( ) A.火星和地球的质量之比B.火星和太阳的质量之比
C. 火星和地球到太阳的距离之比
D.火星和地球绕太阳运行速度大小之比
【题3】如图所示,一颗卫星绕地球做椭圆运动,运动周期为T,图中虚线为卫星的运行轨迹,A、B、C、D是轨迹上的四个位置,其中A距离地球最近,C距离地球最远。
B和D点是弧线ABC和ADC
的中点,下列说法正确的是()
A.卫星在C点的速度最大
B.卫星在C点的加速度最大
C.卫星从A 经D到C点的运动时间为T/2
D.卫星从B经A到D点的运动时间为T/2
【题4】已知木星的公转半径大约是地球公转半径的5倍,求木星的周期大约是多少?
专题二:万有引力定律公式的推导
开普勒发现,所有行星绕太阳运动的轨道的半长轴的三次方跟它的公转周期的二次方的比值都
相等,这个比值叫做开普勒常数,此常数与中心天体的质量成正比,即。
理论证明,开普勒定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动。
如图所示,研究问题时可将地球
认为是质量分布均匀的正球体,已知地球质量为M,半径为R:
(1)若卫星一围绕地球做匀速圆周运动,距离地心为r,周期为T,请推导万有引力定律,并写出
万有引力常量G的表达式。
(2)若卫星二绕地球运动的轨迹为椭圆,已知其距地表最近点距离为r1,距地
表最远点距离为r2,求卫星二绕地球运行的周期T0.
(3)若在距离地球表面高度为L的位置静止释放一个小物体m,忽略大气层阻
力,且L比R大很多,推测此物体落到地球的时间。