钢筋混凝土结构设计案例
钢筋混凝土(结构设计原理)T型截面梁算例
钢筋混凝土T形梁桥主梁设计资料⒈某公路钢筋混凝土简支梁桥主梁结构尺寸。
标准跨径:20.00m;计算跨径:19.50m;主梁全长:19.96m;梁的截面尺寸如下图(单位mm):⒉计算内力⑴使用阶段的内力跨中截面计算弯矩(标准值)结构重力弯矩:M1/2恒=759.45kN-m;汽车荷载弯矩:M1/2汽=697.28kN-m(未计入冲击系数);人群荷载弯矩:M1/2人=55.30kN-m;1/4跨截面计算弯矩(设计值)M d,1/4=1687kN-m;(已考虑荷载安全系数)支点截面弯矩M d0=0,支点截面计算剪力(标准值)结构重力剪力:V0恒=139.75kN;汽车荷载剪力:V0汽=142.80kN(未计入冲击系数);人群荷载剪力:V0人=11.33kN;跨中截面计算剪力(设计值)跨中设计剪力:V d=84kN(已考虑荷载安全系数);,1/2主梁使用阶段处于一般大气条件的环境中。
结构安全等级为二级。
汽车冲击系数,汽车冲击系数1+μ=1.292。
⑵施工阶段的内力简支梁在吊装时,其吊点设在距梁端a=400mm处,而梁自重在跨中截面的弯矩标准值M k=505.69kN—m,吊点的剪力标准值V0=105.57kN。
,1/2⒊材料主筋用HRB335级钢筋f sd=280N/mm2;f sk=335N/mm2;E s=2.0×105N/mm2。
箍筋用R235级钢筋f sd=195N/mm2;f sk=235N/mm2;E s=2.1×105N/mm2。
采用焊接平面钢筋骨架混凝土为30号f cd=13.8N/mm2;f ck=20.1N/mm2;f td=1.39N/mm2;f tk=2.01N/mm2;E c=3.00×104N/mm2。
作用效应组合主梁正截面承载力计算主梁斜截面承载力计算全梁承载力校核施工阶段的应力验算使用阶段裂缝宽度和变形验算纵向构造钢筋、架立钢筋及骨架构造钢筋长度计算钢筋明细表及钢筋总表第1章 作用效应组合§1.1 承载力极限状态计算时作用效应组合 根据《公路桥涵设计通用规范》(JTG D60—2004)4·1·6条规定:按承载力极限状态计算时采用的基本组合为永久作用的设计值效应与可变作用设计值效应相组合,其效应组合表达式为:)(211100∑∑==++=nj QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ跨中截面设计弯矩M d =γG M 恒+γq M 汽+γq M 人=1.2×759.45+1.4×1.292×697.28+1.4×55.30=2250.00kN -m 支点截面设计剪力V d =γG V 恒+γG1V 汽+γG2V 人=1.2×142.80+1.4×1.292×139.75+1.4×11.33=440.00kN §1.2 正常使用极限状态设计时作用效应组合 根据《公路桥涵设计通用规范》(JTG D60—2004)4·1·7条规定:公路桥涵结 构按正常使用极限状态设计时,应根据不同的设计要求,分别采用不同效应组合 ⑴作用效应短期组合作用效应短期组合为永久作用标准值效应与可变作用频遇值效应相组合,其效应 组合表达式为:∑∑==+=nj Qjk j mi Gik sd S S S 111ψM sd =M gk +ψ11M 11+ψ12M 12=759.45+0.7×697.28+1.0×55.30=1302.85kN -m ⑵作用长期效应组合作用长期效应组合为永久作用标准值效应与可变作用准永久值效应相组合,其效应组合表达式为:∑∑==+=nj Qjk j mi Gik ld S S S 1211ψM ld =M gk +ψ21M 11+ψ22M 12=759.45+0.4×697.28+0.4×55.30=1060.48kN -m第2章 主梁正截面承载力计算§2.1 配筋计算⑴翼缘板的计算宽度b ′f根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)第4·2·2条规定:T 形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。
混凝土结构及砌体结构课程设计--某轻工仓库现浇钢筋混凝土单向板肋形楼盖
混凝土结构及砌体结构课程设计--某轻工仓库现浇钢筋混凝土单向板肋形楼盖钢筋混凝土结构设计任务书一、 设计题目某轻工仓库现浇钢筋混凝土单向板肋形楼盖。
二、设计资料1、 该仓库平面图如图所示。
外墙厚370mm ,外墙轴线距外墙边缘250mm ,柱截面尺为400×400mm 。
外楼梯为独立设置与主体结构脱开。
2、 楼盖各构件在墙上的支承长度:板为120mm ,次梁为240mm ,主梁为370mm 。
3、 楼面做法:面层为30mm 细石混凝土,板底为15mm 厚混合砂浆粉刷。
4、 楼面活荷载标准值:6.0, 7.0, 7.5 kN/m 2 。
5、 材料选用: (1) 混凝土:C20;(2) 钢筋:梁中受力钢筋为HRB335级,其它为HOB235级。
三、设计内容 1、 结构布置; 2、 板设计; 3、 次梁设计; 4、 主梁设计; 5、 结构施工图绘制。
四、设计基本要求1、 板及次梁按考虑塑性内力重分布法进行内力计算;主梁按弹性理论进行内力计算。
主梁做抵抗弯矩图。
2、 设计计算正确。
3、 计算书层次分明,简图齐全,书写整齐,并装订成册。
4、 图纸绘制符合规范,图面整洁,达到施工图要求。
五、设计成果 1、 设计计算书1份; 2、 楼盖配筋图1份。
六、时间安排参考文献:1.《砼结构》教材;2.《砼设计规范》 GB50010-2002;3.《建筑结构荷载规范》GB5009-2002 4.《钢筋砼设计手册》5.《钢筋砼构造手册》6.《建筑制图标准》7.《结构制图标准》楼梯1L2附图1 表1现浇钢筋混凝土单向板肋梁楼盖设计计算书某多层工业建筑楼盖平面图1-14所示,采用钢筋混凝土现浇楼盖,有关设计资料如下:1、设计资料总平面图尺为为18m×24m,四周墙体承重,中间柱承重,轴线距离墙体那边呢缘120,柱的截面为300×300.板伸入墙内120,次梁伸入墙内240,主梁伸入墙内370.(2)楼面做法为:25厚水泥砂浆面层;钢筋混凝土现浇板;梁、板底混合砂浆抹灰20厚。
钢筋混凝土房屋结构的抗震设计理念与案例分析
钢筋混凝土房屋结构的抗震设计理念与案例分析钢筋混凝土是一种常用的建筑材料,其优势在于抗震性能良好。
在钢筋混凝土房屋结构的抗震设计中,应当遵循一定的设计理念和原则,以确保建筑物在地震发生时能够保持结构的完整性和稳定性。
本文将介绍钢筋混凝土房屋结构抗震设计的理念,并通过案例分析来展示其实际应用。
首先,钢筋混凝土房屋结构抗震设计的理念之一是“延性设计”。
延性设计的目标是使结构在地震发生时能够发生塑性变形,从而吸收地震能量,减小结构的应力和变形。
延性设计可以通过增加结构的抗弯和抗剪能力来实现,例如增加柱子和梁的截面尺寸、采用合适的纵向和箍筋布置等。
其次,钢筋混凝土房屋结构抗震设计的理念之二是“强度设计”。
强度设计的目标是确保结构在地震发生时能够抵抗地震力的作用而不发生破坏。
强度设计主要考虑结构的承载能力,包括柱子、梁、楼板等构件的强度和刚度。
强度设计需要根据建筑物的使用要求和地震烈度等级确定结构的设计荷载,并根据相应的设计规范确定构件的尺寸和钢筋配筋等。
另外,钢筋混凝土房屋结构抗震设计的理念之三是“韧性设计”。
韧性设计的目标是使结构在发生地震时能够发生可控的破坏,使其逐渐失去承载能力,从而保证人员的安全撤离。
韧性设计可以通过在结构中设置适当的弱部位,如剪力墙和剪力楼板,以吸收地震能量并减小地震作用的影响。
同时,韧性设计还包括合理的构件连接和构造细节设计,以增加结构的整体韧性。
钢筋混凝土房屋结构抗震设计理念的案例分析之一是杭州湾大桥。
杭州湾大桥是我国一座重要的公路桥梁,为了保证大桥在地震发生时的抗震性能,设计人员采用了延性设计和强度设计的原则。
在结构设计中,对主梁和桥塔等关键部位进行了抗震计算和分析,并根据设计规范确定了合理的截面尺寸和钢筋配筋。
通过实际的地震模拟试验,证明了杭州湾大桥具有较好的抗震能力,为类似结构的设计提供了有益的经验。
另一个案例是台北101大楼。
作为世界第一高楼,台北101大楼采用了先进的抗震设计技术,以保证其在强地震条件下的安全。
钢结构与混凝土结构的组合应用案例分析
钢结构与混凝土结构的组合应用案例分析随着建筑行业的发展和技术的不断进步,钢结构与混凝土结构的组合应用越来越受到人们的关注。
本文将通过分析几个实际案例,探讨钢结构与混凝土结构的组合应用在建筑领域中的优势和潜力。
1. 引言随着城市化进程的加快,建筑结构的设计和施工要求越来越高,如何提高建筑的安全性、经济性和可持续性成为了建筑设计师面临的重要课题。
钢结构和混凝土结构各有其优势,而将两者结合起来,则可以发挥各自的优点,提高建筑结构的性能。
2. 案例一:钢混凝土组合框架在高层建筑中,钢混凝土组合框架的应用越来越广泛。
例如,在某高层住宅项目中,设计师采用了钢混凝土组合框架结构。
在该项目中,钢柱和钢梁承担了大部分的荷载,而混凝土承担了一部分荷载,并提供了抗震和刚度的增强。
分析该案例可以发现,钢结构的优势在于其轻巧、高强度以及施工速度快,而混凝土结构则具有良好的耐久性和抗震性能。
通过将两者组合在一起,可以充分发挥其优势,从而提高建筑结构的整体性能。
3. 案例二:钢筋混凝土桥梁钢结构与混凝土结构的组合应用不仅局限于建筑领域,在桥梁工程中也有广泛的应用。
以某大型跨海桥工程为例,设计师将钢材与混凝土相结合,在桥梁的主体结构中采用钢筋混凝土桥梁体系。
这种组合应用在桥梁工程中具有明显的优势。
钢结构可以提供足够的刚度和抗震性能,而混凝土结构可以增强桥梁的耐久性和荷载承载能力。
此外,由于钢结构的施工速度快,可以有效缩短工期,提高施工效率。
4. 案例三:混合结构的商业建筑在商业建筑领域,钢结构和混凝土结构的组合应用也有很多成功案例。
例如,在某大型购物中心项目中,设计师采用了混合结构,既使用了钢结构,也使用了混凝土结构。
通过这种组合应用,可以实现柱网空间的灵活布置和大跨度的设计。
此外,钢结构可以提供更好的开间高度和空间利用效率,而混凝土结构则能够提供良好的隔声和隔热性能。
5. 总结与展望通过对几个实际案例的分析,可以看出钢结构与混凝土结构的组合应用在建筑领域中具有广阔的市场前景和潜力。
多层钢筋混凝土框架结构设计实例
多层钢筋混凝土框架结构设计实例.pdf 范本1:章节标题:摘要正文:本文档为多层钢筋混凝土框架结构设计实例,主要介绍了该结构的设计方法及相关要素,供相关设计人员参考。
章节标题:引言正文:本章介绍了本文档的目的和背景,以及多层钢筋混凝土框架结构设计的重要性和应用范围。
章节标题:设计基础正文:本章介绍了多层钢筋混凝土框架结构设计的基本原理和基础知识,包括材料性能、荷载计算、结构架构等。
章节标题:结构分析正文:本章主要介绍了多层钢筋混凝土框架结构的静力分析方法和动力分析方法,包括等效静力法、模态叠加法等。
章节标题:结构设计正文:本章介绍了多层钢筋混凝土框架结构的详细设计过程,包括截面设计、节点设计、筋配设计等。
章节标题:施工要点正文:本章介绍了多层钢筋混凝土框架结构的施工要点,包括材料选用、施工技术、质量控制等。
章节标题:工程实例正文:本章将通过一个实际工程案例展示多层钢筋混凝土框架结构的设计过程和施工要点。
章节标题:总结正文:本章对多层钢筋混凝土框架结构设计进行总结,并提出了进一步的研究和改进方向。
附件:本文档涉及附件,请参阅附件部分。
法律名词及注释:1. 多层钢筋混凝土框架结构:指由多层钢筋混凝土构件构成的建筑结构形式,具有良好的抗震性能和承载能力。
2. 设计方法:指用于多层钢筋混凝土框架结构设计的理论和工程经验总结而成的方法论,用于指导设计过程和设计结果。
3. 荷载计算:指根据建筑使用性质和设计要求对多层钢筋混凝土框架结构所受到的各种荷载进行计算和分析的过程。
4. 结构架构:指多层钢筋混凝土框架结构的总体布置形式和层间结构组织方式,包括柱、梁、板等构件的位置和尺寸。
5. 静力分析:指在假设结构静止不动的情况下对多层钢筋混凝土框架结构的受力特性进行分析和计算的方法。
6. 动力分析:指考虑结构在地震作用下的动态响应,对多层钢筋混凝土框架结构的受力特性进行分析和计算的方法。
7. 截面设计:指根据多层钢筋混凝土框架结构各个截面处的受力情况,确定其合适的截面尺寸和配筋形式。
某多层厂房现浇钢筋混凝土框架结构毕业设计
某多层⼚房现浇钢筋混凝⼟框架结构毕业设计某多层⼚房现浇钢筋混凝⼟框架结构毕业设计⽬录绪论 (1)第⼀章设计说明 (2)第⼀节⼯程概况 (2)第⼆节建筑材料选择 (2)第⼆章结构设计 (3)第⼀节布置及梁柱截⾯初估 (3)第⼆节框架计算简图及梁柱刚度计算 (4)第三章荷载计算 (6)第⼀节竖向荷载计算 (6)第⼆节风荷载计算 (9)第三节⽔平地震作⽤的计算 (12)第五节重⼒荷载代表值作⽤下的计算 (19)第四章内⼒组合 (25)第⼀节⽀座边缘处的内⼒值的计算 (25)第⼆节组合前内⼒的调整 (28)第五章配筋计算 (39)第⼀节框架柱和梁的截⾯设计 (39)第⼆节板的计算 (46)第三节楼梯的计算 (48)第六章基础设计 (50)第⼀节确定基础类型和尺⼨ (50)第⼆节内⼒分析 (50)第三节配筋计算 (52)第七章施⼯组织设计 (55)第⼀节施⼯准备⼯作 (55)第⼆节施⼯部署 (57)第三节主要项⽬施⼯⽅法 (57)第四节技术质量、安全⽣产、⽂明施⼯措施 (59)第七章结论 (61)致谢 (62)参考⽂献 (63)绪论毕业设计是本专业教育培养的重点,也是毕业前的综合学习阶段,是对所学专业知识的深化、拓宽,是对⼤学期间所学专业知识的全⾯总结。
通过毕业设计,可以将以前学过的知识重温回顾,对疑难知识再学习,对提⾼个⼈的综合知识结构有着重要的作⽤。
通过毕业设计,使我们在资料查找、设计安排、分析计算、施⼯图绘制、⼝头表达等各个⽅⾯得到综合训练,具备从事相关⼯作的基本技术素质和技能。
在我国,多层建筑结构以钢筋混凝⼟结构为主。
多层建筑的结构设计有两⽅⾯的特质:⼀是风荷载和地震荷载等⽔平⽅向作⽤引起的内⼒和位移已成为结构设计的控制因素;⼆是结构抗侧移刚度是结构设计的关键因素。
结构不仅要满⾜承载⼒(强度)的要求,同时还要把结构在⽔平荷载下的位移控制在⼀定范围内,所以多层建筑结构需要有较⼤的抗侧移刚度。
框架结构体系的主要特点是平⾯布置⽐较灵活,能提供较⼤的室内空间,是较常⽤的结构体系。
(建筑工程)案例分析-超经典
(建筑⼯程)案例分析-超经典案例1A4210331.背景图1A421033-1是某项⽬的钢筋混泥⼟⼯程施⼯⽹络计划。
其中,⼯作A、B、D是⽀模⼯程;C、E、G是钢筋⼯程;F、H、I 是浇筑混泥⼟⼯程。
箭线之下是持续时间(周),箭线之上是预算费⽤,并列⼊了表1A421033中。
计划⼯期12周。
⼯程进⾏到第9周时,D⼯作完成了2周,E⼯作完成了1周,F⼯作已经完成,H⼯作尚未开始。
2.问题(1)请绘制本例的实际进度前锋线。
(2)第9周结束时累计完成造价多少?按挣值法计算其进度偏差是多少?(3)如果后续⼯作按计划进⾏,试分析上述实际进度情况对计划⼯期产⽣了什么影响?(4)重新绘制第9周⾄完⼯的时标⽹络计划。
隐藏分析与答案(1)绘制第9周的实际进度前锋线根据第9周的进度检查情况,绘制的实际进度前锋线见图1A421033-2,现对绘制情况进⾏说明如下:为绘制实际进度前锋线,⾸先将图1A421033-1般到了时标表上;确定第9周为检查点;由于D⼯作只完成了2周,故在该箭线上(共3周)的2/3处(第8周末)打点;由于E ⼯作(2周)完成了1周,故在1/2处打点;由于F⼯作已经完成,⽽H⼯作尚未开始,故在H⼯作的起点打点;⾃上⽽下把检查点和打点连起来,便形成了图1A421033-2的实际进度前锋线。
(2)根据第9周检查结果和表1A421033中所列数字,计算已完成⼯程预算造价是:A+B+2/3D+1/2E+C+F=12+10+2/3×12+1/2×22+25+9=75万元到第9周应完成的预算造价可从图1A421033-2中分析,应完成A、B、D、E、C、F、H,故:A+B+D+E+C+F+H=12+10+12+22+25+9+8=98万元根据据值法计算公式,进度偏差为:SV=BCWP-BCWS=75-98=-23万元,即进度延误23万元。
进度绩效指数为:SPI=BCWP/BCWS=75/98=0.765=76.5%,即完成计划的76.5%。
钢筋混凝土伸臂梁设计的实用案例分析
钢筋混凝土伸臂梁设计的实用案例分析钢筋混凝土伸臂梁是一种常用的结构形式,在建筑工程中起到承重和支撑的重要功能。
本文将通过分析一个实际的设计案例,探讨钢筋混凝土伸臂梁设计的实用性和相关要点。
一、项目概述本案例是某大型商业综合体的主体结构设计,其中包括多层办公楼和商业中心。
伸臂梁被用于连接办公楼和商业中心之间的通道,起到连接和承重的作用。
设计目标是保证伸臂梁的安全可靠,且符合建筑美学要求。
二、荷载计算在进行伸臂梁设计之前,首先需要对荷载进行计算。
根据建筑设计规范和实际使用要求,我们考虑了以下几种主要荷载:自重荷载、活载、风载和地震作用。
通过结构分析软件进行模拟计算,得出了各个方向上的荷载值。
三、材料选择钢筋混凝土伸臂梁由混凝土和钢筋组成,因此在设计过程中需要选择合适的材料。
混凝土的强度等级和配合比需要根据结构设计要求确定。
而钢筋的选用则要考虑到强度、粘结性能和耐久性等因素,以确保梁的整体性能。
四、截面设计伸臂梁的截面设计是关键的一步。
设计时需要根据荷载计算结果,确定适合的截面尺寸和形状。
常见的截面形状包括矩形、T型、I型等。
在实际设计中,我们采用了矩形截面,以满足承载能力和美观度的要求。
五、配筋设计钢筋的布置对伸臂梁的强度和刚度起着至关重要的作用。
根据截面设计的计算结果,我们进行了配筋设计。
通过合理布置主筋和箍筋,使其能够承受荷载并满足强度和变形要求。
具体的配筋参数根据相关规范和实验数据确定。
六、施工工艺伸臂梁的施工工艺直接影响到结构的质量和安全性。
在实际施工中,我们遵循了以下几个方面的要求:首先,严格按照设计图纸和相关规范进行施工;其次,保证模板和钢筋的准确安装;最后,控制混凝土的浇筑和养护过程,确保混凝土的强度和密实性。
七、验收和监测设计完成后,伸臂梁需要进行验收和监测。
验收过程包括检查结构的几何尺寸、表面质量等,以确保符合设计要求。
同时,还需要进行结构监测,包括运用传感器监测变形、应力和裂缝等,以了解结构的工作状态并及时采取相应的维修措施。
钢筋混凝土结构设计实例
钢筋混凝土结构设计实例标题:钢筋混凝土结构设计实例——城市地铁站第一部分:引言在现代城市化进程中,地铁系统作为一种高效、便捷的公共交通工具,已经成为许多大城市不可或缺的一部分。
作为地铁站的重要组成部分,钢筋混凝土结构在其设计中起到了关键作用。
本文将以一个城市地铁站的钢筋混凝土结构设计实例为题,以人类视角进行描述,以期使读者感受到设计师的思考和创作过程。
第二部分:地铁站设计背景城市地铁站作为重要的交通枢纽,必须承受巨大的人流压力和自然灾害风险。
因此,对其结构设计的要求非常高。
在这个实例中,我们将以一座位于地震频发地区的地铁站为例,展示钢筋混凝土结构的应用。
第三部分:地铁站结构设计3.1. 设计目标在本实例中,设计师的目标是确保地铁站的结构在地震发生时能够保持稳固,并能承受大量的人流负荷。
同时,为了提高地铁站的使用寿命和可维护性,设计师还需要考虑材料的选择和防水等问题。
3.2. 结构设计方案设计师采用了钢筋混凝土框架结构作为地铁站的主要结构形式。
框架结构通过将柱和梁连接在一起,形成一个坚固的整体,能够有效地分担地震力和人流荷载。
此外,设计师还在地铁站的地下部分增设了抗浮层,以防止地铁站在地下水位上升时发生浮动。
3.3. 材料选择为了满足地铁站的使用寿命和可维护性的要求,设计师选择了高强度混凝土作为结构材料,并在其中掺入了适量的粉煤灰,以提高其耐久性和抗裂性能。
此外,设计师还使用了高强度钢筋,以增加结构的强度和稳定性。
第四部分:结构施工和维护4.1. 施工过程在施工过程中,设计师采用了先进的施工技术和设备,确保了地铁站结构的准确性和稳定性。
同时,设计师还注意了施工过程中的质量控制和安全防护,以保证施工质量和工人的安全。
4.2. 维护措施为了延长地铁站的使用寿命,设计师还制定了详细的维护计划。
这包括定期检查和维修结构的裂缝和腐蚀,并采取防水措施,以防止地下水渗入地铁站。
第五部分:结论通过对这个城市地铁站钢筋混凝土结构设计实例的描述,我们可以看到设计师在面对地震和人流压力时的思考和创作过程。
单层工业厂房施工组织设计案例(钢筋混凝土结构)
某单层工业厂房施工组织设计默认分类2008-01-18 09:36:31 阅读1807 评论5 字号:大中小`(一)工程概况新建总装配车间位于原厂区之东,小河之南,民房群之北,东面为农田,该地地势平坦,现场平面布置见图1,拟建车间的北面与西面有永久道路,可供施工使用,附近有水电可供使用。
(1)此新建装配车间为装配式钢筋砼,二跨单层工业厂房,横向54m,纵长为6.0Ⅹ17=102.0m,车间围护结构为预制钢筋砼基础梁,24cm清水砖墙,水泥砂浆勾缝,水泥砂浆粉勒脚和砼散水,内墙喷白灰水两道,两道连系梁为预制构件,层面采用二毡三油一砂油毡屋面,地面分格浇注的混凝土地坪。
(2)水文气候条件:基础土方挖土为二级土(或称混凝土),设计标高以下可见坚硬土层,该厂地址在武汉地区,4.5月份为雨季,12月5日到3月2日共计87天连续5天室外平均气温低于+50C,故在期间应考虑冬季施工,地下水位离地表3m以下。
(3)物资供应相关条件:钢材,木材和水泥和地方材料均为按工程需要组织供应,钢筋及模板门窗制作等均在预制厂制作,吊车梁、天窗架和天窗端壁在现场预制均制作完成,大型屋面板、天沟板梁由公司预制厂预制供应,柱屋架在现场就地预制,现场设临时工棚和钢筋棚,施工单位现场有W1---200型履带式起重机,起重机性能符合施工要求,起重机外型有关尺寸,起重机尾部到回转中心最大距离A=4.5m,起重臂下端剿支座中心离地面高度E=2.1m,起重机尾部压配重离地面高度D=1.9m,履带两外侧距离H=4.05m。
4.基础工程:开挖深度2m,基坑采用0.25立方米斗容量的反产挖土机开挖,坑底及边角采用人工进行修整,人工开挖量约占总量的10%左右。
二.施工方案及方法总装配车间计划于9月1日开工,历时八个月,次年五月份竣工,该事件分配基础施工工程约占20%,预制工程约占30%,吊装工程约占30%,其他工程约占20%,根据施工条件,将土建施工分为四个阶段:第一阶段:基础施工,因地下水位较低,要求速度快,流水施工。
工程结构设计案例
工程结构设计案例讲授:周卫民案例一:单块板设计(简支板).建筑设计•结构设计1•选材料:混凝土:C20, f c 9.6 N mm2J 2钢材:i级,f y 210N mm2 •荷载计算①恒荷载:g k A 钢筋混凝土 1.2 0.15 25 4.5 kN mg G g k 1.05 4.5 4.73kN m②活荷载:q面3kN m2面q k q k b 3 1.2 3.6kNmq Q q k 1.2 3.6 4.32kN/m3•内力计算,画内力图计算简图.启闭门力知:G 10kNQ d G 1.5 10 15kN4•配筋计算,画配筋图,钢筋表b fc A s f y受弯构件公式:KM max b f c h o — 21 2 0.1429 0.1549 0.85 b 0.522(不超筋破坏)14 (A s 1077 mm 2,可抛大 10% ~ 50%)g q l Q 9.05 3 1521.08kN2 2 2 2 i 2 g q l Ql 9.05 32 15 321.43kN m8 4 8 4 max max 拟定: KM max 2「a s 25mm , h ° h a s 150 25 125mmbh ° f c 侯響 106 0.1429 1200 1252 9.6h 0 0.1549 125 19.36mmb fc 1200 空3 1062.03mm 21仁一s 选钢筋:(查表)A s验算含钢量:bh0 1200 1250.78% min 0.2%(满足含钢量,不欠筋)2 6@250 113mm分布钢筋的选择:2A s分15% A s 161.55mm2取最大值6 @170( A^ 166mm )<—06^1707014lj钢筋表:构件简图X亡(用氐亶(mm)总长(w)辛韋(tg/m)总耄W 板13135721.91,2126.50 20613251923.30.2225,1706(^170案例二:单块板设计(悬臂板).建筑设计二•结构设计210N mm22 •荷载计算拟定:a s 20mm, h0 h a s 100 20 80mm1.选材料:混凝土:C20, f c 9.6 N mm2①恒荷载:g②活荷载:q kq3•内力计算,画内力图133Bmax4 •配筋计算,画配筋图,钢筋表面q kg k0.5kN m2G g k 1.05 2.5 2.625kN m0.1 1 25 2.5 kN m面q k b 0.5 1 0.5kN mA 钢筋混凝土Q q k 1.2 0.5 0.6 kN mg q l 3.225 1.325 4.27kN2 2g q l 3.225 1.325 2.83kN m23 22^Amax2钢材:.1 2 0.0553 0.0569 0.85 b0.522(不超筋破坏)七曳(mm)喂数总七Cm)总豐%)板①122040」1751445101146.0039557J57 199500620025612C.202222E炭L __ .—1KM max 「2 2・83 1060.0553bhff c 1000 8029.6h00.0569b f c80 4.552mm1000 4.552 9.6208.09mm2108@200(A s 251mm2)选钢筋:(查表)受力钢筋:验算含钢量:分布钢筋的选择:钢筋图:A s分A S分6@250 113mm22取最大值6@250(A分113mm )215%A s 15% 251 37.65mm100% 100%1000 80A sbh°2510.31% min06@25008(2200 106@25O0.2% (满足含钢量,不欠筋)1 ,12 s案例三:单块板设计(简支板)三视图:二•结构设计1.选材料:混凝土:C20,f c 9.6 N mm2210N mm2钢材:2 •荷载计算①恒荷载: g k A 钢筋混凝土0.5 0.25 25 3.125 kN m3.125 3.28kN mG g k 1.05②砌体荷载:砌20 kN m20 2 0.5 20 kN m3•内力计算,画内力图lUHiiriJUuuiuiimniuuiiiuuuuu2.204 •配筋计算,画配筋图,钢筋表拟定:a s 20mm , h 0 h a s 250 20 230mm1 J —2:11 2 0.0666 0.0690 0.85 b 0.522(不超筋破坏)\ /kJh o 0.0690 230 15.87mm.b f c 500 15.87 9.62A s362.74mmf [y210选钢筋:(查表)受力钢筋 :4 12(A s452 mm 2)A s452验算含钢量: s100%100%bh n500 2300.39% min0.2%(满足含钢量,不欠筋)Q 图(kN )max23.81 2.2225.61k Nmax23.81 2.22814.09kN mKM maxbh。
钢筋混凝土结构设计与施工实例
钢筋混凝土结构设计与施工实例一、前言钢筋混凝土结构是目前建筑工程中最常用的结构形式之一。
在结构设计和施工过程中,需要考虑到各种因素,包括结构的安全性、经济性、美观性等方面。
本文将以一个实际的工程为例,介绍钢筋混凝土结构的设计和施工过程。
二、工程概况本工程位于某市区,总建筑面积约为10000平方米,分为地上五层和地下两层。
建筑结构形式为钢筋混凝土框架结构。
地下两层为地下车库,地上五层为商业、办公和住宅用途。
设计目标为满足建筑物的安全性、经济性和美观性要求。
三、结构设计1.结构类型本工程采用钢筋混凝土框架结构,主要包括柱、梁和板。
柱采用方形截面,梁采用矩形截面,板采用一般厚度。
根据建筑物的使用要求,结构采用了不同的配筋方案,以满足不同的荷载要求。
2.设计荷载根据国家标准《建筑结构荷载规范》(GB 50009-2012)和本地区的气象和地质条件,确定了设计荷载。
其中,重要活载荷载为5kN/m2,特殊活载荷载为10kN/m2,风荷载为0.6kN/m2,地震作用按照地区烈度为7度计算。
3.结构分析采用ETABS软件进行结构分析。
首先,进行静力分析,计算出结构的内力和变形。
然后,进行动力分析,计算出结构在地震作用下的反应谱。
最后,对结构进行验算,确保结构的稳定性和安全性。
4.结构设计优化根据分析结果和验算结果,对结构进行优化设计。
主要采用了以下措施:(1)增加柱和梁的截面尺寸,以提高结构的承载能力。
(2)采用预应力混凝土技术,提高结构的刚度和稳定性。
(3)增加结构的节点连接强度,以提高结构的整体稳定性。
四、施工实例1.基础施工首先,进行地基处理和基础施工。
地基处理包括土质分析、压实处理和加固处理。
基础施工包括基础开挖、基础混凝土浇筑和基础验收。
2.结构施工(1)柱和梁的施工柱和梁的施工按照设计图纸进行。
首先,进行钢筋加工和预制。
然后,进行钢筋捆扎和模板安装。
最后,进行混凝土浇筑和养护。
(2)板的施工板的施工包括板的定位、钢筋加工和布置、模板安装、混凝土浇筑和养护。
多层钢筋混凝土框架结构设计
柱截面尺寸 柱截面尺寸可直接凭经验确定,也可先根据其所受轴力按轴心
受压构件估算,再乘以适当的放大系数以考虑弯矩的影响。即
0.9~0.95≥ N / Ac fc
N = 1.25Nv 式中 Ac为柱截面面积;N为柱所承受的轴向压力设计值;Nv为 根据柱支承的楼面面积计算由重力荷载产生的轴向力值;1.25为重力 荷载的荷载分项系数平均值;重力荷载标准值可根据实际荷载取值, 也可近似按(12~14)kN/m2计算;fc为混凝土轴心抗压强度设计值。
(2)纵向框架承重。主梁沿房屋纵向布置,板和连系梁沿房屋横 向布置[图 5.1.2(b)]。这种方案对于地基较差的狭长房屋较为有 利,且因横向只设置截面高度较小的连系梁,有利于楼层净高的有 效利用。但房屋横向刚度较差,实际结构中应用较少。
(3)纵、横向框架承重。房屋的纵、横向都布置承重框架[图 5.1.2(c)],楼盖常采用现浇双向板或井字梁楼盖。当柱网平面为 正方形或接近正方形、或当楼盖上有较大活荷载时,多采用这种承 重方案。
在框架结构布置中,梁、柱轴线宜重合,如梁须偏心放置时,梁、 柱中心线之间的偏心距不宜大于柱截面在该方向宽度的 1/4。如偏 心距大于该方向柱宽的 1/4 时,可增设梁的水平加腋(图 5.1.3)。 试验表明,此法能明显改善梁柱节点承受反复荷载的性能。
梁水平加腋厚度可取梁截面高度,其水平尺寸宜满足下列要求: bx / lx ≤ 1/2 , bx / bb ≤ 2/3 , bb + bx + x ≥ bc/2 式中符号意义见图 5.1.3。
设计中,为简化计算,也可按下式近似确定梁截面惯性矩I:
I I0
多层钢筋混凝土框架结构设计
式中:I0为按矩形截面(图 5.2.2 中阴影部分)计算的梁截面惯 性矩;β 为楼面梁刚度增大系数,应根据梁翼缘尺寸与梁截面尺 寸的比例,取β =1.3~2.0,当框架梁截面较小楼板较厚时,宜取 较大值,而梁截面较大楼板较薄时,宜取较小值。通常,对现浇楼 面的边框架梁可取 1.5,中框架梁可取 2.0;有现浇面层的装配式 楼面梁的β 值可适当减小.
施工案例分析
1、某建筑工程,建筑面积2382㎡,地上10层,地下2层(地下水位一2.0m)。
采用筏板基础,底板厚度1100mm,混凝土强度等级C30。
主体结构为非预应力现浇混凝土框架剪力墙结构(柱网为9m x 9m,局部柱距为6m),梁模板起拱高度分别为20mm、12mm。
抗震设防烈度7度。
梁、柱受力钢筋为HRB335,接头采用挤压连接。
各层柱混凝土强度等级为C30。
该工程室内地面采用木地板。
事件一:钢筋工程施工时,发现梁、柱钢筋的焊接接头有位于梁、柱端箍筋加密区的情况。
在现场留取接头试件样本时,是以同一层每600个为一验收批,并按规定抽取试件样本进行合格性检验。
事件二:底板混凝土浇筑中,为控制裂缝,拌制水泥采用低水化热的矿渣水泥,混凝土浇筑后10h进行覆盖并开始浇水,浇水养护持续l0d。
问题:1.该工程梁模板的起拱高度是否正确?说明理由。
模板拆除时,混凝土强度应满足什么要求?2.事件一中,梁、柱端箍筋加密区出现焊接接头是否妥当?如不可避免,应如何处理?按规范要求指出本工程挤压接头的现场检验验收批确定有何不妥?应如何改正?3.事件二中,底板混凝土的养护开始与持续时间是否正确?说明理由。
参考答案:1.该工程梁模板的起拱高度是正确的。
理由:对跨度大于4m的现浇钢筋混凝土梁、板,其模板应按设计要求起拱;当设计无具体要求时,起拱高度应为跨度的1/1000~3/1000。
对于跨度为9 m的梁模板的起拱高度应为9~27mm;对于跨度为6m的梁模板的起拱高度应为6~l8mm。
模板拆除时,混凝土强度应达到设计的混凝土立方体抗压强度标准值的100%2.事件一中,梁、柱端箍筋加密区出现挤压接头不妥,接头位置应放在受力较小处。
如不可避免,宜采用机械连接,且钢筋接头面积百分率不应超过50%。
本工程挤压接头的现场检验验收的不妥之处是以同一层每600个为一验收批。
正确做法:同一施工条件下采用同一批材料的同等级、同形式、同规格接头,以500个为一个验收批进行检验与验收,不足500个也作为一个验收批。
以实例分析超长钢筋混凝土结构设计
凝 土 既 质 量 可 靠 又方 便 施 工 , 足 目前 建 筑 业 的 快 速 发 展 。 满
然而 , 微膨胀 混凝土只能补偿 混凝土早期 的收缩 , 混凝土后 期的 对 收缩及温度变 化引起 的应 力无计可施 , 别是屋面 , 特 季节变 化及空 调引 起 的室 内外温差 使混凝土产 生较大的拉应力而开裂 , 响建筑 物的正常 影 使用 , 因此 , 预应 力技术作为一种 具有长期 的约束 作用的技术被 广泛应 用到此类结构上来。
了较 为深入 的探 讨。 关键词 : 超长 : 结构 设计
1 概 述
要做到超长 结构不出现有害裂缝 ,在 设计上必须做到合理配筋 、 采 取适当的构造措施和补 偿收缩混凝土 的配合 比保证足够的 限制膨胀率 。 根 据 现 行 《 凝 土 结 构 设计 规 范》 B O l — 0 2中对 钢 筋 混 凝 土 结 构 的 混 G 5 020 最大伸缩缝 间距作 了相应 的规定 , 这项规定主要是考虑混 凝土的收缩和 温度变化 引起 的应 力而做 出的。然而 , 在实际工程设计中 , 由于建筑使用 功能要 求不 设或少设伸缩 缝, 致使框 架结构 纵向长达 1 0 0 m左 右, 形成所 谓 的“ 超长钢筋 混凝土结构 ” 同样 , 据现行混凝土规 范, ; 根 如有 充分依据 和可靠措施 时, 伸缩缝 最大间距可适 当增大 , 因此, 为保证结构在“ 长” 超 的条件 下仍能安全 使用 , 出现裂缝 , 不 一般 可 以选择 预应力混 凝土和微 膨胀混凝土 ( 补偿收缩混凝土) 两种方案 , 下面就这两种方案分别论述 。
下:
2 微膨 胀混 凝 土( 偿收 缩混 凝 土 ) 补 的应用
使 用 微 膨 胀 混 凝 土 可 以提 高结 构 适 应 干缩 和 冷 缩 的 性 能 , 要 微膨 只 胀混凝 土配 比合 适, 施工养 护得好 , 构混凝土在 3 1 d内膨 胀性能 即 结 ~4 能有效 发挥 , 由于微 膨胀混凝 土具有 的膨 胀性能 , 凝土在膨胀 时受 到 混 钢筋的约束而在混凝土 中建立起 了一定 的预压应力 。当混凝土 开始降温 收缩与干缩时 , 结构 为混凝土的膨胀 即可补偿其 部分收缩 ; 同时, 当外 界 温度 变化 时, 由于钢 筋混凝土 的约束作用 , 混凝土 内部产生~ 定的温 使 度应力 ,这 部分应力 同样可 由微膨胀 混凝土的预压应力来 平衡一部分, 从而 防止混凝土 开裂 , 正起 到补偿 收缩 的作用 。 真 根据 以往 的工程 经验和研 究成果 , 考虑 结构强度 的安全 , 膨胀 也不 能 太 大 , 研 究 , 采 用 U A替 代 水 泥 量 1 1%范 围 内 时 , 强 度 不 影 经 若 E 0 2 对 响, 其膨 胀率为 2 1 43 l4在配筋率 p 02 .%范围 内时, x 0 x , 0 =. 8 1 可在 结构 中建立 O2 05 a的预压应力, .~ .MP 这一预压应力大致可以补偿混凝土在硬 化过 程 中产 生温差和干缩 的拉应力 , 从而防止收缩 裂缝 , 或把裂缝控 制 在无 害裂缝 范围内。 通过 以上分析可 以看到 , 微膨胀 混凝土可 以较好地补偿混凝 土的收 缩应 力, 特别对 于钢筋混凝 土的地下 室, 规范 允许的伸缩 缝间 距仅 3 m 0 ( 现浇式 , 处于 室内或土壤中) 随着我 国建筑业 的发展 , , 钢筋混凝 土结构 纵 向长 度 达 8 ~ 0 m 以上 的建 筑 比 比 皆是 , 置 后 浇 带 以 防止 结 构 收缩 0 10 设 开 裂 成 为 必 要 措 施 。 然 而 , 浇 带 特 别 是地 下 室 后 浇 带 给 施 工 带 来 一 定 后 麻烦 , 期延长 , 工 模板周转 , 长时 间降水等费用也 急骤 增加 , 且还容 易 而 引起地下室 后浇带处 的渗水 问题 , 影响建筑 物的使用 , 因此少设 或不设 后 浇带具有较大的技术经济和社会 意义 , 因此微膨胀 混凝 土作为 一种补 偿收缩应 力的混 凝土 , 已成 功应用 于结构设计 中。 施工用补偿 收缩混凝土 ,在水 中 1d的限制膨胀率为 ≥1  ̄ 04限 4 . 1- 5 , 制 干缩率为 ≤30 l ( .x 0 空气 中为 2 d , 2 d抗压 强度 为I 5 a 8) 其 8 >2 MP 。限 制 膨胀率 与干缩 率的检验 按 《 凝土外加 剂应用 技术规 范》 B 0 1 — 混 G 5 19 20 0 3附录 B方法进行 ; 抗压 强度的试验按 《 普通混凝 土力学性 能试验方
11个不同类型钢筋混凝土梁设计例题[详细]
选用ф8@170,实际截面面积 As=296 mm2 配筋图为
ф6@250
ф6@250
2.内力计算
gk1+qk1
M
1 8
(1.05gk1
1.2qk1 )l02Leabharlann Δl0=2.34m
◎
1 8
(1.05 211.231) 2.342
3.9
kN·m
3. 配筋计算(用参数公式法)
由附录二查得: fc=9.6N/mm2,fy=210N/mm2
由表3-1得:b=0.614。安全级别为Ⅲ级。承载力安全系数
已知一单跨简支的钢筋砼现浇板,安全级别为Ⅲ级,设计状况
为持久状况,计算跨度l0=2.34m,承受均布恒荷载标准值为
gk=2kN/m2(包括自重),均布活荷载标准值为qk1=3kN/m2 ,砼
强度等级为C20,采用HPB235级钢筋。求板厚及受拉钢筋面积。
解:1、确定板的计算简图和截面尺寸
取b=1000mm的板带为计算单元,设板厚为h=100mm,
【解】:1、梁跨中为其弯矩最大截面,求其弯矩设计值M
M
1 8 (1.05gk1
1.2qk1 )l02
1 (1.0518 1.2 29) 6.22
8
gk1+qk1
258.03kN m
2、设计参数
Δ
l0=6.2m
◎
由附录2表1和表3查得fc=14.3N/mm2,fy=300N/mm2,b0.55。
3、配筋计算
K=1.15。环境类别一类,砼最小保护层厚度为20mm. a=c+5=25mm,则 h0=h-a=100-25=75mm。
(1)计算截面抵抗矩系数 s
s
混凝土结构事故案例分析
混凝 土受 冻或 养护 温度 过低 事故 案例 图片
事故 分析 及 原因
施工原因:浇灌二层梁板时,未采用专门养护 措施,浇灌后2h就在板面铺脚手板、堆放砖块 进行砌墙。11月初浇灌三层现浇板时,室内温 度为0~1°C,未采取保温措施。根据试验资料, 混凝土在21d后的强度只达28d理论强度值的 42.5%,一个月后才达到52%。因此混凝土早期 受冻是这起质量事故的重要原因。另外,混凝 土的水泥用量偏低(只有210kg/m3,略少于 225kg/m3的最低值)也是因素之一。 设计原因:其一是箍筋间距过大。《混凝土结 构设计规范》7.2.7条规定,“当梁高为500mm 且V﹥0.07fcbh0时,梁中箍筋的最大间距为 200mm。”而本工程箍筋间距却为300mm,这 就是斜裂缝多发生在箍筋之间的原因。其二是 是纵筋在梁跨中间截断。《混凝土结构设计规 范》6.1.5条规定,“纵向受拉钢筋不宜在受拉 区截断”。而本工程梁中部分纵向受拉钢筋在 跨中截断,截断处都出现斜裂缝,这说明受拉 钢筋对梁截面的抗剪能力起到一定作用,也说 明规范的规定是最适合的。 比较施工和设计原因,显然可见,施工中混凝土早期 受冻是产生本工程质量事故的 主要原因。
事故 原因 分析
柱虽按¢550圆形截面钢筋混凝土受压构件 设计,配置9根直径为22的二级钢筋纵向钢 筋,AS=3421mm2,含钢率1.44%,从截面 承载力看是足够的,但箍筋配置不合理,表 现为箍筋截面过细、间距太大、未设置附加 箍筋,也未按螺旋箍筋考虑,致使箍筋难以 约束纵向受压力后的侧向压屈。
钢—混凝土组合梁的施工案例
润扬大桥南接线工程丹徒互通主线桥大跨径钢--混凝土组合梁的设计与施工摘要:钢—混凝土组合梁具有良好的受力性能和较好的综合经济效益,应用前景广泛。
纵向主要受力构件为钢箱梁,采用工厂预制现场拼接的施工工艺可以缩短工期,简化工地现场的施工工程量;横向由预应力混凝土构成桥面板及悬臂,有利于桥面沥青混凝土的铺装,为较新颖的桥型。
文中通过润扬大桥南接线工程丹徒互通主线桥钢—混凝土组合梁对设计与施工作一些简要介绍。
关键词:钢-混凝土组合梁设计施工近年来,随着对组合结构的深入研究,组合梁或组合结构良好的受力性能和较好的综合经济效益以及作为一种环保型桥梁,将展示其美好的应用前景,在跨越地物的施工条件受到严格限制的桥梁中更有其独特的生命力。
纵向主要受力构件为钢箱梁,采用工厂预制现场拼接的施工工艺可以缩短工期,简化工地现场的施工工程量;横向由预应力混凝土构成桥面板及悬臂,有利于桥面沥青混凝土的铺装。
1 设计概述1.1润扬大桥南接线工程丹徒互通主线桥跨越沪宁高速公路,设计桥下净空按八车道高速公路预留,采用钢—混凝土组合梁一跨跨越,跨沪宁路一联的跨径布置为左半幅26+56+34m,右半幅30+56+30m,一联全长116m,与沪宁路成103°交角。
每幅桥采用两个宽3m的开口钢箱,并通过横向联系形成整体,中跨跨中梁高 1.5m,墩顶梁高2.7m,箱梁底按二次抛物线布置,桥面板悬臂长 2.5m,板内设置纵向预应力钢束,混凝土桥面板与钢箱梁间设置剪力钉抗剪。
施工工艺采用工厂化预制,现场搭设临时墩进行拼接组装,成桥后在38#和39#墩对上部结构向下施加10cm强迫位移。
总体布置见图1。
图11.2技术标准(1)设计荷载:汽车-超20级,挂车-120;(2)地震基本烈度:7度,按8度设防;(3) 桥面净宽:2×(0.5+12.0+1.0)=13.5。
1.3主要材料(1)混凝土桥面板采用50号钢纤维混凝土,墩身采用40号混凝土,承台采用30号混凝土,桩基采用25号混凝土,桥面调平层采用40号聚丙烯纤维网混凝土。
钢筋混凝土案例
钢筋混凝土案例在现代建筑领域中,钢筋混凝土结构因其出色的强度、耐久性和稳定性而被广泛应用。
下面让我们通过几个具体的案例来深入了解钢筋混凝土的魅力和应用价值。
案例一:XX 商业中心大楼这座商业中心大楼位于城市的繁华地段,是当地的标志性建筑之一。
它采用了钢筋混凝土框架结构,总高度达到了数十层。
在设计阶段,工程师们充分考虑了建筑的功能需求和当地的地质条件。
为了承受巨大的垂直荷载和水平风荷载,他们精心设计了钢筋的布置和混凝土的强度等级。
在施工过程中,严格把控原材料的质量,确保每一批钢筋和混凝土都符合国家标准。
通过精确的模板搭建和混凝土浇筑工艺,大楼的主体结构成型良好,表面平整光滑。
而且,在后续的使用过程中,该大楼经历了多次恶劣天气的考验,依然屹立不倒,充分展示了钢筋混凝土结构的可靠性。
案例二:XX 住宅小区这是一个规模较大的住宅小区,由多栋高层住宅楼组成。
同样采用了钢筋混凝土剪力墙结构,为居民提供了安全舒适的居住环境。
剪力墙结构有效地提高了建筑物的抗震性能,在地震频发的地区具有重要意义。
钢筋的合理配置增强了墙体的承载能力,而混凝土的良好整体性保证了结构的稳定性。
在建设过程中,施工团队注重施工细节,比如钢筋的连接方式、混凝土的养护等。
严格的质量控制措施使得每栋楼的质量都达到了较高的标准。
小区建成后,居民们对房屋的质量赞不绝口,良好的隔音效果和稳固的结构让他们住得安心。
案例三:XX 桥梁这座桥梁跨越了一条宽阔的河流,是连接城市两岸的重要交通枢纽。
钢筋混凝土箱梁结构使得桥梁具有足够的强度和刚度,能够承受车辆的频繁通行和河流的冲击。
设计时,充分考虑了桥梁的跨度、荷载以及水流情况。
采用了高强度的钢筋和高性能的混凝土,确保桥梁的耐久性。
在施工中,面临着复杂的环境和技术难题。
但通过先进的施工技术和科学的管理,桥梁顺利建成通车。
经过多年的使用,桥梁的结构依然完好,为地区的经济发展发挥了重要作用。
通过以上案例,我们可以看到钢筋混凝土在建筑和桥梁工程中的广泛应用和重要地位。