【习题】《实数》单元检测北师大版八年级数学上册
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
北师大版八年级数学上册第二章《实数》单元测试题
八年级上第二章《 实数 》 单元测试题(全卷120分)姓名: 班别: 学号: 成绩:题 号 1 2 3 4 5 6 7 8 9 10 答 案A 、5B 、5-C 、5±D 、5± 2、下列说法错误的是 ( )A 、无理数的相反数还是无理数B 、无限小数都是无理数C 、正数、负数统称有理数D 、实数与数轴上的点一一对应 3、下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与 D 、22与-4、数 032032032.8是( )A 、有限小数B 、有理数C 、无理数D 、不能确定 5、在下列各数: 51525354.0、10049、2.0 、π1、7、11131、327、中,无理数的个数是 ( )A 、2B 、3C 、4D 、5 6、一个长方形的长与宽分别时6cm 、3cm ,它的对角线的长可能是( )A 、整数B 、分数C 、有理数D 、无理数 7、满足53<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1-8、当14+a 的值为最小值时,a 的取值为( )A 、-1B 、0C 、41- D 、19、如下图,线段2=AB 、5=CD ,那么,线段EF 的长度为( )A 、7B 、11C 、13D 、1510、2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( )A 、3B 、7C 、3或7D 、1或7二、填空题:(每小题3分,共30分)11、平方根等于本身的实数是 。
12、化简:=-2)3(π 。
13、94的平方根是 ;125的立方根是 。
14、一个正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍。
15、估计60的大小约等于 或 (误差小于1)。
16、若03)2(12=-+-+-z y x ,则z y x ++= 。
(完整)北师大版八年级上册数学实数单元测试卷含答案,推荐文档
7 (-2)4- 323(-3)3 (-3)2x - 1 9 - x (x - 9)2 (a - b + c )225- ( 5)2516 1 4 3 2 5 3 7 10 10 10 3 3 b b 2a 2a 13 - 2 2第二章 实数单元测试班级:姓名: 满分 100 分 得分:一、选择题(每小题 3 分,共 36 分)1.在实数 0.3,0, ,,0.123456…中,其中无理数的个数是()2A.2B.3C.4D.52.化简 的结果是( ) A.-4 B.4 C.±4D.无意义3. 下列各式中,无意义的是()A.B.C.D.4.如果 + 有意义,那么代数式|x -1|+ 的值为() A.±8B.8C.与 x 的值无关D.无法确定5.在 Rt △ABC 中,∠C =90°,c 为斜边,a 、b 为直角边,则化简 -2|c -a -b |的结果为()A.3a +b -cB.-a -3b +3cC.a +3b -3cD.2a6.4 14 、 226 、15 三个数的大小关系是()A.4 14 <15< 226B. 226 <15<4 14 ;C.4 14 < 226 <157. 下列各式中,正确的是()D. 226 <4 14 <15A.=±5 B.=C. =4 12D.6÷ 23 = 9 228. 下列计算中,正确的是( )A.2 +3 =5B.( + )· = · =10C.(3+2 )(3-2 )=-3D.( + )( + )=2a +b9.如果 a = 3 + 2 2,b = ,那么()A. a >bB. a <bC. a = bD. a =10. 若 A. x <5= x - 5,则x 的取值范围是() B. x ≤ 5C. x >5D. x ≥ 511. 一个数的算术平方根等于它的立方根,满足这个条件的数的个数有()个10-32 1 b(5 - x )2- 3a 3a - 3a 25 2 3 2 3 2 5 6 5 6 12 1 2 x - 3 3 - x -3a2A.0B.1C.2D.312. 化简 a 的结果是( )A. B. C. - D.二、填空题(每小题 3 分,共 12 分)13.的算术平方根是 .14. 14.的相反数是,-3 的倒数是 .215.( - )2018·( + )2017=.16. 如图,数轴上与 1, 对应的点分别为 A , B ,点B 关于A 的对称点为C ,设点C 表示的数为x ,则 x -+ 2 = .x.三、解答题(5+6+7+8+8+9+9=52 分) 17. 计算:(1)( + )( - );(2) --218. 若 x 、y 都是实数,且 y=+ +8,求 x +3y 的立方根.3- 1 64- 3132ab 211 11 19.已知 +|b 2-10|=0,求 a +b 的值.20. 已知 5+的小数部分为 a ,5- 的小数部分为 b ,求:(1)a +b 的值;(2)a -b 的值.21. 物体自由下落的高度 h(米)和下落时间 t(秒)的关系是:在地球上大约是 h=4.9t 2,在月球上大约是 h=0.8t 2,当h=20 米时,(1) 物体在地球上和在月球上自由下落的时间各是多少? (2) 物体在哪里下落得快?22. 如图,已知正方形 ABCD 的面积是 64 cm 2,依次连接正方形的四边中点 E 、F 、G 、H 得到小正方形EFGH .求这个小正方形 EFGH 的边长.1 2 2 3 1 - 1 2 3 1 2 ⨯ 3 2 22 ⨯ 3 1 3 3 8 1 (1 - 1 ) 2 3 4 1 2 ⨯ 3⨯ 4 2 2 ⨯ 32 ⨯ 4 1 4 4 15 1 ( 1 - 1) 3 4 5 1 3⨯ 4 ⨯ 5 4 3⨯ 42 ⨯ 5 1 (1 - 1 )4 5 623. 观察下列各式及验证过程:= 验证: = == 验证: = = == 验证: = = =(1) 按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2) 针对上述各式反映的规律,写出用 n (n ≥2 的自然数)表示的等式,并进行验证.1 - 123 1 2 2 31 (1 - 1 )234 1 3 3 8 1 ( 1 - 1) 3 45 1 4 4 1553 10 11 2 1 (1 - 1 )456 1 ( 1 1n n +1 n + 2 - ) 1 n +1 n +1 n (n + 2)21 5 5 24答案:一、1.B2.B3.A4.C5.B6.A7.D8.C 9.C 10.D 11.C 12.C二、13. 14. 1 4 三、17.(1)-1 (2)4 3 - - 2 3 32 15. - 16.3 23218.319.-5- 或-5+20.(1)1 (2)2 -721.(1)2.02 秒 5 秒 (2)在地球上下落得快22. 4 cm23.(1)= 验证略(2)= 验证略 10“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测题(有答案解析)
一、选择题1.,2π,0.其中无理数出现的频率为( ) A .0.2 B .0.4 C .0.6 D .0.8 2.下列各数中,介于6和7之间的数是( )A 2+BC 2D3.已知实数x 、y 满足|x -0,则以x 、y 的值为两边长的等腰三角形周长是( ) A .20或16B .20C .16D .184.若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( ) A .a 是5的平方根 B .b 是5的平方根 C .1a -是5的算术平方根D .1b -是5的算术平方根5.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( ) A .-1B .-2C .-1或-2D .1或26...的是( )A B .23<<C .5D .|22=7. )A .8 B .4C D8.如x 为实数,在“1)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A 1B 1C .D .1-9.在实数3.14,227-, 1.70,-π中,无理数有( ) A .2个B .3个C .4个D .5个10.已知三角形的三边长a 、b 、c 满足2(a +|c |=0,则三角形的形状是( ) A .等腰三角形 B .等边三角形C .直角三角形D .不能确定11.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±512.下列说法正确的是( ) A .5是有理数 B .5的平方根是5 C .2<5<3D .数轴上不存在表示5的点二、填空题13.方程()2116x +=的根是__________.14.若x =2﹣1,则x 3+x 2﹣3x +2035的值为_____. 15.计算()()2323-⨯+的结果是_____. 16.如图,数轴上点A 表示的数是__________.17.10的整数部分是a .小数部分是b ,则2a b -=______.18.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________. 19.2x +有意义,则实数x 的取值范围是_________. 20.36,3,2315,则第100个数是_______.三、解答题21.根据阅读材料,解决问题.若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”(例如:1、232、4554是对称数).对于一个三位对称数A ,将它各个数位上的数字分别两倍后取个位数字,得到三个新的数字x ,y ,z ,我们对A 规定一个运算:() K A xyz =,例如:535A =是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:0、6.0.则()5350600K =⨯⨯=;262A =是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是: 4、2、4,则()26242432K =⨯⨯=. 请解答:(1)请你直接写出最大的两位对称数: 最小的四位对称数: ;(2)一个三位的“对称数”B ,将其各个数位的数字分别2倍后取个位数字分别为:a ,b ,a ,若()8K B =,请求出B 的所有值.22.阅读下列问题:()()()121121122121⨯-==-++-;()()()132132323232⨯-==-++-;以上化简的方法叫作分母有理化,仿照以上方法化简: (1)165=+______; (2)求120212020+的值:(3)求22n n n n+++-(n 为正整数)的值.23.计算:120203118(3.14)224.先化简,再求值:2(2)4(1)(21)(21)a a a a a ---++-,其中21a =-.25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.26.化简 (1)2323212+(211888【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据无理数的意义和频率意义求解. 【详解】 解:∵4235=,,π是无限不循环小数,∴35π,,4,是有理数,∴由30.65=可得无理数出现的频率为0.6, 故选C . 【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.2.B解析:B 【分析】根据夹逼法逐项判断即得答案. 【详解】 解:A 、479<<4275∴<<,故本选项不符合题意;B 、∵364549<<6457∴<<,故本选项符合题意;C 、364749<44725∴<<,故本选项不符合题意;D 、253536<<5356∴<<,故本选项不符合题意.故选:B .本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据方程解的定义和算术平方根的意义判断即可.【详解】∵方程2x-=的解分别为,a b,(1)5∴2a-=,(1)52b-=,(1)5∴a-1,b-1是5的平方根,∵a b>,∴11->-,a b∴a-1是5的算术平方根,故选C.【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键. 5.A解析:A利用题中的新定义化简已知方程,求解即可. 【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去.②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意. 故选:A . 【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键.6.C解析:C 【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可. 【详解】解:AB 、23,说法正确,不符合题意;C 、5的平方根是,故原题说法错误,符合题意;D 、|22-=,说法正确, 不符合题意;故选C . 【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.7.B解析:B 【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可. 【详解】4===, 故选:B . 【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.8.C【分析】根据题意,添上一种运算符号后逐一判断即可. 【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意. 故选:C . 【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.A解析:A 【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案. 【详解】3=-,∴3.14,227-,- 1.7,0都是有理数,-π是无理数,共2个,故选:A . 【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.10.C解析:C 【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形. 【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c = ∴a =,3b = , c =又∵ 222279a c b +=+==∴该三角形为直角三角形 故选C . 【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.11.D解析:D 【分析】根据平方根和算术平方根的定义判断即可. 【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意; C. -36没有算术平方根,故错误,不符合题意; D. 25的平方根是±5,故正确,符合题意; 故选:D . 【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.12.C解析:C 【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案. 【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误; 故选:C . 【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.二、填空题13.或【分析】根据平方根的定义求解即可【详解】解:两边开方得或解得或【点睛】本题考查了平方根的意义解题关键是熟练运用平方根的意义准确进行计算解析:3x =或5x =-.【分析】根据平方根的定义求解即可. 【详解】解:()2116x +=,两边开方得,14x +=或14x +=-, 解得,3x =或5x =-. 【点睛】本题考查了平方根的意义,解题关键是熟练运用平方根的意义,准确进行计算.14.2034【分析】直接利用二次根式的混合运算法则代入计算即可【详解】解:x3+x2﹣3x +2035=x2(x +1)﹣3x +2035∵x =﹣1∴原式=(﹣1)2(﹣1+1)﹣3(﹣1)+2035=(3﹣解析:2034 【分析】直接利用二次根式的混合运算法则代入计算即可. 【详解】解:x 3+x 2﹣3x +2035, =x 2(x +1)﹣3x +2035, ∵x﹣1,∴1)2﹣1+1)﹣3﹣1)+2035,=(3﹣)3+2035,=4﹣+3+2035, =2034. 故答案为:2034. 【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.15.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1 【分析】根据二次根式混合运算的法则进行计算即可. 【详解】解:原式=222431-=-=,故答案为:1. 【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.16.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键.17.6-16【分析】先估算确定ab的值进而即可求解【详解】∵<<∴3<<4又∵a是的整数部分b是的小数部分∴a=3b=−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a,b的值,进而即可求解.【详解】∵∴3<4,又∵a b的小数部分,∴a=3,b−3,∴2-=−3)2-16.a b故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a、b的值是解决问题的关键.18.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】原来的一列数即为于是可得第n 个数是进而可得答案【详解】解:原来的一列数即为:∴第100个数是故答案为:【点睛】本题考查了数的规律探求属于常考题型熟练掌握二次根式的性质找到规律是解题的关键解析:【分析】,于是可得第n 进而可得答案.【详解】, ∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键. 三、解答题21.(1)99,1001;(2)111,666,161,616.【分析】(1)根据对称数的概念进行求解即可;(2)先根据K (B )=8,求出a ,b 的值,进而求出三位的“对称数”,即可得出结论.【详解】解:(1)最大的两位对称数是99;最小的三位对称数是1001.故答案为:99,1001;(2)∵一个三位的“对称数”B ,将其各个数位的数字分别2倍后取个位数字分别为:a ,b ,a ,∴a 可以取0,2,4,6,8;b 可以取0,2,4,6,8,又∵K (B )=8,∴a×b×a =8,即:a 2b=8,∴a =2,b =2,∴对称数B 为:111,666,161,616.【点睛】此题主要考查了新定义数字问题,用分类讨论的思想解决问题是解本题的关键.22.(1;(2-3)1++n .【分析】(1)分子分母同乘以计算即可;(2)分子分母同乘以)化简即可;(3)分子分母同乘以,化简彻底.【详解】解(1)∵==(2===;(3)原式=1n =++【点睛】本题考查了二次根式的分母有理化,抓住根式特点,确定有理化因式是解题的关键. 23.-2【分析】直接利用乘方,零指数幂的性质,负整数指数幂的性质,二次根式的性质分别化简得出答案.【详解】 解:1202003118( 3.14)2121(2)=-+-+-2=-【点睛】 本题主要考查了实数运算,熟悉相关性质,能正确化简各数是解题关键.24.23a +,6-【分析】先把整式进行化简,得到最简整式,再把1a =代入计算,即可得到答案. 【详解】解:原式22224444413a a a a a a =-+-++-=+,∴当1a =时,原式21)36=+=-【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则,正确的进行化简.25.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.(1)143-+;(2)524【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。
北师大版八年级数学上册《第二章实数》单元测试卷带答案
北师大版八年级数学上册《第二章实数》单元测试卷带答案一、单选题1.下列根式中,最简二次根式是( )A .4B .12C 8D .22.下列说法错误的是( )A .3±是9的平方根B 164±C .25的平方根为5±D .负数没有平方根3.下列运算正确的是( )A .222()a b a b +=+B .a 6a2=a 3(a ≠0)C 2a a =D .326()a a =4.根据表中的信息判断,下列判断中正确的是( )x 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17 2x 256 259.21262.44265.69268.96272.25275.56278.89282.24285.61289A 27.889 1.67=B .265的算术平方根比16.3大C .若一个正方形的边长为16.2,那么这个正方形的面积是262.44D .只有3个正整数n 满足16.416.5n <<5.下列式子正确的是( )A 3320212021-=B .164=C .93=±D .√(−2022)2=−20226.下列说法错误的是( )A .1的平方根是±1B .-1的立方根是-1C 2是2的平方根D .-3是2(3)-7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 3和﹣1,则点C 所对应的实数是( )A .3B .3C .3﹣1D .3+18.已知正实数m ,n 满足222m mn n =mn 的最大值为( )A .13B .23C 3D .239. 已知x ,x 2,x}表示取三个数中最小的那个数,例如:当x =9,x ,x 2,x}=992,9}=3.当x ,x 2,x}=116时,则x 的值为( ) A .116B .18C .14D .1210.观察下列二次根式的化简1221111111212S =++=+- S 2=√1+112+122+√1+122+132=(1+11−12)+(1+12−13) S 3=√1+112+122+√1+122+132+√1+132+142=(1+11−12)+(1+12−13)+(1+13−14),则20232023S =( ). A .12022B .20222021C .20242023D .20252024二、填空题11.下列各数:0.5 2π 1.264850349 02270.2121121112…(相邻两个2之间1的个数逐次加1),其中有理数有 个.12.实数16 03π 3.14159 2279- 0.010010001……(相邻两个1之间依次多一个0),其中,无理数有 个.13.数轴上有两个点A 和B ,点A 31,点B 与点A 相距3个单位长度,则点B 所表示的实数是 .14.一个正数x 的平方根是2a ﹣3与5﹣a ,则a = . 15.35 22,则这个三角形的面积为16.如图,在矩形ABCD 中4,6AB AD ==,点,E F 分别是边BC ,CD 上的动点,连接,AE AF ,将矩形沿,AE AF 折叠,使,AB AD 的对应边,AB AD ''落在同一直线上,若点F 为CD 的中点,则AE = .17.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是 ,点2P 表示的数是 .三、解答题18.计算:(1)15202(262324319.已知21a +的算术平方根是5,103b +的平方根是4,c ±1932a b c -+的平方根.20.已知6x -和314x +分别是a 的两个平方根,22y +是a 的立方根.(1)求a ,x ,y 的值;(2)求14x -的平方根和算术平方根.21.已知 (253530x y -++--= .(1)求 x , y 的值; (2)求 xy 的算术平方根.22.把一个长、宽、高分别为50cm ,8cm ,20cm 的长方体锻造成一个立方体铁块,问锻造的立方体铁块的棱长是多少 cm?23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m.(1)m = ______.(2)求11m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有26c +4d -互为相反数,求23c d +的平方跟.24.阅读以下信息,完成下列小题材料一:对数是高中数学必修一中的一个重要知识点,是高中运算的基础.材料二:对数的基本运算法则:对数公式是数学中的一种常见公式,如果x a N =(0a >,且1a ≠),则x 叫做以a 为底N 的对数,记做log a x N =,其中a 要写于log 右下.其中a 叫做对数的底,N 叫做真数.通常以10为底的对数叫做常用对数,记作lg;以e为底的对数称为自然对数,记作ln.(1)请把下列算式写成对数的形式:328=3101000=2416=(2)平方运算是对数运算的基础.完成下列运算:33=99=1212=(3)对数和我们在初中阶段学习的平方根的运算也有相似之处.请完成有关平方根的知识点的填空.平方根,又叫二次方根,表示为〔〕,其中属于的平方根称之为算术平方根(arithmetic square root),是一种方根.一个正数有个实平方根,它们互为,负数在范围内没有平方根,0的平方根是0参考答案1.【答案】D2.【答案】B3.【答案】D4.【答案】C5.【答案】A6.【答案】D7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】412.【答案】313.343214.【答案】﹣215.1516.【答案】517.【答案】12-;12-18.【答案】(1)2 5+2(2)4219.【答案】6±20.【答案】(1)64a = 2x =- 1y =;(2)3± 3.21.【答案】(1)(2530x -≥ 530y -≥ (253530x y -++--=530x ∴-= 530y --=解得: 53x =- 53y =+; (2)(535325322xy =+=-=xy ∴ 的算术平方根为22.22.【答案】解:35082020()cm ⨯⨯=答:立方体铁块的棱长是20cm.23.【答案】(1)2+2(2)2 (3)624.【答案】(1)2log 83= lg10003= 4log 162=(2)918log + 1215log + 27 (3)aa 两,相反数,实数。
北师版数学八年级上册《实数》单元测试题
北师版数学八年级上册《实数》单元测试题 一、选择题(15题,每题2分,满分30分)1. .(2020·宁波)x 的取值范围是 ( )A .x >2B .x ≠2C .x ≥2D .x ≤22. (2020·南京)3的平方根是 ( ) A .9 BC D .3. (2020.湖州)数4的算术平方根是 ( ) A .2 B .﹣2 C .±2 D .4. (2020.常州)8的立方根是 ( )B. ±2C.D. 25. (2020台州)无理数√10在 ( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间6. (2020•济宁)下列各式是最简二次根式的是 ( )A .BD7. (2020·宜昌)对于无理数3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是 ( ). A .23-32 B .33+ C .()33 D .30⨯8. (2020•上海)下列二次根式中,与√3是同类二次根式的是 ( ) A .√6 B .√9 C .√12 D .√189. (2020·泰州)下列等式成立的是 ( )A.3+= B == D 3=10. (2020.河北)如图1是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是 ( )A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,411. (2020·攀枝花) 下列说法中正确的是 ( )A. 0.09的平方根是0.3B.4=±C. 0的立方根是0D. 1的立方根是1±12. (2020年四川省攀枝花市)实数a 、b 在数轴上的位置如图2所示,化简√(a +1)2+√(b −1)2−√(a −b)2的结果是 ( ) A .﹣2B .0C .﹣2aD .2b13. (2020·绥化)下列等式成立的是 ( )A 4B 2C .-a 814. (2020·聊城)计算45÷33×53的结果正确的是( ) A .1 B .35C .5D .9 15.(2020.金华)如图3,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则的值是 ( ) A .1+B .2+C .5﹣D .二.填空题(每题2分,满分14分)16. (2020·江苏徐州)7的平方根是 .17. (2020自贡)与√14−2最接近的自然数是 .18. (2020年内蒙古包头市)计算:2=______.19. (2020·河北)已知:222218b a =-=-,则ab =__________.20. (2020年湖北省黄冈市)若|2|0x -=,则12xy -=__________.21. (2020•青海)对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =√a+b √a−b,如:3⊕2=√3+23−2=√5,那么12⊕4= .22,(2020·邵阳)在如图4的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为 .三、解答题(满分56分) 23.计算下列各题:(1)(2020•泰州)9的平方根; (2)(2020•淄博)计算:√−83+√16; (3)(2020年湖北省武汉市)计算√(−3)2.24. (2020河北)已知两个有理数:-9和5. (1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值.25. 化简计算(1)(2020·=; (2)(2020·哈尔滨)计算61624+; (3)(2020·青岛)计算:3)3412(⨯-.26. 已知:如图5,等边△ABC 的边长是6cm.⑴求等边△ABC 的高。
2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析
第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。
最新北师大版八年级数学上册《实数》单元测试题及答案解析(精品试卷).docx
北师大新版八年级数学上册《第2章实数》单元测试卷一、选择题1.的值等于()A.3 B.﹣3 C.±3 D.2.在﹣1.414,,π,3.,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5B.2C.3D.43.下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的是()A.①②B.②③C.③④D.②③④4.下列计算正确的是()A.=2B.•=C.﹣=D.=﹣35.下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根6.若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为()A.2B.0C.﹣2D.以上都不对7.若,则a的取值范围是()A.a>3B.a≥3C.a<3D.a≤38.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠29.下列运算正确的是()A.+x=xB.3﹣2=1C.2+=2D.5﹣b=(5﹣b)10.2015年4月25号,尼泊尔发生8.1级地震,为了储存救灾物资,特搭建一长方形库房,经测量长为40m,宽为20m,现准备从对角引两条通道,则对角线的长为()A.5mB.10mC.20mD.30m二、填空题11.的算术平方根是.12.﹣1的相反数是,绝对值是.13.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.14.若,则xy的值为.15.若的整数部分为a,的小数部分为b,则ab= .16.当x=﹣2时,代数式的值是.17.计算:﹣= ;(2+)÷= .18.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.三、解答题(共66分)19.化简:(1)(π﹣2015)0++|﹣2|;(2)++3﹣.20.计算:(1)(2﹣3)2;(2)+﹣2.21.实数a、b在数轴上的位置如图所示,请化简:|a|﹣﹣.22.已知y=,求3x+2y的算术平方根.23.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.24.细心观察图形,认真分析各式,然后解答问题.()2+1=2 S1=()2+1=3 S2=()2+1=4 S3=…(1)推算出S10的值;(2)请用含有n(n是正整数)的等式表示上述变化规律;(3)求出S12+S22+S32+…+S102的值.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?北师大新版八年级数学上册《第2章实数》单元测试卷参考答案与试题解析一、选择题1.的值等于()A.3 B.﹣3 C.±3 D.【考点】算术平方根.【分析】此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.【解答】解:∵=3,故选A.【点评】此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2.在﹣1.414,,π,3.,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5B.2C.3D.4【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合各选项进行判断即可.【解答】解:所给数据中无理数有:π,,2+,3.212212221…,共4个.故选D.【点评】本题考查了无理数的定义,解答本题的关键是熟练掌握无理数的三种形式.3.下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的是()A.①②B.②③C.③④D.②③④【考点】实数与数轴.【分析】①②③根据数轴的上的点与实数的对应关系即可求解;④根据有理数、无理数的对应即可判定.【解答】解:①任何一个无理数都能用数轴上的点表示,故说法错误;②任何一个无理数都能用数轴上的点表示,故说法正确;③实数与数轴上的点一一对应,故说法正确;④有理数有无限个,无理数也有无限个,故说法错误.所以只有②③正确,故选B.【点评】本题考查了实数与数轴的对应关系,以及有理数与无理数的个数的判断.4.下列计算正确的是()A.=2B.•=C.﹣=D.=﹣3【考点】二次根式的混合运算.【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.【解答】解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.【点评】此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质:=|a|.5.下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根【考点】立方根;平方根;算术平方根.【专题】计算题.【分析】一个正数的平方根有正负两个,且互为相反数,算术平方根只能为正;一个数的立方根的符号和被开方数的符号相同.据此可判断只有选项C不符合题意.【解答】解:A、3是(﹣3)2的算术平方根,正确;B、±3是(﹣3)2的平方根,正确;C、(﹣3)2的算术平方根是3,故本选项错误;D、3是(﹣3)3的立方根,正确.故选C.【点评】本题主要考查的是对平方根和算术平方根的区分,以及对立方根的考查,要求学生对这类题目熟练掌握.6.若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为()A.2B.0C.﹣2D.以上都不对【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据绝对值与二次根式的非负性,得出a与b的值,然后代入b﹣a求值即可.【解答】解:∵|a﹣2|+=0,∴a=2,b=0∴b﹣a=0﹣2=﹣2.故选C.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.若,则a的取值范围是()A.a>3B.a≥3C.a<3D.a≤3【考点】二次根式的性质与化简.【专题】计算题.【分析】根据题中条件可知a﹣3≥0,直接解答即可.【解答】解:,即a﹣3≥0,解得a≥3;故选B.【点评】本题主要考查二次根式的性质与化简,题中涉及使根式有意义的知识点,属于基础题.8.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2【考点】函数自变量的取值范围;二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.9.下列运算正确的是()A.+x=xB.3﹣2=1C.2+=2D.5﹣b=(5﹣b)【考点】二次根式的加减法.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=(1+)x,错误;B、原式=,错误;C、原式为最简结果,错误;D、原式=(5﹣b),正确,故选D【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.10.2015年4月25号,尼泊尔发生8.1级地震,为了储存救灾物资,特搭建一长方形库房,经测量长为40m,宽为20m,现准备从对角引两条通道,则对角线的长为()A.5mB.10mC.20mD.30m【考点】勾股定理的应用.【分析】根据题意画出图形,再根据勾股定理可得AC=,再计算即可.【解答】解:如图所示:∵AB=40m,BC=20m,∴AC===20(m),故选:C.【点评】此题主要考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.二、填空题11.的算术平方根是\sqrt{10} .【考点】算术平方根.【专题】计算题.【分析】先利用算术平方根求出的值,继而即可得到结果.【解答】解:∵=10,∴10的算术平方根是,故答案为: 【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.﹣1的相反数是 1﹣\sqrt{2} ,绝对值是 \sqrt{2}﹣1 .【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数求出a ;根据绝对值的性质解答.【解答】解:﹣1的相反数是1﹣,绝对值是﹣1.故答案为:1﹣;﹣1.【点评】本题考查了实数的性质,主要利用了相反数的定义,绝对值的性质,本题难点在于要熟悉﹣1是正数.13.已知一个正数的平方根是3x ﹣2和5x+6,则这个数是 \frac{49}{4} .【考点】平方根.【专题】计算题.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x ﹣2+5x+6=0,解得x=﹣,所以3x ﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.14.若,则xy的值为8 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后相乘即可得解.【解答】解:根据题意得,x﹣2y=0,y+2=0,解得x=﹣4,y=﹣2,所以,xy=(﹣4)×(﹣2)=8.故答案为:8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若的整数部分为a,的小数部分为b,则ab= 3\sqrt{5}﹣6 .【考点】估算无理数的大小.【分析】根据,可得a的值,根据2<3,可得b的值,根据有理数的乘法,可得答案.【解答】解:34,a=3,2,b=﹣2,ab=3(﹣2)=3﹣6.故答案为:3﹣6.【点评】本题考查了估算无理数的大小,根据,可得a的值,根据2<3,可得b的值,是解题关键.16.当x=﹣2时,代数式的值是 5 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简.【解答】解:当x=﹣2时,代数式===5.【点评】主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式.②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.17.计算:﹣= \sqrt{5} ;(2+)÷= \sqrt{2}+\sqrt{3} .【考点】二次根式的混合运算.【专题】计算题.【分析】利用二次根式的加减法计算﹣;利用二次根式的除法法则计算(2+)÷.【解答】解:﹣=2﹣=;(2+)÷=2+=+.故答案为,+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来\sqrt{n+\frac{1}{n+2}}=(n+1)\sqrt{\frac{1}{n+2}}(n≥1).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).三、解答题(共66分)19.化简:(1)(π﹣2015)0++|﹣2|;(2)++3﹣.【考点】实数的运算;零指数幂.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式利用算术平方根,立方根,以及二次根式性质化简,计算即可得到结果.【解答】解:(1)原式=1+2+2﹣=3+;(2)原式=4﹣3+3﹣3=3﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.计算:(1)(2﹣3)2;(2)+﹣2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)利用完全平方公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=12﹣12+18=30﹣12;(2)原式=2+﹣=+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.21.实数a、b在数轴上的位置如图所示,请化简:|a|﹣﹣.【考点】二次根式的性质与化简;实数与数轴.【分析】先根据二次根式的性质得出|a|﹣|a|﹣|b|,推出结果是﹣|b|,根据正数的绝对值等于它本身得出即可.【解答】解:∵从数轴可知:a<0<b,∴:|a|﹣﹣=|a|﹣|a|﹣|b|=﹣|b|=﹣b.【点评】本题考查了二次根式的性质,实数与数轴等知识点,解此题的关键是根据数轴得出a<0<b,注意:=|a|,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.22.已知y=,求3x+2y的算术平方根.【考点】二次根式有意义的条件;算术平方根.【专题】计算题.【分析】根据二次根式的被开方数为非负数可得出x的值,进而得出y的值,代入代数式后求算术平方根即可.【解答】解:由题意得,,∴x=3,此时y=8;∴3x+2y=25,25的算术平方根为=5.故3x+2y的算术平方根为5.【点评】本题考查二次根式有意义的条件,比较简单,关键是掌握二次根式的被开方数为非负数,另外要仔细审题,题目要求的是算术平方根而不是平方根,这是同学们容易忽略的地方.23.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.【考点】二次根式的化简求值;整式的加减—化简求值.【分析】观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.【解答】解:(1)当x=+1,y=﹣1时,原式=(x+y)2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y)(x﹣y)=(+1+﹣1)(+1﹣+1)=4.【点评】先化简变化算式,然后再代入数值,所以第一步先观察,而不是直接代入数值.24.细心观察图形,认真分析各式,然后解答问题.()2+1=2 S1=()2+1=3 S2=()2+1=4 S3=…(1)推算出S10的值;(2)请用含有n(n是正整数)的等式表示上述变化规律;(3)求出S12+S22+S32+…+S102的值.【考点】勾股定理;算术平方根.【专题】规律型.【分析】(1)由给出的数据直接写出OA102的长,从而得到S10的值即可;(2)分别求出OA12,OA22,OA33…和S1、S2、S3…S n,找出规律即;(3)首先求出S12+S22+S32+…+S n2的公式,然后把n=10代入即可.【解答】解:(1)∵OA12=1,OA22=2,OA32=3,∴OA102=10,∵S1=,S2=,S3=,…∴S10=;(2)由(1)得:OA n2=n,S n=;(3)∵S12=,S22=,S32=,…S102=,S12+S22+S32+…+S n2=+++…+=.【点评】本题主要考查勾股定理的知识点,解答本题的关键是熟练运用勾股定理,此题难度不大.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2 ,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
北师大版八年级数学上册《实数》单元测试卷及答案解析
北师大版八年级数学上册《实数》单元测试卷及答案解析北师大版八年级数学上册《实数》单元测试卷一、选择题1、下列各数是无理数的是(B)A.B.√3C.﹣D.﹣22、下列计算正确的是(D)A.B.C.D.3、实数在数轴上的对应点的位置如图所示,则正确的结论是(A)A.B.C.D.4、若,则下列x的取值范围正确的是(D)A.x>2B.x≥2C.x<2D.x≤25、下列二次根式中,是最简二次根式的是(A)A.√3B.2√2C.√6D.3√36、化简1-|1-2|的结果是(C)A.-2B.0C.1D.27、将化简,正确的结果是(B)A.B.C.D.8、在以下实数中,无理数有(C)个1.414,1.xxxxxxxx1 (42)A.2个B.3个C.4个D.5个9、下列根式中,与是同类二次根式的是(B)A.B.C.D.10、估算的值是在(B)A.3和4之间B.4和5之间C.5和6之间D.6和7之间二、填空题11、二次根式12、与无理数3 + √5 同类的二次根式是2 + √5.13、如果。
则的取值范围是0 < a ≤ 1.14、若。
则的结果为 3.15、计算(2+)2015 有意义,则的取值范围是0 < a ≤ 1.最接近的整数是 0.16、若a<2,化简+a-1=a-1.17、比较下列实数的大小(填上>、<或=).①- 3 < - 2.②√5 >√3.③- 2 > - √5.18、在。
中,与是同类二次根式的有 3 个.19、当a=,b=时,代数式的值是 2.20、的平方根是 3.(-9)的平方根是不存在。
三、计算题21、(1)×(2) = 222、化简:(1)(2) = 2 - √323、求下列各式中的值.1)(2) = 5四、解答题24、先化简,再计算。
其中。
2 - √3.所以= 2 + √3.25、已知。
求。
解。
= (3 + √5)(3 - √5) = 4.26、最简二次根式与是同类二次根式,求3a-b的值。
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。
八年级数学上册第二章《实数》单元测试题北师大版
八年级(上)第二章《实数》单元测试题一.选择题:1. 边长为1的正方形的对角线长是( )A. 整数B. 分数C. 有理数D. 不是有理数2. 在下列各数中是无理数的有( )-0.333…, 4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A.3个B.4个C. 5个D. 6个3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数 4. 下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根5. 若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或86. 下列平方根中, 已经简化的是( ) A. 31 B. 20 C. 22 D. 121 7. 下列结论正确的是( ) A.6)6(2-=-- B.9)3(2=- C.16)16(2±=- D.251625162=⎪⎪⎭⎫ ⎝⎛-- 8. 下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.0000019. 以下语句及写成式子正确的是( )A.7是49的算术平方根,即749±=B.7是2)7(-的平方根,即7)7(2=-C.7±是49的平方根,即749=±D.7±是49的平方根,即749±=10. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a二. 填空题:11. 把下列各数填入相应的集合内:-7, 0.32, 31,46, 0, 8,21,3216,-2π. ①有理数集合: { …};②无理数集合: { …};③正实数集合: { …};④实数集合: { …}.12. 9的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 .13. –1的立方根是 ,271的立方根是 , 9的立方根是 . 14. 2的相反数是 , 倒数是 , -36的绝对值是 .15. 比较大小; 310; 填“>”或“<”) 16. =-2)4( ;=-33)6( ; 2)196(= .三. 解答题:17.求下列各数的平方根和算术平方根:① 1 ②410-18. 求下列各数的立方根:①21627; ②610-- 19.求下列各式的值:①44.1 ②3027.0- ③610-④649 ⑤25241+ ⑥ 327102--- 20. 化简:①44.1-21.1; ②2328-+; ③92731⋅+; ④0)31(33122-++; ⑤)31)(21(-+; ⑥2)52(-; ⑦2)3322(+; ⑧)32)(32(-+.21. 小芳想在墙壁上钉一个三角架(如图), 其中两直角边长度之比为3:2, 斜边长520厘米, 求两直角边的长度.22. 已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值23. 已知实数 a 、b试化简:(a -b)2-|a +b |实数单元测试题填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。
北师大版八年级上《第2章实数》单元测试(3)含答案解析
第2章实数一、填空题(共4小题)1.计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1= .2.计算: = .3.计算: = .4.对于实数a、b,定义运算⊗如下:a⊗b=,例如,2⊗4=2﹣4=.计算[2⊗2]×[(﹣3)⊗2]= .二、解答题(共26小题)5.计算:.6.计算:sin60°+|﹣5|﹣(4015﹣π)0+(﹣1)2019+()﹣1.7.计算:.8.计算:﹣()﹣1+(﹣1)2019.9.计算:﹣++(π﹣3)0.10.计算:|﹣|+﹣4sin45°﹣.11.计算:|﹣5|+(﹣1)2019+2sin30°﹣.12.计算:|﹣|+(2019﹣)0﹣()﹣1﹣2sin60°.13.计算:()﹣1﹣﹣sin30°.14.计算:2sin60°+2﹣1﹣20190﹣|1﹣|15.计算:(3﹣π)0+2sin60°+()﹣2﹣|﹣|16.计算:20190﹣(﹣3)﹣++.17.(1)计算:(2)解方程:.18.计算:(﹣2)2﹣()0.19.计算:(1﹣)0﹣+2sin60°﹣|﹣|20.计算:.21.计算: +|﹣3|﹣(π﹣2019)0.22.计算:.23.计算:|﹣6|﹣﹣(﹣1)2.24.计算:.25.计算:.26.计算:.27.计算:|﹣3|+.28.计算:(﹣1)2019+(2sin30°+)0﹣+()﹣1.29.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.30.计算:.第2章实数参考答案与试题解析一、填空题(共4小题)1.计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1= 3.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+2﹣1﹣=﹣1+2﹣1+2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.2.计算: = 1 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值、绝对值等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+﹣2×﹣(2﹣)=1+2﹣﹣2+=1,故答案为:1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.3.计算: = 0 .【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项利用平方根定义化简,计算即可得到结果.【解答】解:原式=2﹣2=0.故答案为:0【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.对于实数a、b,定义运算⊗如下:a⊗b=,例如,2⊗4=2﹣4=.计算[2⊗2]×[(﹣3)⊗2]= .【考点】实数的运算;负整数指数幂.【专题】新定义.【分析】根据题目所给的运算法则,分别计算出2⊗2和(﹣3)⊗2的值,然后求解即可.【解答】解:2⊗2=2﹣2=,(﹣3)⊗2=(﹣3)﹣2=,则[2⊗2]×[(﹣3)⊗2]=×=.故答案为:.【点评】本题考查了实数的运算,解答本题的关键是读懂题意,根据题目所给的运算法则求解.二、解答题(共26小题)5.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+×﹣2﹣1+=3+1﹣2﹣1+3=4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.6.计算:sin60°+|﹣5|﹣(4015﹣π)0+(﹣1)2019+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行绝对值、零指数幂、负整数指数幂的运算,然后代入特殊角的三角函数值,继而合并可得出答案.【解答】解:原式=+5﹣﹣1+=.【点评】本题考查了实数的运算,涉及了绝对值、零指数幂、负整数指数幂,掌握各部分的运算法则是关键.7.计算:.【考点】实数的运算.【专题】计算题.【分析】本题涉及绝对值、乘方、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4﹣1+3=6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握绝对值、乘方二次根式化简等考点的运算.8.计算:﹣()﹣1+(﹣1)2019.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】本题涉及负指数幂、乘方、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4﹣﹣1=4﹣2﹣1=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握负指数幂、乘方、二次根式化简等考点的运算.9.计算:﹣++(π﹣3)0.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及零指数幂、负指数幂、立方根、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=0.5﹣++1=0.5﹣2++1=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、立方根、二次根式化简等考点的运算.10.计算:|﹣|+﹣4sin45°﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=|﹣2|+﹣4×﹣1=2+3﹣2﹣1=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点的运算.11.计算:|﹣5|+(﹣1)2019+2sin30°﹣.【考点】实数的运算;特殊角的三角函数值.【专题】计算题.【分析】本题涉及绝对值、乘方、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=5﹣1+2×﹣5=﹣1+1=0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、乘方、特殊角的三角函数值、二次根式化简等考点的运算.12.计算:|﹣|+(2019﹣)0﹣()﹣1﹣2sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】先分别根据0指数幂及负整数指数幂的计算法则,特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+1﹣3﹣2×=2+1﹣3﹣=﹣2.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则,特殊角的三角函数值是解答此题的关键.13.计算:()﹣1﹣﹣sin30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及负指数幂、平方根、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2﹣=3﹣2﹣=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负指数幂、平方根、特殊角的三角函数值等考点的运算.14.计算:2sin60°+2﹣1﹣20190﹣|1﹣|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、绝对值、负指数幂等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2×+﹣1﹣(﹣1)=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、绝对值、负指数幂等考点的运算.15.计算:(3﹣π)0+2sin60°+()﹣2﹣|﹣|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+2×+4﹣=1++4﹣=5.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.16.计算:20190﹣(﹣3)﹣++.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据0指数幂、负整数指数幂及有理数开方的法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=1+3﹣2++2=6﹣.【点评】本题考查的是实数的运算,熟知0指数幂、负整数指数幂及有理数开方的法则是解答此题的关键.17.(1)计算:(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用﹣1的奇次幂为﹣1计算,第三项利用负指数幂法则计算,最后一项利用平方根定义化简即可得到结果;(2)分式方程去分母转化整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣1+2﹣3=﹣1;(2)去分母得:4x=x+2,移项合并得:3x=2,解得:x=,检验:当x=时,2x(x﹣2)≠0,∴x=是原方程的解.【点评】此题考查了实数的运算,以及解分式方程,熟练掌握运算法则是解本题的关键.18.计算:(﹣2)2﹣()0.【考点】实数的运算;零指数幂.【专题】计算题.【分析】本题涉及零指数幂、乘方等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4﹣1=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方等考点的运算.19.计算:(1﹣)0﹣+2sin60°﹣|﹣|【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别根据0指数幂的运算法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=1﹣2+﹣=1﹣2.【点评】本题考查的是实数的运算,熟知0指数幂的运算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.计算:.【考点】实数的运算;特殊角的三角函数值.【专题】计算题.【分析】分别根据算术平方根、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+3﹣2×=5﹣1=4.【点评】本题考查的是实数的运算,熟知算术平方根、绝对值的性质及特殊角的三角函数值是解答此题的关键.21.计算: +|﹣3|﹣(π﹣2019)0.【考点】实数的运算;零指数幂.【专题】计算题.【分析】本题涉及零指数幂、平方根、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+3﹣1=4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、平方根、绝对值等考点的运算.22.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】探究型.【分析】先根据0指数幂、负整数指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=1+2﹣+9=10+.【点评】本题考查的是实数的运算,熟知0指数幂、负整数指数幂的计算法则,熟记特殊角的三角函数值是解答此题的关键.23.计算:|﹣6|﹣﹣(﹣1)2.【考点】实数的运算.【专题】计算题.【分析】原式第一项利用负数的绝对值等于它的相反数化简,第二项利用算术平方根的定义化简,最后一项表示两个﹣1的乘积,即可得到结果.【解答】解:原式=6﹣3﹣1=2.【点评】此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.24.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣1+1﹣=2﹣1+1﹣2=0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握及零指数幂、负指数幂、绝对值、二次根式等考点的运算.25.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣6×+1+2﹣2=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.26.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值化简,第二项利用负指数幂法则计算,第三项利用平方根的定义化简,最后一项利用﹣1的奇次幂为﹣1计算即可得到结果.【解答】解:原式=6×+3﹣3﹣1=3+3﹣3﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.计算:|﹣3|+.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+×﹣2﹣1=3+1﹣2﹣1=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、绝对值、特殊角的三角函数值、立方根等考点的运算.28.计算:(﹣1)2019+(2sin30°+)0﹣+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项表示2019个﹣1的乘积,第二项利用零指数幂法则计算,第三项利用立方根的定义化简,最后一项利用负指数幂法则计算,即可得到结果.【解答】解:原式=﹣1+1﹣2+3=1.【点评】此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.29.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.30.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项先利用平方根的定义化简,再计算除法运算,最后一项先计算零指数幂及特殊角的三角函数值,再计算乘法运算,即可得到结果.【解答】解:原式=3﹣2÷4+1×=3﹣+=3.【点评】此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.。
北师大数学八年级(上)《实数》单元测试
北师大数学八年级(上)《实数》单元测试班级_____ 姓名______ 得分______(时间:约45分钟)一、填空题(每题2分,计20分)1、下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中。
其中是有理数的有_______;是无理数的有_______。
(填序号) 2、94的平方根是____;0.216的立方根是____。
3、算术平方根等于它本身的数是____;立方根等于它本身的数是____。
4、估算比较大小:(1)10-___-3.2;(2)3130___5。
5、一个正方体的体积变为原来的27倍,则它的棱长变为原来的____倍。
6、23-的算术平方根是____;231--)( 的算术平方根是____。
7、满足53<<-x 的整数x 是____。
8、已知:52102.=x ,那么未知数x 的值是____。
9、估算面积是20平方米的正方形,它的边长是________(误差小于0.1米) 10、35-的相反数是____、绝对值是____、倒数是____。
二、 选择题(每题3分,计21分)1、01960.的算术平方根是…………………………………………………………( ) A 、140. B 、0140. C 、140.± D 、0140.±2、26)(-的平方根是……………………………………………………………( ) A 、-6 B 、36 C 、±6 D 、±63、364--的平方根是………………………………………………………( ) A 、2 B 、2± C 、4± D 、不存在4 、下列计算或命题:①±3都是27的立方根;②a a =33;③64的立方根是2;④4832±=±)(,其中正确的个数有…………………………………………( ) A 、1个 B 、2个 C 、3个 D 、4个5、在下列各式子中,正确的是……………………………………………( )A 、2233=-)(B 、4006403..-=-C 、222±=±)(D 、022332=+-)()(6、x 是29)(-的平方根,y 是64的立方根,则y x +的值为………( )A 、3B 、7C 、3,7D 、1,77、若14+a 有意义,则a 能取的最小整数为………………………( )A 、0B 、1C 、-1D 、-4 三、 做一做(计38分)1、在0、1、2、3、4、5、6、7、8、9这10个数的平方根和立方根中,请把其中的有理数写出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数检测题(本检测题满分:100分,时间:90分钟)、选择题 (每小题3分,共30分) 1.( 2015 •天津中考)估计 「的值在( )B.2和3之间 D.4和5之间A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4. ( 2015 •湖北宜昌中考)下列式子没有意义的是( )A.、一 ;B.C.汐D.?(:匚;严5. (2015 •重庆中考)化简 A2的结果是( ) A. 4.3B. 2 3C. 3 2D. 2、66.若a,b 为实数,且满足|a — 2|+. b 2=0,则b — a 的值为()C . 110.有一个数值转换器,原理如图所示:当输入的x=64时,输出的y 等于(A.1和2之间 C.3和4之间2. (2015 •安徽中考)与 1+ :最接近的整数是( A.4 B.3 C.2 D.13. (2015 •南京中考) 估计C .— 2D .以上都不对a > •、7 ,b > 3 2,则a + b 的最小值是( A.3 B.4C.58.已矢口 Va =—1, b = 1,2c 丄=0, 则abc 的值为(2A.0 B . — 1C. 1 1—-D22D.6 )m 1) 2厂2 = 0,贝U m + n 的值是 7.若a , b 均为正整数,且 9. (2014 •福州中考)若()第mA. 2B. 8C. 3 2D. 2 2二、填空题(每小题3分,共24分)11. (2015 •南京中考)4的平方根是_________ 4的算术平方根是___________ .12. (2015 •河北中考)若|a|=2匸510,则a= _________ .13. 已知:若 3.65 〜1.910, 36.5 〜6.042,则.365 000 _____ , ± 0.000 365〜.14. 绝对值小于n的整数有_______ .15. 已知|a—5|+ . b 3 —0,那么a—b — ___ .16. 已知a, b为两个连续的整数,且a> 28 >b,则a+ b—_________ .17. (2014 •福州中考)计算:(血1)(应1)—__________ .18. (2015 •贵州遵义中考)嵌;;『+験—________ .三、解答题(共46分)19. (6分)已知-,求的值.20. (6分)若5+ 7的小数部分是a, 5—.. 7的小数部分是b,求ab+5b的值.21. (6分)先阅读下面的解题过程,然后再解答:形如,m 2 n的化简,只要我们找到两个数a, b,使a b m, ab n ,即C a)2(Pb)2 m , J a w b J n,那么便有:.m 2 n . ( a b)2、a 、b (a b).例如:化简:.7 4,3.解:首先把.7 4.3化为.7 2.12,这里m 7 , n 12 ,因为= ■=-:,即(4)2 C,3)2 7 , .4 ,3 .12 ,所以7一4:3「7 2、12「(一4一3)2 2 3.根据上述方法化简:13 2 42 .22. (6分)比较大小,并说明理由:(1)「与6;(2)■| 与.23. (6分)大家知道-是无理数,而无理数是无限不循环小数,因此-的小数部分我们不能全部写出来,于是小平用-1来表示一的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为一的整数部分是1,用这个数减去其整数部分,差就是小数部分•请解答:已知:5 +•:的小数部分是,5—:的整数部分是b,求「+ b的值.24. (8 分)计算:(1) 2 6- . 427 .8 ;V8耳3(2)(1 .3)(.2 .、6)-(2、.3 1)2.25. (8分)阅读下面计算过程:1•、2 11 °2 1)、、2 1 ;(、2 1)(.2 1) '13 .21 323 2;(3「2)(.3 2)3'1 5 21 5 2(”5 2)(.. 5 2)试求:(1)1—的值;V7 J61(n为正整数)的值;1 . n.1 1 1 1 .的值.2 ,3 3 .4 、、98 .99 .99 .100第二章实数检测题参考答案一、选择题1. C 解析:11介于9和16之间,即9v 11V 16,则利用不等式的性质可以求得1丄介于3和4之间•即:9v 11V 16,.••点v加v厉③,3<苗<4,•••3的值在3和4之间.故选C.2. B 解析::4.84V5V 5.29,二 4.84 V . 5 V . 5.29 ,即 2.2V 5 V 2.3,. 1+2.2V 1+ . 5 V 1+2.3,即3.2V 1+ . 5 V3.3,.与1+ . 5最接近的整数是3.3. C 解析:Q 2.22 5 2.32, 2.2 .5 2.3, 1.2 ,5 1 1.3,0.6 亠0.65 ,故选C.24.A解析:根据二次根式有意义的条件,当被开方数a>0时,二次根式、融有意义;当av0时,/気在实数范围内没有意义.由于-3v0, 所以:没有意义.5.B解析:,12 4 3 ,22 3 2.3.6.C解析:|a —2|+ •. b2= 0,• a = 2, b= 0, • b一a= 0一2= 一2.故选C.7.C解析:v a, b均为正整数,且a> 7 , b> 32 , • a的最小值是3, b的最小值是2,则a+ b的最小值是5.故选C.「 1 218. C 解析:T Va =—1, T b = 1, c - = 0,. a=—1, b= 1, c=-,1• abc=—-.故选C.9. A 解析:根据偶次方、算术平方根的非负性,由( m 1) 2「门―2 = 0,得m—1 = 0, n+ 2= 0,解得m= 1, n= —2,. m+ n= 1 +(—2) =— 1.10. D 解析:由图得64的算术平方根是8, 8的算术平方根是2・.2 .故选D .二、填空题11. 2 2 解析::22 4, 2 2 4, • 4的平方根是2, 4的算术平方根是2.12. 1 解析:因为2 01501,所以a 1,所以a 1.13.604.2 土 0.019 1 解析:365000 36.5 104〜604.2; 土 .0.000365 =± ,3.65 10 4〜土0.019 1.14. ±, ±2, ±,0 解析:冗〜3.14,大于一n的负整数有:一3,—2,—1,小于n的正整数有:3, 2, 1, 0的绝对值也小于n .15.8 解析:由|a—5|+ .b 3 = 0,得a = 5, b= —3,所以a—b= 5— ( —3)= 8.16.11 解析::a> 28 >b, a, b为两个连续的整数,又25 v . 28 v 36,二a= 6, b= 5,二a+ b= 11.17.1 解析:根据平方差公式进行计算,(2 + 1) ( 2 —1) = . 2 2—12= 2—1 = 1.18. 4.3 解析:,27 ,3 3一3 3 4 3.三、解答题19. 解:因为_…-,—…'_ ',即厲炉氛山戈所以m ■ vn.故.二—一.……一-,从而:.,所以=:.!-:;,所以^-2 012:二 2 013.20. 解:T 2v 7 v3,二7v5+.7 v8,二a= .7 —2.又可得2v 5—.7 v 3,二b=3—7 .将a= . 7 —2, b=3—■ -7 代入ab + 5b 中,得ab+ 5b =( . 7 —2) (3 —■.7 )+ 5 (3 —7■■:7 )= 3 订7 —7—6+ 2 7 + 15—5 订7 = 2.21.解:根据题意,可知.二亠•二—1,因为.--=1 ■,: _=-:,所以■,—• • -' .22. 分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较 大小;(2) 解:可米用近似求值的方法来比较大小.(1)v 6= 36,35V 36,.,35 V 6.(2)V — . 5 + 1" — 2.236+1= — 1.236,—辽"一0.707, 1.236>0.707,2• •• — 5 + 1 V —丿.223. 解:••• 4V 5V 9,二 2<矗<3,二 7V 5+ : V 8,二皿=:—2.又.—2 > — '血、> —3,• 5 — 2> 5 — f- > 5 — 3,• 2 V 5 — - V 3,.. b = 2,亠 + b =】一2 + 2=二. 24.解:(1 )原式=-2 3 3 3 3 2 2( 2 )原式=2.6.6 3.213 4.3=上 2、3 6.6= 4 3 2.2 13.23=空=3.231 (777 岛 (,n 1. n )( / n 1 、n )={^3 - i )十{<3- <X )+•'■ +(详9 ~ V 9勺 + I/. 10i 一食 9?)=—1 + ,100 = — 1 + 10= 9.25.解: (1)1.761 ( .7;6){ -7 C - 6)1 1.98.99-99、。