石墨烯作为锂电池负极材料前景渺茫

合集下载

石墨烯负极材料

石墨烯负极材料

石墨烯负极材料
石墨烯是一种新型的碳材料,具有非常出色的电导性、机械强度和热稳定性等特点,因此被广泛应用于能源存储和转化领域。

作为锂离子电池和超级电容器的负极材料,石墨烯展现出了很大的潜力。

传统的锂离子电池负极材料为石墨,但其容量有限,无法满足日益增长的能源需求。

相比之下,石墨烯具有更高的比容量和更好的电导率,能够提供更高的储能效率和更长的循环寿命。

采用石墨烯作为负极材料,能够增加充放电速率,提高电池效能。

石墨烯作为超级电容器的负极材料,也表现出了优秀的性能。

超级电容器具有高速充放电特性和长循环寿命,但能量密度相对较低。

利用石墨烯的高比表面积和高电导率,可以提高超级电容器的能量密度和功率密度,从而满足更多领域的应用需求。

此外,石墨烯还可以与金属、金属氧化物等其他材料复合,以进一步提高电池和超级电容器的性能。

例如,石墨烯与硅复合,可以增加锂离子电池的容量和循环寿命;石墨烯与氧化钛复合,可以提高超级电容器的能量密度和功率密度。

虽然石墨烯作为负极材料具有很多优势,但还存在一些挑战。

首先,石墨烯的制备成本较高,限制了其大规模商业化生产。

其次,石墨烯的可扩展性和稳定性还需要进一步改进,以满足实际应用的需求。

此外,石墨烯与电解液之间的界面问题也需要解决,以提高电池和超级电容器的性能。

总体而言,石墨烯作为锂离子电池和超级电容器的负极材料,具有很大的潜力。

随着相关技术的不断发展和完善,相信石墨烯在能源存储和转化领域将得到更广泛的应用。

《2024年基于石墨烯的锂离子电池负极材料的研究》范文

《2024年基于石墨烯的锂离子电池负极材料的研究》范文

《基于石墨烯的锂离子电池负极材料的研究》篇一一、引言随着科技的发展和社会的进步,能源问题已成为全球共同关注的焦点。

锂离子电池因其高能量密度、长寿命和环保等优点,被广泛应用于电动汽车、电子设备等领域。

然而,传统锂离子电池的负极材料存在着一些不足,如容量低、循环性能差等。

因此,开发新型高性能的锂离子电池负极材料具有重要意义。

近年来,基于石墨烯的锂离子电池负极材料因其独特的结构和性能受到了广泛关注。

本文将重点研究基于石墨烯的锂离子电池负极材料,分析其制备方法、性能及改进方向。

二、石墨烯的基本性质与结构石墨烯是一种由单层碳原子组成的二维材料,具有优异的导电性、导热性、机械强度和较大的比表面积。

这些特性使得石墨烯在锂离子电池负极材料中具有巨大的应用潜力。

石墨烯的片层结构可以为锂离子提供更多的嵌入位点,从而提高电池的容量。

此外,石墨烯的优异导电性有助于提高电池的充放电速率。

三、基于石墨烯的锂离子电池负极材料的制备方法1. 化学气相沉积法:通过在高温下使碳源气体分解,并在基底上沉积石墨烯。

该方法可以制备出高质量的石墨烯薄膜,但成本较高,生产效率较低。

2. 液相剥离法:利用溶剂剥离石墨得到单层或多层石墨烯。

该方法工艺简单,成本低,但产物中杂质较多,影响电池性能。

3. 化学氧化还原法:通过化学氧化天然石墨得到氧化石墨,再通过还原得到石墨烯。

该方法工艺成熟,可实现大规模生产。

四、基于石墨烯的锂离子电池负极材料的性能研究基于石墨烯的锂离子电池负极材料具有较高的理论容量和良好的循环性能。

在充放电过程中,锂离子可以在石墨烯片层间嵌入和脱出,从而实现能量的存储和释放。

此外,石墨烯的优异导电性有助于提高电池的充放电速率,降低内阻。

然而,在实际应用中,还需解决石墨烯材料的一些问题,如容量衰减、循环稳定性等。

五、性能改进措施及研究进展针对基于石墨烯的锂离子电池负极材料存在的问题,研究者们提出了多种改进措施。

1. 纳米结构化:通过制备具有特殊纳米结构的石墨烯材料,如三维网络结构、多孔结构等,提高材料的比表面积和嵌锂能力,从而提高电池性能。

用于锂离子电池的石墨烯材料——储能特性及前景展望

用于锂离子电池的石墨烯材料——储能特性及前景展望

用于锂离子电池的石墨烯材料——储能特性及前景展望智林杰;方岩;康飞宇【摘要】石墨烯具有独特的二维结构、优异的性能和各种潜在的应用价值,是当前材料科学领域研究的热点.通过简要评述石墨烯作为锂离子电池负极材料的结构与性能的关系,讨论了作为电极材料的石墨烯结构与功能调控的重要性,指出石墨烯基纳米材料是一种很有吸引力的锂离子电池电极材料,尤其针对高能量密度与高功率密度电池.%Graphene is a rapidly rising star in materials science because of its two-dimensional structure , superior properties, and promising applications. Recent progress on graphene-based electrode materials for high performance lithium ion batteries ( LIBs) has been highlighted. The relationship between the graphene structure , its electrochemical performance and strategies for tuning its functions are discussed. Graphene-based nanomaterial is believed to be an attractive electrode material in LIBs, particularly for the development of batteries with high-energy density and high-power density.【期刊名称】《新型炭材料》【年(卷),期】2011(026)001【总页数】4页(P5-8)【关键词】石墨烯;钾离子电池;能量密度;功率密度【作者】智林杰;方岩;康飞宇【作者单位】国家纳米科学中心,北京100190;国家纳米科学中心,北京100190;清华大学材料科学与工程系先进材料实验室,北京100084;清华大学材料科学与工程系先进材料实验室,北京100084【正文语种】中文【中图分类】TQ127.1+11 前言当今世界,全球气候变暖、化石能源逐渐枯竭、环境污染日趋严重等一系列的能源与环境问题严重威胁着人类的生存与发展,寻找替代化石能源的可再生绿色能源成为目前亟需解决的问题,而高效利用风能和太阳能是解决该问题的有效途径。

石墨烯负极材料的用途

石墨烯负极材料的用途

石墨烯负极材料的用途石墨烯作为一种新型材料,具有许多独特的特性和潜在的应用。

其中,石墨烯负极材料作为一种重要的电池材料,具有广泛的用途。

本文将介绍石墨烯负极材料的用途,并深入探讨其在锂离子电池、超级电容器和燃料电池等领域的应用。

石墨烯作为锂离子电池负极材料的应用已经引起了广泛关注。

锂离子电池是目前广泛应用于移动通信、电动车辆、储能等领域的重要能源储存设备。

石墨烯作为一种理想的负极材料,具有高比表面积、优异的电导率和良好的化学稳定性,能够显著提高锂离子电池的容量和循环寿命。

石墨烯负极材料在锂离子电池中的应用,可以大幅提升电池的性能,实现更高的能量密度和更长的使用寿命。

石墨烯负极材料在超级电容器领域也具有重要的应用价值。

超级电容器是一种高性能能量储存装置,具有快速充放电速度、长循环寿命和较高的功率密度等特点,被广泛应用于电动车辆、可再生能源等领域。

石墨烯作为超级电容器的负极材料,可以显著提高电容器的能量密度和功率密度,改善其循环寿命和充放电性能。

因此,石墨烯负极材料在超级电容器领域具有广阔的应用前景。

石墨烯负极材料还可以用于燃料电池。

燃料电池是一种将化学能直接转化为电能的装置,具有高能量转化效率、无污染排放等优点,被视为未来清洁能源的重要组成部分。

石墨烯作为燃料电池的负极材料,可以提高电子传输速率和电化学活性,提高燃料电池的性能和稳定性。

石墨烯负极材料的应用可以促进燃料电池技术的发展,推动清洁能源的大规模应用。

除了上述应用领域,石墨烯负极材料还具有其他潜在的应用价值。

例如,石墨烯负极材料可以用于太阳能电池、柔性电子器件等领域,以提高其性能和稳定性。

此外,石墨烯负极材料还可以用于储能设备、传感器等领域,满足不同领域对高性能能源储存和传感器材料的需求。

石墨烯负极材料作为一种具有独特特性的新型材料,具有广泛的应用前景。

其在锂离子电池、超级电容器和燃料电池等领域的应用,可以显著提高电池的能量密度、循环寿命和充放电性能。

石墨烯的应用前景与挑战

石墨烯的应用前景与挑战

石墨烯的应用前景与挑战石墨烯是近年来备受瞩目的材料之一,它被誉为一个“奇迹材料”,拥有极高的导热、导电性能、机械强度和透明性等特点,被认为可以广泛应用于电子、能源、生物医学、环境保护等领域。

一、石墨烯的应用前景1. 电子领域石墨烯因其卓越的电子性能被认为是电子领域的一个重要材料。

它具有非常高的电子迁移率,可以用来制造高性能场效应晶体管,使得电子元件的速度和功耗都有了极大的改进。

此外,石墨烯还具备优秀的光学特性,可以用于制作高性能的显示器、灯具、太阳能电池等。

2. 能源领域石墨烯在能源领域的应用前景也非常广阔。

石墨烯的导电性能使得它可以被用于锂离子电池、超级电容器等电池的制造中,让电池的发电效率有了较大提升。

另外,石墨烯还可以用于太阳能电池领域,可以显著提高太阳能电池的光电转换效率,从而达到更高的发电功率。

3. 生物医学领域石墨烯在生物医学领域的应用前景也非常受瞩目。

由于石墨烯具有高度透明性和生物相容性,在生物材料中的应用极为广泛,可以用于生物材料的制造和人体组织的修复。

此外,石墨烯还可以利用其导电性能制造出高灵敏的生物传感器,使得医疗筛查过程更为快速和准确。

4. 环境保护领域随着环境问题日益严重,石墨烯在环境保护领域的应用越来越受到重视。

石墨烯可以制造出高效的净水设备,可用于废水处理或海水淡化。

同时,石墨烯还可以用于制造防辐射服、空气净化器等环保设备,提高环境净化的效率。

二、石墨烯面临的挑战目前,石墨烯制造成本较高,使得它在大规模生产和应用方面面临很大的挑战。

为了解决这个问题,科学家们正在研究各种新的制备技术,以使得石墨烯的生产成本降低。

2. 稳定性问题石墨烯的稳定性也是一个重要的挑战。

由于石墨烯是一个十分薄且容易损坏的材料,因此在制造和使用过程中需要格外小心。

科学家们正在研究各种方法来提高石墨烯的稳定性,以便更安全地应用它在各种领域中。

3. 处理技术问题石墨烯的处理技术也是一个值得关注的挑战。

石墨烯负极材料

石墨烯负极材料

石墨烯负极材料石墨烯是一种由碳原子通过化学键连接形成的二维晶体结构,具有高度的机械强度、导电性和导热性。

石墨烯的发现引起了全球科学界的广泛关注,并被认为是未来材料科学领域的重要发展方向之一。

近年来,石墨烯在电池领域的应用也逐渐受到了人们的关注,特别是在负极材料方面的应用。

本文将介绍石墨烯作为负极材料的研究进展和应用前景。

一、石墨烯的优势作为一种新型材料,石墨烯具有以下优势:1. 高度的导电性和导热性。

石墨烯的电子在平面内运动受到很少的阻碍,因此具有极高的电导率和热导率,这使得石墨烯作为电池负极材料具有良好的传输性能。

2. 高度的机械强度。

石墨烯的单层结构非常薄,但具有高度的机械强度和韧性,这使得石墨烯在电池的循环过程中能够承受较大的应力和变形。

3. 高度的化学稳定性。

石墨烯的碳-碳键结构非常稳定,能够抵御化学腐蚀和氧化,这使得石墨烯在电池中能够长期稳定地工作。

二、石墨烯作为负极材料的研究进展目前,石墨烯作为电池负极材料的研究主要集中在以下几个方面: 1. 石墨烯的制备方法。

目前,石墨烯的制备方法主要包括机械剥离法、化学气相沉积法、化学还原法等,其中化学还原法是最常用的方法之一。

这些方法可以制备出高质量的石墨烯,为其在电池负极材料方面的应用提供了基础。

2. 石墨烯的改性。

为了进一步提高石墨烯作为负极材料的性能,研究人员对石墨烯进行了各种改性,如掺杂、氧化、还原等,以增加其容量、循环性能和稳定性。

3. 石墨烯的应用。

石墨烯作为电池负极材料的应用主要包括锂离子电池、钠离子电池、锂硫电池等。

研究表明,石墨烯作为负极材料具有高的比容量、良好的循环性能和高的放电平台,能够提高电池的能量密度和循环寿命。

三、石墨烯作为负极材料的应用前景随着人们对新型材料的需求不断增加,石墨烯作为负极材料的应用前景也越来越广阔。

石墨烯作为电池负极材料的应用前景主要体现在以下几个方面:1. 提高电池能量密度。

石墨烯具有高的比容量和良好的循环性能,能够提高电池的能量密度,满足人们对高能量密度电池的需求。

2024年石墨负极材料市场发展现状

2024年石墨负极材料市场发展现状

2024年石墨负极材料市场发展现状引言石墨负极材料是一种重要的电池材料,广泛应用于电动汽车、便携式电子设备等领域。

本文将对石墨负极材料市场的发展现状进行分析和讨论,重点关注其应用领域、市场规模和竞争态势等方面。

应用领域石墨负极材料主要应用在电动汽车、电池储能和便携式电子设备等领域。

随着电动汽车市场的快速发展,石墨负极材料的需求也呈现出明显增长的趋势。

此外,随着可再生能源的推广应用,电池储能市场也呈现出高速增长的态势。

而在便携式电子设备中,如智能手机、平板电脑等,石墨负极材料在电池性能方面的优势也得到了广泛认可。

市场规模目前,全球石墨负极材料市场规模正在不断扩大。

据相关数据显示,截至2020年,全球石墨负极材料市场规模已超过100亿美元。

其中,电动汽车领域是石墨负极材料市场的主要推动力,预计未来几年内电动汽车的发展将进一步推动石墨负极材料市场规模的增长。

竞争态势石墨负极材料市场存在着激烈的竞争环境。

当前,主要的竞争者主要包括国内外石墨负极材料生产厂商,如亿纬锂能、比亚迪、GrafTech等。

这些企业通过不断的技术创新和产品优化,不仅能够提高石墨负极材料的性能,还能够降低成本,提高市场竞争力。

此外,近年来一些新兴企业也在石墨负极材料市场崛起,具有强大的技术实力和创新能力。

这些企业通过引入先进的制造设备和生产工艺,以及不断推出新型石墨负极材料产品,打破传统的市场格局,对传统厂商构成了一定的竞争压力。

发展趋势未来石墨负极材料市场将呈现出以下几个发展趋势:1.技术创新:随着科技的不断进步,石墨负极材料的性能将得到进一步提升,以提高电池的能量密度和循环寿命。

2.环保可持续发展:石墨负极材料在生产过程中产生的污染问题已经引起广泛关注。

未来,石墨负极材料生产企业将更加重视环保问题,并加大技术投入,推动绿色可持续发展。

3.市场国际化:全球范围内各国对于新能源汽车和电池储能市场的关注度不断增加,石墨负极材料市场也将逐渐国际化,国际竞争将更加激烈。

2024年石墨负极材料发展趋势

2024年石墨负极材料发展趋势

2024年石墨负极材料发展趋势石墨负极材料在电动汽车、可再生能源、便携式电子设备等领域的应用正呈现出明显的增长趋势。

以下是对2024年石墨负极材料发展趋势的一些预测和分析:1. 需求持续增长:随着电动汽车市场的快速发展,对高性能电池的需求也在增加,这将推动石墨负极材料的需求持续增长。

同时,随着可再生能源的推广应用,电池储能市场也将呈现出高速增长的态势,进一步拉动石墨负极材料的需求。

2. 技术创新:为了满足不断增长的性能需求,石墨负极材料行业将不断投入研发,进行技术创新。

例如,通过改进制备工艺、优化材料结构、提高材料纯度等方式,提高石墨负极材料的性能,满足更高能量密度、更长循环寿命等需求。

3. 市场竞争加剧:随着市场规模的扩大,石墨负极材料行业的竞争也将加剧。

为了获取更大的市场份额,企业将加大在技术研发、产品质量、市场营销等方面的投入,提升自身竞争力。

4. 产业链协同发展:石墨负极材料行业的发展需要与上下游产业协同发展。

例如,与正极材料、电解液等产业形成良好的合作关系,共同推动电池性能的提升和成本的降低。

同时,还需要与电池制造企业保持紧密合作,了解市场需求,及时调整产品策略。

5. 环保要求提高:随着环保意识的日益增强,石墨负极材料行业将面临更高的环保要求。

企业需要加强环保管理,采用环保材料和生产工艺,降低生产过程中的环境污染。

同时,还需要关注废弃电池的回收和处理问题,推动行业的可持续发展。

总之,2024年石墨负极材料行业将继续保持增长态势,但也将面临市场竞争加剧、环保要求提高等挑战。

企业需要加强技术研发、提升产品质量、加强产业链协同合作、关注环保问题等方面的工作,以适应市场需求和行业发展的变化。

石墨烯在电池中的应用要求与电化学性能改善策略

石墨烯在电池中的应用要求与电化学性能改善策略

石墨烯在电池中的应用要求与电化学性能改善策略石墨烯是一种二维的碳材料,具有极高的导电性、热导性和力学强度,因此被广泛研究用于电池领域。

石墨烯在电池中的应用主要集中在锂离子电池和超级电容器等领域。

本文将探讨石墨烯在电池中的应用要求,以及一些提高其电化学性能的策略。

石墨烯在电池中的应用要求主要包括高能量密度、高功率密度、长循环寿命和低成本等方面。

首先,高能量密度是电池的核心性能之一。

石墨烯具有高比表面积和优异的电导率,可以提供更多的储存空间和导电路径,从而提高电极的能量密度。

其次,高功率密度是实现快速充放电的关键。

石墨烯的高导电性和热导性可以提供更快的离子和电子传输速率,从而实现高功率密度的要求。

此外,长循环寿命是电池的可持续发展的关键因素。

石墨烯的高力学强度可以提高电极的结构稳定性,延长电池的寿命。

最后,低成本是实际应用的一个重要要求。

石墨烯的可制备性、稳定性和可扩展性都需要进一步改进,以降低成本并实现工业化生产。

为了改善石墨烯在电池中的电化学性能,可以采取以下策略。

首先,优化石墨烯的制备方法。

目前,石墨烯的制备方法主要包括机械剥离法、化学气相沉积法和化学还原法等。

通过改进制备方法,可以提高石墨烯的质量和制备效率。

其次,改变石墨烯的结构和形貌。

石墨烯可以通过氧化、还原、掺杂或功能化等方法进行修饰,以改变其表面性质和化学活性。

这些改变可以提高石墨烯在电池中的电化学性能。

第三,构建石墨烯复合材料。

将石墨烯与其他材料(如金属氧化物、碳纳米管等)进行复合,可以充分利用各材料的优点,实现协同效应,提高电池的性能。

第四,设计石墨烯基电极结构。

石墨烯的二维结构可以为电极提供更大的比表面积和更好的离子传输通道。

通过调控电极结构,可以实现更高的能量密度和功率密度。

最后,开发新型电解质和界面材料。

石墨烯和电解质、电极之间的界面是电池性能的关键因素。

开发更好的电解质和界面材料,可以改善电池的循环寿命和安全性能。

综上所述,石墨烯在电池中的应用要求高能量密度、高功率密度、长循环寿命和低成本。

石墨烯产业发展存在的问题挑战及发展建议

石墨烯产业发展存在的问题挑战及发展建议

石墨烯热度不减,为此小编又整理分析了该行业的主要特点。

一、当前发展石墨烯产业主要面临以下问题和挑战(一)高端应用技术有待突破。

石墨烯最具前景、高附加值的应用领域主要集中在电子信息、动力电池、医疗健康等新兴产业,但上述领域应用多处于技术攻关和储备期,离产业化仍有较长距离。

在集成电路、光电器件、传感器、信息存储等领域的石墨烯应用研究偏弱,技术储备、基础配套不足,取得产业突破尚需时日。

(二)传统产业应用效果不突出。

目前石墨烯应用主要是以“添加剂”形式对涂料、改性纤维、热管理器件等传统产品的性能进行改进,而现阶段石墨烯对这些传统材料的性能并没有“质”的提升。

如“石墨烯 ”涂料防腐性能以及润滑剂的润滑效果没有大数量级的提高。

石墨烯在强度、光学、电学等方面的超优异性能并未在产品中体现,“杀手锏”级、颠覆性的石墨烯应用技术和产品尚未出现。

(三)标准缺失导致概念混淆。

目前国家层面石墨烯材料标准尚未出台,部份企业与地方政府将石墨与石墨烯的概念混为一谈,学术界与企业界对石墨烯层数的标准判定也存在争议。

如一些企业宣称实现石墨烯量产,但多是晶格缺陷高、多层堆叠的类石墨烯产品,并非真正单层石墨烯;一些企业将“类石墨烯”产品甚至是纯石墨产品宣传为石墨烯产品,混淆市场。

二、下一步发展趋势和建议为此,应尊重产业发展规律,把握发展阶段和技术发展路径,聚焦重点基础研究和应用技术,构建健康有序的石墨烯产业发展格局。

(一)合理控制制备产能布局。

石墨烯现阶段主要作为材料添加剂,使用量极少,所需产能有限,产业发展的主要问题是优质产品开发不足,并非产能不足。

因此应对新上产能项目的市场前景进行评估,避免无效投资和资源浪费。

对存在环保和安全风险的石墨烯制备工艺,加强环保和安全把关。

(二)重点支持基础科学研究。

石墨烯产业仍处于技术攻坚期,基础研究是关键。

持续跟踪欧盟石墨烯旗舰计划和美国二维原子材料研究计划的进展,加强石墨烯基础研究,攻克一批制约应用发展的关键技术。

2024年人造石墨负极材料市场前景分析

2024年人造石墨负极材料市场前景分析

2024年人造石墨负极材料市场前景分析1. 引言人造石墨负极材料是一种关键的能源存储材料,被广泛应用于电池行业。

随着电动汽车和可再生能源的快速发展,人造石墨负极材料市场正迅速扩大。

本文将分析人造石墨负极材料市场的当前状况和未来前景。

2. 当前市场状况目前,人造石墨负极材料市场呈现出以下特点:2.1 市场规模与需求增长人造石墨负极材料市场规模正在快速增长。

随着电动汽车的普及和电子设备的广泛应用,对电池的需求不断增加。

人造石墨负极材料作为电池的核心材料之一,市场需求也在不断增长。

2.2 技术发展与创新人造石墨负极材料市场也面临着技术发展与创新的挑战。

随着科学技术的不断进步,人造石墨负极材料的性能不断提升,如能量密度、循环寿命等指标得到了显著改善。

技术创新对于市场的发展至关重要。

人造石墨负极材料市场竞争激烈,主要厂商数量众多,但市场格局并不稳定。

一些传统的负极材料仍在市场中占据重要地位,同时新的进口负极材料也逐渐涌入市场,竞争力不断增强。

供需格局也在不断变化,市场需求未来预计会增加。

3. 市场前景分析3.1 市场增长预期未来,人造石墨负极材料市场有望继续保持快速增长的态势。

主要原因包括:•技术进步:随着技术不断创新,人造石墨负极材料的性能将不断提升,满足未来电池应用的需求。

•电动汽车市场:电动汽车的普及将带动人造石墨负极材料的需求增长。

预计电动汽车市场将持续增长。

•可再生能源:可再生能源领域的发展也将增加对能源存储的需求,促进人造石墨负极材料市场的增长。

3.2 技术创新驱动市场竞争技术创新将成为人造石墨负极材料市场的核心竞争力。

厂商需要不断进行研发,提高人造石墨负极材料的性能,以满足市场对高能量密度、长循环寿命等方面的需求。

同时,技术创新也能够降低成本,提高市场竞争力。

随着市场的扩大和竞争的加剧,市场格局将进一步稳定。

传统的负极材料市场份额可能会受到一定影响,但传统材料仍然有市场需求。

新材料的进口也将逐渐减少,国内产品市场份额将提升。

石墨烯在锂离子电池负极材料中的应用研究进展

石墨烯在锂离子电池负极材料中的应用研究进展

石墨烯在锂离子电池负极材料中的应用研究进展结合当前利用石墨烯材料特殊二维结构、优良物理化学特性来改善锂离子电池较低能量密度、较差循环性能等缺陷的研究热点,综述石墨烯材料及石墨烯复合材料在锂离子电池负极材料中的应用研究进展,指出现有电极材料的缺陷和不足,讨论作为锂离子电池电极的石墨烯复合材料结构与功能调控的重要性,并简要评述石墨烯在相关领域中所面临的挑战和发展前景。

标签:石墨烯;锂离子电池;负极材料石墨烯是一种结构独特并且性能优异的新型材料,它是由碳原子以sp2杂化连接的单原子层二维蜂窝状结构,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1,2]。

由于石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用,特别是在未来实现基于石墨烯材料的高能量密度、高功率密度应用有着非常重要的理论和工程价值。

理想的石墨烯是真正的表面性固体,其所有碳原子均暴露在表面,具有用作锂离子电池负极材料的独特优势:(1)石墨烯具有超大的比表面积,比表面积的增大可以降低电池极化,减少电池因极化造成的能量损失。

(2)石墨烯具有优良的导电和导热特性,即本身已具有了良好的电子传输通道,而良好的导热性确保了其在使用中的稳定性。

(3)在聚集形成的宏观电极材料中,石墨烯片层的尺度在微纳米量级,远小于体相石墨的,这使得Li+在石墨烯片层之间的扩散路径较短;而且片层间距也大于结晶性良好的石墨,更有利于Li+的扩散传输。

因此,石墨烯基电极材料同时具有良好的电子传输通道和离子传输通道,非常有利于锂离子电池功率性能的提高。

1 石墨烯直接作为锂离子电池负极材料商业化锂离子电池石墨负极的理论容量为372 mAh/g。

为实现锂离子电池的高功率密度和高能量密度,提高锂离子电池负极材料的容量是一个关键性问题。

无序或比表面积高的热还原石墨烯材料具有大量的微孔缺陷,能够提高可逆储锂容量。

因此,相对石墨材料,石墨烯的储锂优点有:(1)高比容量:锂离子在石墨烯中具有非化学计量比的嵌入?脱嵌,比容量可达到700~2000 mAh/g,远超过石墨材料的理论比容量372 mAh/g(LiC6);(2)高充放电速率:多层石墨烯材料的面内结构与石墨的相同,但其层间距离要明显大于石墨的层间距,因而更有利于锂离子的快速嵌入和脱嵌。

石墨烯在锂离子电池中的应用研究

石墨烯在锂离子电池中的应用研究

石墨烯在锂离子电池中的应用研究石墨烯是一种由碳原子构成的单层二维材料,具有优异的导电和导热性能,透明性强,并且具有强大的力学韧性。

这些特性使得石墨烯在科学研究和各种应用领域都备受关注。

近年来,石墨烯在锂离子电池领域的应用也越来越受到重视。

本文将介绍石墨烯在锂离子电池中的应用研究进展。

一、石墨烯作为锂离子电池的电极材料目前,石墨烯主要应用于锂离子电池的电极材料中。

众所周知,锂离子电池的电极材料主要分为负极材料和正极材料。

石墨烯作为电池负极材料,具有以下优点:1.高比表面积:石墨烯可以实现单层碳原子的紧密排列,形成大量的微小孔隙和高表面积,这不仅可以提高电极表面容量,而且可以增加锂离子的扩散速度,提高电池的性能。

2.良好的电导性:石墨烯具有高导电性,能够提供良好的电子传输和电荷存储,减少电极内阻,从而提高电池的输出功率。

3.优异的力学性能:石墨烯的组成结构可以保持相对稳定,即使在长时间循环充放电的过程中也能保持结构完整性,从而延长电池的使用寿命。

虽然石墨烯作为电极材料具有许多优点,但是它也面临着一些挑战。

例如,石墨烯的制备和应用成本较高,需要进一步降低成本才能实现大规模商业化应用。

二、石墨烯增强锂离子电池正极材料除了作为负极材料,石墨烯中的碳纳米管和颗粒可以作为锂离子电池正极材料的补充,以增加其性能。

石墨烯包覆的锂离子电池正极材料可以提高锂离子的扩散速度和电池的能量密度。

石墨烯与锂离子电池正极材料的结合还可以降低电极材料的体积变化率,延长电池的使用寿命。

三、未来展望目前,石墨烯在锂离子电池领域的研究还处于起步阶段。

随着石墨烯技术的不断发展和成熟,石墨烯在锂离子电池领域的应用前景非常广阔。

未来,石墨烯技术还有许多发展空间,例如开发更经济实用的制备方法,探索更广泛的应用领域。

总之,石墨烯在锂离子电池中的应用研究为电池的性能和寿命提供了新的提升方案。

虽然存在一些挑战和难点,但是未来的发展和探索将为锂离子电池技术的进一步提升提供新的解决方案。

石墨作为锂离子电池负极材料的优缺点分析

石墨作为锂离子电池负极材料的优缺点分析

石墨作为锂离子电池负极材料的优缺点分析随着智能设备、电动汽车等电子产品的不断发展,锂离子电池作为一种重要的蓄电器件已经得到了广泛的应用。

而在锂离子电池中,负极材料是影响电池性能的关键因素之一。

近年来,石墨作为一种锂离子电池负极材料已引起了广泛的关注。

本文将从石墨作为锂离子电池负极材料的优缺点进行分析。

一、石墨作为锂离子电池负极材料的优点1. 成本低廉:石墨作为一种普遍存在的材料,其成本非常低廉,对于大规模商业生产来说,能够有效地控制成本,保证锂离子电池的价格合理。

2. 寿命长:与其他材料相比,石墨的使用寿命相对较长。

石墨能够保持较长时间的电荷和放电周期,因此能够有效地增加电池的使用寿命。

3. 重量轻:石墨具有非常轻的密度,相对于其他材料,石墨的重量非常轻,因此能够有效地改善电池的总重量,提高整个系统的效率。

4. 稳定性好:石墨具有很高的化学稳定性,对于一些化学试剂的侵蚀能力很强。

因此,在锂离子电池中作为负极材料具有良好的稳定性。

5. 循环性能好:由于石墨材料的结构比较稳定,因此能够很好地重复进行电荷与放电过程,在长时间的使用过程中,石墨负极还能够保持良好的性能。

二、石墨作为锂离子电池负极材料的缺点1. 石墨具有很低的比容量:由于石墨的比容量相对较低,放电容量也相对较小,因此在锂离子电池的实际应用中,相对于其他材料,石墨的容量表现不如其他材料。

2. 对锂离子扩散的限制:由于石墨的晶格结构,其微结构比较紧密,限制了锂离子的扩散速度。

当电池需要在短时间内快速充放电时,石墨材料的限制就会显得比较明显。

3. 石墨潜在的危险性:在长时间的使用过程中,经过了多次的充放电过程,石墨材料可能会发生焦化现象,导致石墨的电导率降低,从而对电池性能产生不良影响。

4. 需要保持高纯度:石墨作为电池负极材料,需要很高的纯度,否则会影响电池的实际性能。

因此,石墨材料需要在制备过程中更加严格地控制成分和形貌。

综上所述,虽然石墨在锂离子电池负极材料中拥有许多优点,如成本低、稳定性好等等,但其也存在不少缺点,如比容量低、对锂离子扩散的限制等等。

石墨负极材料现状及未来发展趋势

石墨负极材料现状及未来发展趋势

石墨负极材料是锂离子电池中至关重要的一部分,它的性能直接影响着电池的循环性能、能量密度以及安全性。

对石墨负极材料的研究和开发具有重要意义。

本文将从当前石墨负极材料的研究现状入手,分析其存在的问题,并展望其未来发展趋势。

一、当前石墨负极材料研究现状1. 石墨负极材料的基本特性石墨是一种具有层状结构的材料,其晶格中的碳原子呈现六角形排列。

这种结构使得石墨具有良好的导电性和机械性能,因此被广泛应用于锂离子电池中的负极材料。

2. 石墨负极材料的优势相比于其他材料,石墨负极材料具有循环稳定性好、容量较高、价格低廉等优点,因此被广泛应用于商业化的锂离子电池中。

3. 石墨负极材料存在的问题然而,由于其在充放电过程中容易产生锂金属析出、固体电解质界面膜(SEI膜)不稳定等问题,导致了锂离子电池的循环寿命和安全性受到限制。

二、石墨负极材料的未来发展趋势1. 新型石墨负极材料的研发为了解决现有石墨负极材料存在的问题,科研人员正在积极探索开发新型石墨负极材料,如硅基石墨复合材料、氧化石墨烯等,以提升电池的循环寿命和安全性。

2. 石墨负极材料的表面改性通过表面涂层、界面调控等手段,可以有效地提升石墨负极材料的循环稳定性和电化学性能,为锂离子电池的应用提供更好的性能保障。

3. 石墨负极材料的工业化生产随着锂离子电池产业的快速发展,对于石墨负极材料的工业化生产需求也在不断增加,研究人员将不断努力提升石墨负极材料的制备工艺和质量控制水平。

4. 石墨负极材料的多功能化未来,石墨负极材料可能不仅仅作为电池负极材料,还可能具备其他的功能,如光催化、储能等,这将为石墨负极材料的应用拓展带来新的机遇。

三、结语石墨负极材料是锂离子电池中不可或缺的一部分,其性能的提升对于电池的整体性能具有重要意义。

当前,石墨负极材料的研究正在不断深入,未来的发展将更加多样和多元化,我们对石墨负极材料的进一步研发和应用充满期待。

四、新型石墨负极材料的研发随着能源需求和环境保护意识的提升,对锂离子电池的性能要求也越来越高。

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析

锂电池负极材料的研究进展及展望分析1. 石墨传统的锂电池负极材料主要是石墨,其拥有优良的导电性、循环稳定性和结构稳定性,但其比容量较低,不能满足快速发展的锂电池领域的需求。

2. 硅基材料由于硅材料的比容量远远高于石墨,因此硅基材料被广泛研究作为潜在的替代石墨的锂电池负极材料。

硅材料的主要问题是其体积膨胀率较高,导致循环稳定性较差,因此研究人员通过合成纳米结构、包覆保护层等手段来改善硅材料的性能。

目前,硅基材料已经取得了一定的研究进展。

除了传统的石墨材料外,碳基材料也是研究的热点之一。

石墨烯、碳纳米管等碳基材料因其优异的电导率、大比表面积和良好的化学稳定性,成为了备受关注的锂电池负极材料。

近年来,研究人员通过控制碳材料的结构和形貌,进一步改善了其电化学性能。

4. 金属氧化物二、锂电池负极材料的展望分析随着新能源汽车、储能系统等领域的快速发展,锂电池的需求量越来越大,因此对于锂电池负极材料的研究也变得越发重要。

从目前的研究进展来看,锂电池负极材料的研究主要集中在提高比容量、改善循环稳定性及安全性等方面。

1. 提高比容量目前,硅基材料因其较高的比容量备受关注,但其循环稳定性需要进一步提高。

未来的研究方向之一是寻求更多的具有高比容量、耐循环的新型材料,并且通过纳米结构、包覆保护层等手段来改善其性能。

2. 改善循环稳定性硅基材料、金属氧化物等材料由于其体积膨胀率较大,因此循环稳定性较差,因此未来的研究方向之一是如何通过结构设计、界面工程等手段来改善这些材料的循环稳定性,提高锂离子的嵌入/脱嵌动力学。

3. 提高安全性随着新能源汽车的快速发展,锂电池的安全性成为了研究的重点之一。

如何降低锂电池的燃烧、爆炸风险,提高锂电池的安全性也成为了未来研究的重点之一。

锂电池负极材料的研究一直是锂电池领域的热点之一。

随着新能源汽车、储能系统等领域的发展,对于锂电池负极材料性能的要求也越来越高。

未来,研究人员需要通过材料设计、界面工程、结构优化等手段,不断改善锂电池负极材料的性能,为锂电池的进一步发展奠定更加坚实的基础。

真实-- 迄今为止最专业的一篇揭露石墨烯真面目的文章!

真实-- 迄今为止最专业的一篇揭露石墨烯真面目的文章!

真实-- 迄今为止最专业的一篇揭露石墨烯真面目的文章!最近两年,石墨烯相关产业在国内也是如火如荼,尤其是石墨烯制备生产企业,如雨后春笋一般。

国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano 公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。

导读石墨烯从2004年首次被分离出来,2010年石墨烯发现者获得诺贝尔奖后为大家所熟知,到今天只有短短十几年的时间。

尽管全球石墨烯产业目前尚处于早期阶段,但由于公众对石墨烯新材料的热捧,导致石墨烯产业虚火过旺,呈现出了“忽如一夜春风来,千树万树梨花开”的虚假繁荣景象。

特别是一些石墨矿资源相对丰富的地区,更是把石墨矿混同于石墨烯,把发展石墨烯产业视为当地经济转型升级的“灵丹妙药”,纷纷规划建设石墨烯产业园。

毋庸置疑,石墨烯作为新材料产业的先导,在带动传统制造业转型升级,培育新兴产业增长点,推动大众创业、万众创新的作用越来越显著。

在国家政策引导下,各地纷纷布局石墨烯。

目前,我国石墨烯全产业链雏形初现,覆盖从原料、制备、产品开发到下游应用的全环节,已基本形成以长三角、珠三角和京津冀鲁区域为集合区,多地分布式发展的石墨烯产业格局。

2016年,我国石墨烯市场总体规模突破40亿元,已形成新能源领域应用、大健康领域应用、复合材料领域应用、节能环保领域应用、石墨烯原材料、石墨烯设备六大细分市场。

但是,热闹的背后是乱象,一时的繁华带来的只有永久的伤痛。

不能不提的是,当前我国的石墨烯产业仍面临一些深层次问题,基础研究能力薄弱,缺乏龙头企业带动,上下游企业脱节,产业链不成熟,资本市场过度透支石墨烯概念,行业标准缺失等,都严重制约了我国石墨烯产业的健康可持续发展。

据统计,目前国内已建成或在建的石墨烯产业园、石墨烯创新中心、石墨烯研究院等已超过40家,有2000多家企业从事石墨烯原材料和产品的研发,而且这个数字仍在逐步增长。

2024年锂离子电池负极材料市场发展现状

2024年锂离子电池负极材料市场发展现状

2024年锂离子电池负极材料市场发展现状概述锂离子电池是目前应用最广泛的可充电电池之一,在各种电子设备和电动车辆中得到了广泛应用。

作为锂离子电池的核心组成部分之一,负极材料起着储存和释放锂离子的关键作用。

随着全球对清洁能源的需求不断增加,锂离子电池负极材料市场也呈现出快速发展的趋势。

锂离子电池负极材料的种类锂离子电池负极材料主要分为石墨负极材料和非石墨负极材料两大类。

石墨负极材料石墨是目前最常用的锂离子电池负极材料之一。

其主要优点是价格低廉、容量稳定,并具有良好的电导性能和循环寿命。

然而,石墨负极材料的能量密度相对较低,不适用于一些高性能应用。

非石墨负极材料随着电动车辆和便携式电子设备的快速发展,对锂离子电池能量密度和循环寿命的需求也在逐渐增加。

非石墨负极材料被广泛研究和应用,以满足更高性能的需求。

常见的非石墨负极材料有硅、锡、硅碳合金等。

这些材料具有较高的理论能量密度和循环寿命,但其问题在于体积膨胀大、容量损失严重等。

2024年锂离子电池负极材料市场发展现状锂离子电池负极材料市场在过去几年中蓬勃发展。

以下是市场发展现状的一些关键方面:市场规模扩大随着电动车辆和可穿戴设备等领域的快速发展,对锂离子电池的需求大幅增加,进而推动了负极材料市场的扩大。

根据市场研究机构的数据,全球锂离子电池负极材料市场规模在过去几年中呈逐年增长的趋势。

技术创新与发展为了提高锂离子电池的能量密度和循环寿命,科学家和研究机构在负极材料领域进行了大量的研究和创新。

新型负极材料的开发不断推动着市场的发展。

环保与可持续发展环保和可持续发展已经成为全球关注的重要议题。

在锂离子电池负极材料市场中,对于可再生和环保材料的需求也在不断增加。

循环利用废旧电池材料和开发可再生能源是当前研究的重点之一。

国际市场竞争与厂商布局锂离子电池负极材料市场存在着激烈的国际市场竞争。

目前,市场上主要的锂离子电池负极材料生产厂商主要集中在亚洲地区,尤其是中国和日本。

锂电池发展现状分析 石墨烯能否拯救锂电池

锂电池发展现状分析 石墨烯能否拯救锂电池

锂电池发展现状分析石墨烯能否拯救锂电池?1、锂电池还能开挂?在智能电子设备成为人们的口袋新宠之后,如何让这个“宠物”活久一点儿成为一个大问题。

对于很多人来说,智能手机一天一充电已经不是什么稀奇事了,当然,手机如果有内心,也一定是崩溃的,这可真是一天一个轮回呀,直至“过劳死”呀!如果现在有人告诉你,有种电池能够让你的智能玩伴超长待机一星期,估计大家的反应会出奇一致,买买买全都买!近日三星宣布将推出一款新型锂电池,能够有效延长电池的续航能力,彻底抛弃以前一天一充电的情况,将续航时长延伸至21个小时。

这种电池在密度上比传统电池要高1.5到1.8倍,采用硅质阳极和石墨表面,可以一定程度的增加使用寿命。

不过这款电池目前还处在实验阶段,但已经让很多智能产品用户看到了希望。

回溯到电池的起源,你就会发现从第一只存储电的粘土瓶到现在的电池块和芯片电池,这中间的历程同样漫长。

1932年,考古学家在伊拉克发现了一只用来存储静电的粘土瓶,瓶子有上千年历史,可见人类对电的认识也同样历史悠久。

不过综合电池额发展史,我们其实可以看到,促使电池不断发展的最大动力,是其所使用的材质。

电池的材质变化很大。

从“伏特电堆”中的盐水,到铜电池中的稀硫酸,再到碳锌电池中的氯化铵、干电池中的糊状电解液、铁镍电池等等,不同的材质所形成的电压不同,而电池所能够存储的电量也是不同的。

在不断的尝试和实验中,锂离子电池问世了,并且成为当下智能电子产品的最佳搭档。

2、锂离子电池发展现状锂电池跟普通电池的区别在于,锂电池可以循环充电使用。

它主要依靠锂离子在正极与负极之间运动来产生电能,现在很多智能电子产品中所用的电池是锂离子电池。

不过一般用户都知道,这类智能电子产品的电池都比较娇气,不当的使用会直接损伤电池使用寿命和储电能力,这也解释了为什么很多智能电子产品以前能够用三天,现在只能用半天。

锂离子电池采用碳素材料作为负极,以含锂的化合物为正极,在电池充电的过程中,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极,同时嵌入负极的碳层微孔中,嵌入的锂离子越多,充电的容量越高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯用作锂电负极产业化前景渺茫2015-06-26 作者:自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为“二维石墨烯材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。

最近两年,石墨烯相关“产业”在国内也是如火如荼,与石墨烯有关的数十支概念股一再被爆炒。

国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。

Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。

这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。

最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。

并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池?在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。

什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道?成六角型呈蜂巢晶格的平面薄膜,只有一??碳原子厚度的二?材料。

石墨烯目前是世上最薄却也是最坚硬的纳米材料,它?缀跏峭耆?该鞯模?晃??.3%的光;导热系?蹈哌_5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8俜m,比铜或银更低,为世上电阻率最小的材料。

”最薄、最坚硬、最导热、最导电,这所有的光环都在告诉人们,石墨烯是一种多么神奇的材料啊!但是笔者要提醒的是,国际上对Graphene的定义是1-2层的nanosheet才能称之为是Graphene,并且只有没有任何缺陷的石墨烯才具备这些完美特性,而实际生产的石墨烯多为多层且存在缺陷。

石墨烯主要有如下几种生产方法:·机械剥离法。

当年Geim研究组就是利用3M的胶带手工制备出了石墨烯的,但是这种方法产率极低而且得到的石墨烯尺寸很小,该方法显然并不具备工业化生产的可能性。

·化学气相沉积法(CVD)。

化学气相沉积法主要用于制备石墨烯薄膜,高温下甲烷等气体在金属衬底(Cu箔)表面催化裂解沉积然后形成石墨烯。

CVD法的优点在于可以生长大面积、高质量、均匀性好的石墨烯薄膜,但缺点是成本高工艺复杂存在转移的难题,而且生长出来的一般都是多晶。

·氧化-还原法。

氧化-还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯,然后加入还原剂去除氧化石墨表面的含氧基团后得到石墨烯。

氧化-还原法制备成本较低容易实现,成为生产石墨烯的最主流方法。

但是该方法所产生的废液对环境污染比较严重,所制备的石墨烯一般都是多层石墨烯或者石墨微晶而非严格意义上的石墨烯,并且产品存在缺陷而导致石墨烯部分电学和力学性能损失。

·溶剂剥离法。

溶剂剥离法的原理是将少量的石墨分散于溶剂中形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,溶剂插入石墨层间,进行层层剥离而制备出石墨烯。

此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。

缺点是成本较高并且产率很低,工业化生产比较困难。

此外,石墨烯的制备方法还有溶剂热法、高温还原、光照还原、外延晶体生长法、微波法、电弧法、电化学法等,这些方法都不及上述四种方法普遍。

在此,笔者介绍一个新名词:还原氧化石墨烯,即RGO。

一般来说,氧化石墨烯是由石墨经强酸氧化,然后再经过化学还原或者热冲击还原得到。

目前市场上所谓的“石墨烯”绝大多数都是通过氧化-还原法生产的氧化石墨烯,石墨片层数目不等,表面存在大量的缺陷和官能团,无论是导电性、导热性还是机械性都跟获得诺贝尔奖的石墨烯是两回事。

严格意义上而言,它们并不能称为“石墨烯”。

当前“石墨烯电池”这一名词很火热。

事实上,国际锂电学术界和产业界并没有“石墨烯电池”这个提法。

笔者搜索维基百科,也没有发现“graphenebattery”或者“grapheneLi-ionbattery”这两个词条的解释。

根据美国Graphene-info这个比较权威的石墨烯网站的介绍,“石墨烯电池”的定义是在电极材料中添加了石墨烯材料的电池。

在笔者看来,这个解释显然是误导。

根据经典的电化学命名法,一般智能手机使用的锂离子电池应该命名为“钴酸锂-石墨电池”。

之所以称为“锂离子电池”,是因为SONY在1991年将锂离子电池投放市场的时候,考虑到经典命名法太过复杂一般人记不住,并且充放电过程是通过锂离子的迁移来实现的,体系中并不含金属锂,因此就称为“Lithiumionbattery”。

最终“锂离子电池”这个名称被全世界广泛接受,这也体现了SONY在锂电领域的特殊贡献。

目前,几乎所有的商品锂离子电池都采用石墨类负极材料,在负极性能相似的情况下,锂离子电池的性能很大程度上取决于正极材料,所以现在锂离子电池也有按照正极来称呼的习惯。

比如,磷酸铁锂电池(BYD所谓的“铁电池”不在笔者讨论范畴)、钴酸锂电池、锰酸锂电池、三元电池等,都是针对正极而言的。

那么以后如果电池负极用硅材料,会不会叫做硅电池?也许可能吧。

但不管怎么样,谁起主要作用就用谁命名。

照此推算,如果要叫石墨烯电池一定要是石墨烯起主要电化学作用的电池。

就好比添加了炭黑的钴酸锂电池,总不能叫炭黑电池吧?为了进一步澄清“石墨烯电池”的概念问题,我们先总结一下石墨烯在锂离子电池中可能(仅仅是可能性)的应用领域。

·负极:1、石墨烯单独用于负极材料;2、与其它新型负极材料,比如硅基和锡基材料以及过渡金属化合物形成复合材料;3、负极导电添加剂。

·正极:主要是用作导电剂添加到磷酸铁锂正极中,改善倍率和低温性能;也有添加到磷酸锰锂和磷酸钒锂提高循环性能的研究。

·石墨烯功能涂层铝箔,其实际性能跟普通碳涂覆铝箔(A123联合汉高开发)并无多少提高,反倒是成本和工艺复杂程度增加不少,该技术商业化的可能性很低。

从上面的分析可以很清楚地看到,石墨烯在锂离子电池里面可能发挥作用的领域只有两个:直接用于负极材料和用于导电添加剂。

用作锂电负极产业化前景渺茫我们先讨论下石墨烯单独用做锂电负极材料的可能性。

纯石墨烯的充放电曲线跟高比表面积硬碳和活性炭材料非常相似,都具有首次循环库仑效率极低、充放电平台过高、电位滞后严重以及循环稳定性较差的缺点,这些问题其实都是高比表面无序碳材料的基本电化学特征。

石墨烯的振实和压实密度都非常低,成本极其昂贵,根本不存在取代石墨类材料直接用作锂离子电池负极的可能性。

既然单独使用石墨烯作为负极不可行,那么石墨烯复合负极材料呢?石墨烯与其它新型负极材料,比如硅基和锡基材料以及过渡金属化合物形成复合材料,是当前“纳米锂电”最热门的研究领域,在过去数年发表了上千篇paper。

复合的原理,一方面是利用石墨烯片层柔韧性来缓冲这些高容量电极材料在循环过程中的体积膨胀,另一方面石墨烯优异的导电性能可以改善材料颗粒间的电接触降低极化,这些因素都可以改善复合材料的电化学性能。

但是,并不是说仅仅只有石墨烯才能达到改善效果,笔者的实践经验表明,综合运用常规的碳材料复合技术和工艺,同样能够取得类似甚至更好的电化学性能。

比如Si/C复合负极材料,相比于普通的干法复合工艺,复合石墨烯并没有明显改善材料的电化学性能,反而由于石墨烯的分散性以及相容性问题而增加了工艺的复杂性而影响到批次稳定性。

如果综合考量材料成本、生产工艺、加工性和电化学性能,笔者认为,石墨烯或者石墨烯复合材料实际用于锂电负极的可能性很小产业化前景渺茫。

用作导电剂无明显优势我们再来说说石墨烯用于导电剂的可能性,现在锂电常用的导电剂有导电炭黑、乙炔黑、科琴黑,SuperP等,现在也有电池厂家在动力电池上开始使用碳纤维(VGCF)和碳纳米管(CNT)作为导电剂。

石墨烯用作导电剂的原理是其二维高比表面积的特殊结构所带来的优异的电子传输能力。

从目前积累的测试数据来看,VGCF、CNT以及石墨烯在倍率性能方面都比SuperP都有一定提高,但这三者之间在电化学性能提升程度上的差异很小,石墨烯并未显示出明显的优势。

那么,添加石墨烯有可能让电极材料性能爆发吗?答案是否定的。

以iPhone手机电池为例,其电池容量的提升主要是由于LCO工作电压提升的结果,将上限充电电压从4.2V提升到目前i-Phone6上的4.35V,使得LCO的容量从145mAh/g逐步提高到160-170mAh/g(高压LCO必须经过体相掺杂和表面包覆等改性措施),这些提高都跟石墨烯无关。

也就是说,如果你用了截止电压4.35V容量170mAh/g的高压钴酸锂,你加多少石墨烯都不可能把钴酸锂的容量提高到180mAh/g,更别说动不动就提高几倍容量的所谓“石墨烯电池”了。

添加石墨烯有可能提高电池循环寿命吗?这也是不可能的。

石墨烯的比表面积比CNT更大,添加在负极只能形成更多的SEI而消耗锂离子,所以CNT和石墨烯一般只能添加在正极用来改善倍率和低温性能。

但是,石墨烯表面丰富的官能团就是石墨烯表面的小伤口,添加过多不仅会降低电池能量密度,而且会增加电解液吸液量,另外一方面还会增加与电解液的副反应而影响循环性,甚至有可能带来安全性问题。

那么成本方面呢?目前石墨烯的生产成本极其昂贵,而市场上所谓的廉价“石墨烯”产品基本上都是氧化石墨烯。

即便是氧化石墨烯成本也高于CNT,而CNT的成本又比VGCF高。

而且在分散性和加工性方面,VGCF比CNT和石墨烯更容易操作,这正是为什么昭和电工的VGCF正逐渐打入动力电池市场的主要原因。

可见石墨烯在用作导电添加剂方面,目前跟CNT和VGCF在性价比方面并没有优势可言。

当前国内石墨烯的火热形势,让笔者联想到了十几年前的碳纳米管(CNT)。

如果对比石墨烯和CNT,我们就会发现这两者有着惊人的相似之处,都具有很多几乎完全一样的“奇特的性能”,当年CNT的这些“神奇的性能”现在是完全套用在了石墨烯身上。

相关文档
最新文档