高温过热器的计算
过热蒸汽锅炉水阻力计算1
fm
总
Δ Pjb ΔP P'
2 总W /2ν
pj
Δ Pm+Δ Pjb+Δ PZW P''+Δ P
Φ 219x9 3.82 3.82 3.820 450 0.08134 9.72
Φ 38x4 17.11 3.86 3.820 3.839 352.3 450 401.15 0.07442 0.03 0.00071 58 17.644 0.00006 0.02342 0.02794 0.9 0 0.8 1.1
(4) 低温过热器管组 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 管子规格 管子长度 工质进口压力 工质出口压力 工质平均压力 工质进口温度 工质出口温度 工质平均温度 工质平均比容 管子内径 管子流通截面积 管子根数 工质流速 管子内壁绝对粗糙度 管子摩擦系数 管子摩擦阻力损失 进出口高度差 重位压差 工质由集箱进入管子 的入口介质系数 ν L P' P'' Ppj t' t'' t'
ξ
c
Δ Pjb
21 22
管子总阻力损失 锅筒出口压力
ΔP P'
MPa MPa
Δ Pm+Δ Pjb-Δ PZW P''+Δ P
二.省煤器
(1) 省煤器出口集箱至锅筒连管 1 2 5 6 7 8 9 10 11 12 13 17 18 19 22 23 24
省煤器出口集箱管子规格
管子长度 工质进口压力 工质出口压力 工质平均压力 工质平均温度 工质平均比容 省煤器出口集箱引出管 内径 管子流通截面积 管子根数 工质流速 管子内壁绝对粗糙度 省煤器出口集箱引出管 摩擦系数 管子摩擦阻力损失 进出口高度差 重位压差 管子的出口阻力系数
锅炉原理作业
作业(一)已知:某台锅炉燃烧烟煤,煤的元素分析成分为:C ar=55.43%、H ar=3.09%、O ar=4.13%、N ar=1.34%、S ar=0.34%、A ar=27.74%、M ar=7.93%、V daf=20.19% 低位发热量为Q ar,net =21270kJ/kg,飞灰系数αfa=0.9。
按照烟气的流程锅炉的各受热面名称及漏风系数如下:炉膛出口及屏式过热器α〃=1.2 800~2200℃高温对流过热器Δα = 0.05 500~1000℃高温对流再热器Δα =0.03 400~900℃低温再热器Δα =0.03 300~800℃省煤器Δα =0.03 200~600℃空预器热段Δα =0.1 100~400℃空预器冷段Δα =0.1 100~400℃求:1.理论空气量三原子气体容积3.理论水蒸汽容积4.理论氮气容积5.理论烟气容积6.烟气特性表(按各级受热面的进、出口平均过量空气系数αa v计算)7.烟气焓温表(按各级受热面的出(进)口过量空气系数α”计算)附1(烟气特性表示例):附2(烟气焓温表示例)作业(二)已知某台煤粉锅炉,采用固态排渣方式。
额定蒸发量D=420t/h,再热蒸汽流量350 t/h过热蒸汽压力P sh=13.7Mpa,过热蒸汽温度t sh=540℃,给水压力P fw=15.6MPa,给水温度t fw=235℃,再热蒸汽进入锅炉时压力/温度2.5 MPa/330℃再热蒸汽出锅炉时压力/温度2.3 MPa/540℃排污率p bl=3%,汽包压力P drum=14.8Mpa,排烟温度θexg=135℃,冷空气温度t ca=30℃飞灰和灰渣含碳量均为C fa=C sl=5%,q3=0.5%。
求:锅炉热效率,燃料消耗量,计算燃料量,保热系数。
注:压力均为表压,其它参数参考作业(一)。
作业(三)一台935t/h 亚临界压力锅炉,燃用烟煤,制粉系统采用中速磨煤机,四角切圆燃烧,水冷壁和炉顶管采用膜式结构。
一、锅炉设计辅助热力计算
一、锅炉设计辅助热力计算1.炉膛宽度及深度因采用角置直流式燃烧器,炉膛采用正方形截面。
按表8-40取炉膛截面热负荷q F =2580kW/m 2,炉膛截面F=40.2578m 2,取炉膛宽度a=6.72m ,炉膛深+b=6.72m ,布置Φ60×3的水冷壁管,管间距s=64mm ,侧面墙的管数为106根,前后墙102根。
管子悬吊炉墙,管子中心和墙距e=0。
后墙水冷壁管子在折角处有叉管,直叉管垂直向上连接联箱,可以承受后墙管子和炉墙的重量,斜叉管组成凝渣管和折焰角。
凝渣管有24×3=72根管子,折焰角上有26根管子,另4根管直接与联箱相连。
侧墙水冷壁向上延伸,在折焰角区域和凝渣管区域形成附加受热面。
2.燃烧室辐射吸热量的分配燃烧室辐射吸热量中有部分由凝渣管及高温过热器吸收。
凝渣管直接吸收燃烧室的辐射热量辐射受热面是燃烧室的出口窗,凝渣管吸收的热量与凝渣管束的角系数有关。
根据凝渣管的横向相对节距σ=4.267,从图11-10中的无炉墙反射的曲线上查得单排管的角系数x=0.32。
现凝渣管有三排,总的角系数为X nz =1-(1-x )3=1-(1-0.32)3=0.6856凝渣管辐射受热面为H nz = X nz F ch =0.6856×33.767=23.151m 3由于出口窗位于燃烧室上部,热负荷较小,需要计算沿高度的热负荷不均匀系数。
出口窗中心的高度为h ck ,从冷灰斗中心到炉顶的总高度为H 1=18.912,根据h ck H 1 =16.0318.912=0.8476 和燃烧器中心相对高度x r =0.2038,查图15-2的2线,得h r η=0.68,凝渣管吸收的辐射吸热量为f nz Q =87.1978151.337.12568.0=⨯⨯=nz f h r H q ηkW高温过热器直接吸收炉膛辐射热量为413.907616.107.12568.0)151.23767.33(=⨯⨯=-=f h r f gr q Q ηkW水冷壁的平均辐射受热面热负荷kWQ Q B Q q f gr f nz j l s 407.120183.5311)283.288668.66844(]183.5311)413.90787.1978(53.414756[19.2623.4711)]([=⨯-=⨯+-⨯=+⨯+-=3.炉膛受热的热量分配(1)锅炉总有效吸热量 kW Q gl 35.109143=(2)炉膛总传热量 kW Q B l j 68.668441475653.4=⨯=(3)凝渣管区域传热量 kW Q B nz j 427.45119.99553.4=⨯=(4)第二级过热器传热量 kW Q B gr j 35.11172297.246653.42=⨯=(5)第一级过热器传热量 kW Q B gr j 17.1275449.281553.41=⨯=(6)省煤器需要吸收热量 kWQ B sm j 1.13948)17.12754325.11172427.451168.66844(35.109143=+++-=(7)空气预热器需要吸收的热量 kWI I B B Q B lk rk k ky j ky j 78988.14954)34.263079.3320()06.05.005.1(53.4))(5.0(00''=-⨯⨯+⨯=-∆+=α (8)排烟温度校核 kWI I I B Q B Q B I I lk sm lk rk ky j kyj sm j py gr 7.188634.26304.0234.263079.332006.099.053.478988.149541.1394818.82022000''=⨯++⨯+⨯+-=∆++∆++-=ααφ177.142=py θ℃,与假定排烟温度140℃相差2.117℃,设计合格。
8高温过热器结构尺寸和热力计算
热系数
a1
w/(m2· (αd+αf)* ℃)
热有效度
37
系数
查赵翔《锅炉课程设计》附录三表Ⅶ
w/(m2·
38 传热系数 k
℃)
ψα1α2/(α1+α2)
39 较小温差 △tx
℃
θ"-t"
40 较大温差 △td
℃
θ'-t'
若△td/△tx<1.7则 △t=0.5*(△td+△tx);若
41 平均温差 △t
过热器吸
7
热量
Qgr
炉顶附加
kj/kg
受热面吸
8
热量
Qldfj
kj/kg
水冷壁附
假定
加受热面
9
吸热量
Qslbfj
kj/kg
假定
炉膛及后
屏 对过热
器辐射热
10
量
Qfp"
kj/kg
炉顶吸收
11
辐射热量 Qfjdfj
kj/kg
由后屏热力计算得 Qfp"Aldfj/(Aldfj+Aslbfj+Ajsgr)
水冷壁吸
水冷壁附
加受热面
13
积
Aslbfj
序号 1 2 3 4 5
名称 烟气进口
温度 烟气进口
焓
蒸汽进口 焓
蒸汽进口 温度
蒸汽出口 温度
符号 θ1 H1 h1 t1 t"
单位
计算公式或数据来源
mm
结构设计知
mm
结构设计知
mm
结构设计知
根
结构设计知
排
顺流 顺列
浅谈有关锅炉的校核计算
浅谈有关锅炉的校核计算摘要:为了方便锅炉设计的计算,在这里浅谈了有关锅炉校核计算的事项,从煤的特性到锅炉的设计结构和外界等综合因素校锅炉参数。
关键词:锅炉校核计算;参数;因素;综合1引言锅炉机组的热力计算,一般都从燃料的燃烧和热平衡计算开始,然后按烟气流向欧陆机组的各个受热面(炉膛、过热器等等)进行计算,锅炉热力计算分为设计计算和校核计算,两者计算方法差不多,其区别在于计算任务和所求的数据不同。
校核计算的任务是在给定的锅炉负荷和燃料特性的前提下,按锅炉机组已有的结构和尺寸,去确定各个受热面交界出的水温、汽温、空气和烟气温度、锅炉热效率、燃料消耗量以及空气和烟气的流量和流速。
进行校核计算是为了估计锅炉机组按指定燃料运行的经济指标,寻求必需的改进锅炉结构的措施,选择辅助设备以及空气动力、水动力、壁温和强度等计算提供原始资料。
2 概述对锅炉机组做校核计算时,不仅烟气的中间温度是未知数,而且排烟温度和热空气温度,有是连过热蒸汽的温度也是未知数。
因此在计算时,上述温度需先假定,然后用渐进法去确定,所谓逐渐接近法就是当一个参数未知而用已知量直接求解又条件不足时,可以先假设一个目标参数的值,将其带入进行运算。
并求出另一参数的值。
然后用求出的参数值对目标参量进行校核。
如果误差合格,则假设值便可作为问题的解,而如果校核不合格,则应把进行校核时得到的目标参数值作为已知,重新代入计算,直到校核误差达到要求为止。
根据锅炉基本结构和燃料特性(收到基、挥发分、灰熔点特性、可磨度、低位发热量),锅炉设计参数有锅炉额定蒸发量、过热蒸汽参数、汽包蒸汽压力、给水参数、排污率、排烟温度、与热空气温度、冷空气温度、空气中含水蒸气量。
3 设计步骤第一步:进行锅炉热平衡计算,设定热空气温度,确定锅炉热效率,根据过热器出口焓、再热器进出口焓、给水焓以及蒸汽流量确定锅炉有效利用热以及燃料消耗量。
3.1 空气平衡烟道(炉膛、凝渣管簇、高温省煤器、高温空气预热器、高温过热器、低温过热器、低温省煤器、低温空气预热器)各处空气系数(出口和入口)及各受热面的漏风系数(),空气预热器出口热空气的过量空气系数为:,为制粉系统漏风系数(以理论空气量为基础)3.2燃烧产物的体积及焓的计算3.2.1理论空气量:3.2.2理论氮容积3.2.3三原子气体容积3.2.4理论水蒸汽容积3.3燃烧产物的平均特性、热平衡及燃料消耗量和烟气焓温的计算可根据《锅炉热力计算标准方法》、焓温表等相关公式求出。
锅炉课程设计 计算表格
kb x1 x2 k
hyl Qf qs qa qv
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
名称 顶棚管径 节距 排数 顶棚管角系数 顶棚面积 蒸汽通流面积 炉膛顶棚热负荷分配不均系数 炉膛顶棚总辐射吸热量 减温水总流量 炉膛顶棚蒸汽流量 炉膛顶棚蒸汽焓增 炉膛顶棚进口蒸汽焓 炉膛顶棚出口蒸汽焓 炉膛顶棚出口蒸汽温度
序号 1 2 3 4 5 6 7 8 9 10
名称 布置 管子尺寸 横向排数 纵向排数 横向节距 横向节距比 纵向节距 纵向节距比 烟气流通面积 蒸汽流通面积
11
低温过热器受热面积
Adg
12
低温过热器前室深度
Lqs
13 14 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
锅炉热平衡及燃料消耗量
序号 1 2 3 4 5 6 7 8 9 10入热量 排烟温度 排烟焓 冷空气温度 理论冷空气焓 化学未完全燃烧损失 机械未完全燃烧损失 排烟处过量空气系数 排烟损失 散热损失 灰渣损失 锅炉总损失 锅炉热效率 保热系数
符号 Q1 hpy
q3 q4 q2 q5 q6
已知条件
来源
锅炉额定蒸 发量 给水温度tfw 过热蒸汽温 度tgr 过热蒸汽压 力pgr 环境温度 Mar Aar Car 已知 已知 已知 已知 已知 已知 已知 已知 已知 已知 已知 已知 已知
数 值
220 215 540 9.8 20 15 23 48.3 3.3 8.6 0.8 1 18645
低温省煤器 低温空预器
1.32 1.34
项目 理论空气量 (标况) RO2体积 VRO2 H2O的理 论体积 N2的理论 体积VN2 理论干烟气 容积Vgy 飞灰份额
高温过热器传热特性及寿命分析
高温过热器传热特性及寿命分析摘要:近年来,各种类型的大容量火力发电机组不断涌现。
过热器内部是高温高压的蒸汽,又布置在烟温较高的区域,工作条件最为恶劣,易造成锅炉爆管;同时锅炉设备实行状态检修需要了解管子蠕变损伤的程度。
因此,分析过热器爆管的原因和蠕变损伤的机理,并对高温部件剩余寿命作出正确的评估,已成为保证火电厂安全运行和提高经济性的关键课题之一。
本文通过研究高温过热器的传热特性,分析了高温过热器爆管的原因,并介绍了高温腐蚀对爆管的影响,而且按工质流程逐个对微元段进行热力计算,掌握高温过热器壁温分布情况,以便于从根本上减少爆管发生率。
同时根据拉——米参数式确定蠕变断裂时间,对过热器剩余寿命进行预测,以延长电厂的检修周期,提高电厂的经济性。
关键词:过热器;爆管;腐蚀;壁温计算;寿命分析Abstract:In recent years, various types of large-capacity thermal power generating units will continue to emerge.Inside the superheater there is steam with high temperature and high pressure, at the same time the superheater is in the region where the flue-gas temperature is higher, so the superheater’s working conditions are most poor, resulting in the explosion of boiler pipes easily.Meanwhile in order to overhaul the boiler equipment on the basis of operating condition,it is necessary to know about the tubes’ creep damage extent. Therefore, the analysis of reasons for superheater explosion and creep damage mechanism ,also to assess the remaining life of high-temperature boiler parts correctly, have become one of the key projects that guarantees safe operation of thermal power plants and improves the economical efficiency.This paper analyzes the reasons for high-temperature superheater blasting via the research on heat transfer characteristics of high-temperature superheater, and puts emphasis on illustrating the effects that high-temperature corrosion have on the superheater explosion.In addition, according to the flow path of work substance,it conducts the thermodynamic calculation of small tube section separately ,grasping the wall temperature distribution of high-temperature superheater, in order to reduce the rate of tube explosion radically. At the same time the creep-rupture time is determined by Larson-Miller Parameter,and the remaining life of superheater can also be predicted ,which will be used to extend the maintenance cycle and improve the economy of thermal power plants.Keywords:Superheater; Tube Explosion; Corrosion; Wall Temperature Calculation; Life Analysis1 引言随着我国电力工业建设的迅猛发展,各种类型的大容量火力发电机组不断涌现,锅炉蒸汽参数的提高,使得过热器和再热器系统成为大容量锅炉本体设计中必不可少的受热面。
锅炉汽水阻力计算书
51×4
4 蒸汽出口温度
t"
℃
5 蒸汽进口温度
t'
℃
6 平均蒸汽温度
tcp
℃
7 蒸汽出口压力
P6"
Mpa
8 蒸汽进口压力
P6'
Mpa
9 平均蒸汽压力
Pcp
Mpa
10 平均蒸汽比容
υcp m3/kg
11 管子内径
dn
m12 管子根数n来自根13 蒸汽流通截面
fn
m2
14 蒸汽流速
21 过热器出口蒸汽压力 P3
Mpa
P3"+△P3
四 旁路低温过热器阻力
1 低温过热器出口集箱 D1×S mm
2 低温过热器进口集箱 D2×S mm
3 管子规格
d×s
mm
30.71797586 0.08
0.534339721 25.2 1.35 1 2.35 0.7 1.1
17.61536097 109972.4213 3.945996521
Mpa
P1"+△P1
二 旁路高温过热器阻力 1 高温过热器出口集箱 2 高温过热器进口集箱 3 管子规格 4 蒸汽出口温度 5 蒸汽进口温度 6 平均蒸汽温度 7 蒸汽出口压力 8 蒸汽进口压力 9 平均蒸汽压力 10 平均蒸汽比容 11 管子内径 12 管子根数 13 蒸汽流通截面
D1×S D2×S d×s
t" t' tcp P2" P2' Pcp υcp dn n fn
mm mm mm ℃ ℃ ℃ Mpa Mpa Mpa m3/kg m 根 m2
1/2(t'+t")
燃气锅炉毕业设计论文
摘要240t/h燃高焦炉混合煤气锅炉设计:(Q低温=1400千卡/标m3),设计的参数为215℃的给水温度,540℃的过热蒸汽温度,140℃的排烟温度,20℃的环境温度。
本次设计计算了,炉膛,屏式过热器,高温过热器,低温过热器,高温省煤器,高温空气预热器,低温省煤器,低温空气预热器的结构计算和传热计算。
以及对烟道阻力的计算和空气预热器的计算,引风机,送风机的选择。
炉膛宽度取7.7米,顶棚宽4.675米,顶棚高4.2米,炉膛总高15.785米。
屏式过热器取8片,纵向排数27,每片屏并联管子根数为12,第一根屏管高度4.2米,屏高度最大值4.559米,屏的深度为1.244米。
高温过热器横向管排数62,纵向管排数8,管长3.329,管簇深度0.76米。
低温过热器横向管排数58,纵向管排数16,管长3.2.高温省煤器横向排数97.5,纵向排数26,受热面布置管长6.2。
高温空预器横向管排数100,纵向管排数50,管箱高度1.44米。
低温省煤器横向排数97.5,纵向排数64,受热面布置管长3.35米。
低温空预器横向管排数100,纵向管排数50,管箱高度1.44米。
本次设计中,烟气在炉膛出口温度是1295.1℃,经过屏式过热器烟温下降至1183℃,在经过高温过热器烟温下降到1032.6℃,经低温过热器温度下降到832.54℃,经高温省煤器下降到449℃,经高温空气预热器降至382℃,经低温省煤器下降到222℃,经高温空气预热器降至146.7℃排烟。
本次设计中,水的流程是215℃给水经低温省煤器加热到260℃,经高温省煤器加热到319.97℃,进入汽包,再经下降管,由水冷壁使饱和水变成319.97℃的水蒸气,经低温过热器将水蒸气加热到425.2℃,经屏将水蒸气加热到455.87℃,最后经高温过热器加热到540℃引出做功。
关键字:炉膛,过热器,省煤器,空气预热器。
Abstract240t / h burning blast furnace gas boiler design (high mixing coke oven gas: low-temperature Q = 1400 kcal / standard m3) of the graduation project, the design parameters for the feed water temperature of 215 °C, the superheated steam temperature of 540 °C, 140 °C exhaustsmoke temperature, 20 °C ambient temperature.The design, furnace, screen superheater, superheater high temperature, low temperature superheater, high-temperature economizer, high temperature air preheater, low-temperature economizer, low temperature air preheater of structural calculations and heat transfer calculations. And calculation of flue resistance and air preheater calculation of induced draft fan, blower options.Take chamber width 7.7 meters, the ceiling is 4.675 meters wide, 4.2 meters high ceiling hearth, total 15.785 metres high. Take platen superheater of 8, longitudinal row number 27, every piece of screen the number of 12 parallel tubes, the first root screen pipe height 4.2 meters, screen the maximum height 4.559 meters, the depth of the screen is 1.244 meters. High temperature superheater tube transverse number 62, vertical tube number 8, length 3.329, the depth of 0.76 meters. Low temperature superheater tube for 58 horizontal, vertical tube number 16, length 3.2. High temperature economizer horizontal row number 97.5, longitudinal row number 26, decorate in heating length 6.2. High temperature air preheater horizontal tube number 100, vertical tube number 50, the box height 1.44 meters. Of low temperature economizer horizontal row number 97.5, longitudinal row number 64, decorate in heating tube 3.35 meters. Low temperature air preheater horizontal tube number 100, vertical tube number 50, the box height 1.44 meters.In this design, the flue gas outlet temperature in the furnace is 1295.1 ° C, after the platen superheater flue gas temperature dropped to 1183 °C after the high temperature superheater flue gas temperature down to 1032.6° C, low temperature airpreheater temperature dropped to 832.54 ° C decreased to 449 °C, high temperature economizer, air preheater at high temperature dropped to 382°C, low temperature economizer decreased to 222 °C, dropped to 146.7 ℃high temperature air preheater exhaust.In this design, the water flow is 215 ℃water supply by the low-temperature economizer heating to 260 °C, high temperature economizer heating to 319.97 °C, into the drum, and then the down pipe, the water wall so that the saturated water into 319.97 °C steam, low temperature superheater steam heated to 425.2 ° C, the screen will steam heated to 455.87 °C, and finally by the high temperature superheater heating to 540 ° C leads to acting.Keywords: furnace, superheater, economizer, air preheater.目录摘要 (1)Abstract (2)绪论 (6)1燃气锅炉的特点 (6)2燃气锅炉的现状 (8)3此次设计燃气锅炉的基本思路 (9)第一章.设计任务与燃料特性参数 (10)1.1设计任务 (10)1.2燃料特性 (10)第二章.锅炉整体布置的确定 (11)2.1 燃料燃烧计算 (11)2.2空气平衡及焓温表 (13)2.3锅炉热平衡及燃料消耗量计算 (15)2.4燃烧室设计及传热计算 (16)2.5炉膛结构尺寸计算 (18)2.6燃烧器的布置及主要尺寸 (20)2.6燃烧室结构特性计算 (21)2.7炉膛热力计算 (22)2.8.炉膛顶部辐射受热面吸热量及工质焓增计算 (24)2.9炉膛受热面热力分配 (25)2.10屏式过热器结构计算 (26)2.11屏区传热计算 (28)2.12高温过热器结构计算 (32)2.13高温过热器传热计算 (33)2.14低温过热器结构计算 (36)2.15低温过热器传热计算 (37)2.16炉膛受热量的热量分配 (39)2.17高温省煤器结构计算 (42)2.18高温省煤器传热计算 (43)2.19高温空气预热器结构计算 (45)2.20高温空气预热器传热计算 (46)2.21低温省煤器结构计算 (49)2.22低温省煤器传热计算 (50)2.23低温空气预热器结构计算 (52)2.24低温空气预热器传热计算 (53)2.25热力计算汇总表 (55)第三章.阻力计算 (56)第四章.送引风机计算 (61)4.1送风机计算 (61)4.2引风机计算 (61)第五章.防爆措施 (62)第六章.结论 (63)第七章.参考文献 (64)第八章.附录A (65)第九章.附录B (73)第十章.附录C (93)第十一章.致谢信 (99)绪论燃气锅炉是一种以可燃气体作为燃料的能源转换设备,用以生产热水或蒸汽,满足工业生产和人民日常生活的需要。
锅炉热力计算
炉内传热计算模型
炉内传热计算目的 确定炉膛出口烟气温度和炉膛的辐射传热量, 以便进行对流受热面的换热计算及锅炉热平衡校核。 为应用传热学基本原理分析炉内辐射传热,简化计算,需作以下假设
把传热过程和燃烧过程分开,在必须计及燃烧工况影响时,引入经 验系数予以考虑
炉内传热只考虑辐射换热,略去约占总换热量5%的对流换热 炉内的各物理量(温度、黑度和热负荷等)认为是均匀的 与水冷壁相切的平面是火焰的辐射面,也是水冷壁接受火焰辐射的 面积,称为水冷壁面积 这样,炉内火焰与四周炉壁之间的辐射换热可简化为两个互相平行 的无限大平面间的辐射换热来考虑
3/22
工质对流吸热量Qdx
从炉膛(透过屏)向屏后受热面的直接辐射热, 即来自炉膛的辐射热量经屏吸收后,继续向屏后 受热面辐射的热量
Qf
Qf
(1a)xp
a 为屏间烟气黑度,用后述有关公式计算确定
4/22
工质对流吸热量Qdx
x p 为屏进口截面对出口截面的角系 数,表示炉膛辐射热透过屏间空间而
落在屏后面受热面的部分
式中:I
0 rk
、I 0lk
分别为理论热空气、冷空气的焓,KJ/Kg。
5/12
炉膛出口烟气温度及 辐射传热量计算式
高温烟气和管壁间辐射换热量应等于炉内烟气的放热量,由此可得 炉内辐射传热基本方程式
a 0 p F jT h 4 y B jV p(C T ja T )
根据相似理论将上述方程变换为无因次相似准则方程可得到炉膛出
1/12
高温烟气和管壁间的辐射换热
根据传热学基本公式,高温烟气每小时传给辐射受热面的热量可
用Q 下f 列a 公 式0 计( 算x :iF i)T (h 4 yT b 4) a 0( x iF i)T h 4(y 1 T T h 4 b 4) yk , W 式中:a 为炉膛黑度;Fi 为布置水冷壁的炉墙面积,m2 ,xi为 水
高温过热器
加热蒸汽的换热装置。在温度很高的情况下进行换热。
过热器一般在锅炉里使用,高温烟气流过过热器,过热器内是饱和或者有一定过热度的蒸汽。烟气温度比过热器内的蒸汽温度高,所以烟气传递热量给过热器内的蒸汽。让过热器内的蒸汽温度和压力上升,达到设计或者要求的参数。
高温过热器
高温过热器的计算
7 高温过热器的计算7.1 高温对流过热器结构尺寸 7.1.1管子尺寸 425d mm φ=⨯ 7.1.2冷段横向节距及布置 40L n = (顺列,逆流,双管圈) 7.1.3热段横向节距及布置 39R n = (顺列,顺流,双管圈) 7.1.4横向节距 195mm S = 7.1.5横向节距比 11 2.262dS σ==7.1.6纵向节距 287mm S = 7.1.7纵向节距比 22 2.07dS σ==7.1.8管子纵向排数 28n = 7.1.8冷段蒸汽流通面积 222*0.06424nL Ld f n m π== 注:n d 单位:m下同7.1.9热段蒸汽流通面积 222*0.06284nR Rd fn m π==7.1.10平均流通截面积()/20.0634pjLRff f=+=7.1.11烟气流通面积 2(7.68790.042) 5.4323.3Y m F =-⨯⨯= 7.1.12冷段受热面积 2**( 5.6)237L L z pj pj d m n n l l m H π=== 7.1.13热段受热面积 2**( 5.6)231R R z pj pj d m n n l l m H π=== 7.1.14顶棚受热面积 27.68(0.70.61)10.06LD m F =⨯+= 7.1.15管束前烟室深度 0.7YS m l =7.1.16管束深度 0.61GS m l = 7.1.17辐射层有效厚度 124*0.9(1)0.188s d m πσσ=-= (注:d 单位:m )7.2高温过热器的热力计算7.2.1进口烟气温度 'GG ϑ=995 0C 查表4-7,凝渣管结构及计算第11项7.2.2进口烟气焓 'GG I = 11821.0703 KJkg查表4-7,凝渣管结构及计算第12项7.2.3进冷段烟气温度 'GGL t = 513.3248 0C 即屏出口蒸汽温度,查表4-6,屏的热力计算7.2.4进冷段烟气焓 'GGL I = 3405.5931 KJ kg即屏出口蒸汽焓,查表4-6,屏的热力计算7.2.5总辐射吸热量 '''f f GGNZQ Q== 157.4649 KJkg7.2.6冷段辐射吸热量 'f f LGGLGGLRLDH QQH H H=•++=237157.464978.0623723110.06⨯=++ KJ kg7.2.7热段辐射吸热量 'f f RGGRGGLRLDH QQH H H=•++=231157.464976.0823723110.06⨯=++KJ kg7.2.8顶棚辐射吸热量 'f f LD GGLDGGLRLDH Q QH HH =•++=10.06157.4649 3.313623723110.06⨯=++KJ kg7.2.9出热段蒸汽温度 ''GGR t = 540 0C (建议取额定值5400C )7.2.10出热段蒸汽焓 ''GGR i = 3476.45 KJkg查附录二中水和水蒸气性质表,按计算负荷下高温过热段出口压力P = 9.9 MPa (查表1-6)7.2.11出冷段蒸汽温度 ''GGL t =535 0C (先估后校) 7.2.12出冷段蒸汽焓 ''GGL i = 3461.158 KJkg查附录二中水和水蒸气性质表,按计算负荷下高温过热段出口压力P = 10.10 MPa (查表1-6)7.2.13第二次减温水量 2jw D = 2800 KJ h(取用)7.2.14减温水焓 JW i = 923.69 KJ kg 就是给水焓,按P =10.98MPa7.2.15进热段蒸汽焓 '''22()jw jw GGLJW GGRD Di i D D i -+==33461.158(220102800)923.6928003428.863220000⨯⨯-+⨯= KJ kg7.2.16进热段蒸汽温度 'GGR t = 524 0C 查附录二中水和水蒸气性质表,按计算负荷下高温过热段出口压力P =10.10 MPa (查表1-6)7.2.17冷段吸热量 '''21()()/jw j GGL GGL GGLD D Qi i D B =--=(2200002800)(3461.1583364.675)3428.86331642.3221--=662.281KJ kg7.2.18热段吸热量 '''1()/j GGR GGR GGRD D Qi i B =-=220000(3521.24753428.863)797.530131642.3221⨯-=642.329KJ kg 7.2.19高温过热器吸热量 11GGGGLD GGRD QQQ=+=663.6538+642.3231 =1305.9769 KJ kg7.2.20高温过热器对流吸热量 'D f GGGGGGQQQ=-=1305.9769-157.4649=1148.5129KJkg7.2.21顶棚对流吸热器 1GGLDD Q = 48 KJ kg (先估后校)7.2.22高温过热器出口烟焓'''D GGGG GG LF QI I I αϕ=-+∆•=11821.0703-1148.51290.9946+0.025225.44810535.0124⨯=KJ kg7.2.23高过出口烟气温度 ''GG ϑ= 883.7995 0C (查焓温表), 7.2.24烟气平均温度 '''()2GG GG PJ ϑϑϑ+== 10671.9588 0C7.2.25烟气流速(273)3600273jyPJyyV B WFϑ+=⨯⨯=31642.32217.7569(944.3998273)13.0488360023.3273⨯⨯+=⨯⨯ m s (其中Y V 见表2-9)7.2.26烟气侧放热系数dZSwC C Cαα=•••= 800.9410.9672.192⨯⨯⨯=20()WC m查《标准》线算图12(附录图8)7.2.27冷段蒸汽平均温度 '''()/2GGLPJ GGl GGL t t t =+=(513.3248535)524.16242+=0C7.2.28 冷段蒸汽平均比容 GGL v = 0.034 3Kg m 查附录二中水和水蒸气性表,按冷段进出口压力平均值PJ P = 10.15 MPa(查表1-6)7.2.29冷段蒸汽平均流速 2()(3600)jw GGLGGLPJ LD v D W f-=⨯=3(220102800)0.03431.952236000.0642⨯-⨯=⨯m s 7.2.30冷段蒸汽放热系数GGLα= 3404 20()WC m,odCα•查《标准》线算图15即(附录图11) 7.2.31热段蒸汽平均温度 '''()/2GGRPJ GGR GGR t t t =+= 5405245322+=0C7.2.32热段蒸汽平均比容 GGR v = 0.035 m s查附录二中水和水蒸气性质表,按冷段进出口压力平均值PJ P =10 MPa (查表1-6)7.2.33热段蒸汽平均流速 (3600)GGRGGRPJ RD v W f=⨯⨯=3220100.03534.058736000.0628⨯⨯=⨯ m s 7.2.34热段蒸汽放热系数GGRα= 38000.923496⨯= 20()WC m,odCα•查《标准》线算图15即(附录图11)7.2.35三原子气体辐射减弱系数0.78 1.60.1)(10.37)1000pjQ TK +=-0.1-)(1-1217.39980.371000⨯)=24.711(.)m MPa7.2.36三原子气体容积份额 r = 0.2360 查表2-9烟气特性表7.2.37灰粒的辐射减弱系数H K =88.6804=1(.)m MPa 注:h d 单位:m μ7.2.38烟气质量飞灰浓度 Yμ= 0.0134 3kg m查表2-9烟气特性表7.2.39烟气的辐射减弱系数Q H YK r K K μ=+=24.710.236088.68040.01347.0199⨯+⨯= 1(.)m MPa7.2.40烟气黑度 a =1kpse--=7.01990.10.18810.1236e-⨯⨯-=7.2.41冷段管壁灰污层温度1()3.6j GGGGLHBGGL GGLPJ LQB t t H εα••+=+=131642.32211305.9769(0.0043)3404524.1624717.31843.6237⨯⨯++=⨯0C ,其中:0.0043ε=7.2.42热段管壁灰污层温度 1()3.6j GGGGRHBGGR GGRPJ RQB t t H εα••+=+==131642.32211305.9769(0.0043)3404532 3.6237⨯⨯++⨯=759.89110C ,其中:0.0043ε=7.2.43冷段辐射放热系数FGGLα=22.04 20()WC modCα•查《标准》线算图19即(附录图12)7.2.44热段辐射放热系数FGGRα=23.12 20()W C modCα•查《标准》线算图19即(附录图12)7.2.45修正后冷段辐射放热系数0.250.071273[10.4((]1000))GGLPJ YS F GGL FGGLGSt l l αα+=+• =0.250.07524.16242730.722.04[10.4((]10000.61))+⨯+•=33.255420()W C m 7.2.46修正后热段辐射放热系数0.250.071273[10.4((]1000))GGRPJ YS F GGR FGGRGSt l l αα+=+• =0.250.075322730.723.12[10.4((]10000.61))+⨯+•=31.964620()W C m 7.2.47冷段传热系数11GGL GGL GGLK ψαααα•==+105.447434040.65105.44743404⨯⨯=+66.4814 20()W C m (其中ψ—热有效系数,对烟煤ψ=0.65。
过热汽温串级控制系统的设计
引言火电厂锅炉汽温控制系统具有大迟延、大惯性的特点,且影响汽温变化的扰动因素很多,如蒸汽负荷、烟气温度和流速、火焰中心位置、减温水量、给水温度等等,这些扰动会极大影响机组的平安、经济运行。
本设计的工作意义是:大型火电厂锅炉过热汽温对电厂平安经济运行有着重要影响, 过热蒸汽温度是锅炉汽水系统中温度最高点,如果蒸汽温度过高就会使过热器和汽轮机高压缸承受过高的热应力而损坏,威胁机组的平安运行。
如果过热蒸汽温度偏低,那么蒸汽含水量增加,会降低电厂的工作效率,甚至会使汽轮机带水,从而缩短汽轮机叶片的使用寿命。
所以控制好过热器出口温度非常重要。
通常要求它的温度保持在额定值5范围内。
常规的蒸汽温度控制方案大致可分为两种: 一种是串级控制, 另一种是导前微分控制。
目前该领域的控制方法有:过热汽温FPID(模糊PID)控制系统, 基于控制历史的过热汽温模糊串级控制系统,过热汽温鲁棒PID控制系统,但以上方法都只是理论研究,应用于实际生产之中的控制方式以传统方法为主。
继续提高主汽温、再热汽温的控制品质,仍具有较高的理论与实用价值。
本文以过热汽温串级控制系统的思路对被控对象进行研究与分析,针对被控对象的大延迟,不确定等特点,选择串级控制系统能够获得较好的抗干扰性能和动态特性。
第一章单元机组燃烧系统本课题研究对象为200MW单元机组过热汽温串级控制系统,锅炉为高温、亚临界压力、中间再热、自然循环、单炉膛前后对冲燃烧、燃煤粉汽包炉,下面将先介绍锅炉的燃烧系统。
1.1 燃烧室(炉膛)炉膛断面尺寸为深12500mm、宽13260mm的矩形炉膛其深宽比为。
这样近似正方形的矩形截面为四角布置切圆燃烧方式创造了良好的条件。
从而使燃烧室四周的水冷壁吸热比拟均匀,热偏差较小。
燃烧室上部布置四大片分隔屏过热器,便于消除燃烧室上方出口烟气流的剩余旋转,减少进入水平烟道的烟气温度偏差。
汽包,壁厚145mm,筒身长20500mm,汽包横向布置在锅炉前上方,汽包内径为1743筒身两端各与半球形封头相接,筒身与封头均用BHW-35钢材制成。
锅炉原理课程设计说明书
课程设计课程名称电厂锅炉原理题目名称锅炉原理课程设计学生学院材料与能源学院专业班级XX热电1班学号*********学生姓名XXX指导教师刘湘云2016 年 7 月 1 日目录广东工业大学本科生课程设计(论文)任务书…………………………………错误!未定义书签。
一、设计的初始数据 (6)1.1 设计任务 (6)1.2 煤的成分 (6)1.3 过量空气系数和漏风系数 (6)二、辅助计算 (8)2.1 燃烧计算表 (8)2.2 烟气特性 (9)2.3 烟气焓温表(用于炉膛、屏式过热器、高温过热器的计算) (10)2.4 烟气焓温表(用于低温过热器、高温省煤器的计算) (11)2.5 烟气焓温表(用于高温空预器、低温省煤器的计算) (12)2.6 烟气焓温表(用于低温看空预器的计算) (12)2.7 锅炉热平衡及燃料消耗量计算 (13)三、炉膛热力计算 (14)3.1 炉膛校核热力计算的步骤 (14)3.2 炉膛几何特征的计算 (15)3.3 炉膛热力计算中的几个问题 (24)3.3.1炉膛校核热力计算 (25)3.3.2炉膛顶棚辐射受热面系热量及工质焓增的计算 (19)3.4水系统及水冷壁结构设计 (19)3.5燃烧器结构设计 (19)四、对流受热面的热力计算 (30)4.1 屏的结构数据计算 (30)4.2 屏的热力计算 (29)4.3 凝渣管(或悬吊管) (29)五、锅炉设计图纸 (34)六、设计总结与感想 (36)参考文献 (39)广东工业大学本科生课程设计(论文)任务书题目名称300t/h燃煤锅炉整体设计学院材料与能源学院专业班级12热电工程2班姓名翁源远吴明煜徐敏健学号3113007121 3113007122 3113007123一、课程设计设计内容1.熟悉煤粉炉的工作原理。
2.根据煤粉炉整体设计的要求,进行煤粉炉炉膛水冷壁热力计算。
3.进行煤粉炉尾部换热器热力计算。
4.根据煤粉炉的热力计算,设计煤粉炉结构形式。
220T锅炉原理热力计算书
锅炉热力计算题目: 220T/锅炉校核热力计算指导者:评阅者:XXXX年 XX 月 XX 日设计(论文)摘要目录1 燃料燃烧计算 (2)2 炉膛校核热力计算 (3)3 炉膛顶部辐射受热面吸热量及工质焓增的计算 (6)4 屏的结构数据计算表 (7)5 屏的热力计算 (8)6 凝渣管结构及计算 (14)7 高温过热器的计算 (15)8 低温过热器的热力计算 (23)9 高温省煤器的热力计算 (26)10 高温空气预热器热力计算 (30)11 低温省煤器热力计算 (33)12 低温空气预热器热力计算 (36)13 锅炉热力计算误差检查 (39)结论 (41)参考文献 (42)致谢 (43)1 燃料燃烧计算1.1燃烧计算1.1.1 理论空气量: V 0 =0.0889(C ar +0.375S ar )+0.265H ar -0.0333O ar0.0889(5.90180.3750.6)0.265 4.40.03339.1=⨯+⨯+⨯-⨯5.9018=Nm 3/kg S ar 1.1.2 理论氮容积: 02N V =0.8100ar N +0.79 V 01.20.80.79 5.9018 4.6720100=⨯+⨯= Nm 3/kg1.1.3 RO2 容积: V R02 = 1.866 100ar C +0.7100ar S 56.90.61.8660.7 1.066100100=⨯+⨯=Nm 3/kg1.1.4理论干烟气容积:0GY V = 02N V + V RO2 4.672 1.066 5.738=+=Nm 3/kg1.1.5理论水蒸气容积:20H OV =11.1 100ar H +1.24 100ar M+1.61d k V 0 (d k =0.01kg/kg) 4.41311.1 1.24 1.610.01 5.908100100=⨯+⨯+⨯⨯0.7446=Nm 3/kg1.1.6飞灰分额:αfh=0.92(查表2-4)1.2锅炉热平衡及燃料消耗量计算1.2.1锅炉输入热量 Q r ≈Q ar,net =22415 kJ/kg 1.2.2排烟温度θPY (估取)= 125c1.2.3排烟焓 I PY =1519.2159 kJ/kg 1.2.4冷空气温度 t LK =20℃1.2.5理论冷空气焓 0LF I =(ct)k V 0 38.2 5.9018225.448=⨯= kJ/kg1.2.6化学未完全燃烧损失 q 3 =0.5% (取用) 1.2.7机械未完全燃烧 q 4 =1.5% (取用)1.2.8排烟处过量空气系数 αpy =1.39(表2-7第二版) 1.2.9排烟损失 q 2 =(100- q 4 )*(I PY -αpy0LF I )/ Q r()()100 1.51519.2159 1.39225.448/22415=-⨯-⨯5.2989= %1.2.10散热损失 q 5=0.5% (取用)1.2.11灰渣损失 q 6 = Q 6 /Q r *100 1.06581000.004822415=⨯=%1.2.12锅炉总损失 ∑q= q 2 + q 3 +q 4 +q 5 +q 65.29890.5 1.50.50.00487.8037=++++= %1.2.13锅炉热效率 η=100-∑q 92.1963= % 1.2.14保热系数 φ=1-q 5 /(η+q 5 )0.00510.994692.19630.005=-=+1.2.15过热蒸汽焓 "GG i = 3941.39 kJ/kg(查附录表二中水和水蒸气性质表,高过出口参数 P= 9.9 Mpa t=540℃) 1.2.16给水温度 t GS =215℃ (给定) 1.2.17给水焓 i GS = 923.79 kJ/kg(查附录表二中水和水蒸气性质表,低省入口参数 P=11.57 Mpa t=215℃)1.2.18锅炉有效利用热 Q=D GR ("GG i -"GS I )=()3220103941.39923.79⨯⨯-86.6410=⨯kJ/h1.2.19实际燃料消耗量 B=100*Q/(ηQ r )8100 6.6410/92.196322415=⨯⨯⨯32124.18485= kg/h 1.2.20计算燃料消耗量 B j =B(1- q 4 /100)1.532124.184851100⎛⎫=⨯- ⎪⎝⎭31642.3221= kg/h2 炉膛校核热力计算2.1 炉膛出口过量空气系数"l α = 1.2 (查表1-5漏风系数和过量空气系数)2.2 炉膛漏风系数 △αl = 0.05 (查表1-5漏风系数和过量空气系数)2.3 制粉系统漏风系数 △αZF = 0.1(查表1-5漏风系数和过量空气系数) 2.4 热风温度 t RF = 275 ℃ (估取)2.5 理论热风焓 I 0RF = 2175.4477 kJ/kg (查温焓表)2.6 理论冷风焓 I 0LF = 225.448 kJ/kg (查表2-14)2.7 空气带入炉膛热量 Q K =(α”L -△αL -△αZF )I 0RF +(△αl +△αZF )I 0LF()()1.20.050.12175.44770.050.1225.448=--⨯++⨯2318.0312=kJ/kg 2.8对于每公斤燃料送入炉膛的热量Q L = Q r [1-(q 3 + q 6 )/(100- q 4 )]+ Q K0.50.00482241512318.0372100 1.5+⎛⎫=⨯-+ ⎪-⎝⎭24618.1632= kJ/kg 2.9理论燃烧温度θ0 24618.163224259.639410019001925.2725677.314124259.6394-=⨯+=-℃(查温焓表)2.10理论燃烧绝对温度T 0 =θ0 +273= 1925.27+273 =2198.27 K 2.11火焰中心相对温度系数X=h r /H l +△x=0.3040(其中h r =4962,H l =22176-4092+1762,△x=0) 2.12系数M =A-BX= 0.59-0.3040⨯0.5=0.438(A 、B 取值查表3-5、3-6) 2.13炉膛出口烟气温度θ”l =1130 ℃ (估取)2.14炉膛出口烟气焓 I ”L = 13612.9332kJ/kg (查温焓表) 2.15烟气平均热容量 V C =(Q L -I ”L )/(θ0 -θ”L )24618.163213612.933213.83841925.271130-==-kJ/(kg ℃)2.16水冷壁污染系数ξSL =0.45 (查表3-4水冷壁灰污系数) 2.17水冷壁角系数X SL =0.98 (查3-1炉膛结构数据) 2.18水冷壁热有效系数ψSL =ξSL X SL =0.45⨯0.98=0.441 2.19 屏、炉交界面的污染系数ξYC =β*ξSL =0.98⨯0.45=0.441 (β取0.98) 2.20屏、炉交界面的角系数 X YC =1 (取用)2.21屏、炉交界面的热有效系数 ψYC =ξYC X YC =0.441⨯1=0.441 2.22燃烧器及门孔的热有效系数 ψR =0 (未敷设水冷壁)2.23平均热有效系数 ψPJ =(ψSL F+ψYC F 2 +ψR F YC )/ F L = 0.4372(其中 F=F q +2F C+F h +F LD -F YC 各F 值查表3-1炉膛结构数据) 2. 24炉膛有效辐射层厚度S=5.488m (查表3-1炉膛结构数据) 2.23炉膛内压力 P=0.1MPa2.26水蒸气容积份额 r H20 =0.0994 (查烟气特性表)2.27三原子气体容积份额 r =0.2382 (查烟气特性表) 2. 28三原子气体辐射减弱系数K Q=10.2(=-0.1)(1-0.37"1000l T )140310.20.110.371000⎫⎛⎫=⨯-⨯ ⎪⎪⎝⎭⎭5.1621=2.29烟气质量飞灰浓度 μr=0.01102.30灰粒平均直径 dn =13μm (取用)查附录表一筒式磨煤机 2.31灰粒辐射减弱系数 KH==80.676= 1(.)m MPa2.32燃料种类修正系数 X 1=0.5 注:对低反应的燃料(无烟煤,半无烟煤,贫煤等)X 1=1; 对高反应的燃料(烟煤,褐煤,泥煤,页岩,木柴等) X 1=0.5:2.33燃烧方法修正系数 X 2=0.1 注:对室燃炉X 2=0.1; 对层燃炉X 2=0.03 2.34煤粉火焰辐射减弱系数K=12*10H Q Y r k K X X μ++=5.1621⨯0.2382+80.676⨯0.0110+10⨯0.5⨯0.1=1.2296+0.8874+0.5=2.617 1(.)m MPa2.35火焰黑度 H a =1-kpse -= 2.21130.15.46610.7014e -⨯⨯-=2.36炉膛黑度 l a =(1)HSLHHa a a +-ψ=()0.70140.84190.701410.70140.441=+-⨯2. 37炉膛出口烟气温度(计算值) ''l θ=30.62733600(1)pjLjcM T F T VB ϕσ-+ψ0.61132198.272733600 5.67100.84190.4372693.562198.2730.43810.994631642.322113.83841186.87c-︒=-⎛⎫⨯⨯⨯⨯⨯⨯⨯+ ⎪⨯⨯⎝⎭=注:0σ=5.67×1110-24(*)Wm K j B 单位:kgh2.38计算误差ϑ∆=''l θ-''l θ(估)=1186.27-1130=56.87 (允许误差±1000C ) 2.39炉膛出口烟气焓 ''L I = 14374.748 查焓温表,''l θ按计算值 2.40炉膛有效热辐射放热量f LQ=''()L LQ I ϕ-()0.99462241514374.7487996.8346=⨯-=kJ kg2.41辐射受热面平均热负荷 sq =(3.6)f j LLZ QB S ⨯⨯31642.32217996.834610411.52663.6675.12⨯==⨯2W m2.42炉膛截面热强度Fq =(3.6)jrA QB F ⨯⨯=31642.3221224153827141.2183.651.497⨯=⨯ 2W m2. 43炉膛容积热强度 Vq =(3.6)jrL QB V ⨯⨯31642.322122415187172.14783.61052.6⨯==⨯ 2W m3、炉膛顶部辐射受热面吸热量及工质焓增的计算3.1顶棚管径 d=38 mm (取用) 3.2节距 s=47.5mm (取用) 3.3排数 n=158 (取用)3.4顶棚管角系数 X=0.98 查<标准>线算图1(即附录图1) 3.5顶棚面积 LD F =32.11 2m (取用) 3.6蒸汽流通面积 f=2158(3.14)40.03⨯⨯ =0.112 2m3.7炉膛顶棚热负荷分配不均系数 H μ= 0.68 查<标准>线算图11(即附录图7)(对本炉型:0hX H==0H H=2393823938)3.8炉膛顶棚总辐射吸热量 LD Q =3.6H S LD q F η3.60.6810411.526632.11=⨯⨯⨯ 818400.9636=KJ h3.9减温水总流量 JW D = 6000 KJ h (先估后校)3.10炉膛顶棚蒸汽流量 LD D =JW D D -= 3220106000214000⨯-=KJ h 3.11炉膛顶棚蒸汽焓增 LD i ∆=LDLDQD =818400.9396 3.8243214000= kJ kg3.12炉膛顶棚进口蒸汽焓 'LD i = 2727.72689.22727.7982708.835200--⨯= kJ kg 查附录二中水和水蒸气性质表 注:蒸汽参数---汽包压力对应的干饱和蒸汽3.13 炉膛顶棚出口蒸汽焓 ''LD i ='LD i +LD i ∆= 2708.835 3.82432712.6593+= kJkg3.14炉膛顶棚出口蒸汽温度 ''LD t = 316.30820C <查附录二中水和水蒸气性质表>4、屏的结构数据计算表4.1管子外径 d=425Φ⨯ mm 4.2屏的片数 Z=124.3每片屏的管子排数 n=410⨯=40 4.4屏的深度 L=2.076 m 4.5屏的平均高度 h=7.4 m4.6一片屏的平面面积 p F =13.5 2m 4.7屏的横向节距 1S =591 mm 4.8比值 1σ=1dS =14.14.9屏的纵向节距 2S =46 mm 4.10比值 2σ=2dS=1.094.11屏的角系数 p X = 0.98 查《标准》线算图1(即附录1),曲线5 4.12屏的计算受热面积 PJ H =2P P Z F X = 317 2m 4.13屏区顶棚面积 DP H =高⨯深⨯角系数=15.6 2m4.14屏区两侧水冷壁面积 SL H =高⨯深⨯角系数2⨯=30.1 2m 4.15屏区附加受热面面积 PFJ H =DP H +SL H =45.7 2m 4.16烟气进屏流通面积 '58.8P F = 2m 4.17烟气出屏流通面积 ''50P F = 2m4.18烟气平均流通面积 ''''''254P P Y P PF F F F F ⨯=⨯=+ 2m4.19烟气流通面积 f=212100.0794n d π⨯⨯⨯= 2m (其中0.04220.005nd=-⨯ 单位: m)4.20烟气有效辐射层厚度 11.80.779S h L s ==++ m (注:1S 单位:m)4.21屏区进口烟窗面积 '65.61ch F = 2m <见表3-1 2F > 4.22屏区出口烟窗面积 ''7.68 6.42449.34ch F =⨯= 2m5 屏的热力计算5.1烟气进屏温度 'P ϑ= 1186.870C 查表3-9,炉膛校核热力计算即炉膛出口烟气温度'l θ5.2烟气进屏焓 'P I = 14374.748 KJkg查表3-9,炉膛校核热力计算即炉膛出口烟气焓''L I5.3烟气出屏温度 ''P ϑ= 10000C 《先估后校》 5.4烟气出屏焓 ''P I = 11886.3132KJkg查焓温表5.5烟气平均温度 '''()2P P PJ ϑϑϑ+==1186.8710001093.4352+= 0C5.6屏区附加受热面对流吸热量 D PFJQ = 366KJkg(先估后校)5.7屏的对流吸热量'''0()D DP P LF PJF PQI I I I ϕα=-+∆-()0.994614374.74811886.31323662108.9973=⨯--=KJkg5.8炉膛与屏相互换热系数 β= 0.97 查附录表165.9炉膛出口烟窗的沿高度热负荷分配系数 YC μ= 0.8 查《标准》线算图11(即附录图7)(01984623938LhX H HH===)5. 10炉膛出口烟窗射入屏区的炉膛辐射热量'''()/fP ch LZ YCP LQ Q S I F βϕη=- ()0.970.80.994624618.163214374.74865.61675.12⨯⨯⨯-⨯=768.3233=KJkg5.11三原子气体辐射减弱系数0.78 1.60.1)(10.37)1000pjQ TK +=--1366.43510.20.110.37100010.2 2.0584619580.49441905⎫⎛⎫=⨯-⨯ ⎪⎪⎝⎭⎭=⨯⨯ 10.3810=1(.)m MPa5.12三原子气体容积份额 r= 0.2382 查表2-9烟气特性表 5.13灰粒的辐射减弱系数H K =82.1089==1(.)m MPa 注:h d 单位:m μ5.14烟气质量飞灰浓度 Y μ= 0.0135 3kg m查表2-9烟气特性表5.15烟气的辐射减弱系数Q H YK r K K μ=+=10⨯0.2382+82.1089⨯0.0135=3.58121(.)m MPa5.16屏区烟气黑度 a =1kpse--= 3.58120.10.77910.2434e -⨯⨯-=5.17屏进口对出口的角1LX S==2.0760.13960.591=注:1S 单位:m5.18燃料种类修正系数 0.5R ξ= (取用)5.19屏出口烟窗面积 ''P F = 50 查表4-5,屏的结构数据计算 5.20炉膛及屏间烟气向屏后受热面的辐射热量'''4''0(1)*****3600f f ch pj PRPjxQF T QBααβξσ-=+()()411768.323310.24340.1396 5.67100.243449.341093.4352730.531642.32210.973600-⨯-⨯⨯⨯⨯⨯+⨯=+83.6612135.0401218.7013=+=KJ kg 注:11240 5.67(*)10W m k σ-=⨯ 5.21屏区吸收的炉膛辐射热 '''f f fPQppQQ Q =-=768.3233-218.7013=549.622 KJkg5.22屏区附加受热面吸收的辐射热量*f f PFJPFJPQPJPFJHQQHH =+45.7549.62269.252131745.7=⨯=+KJkg5.23屏区水冷壁吸收的辐射热量*f f SLPSLPQPJPFJHQQHH =+30.1549.62245.612431745.7=⨯=+KJ kg5.24屏区顶棚吸收的辐射热量 *f f DPPLDPQPJPFJHQQHH =+15.6549.62223.639731745.7=⨯=+KJkg5.25屏吸收的辐射热量 ff f PPQPFJQ QQ=-=549.622-69.2521=480.3699 KJkg5.26屏吸收的总热量 Df PPPQ Q Q =+= 2108.9973+480.3699=2589.3672 KJ kg5.27第一级减温水喷水量1jw D = 3200KJ h 《取用》 5.28第二级减温水喷水量2jw D = 2800KJ h 《取用》5.29屏中蒸汽流量 2P jw D D D =-= 3220102800217200⨯-=KJ h 5.30蒸汽进屏温度 'P t = 380 0C 先估后校 5.31蒸汽进屏焓 'P i = 3028.3666KJkg查附录二中水和水蒸气性质表,按计算负荷下进屏P = 10.57 MPa5.32蒸汽出屏焓 '''j PPP PQi B i D+==3028.366631642.32212589.3672217200+⨯3405.5931=KJkg5.33蒸汽出屏温度 ''P t = 513.3248 0C 查附录二中水和水蒸气性质表,按计算负荷下出屏P = 10.2 MPa5.34屏内蒸汽平均温度 '''()2P P PJ t t t +==380513.3248446.66242+=0C5.35平均传热温差 1PJ PJ t t ϑ∆=-= 1093.435-446.6624=646.7726 0C 5.36屏内蒸汽平均比容 v -= 0.0395 3kgm,查附录二中水和水蒸气性质表,按计算负荷下屏进出口压力平均值,PJ P = 10.345 MPa (查表1-6)及PJ t5.37屏内蒸汽流速 *3600*PQ fvD w -==2172000.039524.568736000.097⨯=⨯ m s5.38管壁对蒸汽的放热系数 20*d C αα== 0.98⨯2800=274420(*)WC m 查《标准》线算图15(附录图11)5.39烟气流速 *(1)3600*273jYPJ YYV B w Fϑ=+31642.32217.68201093.4351360054273⨯⎛⎫=⨯+ ⎪⨯⎝⎭6.2585=m s (其中Y V 见表2-9) 5.40烟气侧对流放热系数 0***d Z s w C C C αα== 51.357 2(*)WC m 查《标准》线算图12(附录图8)5.41灰污系数 ε= 0.007520(*)C Wm ,查附录图15曲线2(吹灰)5.42管壁灰污层温度 2*1()*3.6jPhbPJPJQ B t t Hεα=++131642.32212589.3672446.66240.00752744 3.6317⨯⎛⎫=++⨯⎪⨯⎝⎭1011.2971=0C5.43辐射防热系数 0*f ααα== 0.2434⨯374=91.0316 20(*)WC m查《标准》线算图19(附录图12)5.44利用系数 ζ= 1 查附录图15曲线2(吹灰) 5.45烟气侧放热系数 12*(*)2*d f dxS πζααα=+3.1442151.35791.03162460.1396⨯⎛⎫=⨯⨯+ ⎪⨯⨯⎝⎭618.3894=2(*)WC mχ---屏的角系数。
锅炉原理课程设计—220t_h锅炉整体校核热力计算
锅炉原理课程设计—220t_h锅炉整体校核热力计算新疆大学课程设计任务书13-14 学年第 1学期学院: 电气工程学院专业: 热能与动力工程学生姓名: *** 学号: ***课程设计题目: 220t/h锅炉整体校核热力计算煤种徐州烟煤起迄日期: 2013年 12月 23 日 ~ 7>2014年1月3 日课程设计地点: 二教指导教师: ***系主任: ***下达任务书日期: 2013年 12 月 23 日课程设计任务书1.设计目的:课程设计是专业课学习过程中的一个非常重要的实践性环节。
它为综合应用所学的专业知识提供了一次很好的实践机会,而且通过课程设计可以加强学生对本课程及相关课程理论及专业知识的理解和掌握,训练并提高其在理论计算、工程绘图、资料文献查阅、运用相关标准与规范及计算机应用等方面的能力;同时,为其它专业课程的学习和毕业设计(论文)奠定良好的基础。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):一、锅炉规范1、锅炉额定蒸发量:Dc220t/h2、给水温度:tgs215℃3、过热蒸汽温度:tgr5404、过热蒸汽压力(表压):pgr9.8MPa5、制粉系统:中间储仓式(热空气作干燥剂、钢球筒式磨煤机)6、燃烧方式:四角切圆燃烧7、排渣方式:固态8、环境温度:20℃9、蒸汽流程:见指导书P410、烟气流程:炉膛→屏式过热器→高温对流过热器→低温对流过热器→高温省煤器→高温空气预热器→低温省煤器→低温空气预热器锅炉受热面的布置结构示意图见指导书P5所示。
二、燃料的特性煤种:徐州烟煤(煤种的具体参数见指导书P8表1-7)3.设计工作任务及工作量的要求〔包括课程设计计算说明书论文、图纸、实物样品等〕:1、锅炉辅助设计计算。
2、受热面热力计算。
3、受热面数据分析及材料整理课程设计任务书4.主要参考文献:1.锅炉原理2.锅炉课程设计指导书5.设计成果形式及要求:设计成果形式:1、设计计算说明书。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 高温过热器的计算7.1 高温对流过热器结构尺寸 7.1.1管子尺寸 425d mm φ=⨯ 7.1.2冷段横向节距及布置 40L n = (顺列,逆流,双管圈) 7.1.3热段横向节距及布置 39R n = (顺列,顺流,双管圈) 7.1.4横向节距 195mm S = 7.1.5横向节距比 11 2.262dS σ==7.1.6纵向节距 287mm S = 7.1.7纵向节距比 22 2.07dS σ==7.1.8管子纵向排数 28n = 7.1.8冷段蒸汽流通面积 222*0.06424nL Ld f n m π== 注:n d 单位:m下同7.1.9热段蒸汽流通面积 222*0.06284nR Rd fn m π==7.1.10平均流通截面积()/20.0634pjLRff f=+=7.1.11烟气流通面积 2(7.68790.042) 5.4323.3Y m F =-⨯⨯= 7.1.12冷段受热面积 2**( 5.6)237L L z pj pj d m n n l l m H π=== 7.1.13热段受热面积 2**( 5.6)231R R z pj pj d m n n l l m H π=== 7.1.14顶棚受热面积 27.68(0.70.61)10.06LD m F =⨯+= 7.1.15管束前烟室深度 0.7YS m l =7.1.16管束深度 0.61GS m l = 7.1.17辐射层有效厚度 124*0.9(1)0.188s d m πσσ=-= (注:d 单位:m )7.2高温过热器的热力计算7.2.1进口烟气温度 'GG ϑ=995 0C 查表4-7,凝渣管结构及计算第11项7.2.2进口烟气焓 'GG I = 11821.0703 KJkg查表4-7,凝渣管结构及计算第12项7.2.3进冷段烟气温度 'GGL t = 513.3248 0C 即屏出口蒸汽温度,查表4-6,屏的热力计算7.2.4进冷段烟气焓 'GGL I = 3405.5931 KJ kg即屏出口蒸汽焓,查表4-6,屏的热力计算7.2.5总辐射吸热量 '''f f GGNZQ Q== 157.4649 KJkg7.2.6冷段辐射吸热量 'f f LGGLGGLRLDH QQH H H=•++=237157.464978.0623723110.06⨯=++ KJ kg7.2.7热段辐射吸热量 'f f RGGRGGLRLDH QQH H H=•++=231157.464976.0823723110.06⨯=++KJ kg7.2.8顶棚辐射吸热量 'f f LD GGLDGGLRLDH Q QH HH =•++=10.06157.4649 3.313623723110.06⨯=++KJ kg7.2.9出热段蒸汽温度 ''GGR t = 540 0C (建议取额定值5400C )7.2.10出热段蒸汽焓 ''GGR i = 3476.45 KJkg查附录二中水和水蒸气性质表,按计算负荷下高温过热段出口压力P = 9.9 MPa (查表1-6)7.2.11出冷段蒸汽温度 ''GGL t =535 0C (先估后校) 7.2.12出冷段蒸汽焓 ''GGL i = 3461.158 KJkg查附录二中水和水蒸气性质表,按计算负荷下高温过热段出口压力P = 10.10 MPa (查表1-6)7.2.13第二次减温水量 2jw D = 2800 KJ h(取用)7.2.14减温水焓 JW i = 923.69 KJ kg 就是给水焓,按P =10.98MPa7.2.15进热段蒸汽焓 '''22()jw jw GGLJW GGRD Di i D D i -+==33461.158(220102800)923.6928003428.863220000⨯⨯-+⨯= KJ kg7.2.16进热段蒸汽温度 'GGR t = 524 0C 查附录二中水和水蒸气性质表,按计算负荷下高温过热段出口压力P =10.10 MPa (查表1-6)7.2.17冷段吸热量 '''21()()/jw j GGL GGL GGLD D Qi i D B =--=(2200002800)(3461.1583364.675)3428.86331642.3221--=662.281KJ kg7.2.18热段吸热量 '''1()/j GGR GGR GGRD D Qi i B =-=220000(3521.24753428.863)797.530131642.3221⨯-=642.329KJ kg 7.2.19高温过热器吸热量 11GGGGLD GGRD QQQ=+=663.6538+642.3231 =1305.9769 KJ kg7.2.20高温过热器对流吸热量 'D f GGGGGGQQQ=-=1305.9769-157.4649=1148.5129KJkg7.2.21顶棚对流吸热器 1GGLDD Q = 48 KJ kg (先估后校)7.2.22高温过热器出口烟焓'''D GGGG GG LF QI I I αϕ=-+∆•=11821.0703-1148.51290.9946+0.025225.44810535.0124⨯=KJ kg7.2.23高过出口烟气温度 ''GG ϑ= 883.7995 0C (查焓温表), 7.2.24烟气平均温度 '''()2GG GG PJ ϑϑϑ+== 10671.9588 0C7.2.25烟气流速(273)3600273jyPJyyV B WFϑ+=⨯⨯=31642.32217.7569(944.3998273)13.0488360023.3273⨯⨯+=⨯⨯ m s (其中Y V 见表2-9)7.2.26烟气侧放热系数dZSwC C Cαα=•••= 800.9410.9672.192⨯⨯⨯=20()WC m查《标准》线算图12(附录图8)7.2.27冷段蒸汽平均温度 '''()/2GGLPJ GGl GGL t t t =+=(513.3248535)524.16242+=0C7.2.28 冷段蒸汽平均比容 GGL v = 0.034 3Kg m 查附录二中水和水蒸气性表,按冷段进出口压力平均值PJ P = 10.15 MPa(查表1-6)7.2.29冷段蒸汽平均流速 2()(3600)jw GGLGGLPJ LD v D W f-=⨯=3(220102800)0.03431.952236000.0642⨯-⨯=⨯m s 7.2.30冷段蒸汽放热系数GGLα= 3404 20()WC m,odCα•查《标准》线算图15即(附录图11) 7.2.31热段蒸汽平均温度 '''()/2GGRPJ GGR GGR t t t =+= 5405245322+=0C7.2.32热段蒸汽平均比容 GGR v = 0.035 m s查附录二中水和水蒸气性质表,按冷段进出口压力平均值PJ P =10 MPa (查表1-6)7.2.33热段蒸汽平均流速 (3600)GGRGGRPJ RD v W f=⨯⨯=3220100.03534.058736000.0628⨯⨯=⨯ m s 7.2.34热段蒸汽放热系数GGRα= 38000.923496⨯= 20()WC m,odCα•查《标准》线算图15即(附录图11)7.2.35三原子气体辐射减弱系数0.78 1.60.1)(10.37)1000pjQ TK +=-0.1-)(1-1217.39980.371000⨯)=24.711(.)m MPa7.2.36三原子气体容积份额 r = 0.2360 查表2-9烟气特性表7.2.37灰粒的辐射减弱系数H K =88.6804=1(.)m MPa 注:h d 单位:m μ7.2.38烟气质量飞灰浓度 Yμ= 0.0134 3kg m查表2-9烟气特性表7.2.39烟气的辐射减弱系数Q H YK r K K μ=+=24.710.236088.68040.01347.0199⨯+⨯= 1(.)m MPa7.2.40烟气黑度 a =1kpse--=7.01990.10.18810.1236e-⨯⨯-=7.2.41冷段管壁灰污层温度1()3.6j GGGGLHBGGL GGLPJ LQB t t H εα••+=+=131642.32211305.9769(0.0043)3404524.1624717.31843.6237⨯⨯++=⨯0C ,其中:0.0043ε=7.2.42热段管壁灰污层温度 1()3.6j GGGGRHBGGR GGRPJ RQB t t H εα••+=+==131642.32211305.9769(0.0043)3404532 3.6237⨯⨯++⨯=759.89110C ,其中:0.0043ε=7.2.43冷段辐射放热系数FGGLα=22.04 20()WC modCα•查《标准》线算图19即(附录图12)7.2.44热段辐射放热系数FGGRα=23.12 20()W C modCα•查《标准》线算图19即(附录图12)7.2.45修正后冷段辐射放热系数0.250.071273[10.4((]1000))GGLPJ YS F GGL FGGLGSt l l αα+=+• =0.250.07524.16242730.722.04[10.4((]10000.61))+⨯+•=33.255420()W C m 7.2.46修正后热段辐射放热系数0.250.071273[10.4((]1000))GGRPJ YS F GGR FGGRGSt l l αα+=+• =0.250.075322730.723.12[10.4((]10000.61))+⨯+•=31.964620()W C m 7.2.47冷段传热系数11GGL GGL GGLK ψαααα•==+105.447434040.65105.44743404⨯⨯=+66.4814 20()W C m (其中ψ—热有效系数,对烟煤ψ=0.65。
11)d F GGL ααα=+7.2.48热段传热系数11GGR GGR GGR K ααψαα•==+104.16434960.6565.7476104.1643496⨯⨯=+20()WC m(11)d F GGR ααα=+7.2.49冷段平均温 ln d x GGL d x t t t t t ∆-∆∆==∆∆460370.4747413.6239460ln 370.4747-=0C (其中'"d GG GGL t t ϑ∆=- "'x GG GGL t t ϑ∆=-)7.2.50热段平均温差 ln d x GGR d x t t t t t ∆-∆∆==∆∆ 498.24343.7995416.2556498.24ln 343.7995-=0C (其中''d GG GGR t t ϑ∆=- ""x GG GGR t t ϑ∆=-)7.2.51冷段对流吸热量 23.6GGL LGGL GGLD jt K H QB••=∆=3.666.4814413.6239237741.460931642.3221⨯⨯⨯=kJ kg7.2.52计算误差122()GGLD GGLD GGLGGLD fQQQ Q--=827.356978.06741.4619741.4619--=1.06% (允许误差±2%) 、、、23.6GGR RGGR GGRD jt K H QB••==∆3.666.4814416.2556231727.287931642.3221⨯⨯⨯=kJ kg7.2.54计算误差122()GGRD GGRD GGRGGRD fQQQ Q--=797.530176.08727.28790.8%727.2879--=- (允许误差±2%)7.2.55顶棚入口汽温'GGLDt= 337.8630 0C 就是屏顶棚出口汽温 7.2.56顶棚入口汽焓 'GGLD i = 2764.6593 kJ kg就是屏顶棚出口汽焓7.2.57顶棚出口汽焓'''1GGLD GGLD GGLDD Qi i =+=2764.6593+48=2812.6593 kJkg7.2.58顶棚出口汽温 ''GGLD t = 317 0C 查附录二中水和水蒸气性质表,10.00P MPa =7.2.59顶棚对流吸热量23.6LDGGLDD jK t F QB•∆•==66.481465.74763.6(944.3998312)10.06247.854332641.3221+⨯⨯-⨯= kJ kg(其中'',2GGLGGR PJ GGLD K t KK t ϑ+=∆=-)7.2.60计算误差21247.854348100%0.3%47.8543GGLDD GGLDD GGLDD Q QQ--=⨯=(允许误差10%±)7.2.61高温过热器区域总对流吸热量222d GGGGLD GGRD GGLDD QQQQ=++= 741.4609+727.2879+47.8543 =1516.6031 kJ kg。