考研数学三1999真题

合集下载

99考研数三真题及解析

99考研数三真题及解析

1991年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.) (1) 设sin ,xyz e =则dz = _______.(2) 设曲线()3f x x ax =+与()2g x bx c =+都通过点()10,,-且在点()10,-有公共切线,则a =_______,b = _______,c = _______. (3) 设()x f x xe =,则()()nf x 在点x = _______处取极小值 _______.(4) 设A 和B 为可逆矩阵,00A X B⎛⎫=⎪⎝⎭为分块矩阵,则1X -= _______. (5) 设随机变量X 的分布函数为则X 的概率分布为 _______.二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 下列各式中正确的是 ( )(A) 01lim 11x x x +→⎛⎫+= ⎪⎝⎭ (B) 01lim 1xx e x +→⎛⎫+= ⎪⎝⎭ (C) 1lim 1xx e x →∞⎛⎫-=- ⎪⎝⎭ (D) 1lim 1xx e x -→∞⎛⎫+= ⎪⎝⎭(2) 设10(1,2,)na n n≤≤=则下列级数中肯定收敛的是 ( ) (A)1nn a∞=∑ (B)1(1)nn n a ∞=-∑(C)1n ∞=21(1)n n n a ∞=-∑(3) 设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随矩阵*A 的特征根之一是( )(A) 1n A λ- (B) 1A λ- (C) A λ (D) nA λ(4) 设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ( )(A) A 与B 不相容 (B) A 与B 相容 (C) ()()()PAB P A P B = (D) ()()P A B P A -=(5) 对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则 ( )(A) ()()()D XY D X D Y =⋅ (B) ()()()D X Y D X D Y +=+ (C) X 和Y 独立 (D) X 和Y 不独立 三、(本题满分5分)求极限 120lim x xnxxx e e e n →⎛⎫+++⎪⎝⎭,其中n 是给定的自然数. 四、(本题满分5分)计算二重积分DIydxdy =⎰⎰,其中D 是由x 轴,y 轴与曲线1=所围成的区域,0,0a b >>. 五、(本题满分5分)求微分方程22dyxyx y dx=+满足条件2x e y e ==的特解. 六、(本题满分6分)假设曲线1L :()2101y x x =-≤≤、x 轴和y 轴所围区域被曲线2L :2y ax =分为面积相等的两部分,其中a 是大于零的常数,试确定a 的值. 七、(本题满分8分)某厂家生产的一种产品同时在两个市场销售,售价分别为1p 和2p ;销售量分别为1q 和2q ;需求函数分别为112402q .p =-和2210005q .p =-,总成本函数为()123540C q q .=++ 试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大利润为多少? 八、(本题满分6分)试证明函数1()(1)x f x x=+在区间(0,)+∞内单调增加.九、(本题满分7分)设有三维列向量 问λ取何值时,(1) β可由123,,ααα线性表示,且表达式唯一 (2) β可由123,,ααα线性表示,且表达式不唯一 (3) β不能由123,,ααα线性表示 十、(本题满分6分)考虑二次型22212312132344224f x x x x x x x x x λ=+++-+.问λ取何值时,f 为正定二次型. 十一、(本题满分6分)试证明n 维列向量组12,,,n ααα线性无关的充分必要条件是1112121222120T T T nT T T nT T T n n n nD αααααααααααααααααα=≠,其中Ti α表示列向量i α的转置,1,2,,i n =.十二、(本题满分5分)一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数.求X 的概率分布.十三、(本题满分6分)假设随机变量X 和Y 在圆域222x y r +≤上服从联合均匀分布. (1) 求X 和Y 的相关系数ρ;(2) 问X 和Y 是否独立 十四、(本题满分5分)设总体X 的概率密度为 其中0λ>是未知参数,0a >是已知常数.试根据来自总体X 的简单随机样本12,,,n X X X ,求λ的最大似然估计量ˆλ. 1991年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题满分15分,每小题3分.) (1)【答案】()sin cos xyexy ydx xdy +【解析】方法一:先求出两个偏导数z x ∂∂和zy∂∂,然后再写出全微分dz , sin sin sin sin cos cos cos cos xy xyxy xy z e xy y ye xy x ze xy x xe xy y∂⎧=⋅⋅=⎪∂⎪⎨∂⎪=⋅⋅=∂⎪⎩, 所以 sin sin cos cos xy xy z zdz dx dy ye xydx xe xydy x y∂∂=+=+∂∂ sin cos ()xye xy ydx xdy =+.方法二:利用一阶全微分形式不变性和微分四则运算法则直接计算dz .()()()sin xy sin xy sin xy sin xy dz d e e d sin xy e cos xydxy e cos xy ydx xdy ====+.(2)【答案】1a =-,1b =-,1c =【解析】由于曲线()f x 与()g x 都通过点()10,,-则()()11010f a g b c -=--=⎧⎪⎨-=+=⎪⎩, 又曲线()f x 与()g x 在点()10,-有公切线,则()()11f g ''-=-,即()()()211133122x x f x a a g bx b =-=-''-=+=+=-==-,亦即32a b +=-,解之得 1a =-,1b =-,1c =. (3)【答案】()1x n =-+;()1n e -+-【解析】由高阶导数的莱布尼兹公式()()()()0nn k n k k n k uv C u v -==∑可知, 00()x xx xe ne x n e =++++=+.对函数()()()n gx f x =求导,并令()0g x '=,得()(1)()(1)0n x g x f x x n e +'==++=,解之得驻点()1x n =-+,且()0,(1),()()0,(1),()g x x n g x g x x n g x '<<-+⎧⎨'>>-+⎩函数严格单调递减函数严格单调递增;;故()1x n =-+是函数()()()n g x f x =的极小值点,极小值为()11(1)(1)(1)n n n g n f n n n e e ------=--=--+=-.(4)【答案】110B A --⎛⎫ ⎪⎝⎭【解析】利用分块矩阵,按可逆矩阵定义有12340000X X A E X X BE ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由对应元素或块相等,即3412,0,0,.AX E AX BX BX E =⎧⎪=⎪⎨=⎪⎪=⎩从A 和B 均为可逆矩阵知113412,0,0,X A X X X B --====.故应填110B A--⎛⎫ ⎪⎝⎭. (5)【答案】【解析】因为随机变量X 的分布函数()F x 在各区间上的解析式都与自变量x 无关,所以在()F x 的连续点,{}0P X x ==,只有在()F x 的间断点处X 取值的概率才大于零,且{}{}{}()(0)P X x P X x P X x F x F x ==≤-<=--,则{1}(1)(10)0.4P X F F =-=----=,因此X 的概率分布为二、选择题(本题满分15分,每小题3分.) (1)【答案】(A)【解析】由重要极限1lim(1)xx e x →∞+=可知,极限 (1)111lim(1)lim[1()]x x x x e x x-⋅--→∞→∞-=+-=,(1)111lim(1)lim(1)x x x x e x x-⋅--→∞→∞+=+=.而极限 00111lim ln(1)lim ln(1)ln(1)001lim (1)lim x x x x x x x x x x x e e e x++→→+++++→→+===, 令1t x=,则 01ln(1)1lim ln(1)lim lim 01t t x t x x t t+→+∞→+∞→++==+洛,所以 01lim ln(1)001lim (1)1x x x x x e e x+→++→+===. 故选项(A)正确. (2)【答案】(D)【解析】因为2221(1)nn na a n -=<,由211n n ∞=∑收敛及比较判别法可知21(1)n n n a ∞=-∑绝对收敛.即(D)正确.另外,设1(1,2)2na n n==,则可知 (A) 11111122nn n n an n ∞∞∞=====∑∑∑, (C) 111212n n n n∞∞∞=====∑ 都不正确.设21210,(1,2)4n n a a n n-===,则可知(B)不正确. (3)【答案】(B).【解析】由λ为A 的特征值可知,存在非零向量X ,使得AX X λ=.两端同时乘以*A ,有 **()A X A AX λ=,由公式*AA A =得到*A X A X λ=.于是*1A X A X λ-=.按特征值定义知1A λ-是伴随矩阵*A 的特征值.故应选(B).【相关知识点】矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.(4)【答案】(D)【解析】A B AB =,如果A B =Ω,则A B =∅,即A 与B 互不相容;如果A B ≠Ω,则A B ≠∅,即A 与B 相容.由于A 、B 的任意性,故选项(A)(B)均不正确.任何事件A 一定可以表示为两个互不相容事件AB 与AB 的和. 又因AB =∅,从而A B AB A -==,另外要注意区分独立与互不相容两个概念,不要错误地把A 、B 互不相容等同于A 、B 相互独立而错选(C).A ,B 不相容,()P A ,()P B 均不为零,因此()()0P AB P =∅=,()()()P AB P A P B .≠即(C)不正确. 用排除法应选(D).事实上,()()()()PA B P A P AB P A .-=-=(5)【答案】(B)【解析】由于()()()E XY E X E Y =,因此有 故应选(B).【相关知识点】若两个随机变量X ,Y 的方差都大于零,则下面四个命题是等价的:1) ()()()E XY E X E Y =; 2)()()()D X Y D X D Y +=+;3) cov(,)0X Y =; 4)X 和Y 不相关,即X 和Y 的相关系数0ρ=.三、(本题满分5分)【解析】方法一:这是 1∞型未定式极限.1220112ln lim 00lim lim x x nx x x nx xx e e e e e e x xnxxn x n x x e e e e en →⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭→→⎛⎫+++== ⎪⎝⎭20ln()ln limx x nx x e e e n x e→+++-=,其中指数上的极限是型未定式,由洛必达法则,有220212(1)1lim 22x x nx x xnxx e e ne n n n n e e e n n →++++++++====+++. 所以 11220lim n xxnxxx e e e e n +→⎛⎫+++=⎪⎝⎭. 方法二:由于 112211xxnxx xnxxxe e e e e en n ⎛⎫⎛⎫++++++=+-⎪ ⎪⎝⎭⎝⎭, 记21x x nxe e e y n+++=-,则当0x →时0y →,从而1112000lim lim(1)lim (1)y xxnxxxyxx x x e e e y y n →→→⎡⎤⎛⎫+++=+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦. 而10lim(1)yy y e →+=,所以01limlim (1)x y y xyx x y e →→⎡⎤+=⎢⎥⎢⎥⎣⎦. 又因 200(1)(1)(1)lim limx x nx x x y e e e x nx→→-+-++-=2000111111limlim lim (12)2x x nx x x x e e e n n n x x x n→→→⎡⎤---+=++++++=⎢⎥⎣⎦洛. 所以11220lim n x xnxxx e e e e n+→⎛⎫+++=⎪⎝⎭. 四、(本题满分5分)【解析】积分区域D 如图阴影部分所示.1=,得21y b ⎛=- ⎝. 因此 ((22412120001122ba b aaDb Iydxdy dx ydy dx y dx ⎛⎡⎤==== ⎢⎥⎣⎦⎝⎰⎰⎰⎰⎰⎰. 令1t =有2(1),2(1)x a t dx a t dt =-=--,故 15621245200()5630t t ab ab t t dt ab ⎛⎫=-=-= ⎪⎝⎭⎰.五、(本题满分5分)【解析】将原方程化为2221y dy x y xy dx xyx ⎛⎫+ ⎪+⎝⎭==,由此可见原方程是齐次微分方程. 令y ux =,有,dy duu x dx dx=+将其代入上式,得21dy du u u x dx dx u +=+=, 化简得1du x dx u =,即dx udu x =.积分得 21ln .2u x C =+ 将y ux=代入上式,得通解222(ln )y x x C =+. 由条件2x e y e ==,即2242(ln )e e e C =+求得1C =.所以222(ln 1)y x x =+所求微分方程的特解.六、(本题满分6分)【解析】先求出曲线1L 和2L 的交点,然后利用定积分求出平面图形面积1S 和2S ,如图:由()()221010y x x y ax a ⎧=-≤≤⎪⎨= >⎪⎩ 得1x a y .a ⎧=⎪⎪⎨⎪=⎪+⎩所以 112120(1)S S S ydx x dx =+==-⎰⎰1301233x x ⎡⎤=-=⎢⎥⎣⎦,3013a x x +⎡=-=⎢⎣⎦.又因为12S S =,所以223=,2=,解得3a .= 七、(本题满分8分)【解析】方法1:总收入函数为2211221122240210005R p q p q p .p p .p =+=-+-,总利润函数为2211223202120051395p .p p .p =-+--. 由极值的必要条件,得方程组 即1280120p ,p ==.因驻点的唯一,且由问题的实际含义可知必有最大利润.故当1280120p ,p ==时,厂家所获得的总利润最大,其最大总利润为方法2:两个市场的价格函数分别为1122120520020p q ,p q =-=-,总收入函数为()()11221122120520020R p q p q q q q q =+=-+-,总利润函数为2211228051602035q q q q =-+--. 由极值的必要条件,得方程组因驻点的唯一,且由问题的实际含义可知必有最大利润.故当1284q ,q ==,即180p ,=2120p =时,厂家所获得的总利润最大,其最大总利润为1284605q ,q L ===.八、(本题满分6分)【解析】因为(0,)x ∈+∞,所以1()(1)0x f x x=+>.1ln(1)1()(1)x xxf x e x+=+=,两边对x 求导,得112ln(1)ln(1)1()1111()ln(1)(1)ln(1)111x x x xxx x f x e e x x x x x ++⎡⎤⋅-'⎢⎥⎡⎤⎡⎤'==⋅++=++-⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎢⎥+⎣⎦. 令11()ln(1)1g x x x=+-+,为证函数()f x 为增函数,只需()0f x '>在(0,)+∞上成立,,即()0,(0,)g x x >∈+∞.方法一:利用单调性.由于 22211111()ln(1)11(1)(1)1x g x x x x x x x-'-⎡⎤'=+-=-=-⎢⎥+++⎣⎦+, 且(0,)x ∈+∞,故21()0(1)g x x x '=-<+,所以函数()g x 在(0,)+∞上单调减少. 又11lim ()lim[ln(1)]01x x g x x x→∞→∞=+-=+,于是有()0,(0,)g x x >∈+∞.从而 1()(1)()0x f x g x x'=+>,(0,)x ∈+∞,于是函数()f x 在(0,)+∞单调增加.方法二:利用拉格朗日中值定理. 令 11ln(1)ln()ln(1)ln (1)()x x x u x u x x x++==+-=+-, 所以在区间(,1)x x +存在一点ξ,使得1(1)()()(1)()u x u x u x x u ξξξ''+-=+-==,即11ln(1)x ξ+=.又因为01x x ξ<<<+,所以1111x xξ<<+,所以 1111ln(1)1x x xξ<+=<+. 故对一切(0,)x ∈+∞,有111()(1)[ln(1)]01x f x x x x'=++->+.函数()f x 在(0,)+∞单调增加.九、(本题满分7分)【解析】设112233x x x ,αααβ++=将分量代入得到方程组对方程组的增广矩阵作初等行变换. 第一行分别乘以有()1-、()1λ-+加到第二行和第三行上,有22211101110111011120λλλλλλλλλλλλλ++⎡⎤⎡⎤⎢⎥⎢⎥+→-⎢⎥⎢⎥⎢⎥⎢⎥+---⎣⎦⎣⎦, 再第二行加到第三行上,所以有2211100300λλλλλλλλ+⎡⎤⎢⎥→-⎢⎥⎢⎥--+⎣⎦.若0λ≠且230,λλ+≠即0λ≠且3λ≠-,则()()3r A r A ==,方程组有唯一解,即β可由123,,ααα线性表示且表达式唯一.若0λ=,则()()13r A r A ==<,方程组有无穷多解,β可由123,,ααα线性表示,且表达式不唯一. 若3λ=,则()()23r A ,r A ==,方程组无解,从而β不能由123,,ααα线性表示.【相关知识点】非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,线性方程组Ax b =有解的充分必要条件是系数矩阵的秩等于增广矩阵()A A b =的秩,即是()()r A r A =(或者说,b 可由A 的列向量12,,,n ααα线表出,亦等同于12,,,n ααα与12,,,,n b ααα是等价向量组).设A 是m n ⨯矩阵,线性方程组Ax b =,则 (1) 有唯一解 ⇔ ()().r A r A n == (2) 有无穷多解⇔ ()().r A r A n =<(3) 无解 ⇔ ()1().r A r A +=⇔b 不能由A 的列向量12,,,n ααα线表出.十、(本题满分6分)【解析】关于判定二次型正定这类题目时,用“顺序主子式全大于0”的方法最为简捷.二次型f 的矩阵为1142124A λλ-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,其顺序主子式为 正定的充分必要条件是各阶顺序主子式都大于0,所以有12310,(2)(2)0,4(1)(2)04A λλλλλλ∆>∆==-+>∆==--+>.解出其交集为(2,1)-,故(2,1)λ∈-时,f 为正定二次型. 【相关知识点】二次型的定义:含有n 个变量12,,,n x x x 的二次齐次多项式(即每项都是二次的多项式)()1211,,,,nnn ij i j i j f x x x a x x ===∑∑ 其中ij ji a a =,称为n 元二次型,令()12,,,Tn x x x x =,()ij A a =,则二次型可用矩阵乘法表示为其中A 是对称矩阵()T A A =,称A 为二次型()12,,,n f x x x 的矩阵.十一、(本题满分6分) 【解析】记12(,,,)n A ααα=,则12,,,n ααα线性无关的充分必要条件是0A ≠.由于[]1111212212221212,,,T T T T n T T T TT n n T T T Tn n n n n A A αααααααααααααααααααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,从而取行列式,有2T T D A A A A A ===.由此可见12,,,n ααα线性无关的充分必要条件是0D ≠.【相关知识点】m 个n 维向量12m ,,,ααα线性相关的充分必要条件是齐次方程组 有非零解.特别地,n 个n 维向量12,,,n ααα线性相关的充分必要条件是行列式12,,,0n ααα=.十二、(本题满分5分)【解析】首先确定X 的可能值是0123,,,,其次计算X 取各种可能值的概率.设事件i A =“汽车在第i 个路口首次遇到红灯”,123i ,,,=且i A 相互独立. 事件i A 发生表示该汽车首次遇到红灯前已通过的路口的个数为1i -.所以有 则X 的概率分布为注:此题易犯的一个错误是将{}3P X =计算为412,这是由于该街道仅有三个设有红绿信号灯的路口,3X=仅表示所有三个信号灯路口均为绿灯,而不存在第四个有信号灯路口问题.十三、(本题满分6分)【解析】二维均匀分布(,)X Y 的联合密度函数为1, (,),(,) 0, (,),D x y D S f x y x y D ⎧∈⎪=⎨⎪∉⎩D S 是区域D 的面积,2,D S r π=所以(,)X Y 的联合密度22222221,(,)0,x y rf x y rx y r π⎧+≤⎪=⎨⎪+>⎩. 由连续型随机变量边缘分布的定义,X 和Y 的概率密度1()f x 和2()f y 为2()(,))f y f x y dx y r +∞-∞==≤⎰. 由一维连续型随机变量的数学期望的定义:()EX x f x dx +∞-∞=⋅⎰, []()()().E g X g x f x dx +∞-∞=⋅⎰若()f x 为奇函数,积分区间关于原点对称,则积分为零,即是()0rrf x dx -=⎰.故 22,rrEXr π-=⎰22rrEY r π-=⎰,由于被积函数为奇函数,故 0EX EY ==.()2222cov(,)x y r xyX Y E XY EX EY dxdy r π+≤=-⋅=⎰⎰, 因为此二重积分区域关于x 轴对称,被积函数为y 的奇函数,所以积分式为0.cov(,)0X Y =.由相关系数计算公式ρ=,于是X 和Y 的相关系数0ρ=.(2)由于12(,)()()f x y f x f y ≡,可见随机变量X 和Y 不独立. 十四、(本题满分5分)【解析】最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数.现题设给出概率密度函数(;)f x λ,则似然函数(由于ln L 是单调递增函数,L 取最大与ln L 取最大取到的θ是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便).由对数似然方程1ln 0,n i i L n X αλλ=∂=-=∂∑ 得λ的最大似然估计值1ˆnii nX αλ==∑.所以得λ的最大似然估计量为 1ˆnii nX αλ==∑.【相关知识点】似然函数的定义:设12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:12121()(,,,;)(;)(;)(;)(;)nn i n i L f x x x f x f x f x f x θθθθθθ====∏.。

99年考研数学三真题及全面解析

99年考研数学三真题及全面解析

1996年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设方程yx y =确定y 是x 的函数,则dy =___________.(2) 设()arcsin x f x dx x C =+⎰,则1()dx f x =⎰___________.. (3) 设()00,x y 是抛物线2y ax bx c =++上的一点,若在该点的切线过原点,则系数应满足的关系是___________. (4) 设123222212311111231111n nn n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 其中(;,1,2,,)i j a a i j i j n ≠≠=.则线性方程组T A X B =的解是___________.(5) 设由来自正态总体2~(,0.9)X N μ容量为9的简单随机样本,得样本均值5X=,则未知参数μ的置信度为0.95的置信区间为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 累次积分cos 2(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成 ( )(A) 10(,)dy f x y dx ⎰(B) 10(,)dy f x y dx ⎰ (C)11(,)dx f x y dy ⎰⎰(D) 10(,)dx f x y dy ⎰(2) 下述各选项正确的是 ( ) (A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B)1n nn u v∞=∑收敛,则21nn u∞=∑与21nn v∞=∑都收敛(C) 若正项级数1nn u∞=∑发散,则1nu n≥(D) 若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛(3) 设n 阶矩阵A 非奇异(2n ≥),A *是矩阵A 的伴随矩阵,则 ( )(A) 1()n A AA -**= (B) 1()n A A A +**= (C) 2()n AAA -**= (D) 2()n A AA +**=(4) 设有任意两个n 维向量组1,,m αα和1,,m ββ,若存在两组不全为零的数1,,m λλ 和1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-=,则( )(A) 1,,m αα和1,,m ββ都线性相关 (B) 1,,m αα和1,,m ββ都线性无关(C) 1111,,,,,m m m m αβαβαβαβ++--线性无关 (D) 1111,,,,,m m m m αβαβαβαβ++--线性相关(5) 已知0()1P B <<且()1212[]()()P A A B P A B P A B +=+,则下列选项成立的是( )(A) ()1212[]()()P A A B P A B P A B +=+(B) ()1212()()P A B A B P A B P A B +=+ (C) ()1212()()P A A P A B P A B +=+(D) ()()1122()()()PB P A P B A P A P B A =+三、(本题满分6分)设(),0,()0,0,xg x e x f x xx -⎧-≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1,(0)1g g '==-. (1)求()f x ';(2)讨论()f x '在(,)-∞+∞上的连续性. 四、(本题满分6分)设函数()zf u =,方程()()xyu u p t dt ϕ=+⎰确定u 是,x y 的函数,其中(),()f u u ϕ可微;()p t ,()u ϕ'连续,且()1u ϕ'≠.求()()z zp y p x x y∂∂+∂∂. 五、(本题满分6分)计算2(1)xx xe dx e -+∞-+⎰.六、(本题满分5分)设()f x 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰.试证:存在(0,1)ξ∈使七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成aQ c p b=-+,其中a b 、、 c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少.(2) 要使销售额最大,商品单价p 应取何值最大销售额是多少八、(本题满分6分)求微分方程dy dx =的通解. 九、(本题满分8分)设矩阵01010000010012A y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. (1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使()()TAP AP 为对角矩阵. 十、(本题满分8分)设向量12,,,t ααα是齐次线性方程组0AX =的一个基础解系,向量β不是方程组0AX =的解,即0A β≠.试证明:向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障仍可获得利润5万元;发生两次故障所获利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少 十二、(本题满分6分)考虑一元二次方程20x Bx C ++=,其中B C 、分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p 和有重根的概率q .十三、(本题满分6分)假设12,,,n X X X 是来自总体X 的简单随机样本;已知(1,2,3,4)k k EX a k ==.证明:当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.1996年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】()1ln dxx y +【解析】方法1:方程yx y =两边取对数得ln ln ln yx y y y ==,再两边求微分,()()11ln 1ln 1dx y dy dy dx x x y =+⇒=+()()ln 10x y +≠. 方法2:把yx y =变形得ln y yx e=,然后两边求微分得()()()ln ln 1ln 1ln y y y dx e d y y y y dy x y dy ==+=+,由此可得 ()1.1ln dy dx x y =+(2)【答案】C【解析】由()arcsin x f x dx x C =+⎰,两边求导数有()1()arcsin ()xf x x f x '==⇒=于是有1()dx f x ⎰212==⎰C =.(3)【答案】0c a≥(或2ax c =),b 任意 【解析】对2y ax bx c =++两边求导得()0022y ax b,y x ax b,''=+=+所以过()00x ,y 的切线方程为()()0002y y ax b x x ,-=+-即又题设知切线过原点()00,,把0x y ==代入上式,得2200002ax bx c ax bx ,---=--即20ax c.= 由于系数0a ≠,所以,系数应满足的关系为0c a≥(或2ax c =),b 任意. (4)【答案】()1000T,,,【解析】因为A 是范德蒙行列式,由i j a a ≠知()0i j A a a =-≠∏.根据解与系数矩阵秩的关系,所以方程组TAX B =有唯一解.根据克莱姆法则,对于2111112122222133332111111111n n n n n nnn x a a a x a a a x a a a x a a a ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 易见 1230n D A ,D D D .=====所以TAX B =的解为12310n x ,x x x =====,即()1000T,,,,.【相关知识点】克莱姆法则:若线性非齐次方程组 或简记为 112nij ji j a xb ,i ,,,n ===∑其系数行列式1112121222120n n n n nna a a a a a D a a a =≠,则方程组有唯一解 其中j D 是用常数项12n b ,b ,,b 替换D 中第j 列所成的行列式,即1111111121212212111,j ,j n ,j ,j n j n n,j nn,j nna ab a a a a b a a D a a b a a -+-+-+=.(5)【答案】(4.412,5.588)【解析】可以用两种方法求解: (1)已知方差220.9σ=,对正态总体的数学期望μ进行估计,可根据因2(,0.9)XN μ,设有n 个样本,样本均值11ni i X X n ==∑,有20.9(,)XN n μ,将其标准化,由公式~(0,1)X N 得:由正态分布分为点的定义21P u αα⎫⎪<=-⎬⎪⎭可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22x u x u αα⎛-+ ⎝,其中21,(0,1)P Uu U N αα⎧⎫<=-⎨⎬⎩⎭,可以直接得出答案.方法1:由题设,95.01=-α,可见.05.0=α查标准正态分布表知分位点.96.12=αu 本题9n =,5X =, 因此,根据 95.0}96.11{=<-nX P μ,有1.96}0.95P <=,即 {4.412 5.588}0.95P μ<<=, 故μ的置信度为0.95的置信区间是(4.412,5.588) .方法2:由题设,95.01=-α,查得.96.12=αu20.9σ=,9n =, 5X =代入22(x u x u αα-+得置信区间(4.412,5.588).二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】方法1:由题设知,积分区域在极坐标系cos ,sin x r y r θθ==中是即是由221124x y ⎛⎫-+= ⎪⎝⎭与x 轴在第一象限所围成的平面图形,如右图.由于D 的最左边点的横坐标是0,最右点的横坐标是1, 下边界方程是0y ,=上边界的方程是y =,从而D的直角坐标表示是故(D)正确.方法2:采取逐步淘汰法.由于(A)中二重积分的积分区域的极坐标表示为 而(B)中的积分区域是单位圆在第一象限的部分, (C)中的积分区域是正方形(){}0101x,y |x ,y ,≤≤≤≤所以,他们都是不正确的.故应选(D). (2)【答案】(A)【解析】由于级数21nn u∞=∑和21nn v∞=∑都收敛,可见级数()221nn n uv ∞=+∑收敛.由不等式及比较判别法知级数12n nn u v∞=∑收敛,从而12n nn u v∞=∑收敛.又因为()2222n n nnn n u v u v u v ,+=++即级数()21n n n u v ∞=+∑收敛,故应选(A).设()21112nn u ,v n ,,n ===,可知(B)不正确. 设()21112n u n ,,n n=-=,可知(C)不正确.设()()11112n nn u ,v n ,,nn--==-=,可知(D)不正确.注:在本题中命题(D)“若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛.”不正确,这表明:比较判别法适用于正项级数收敛(或级数绝对收敛)的判别,但对任意项级数一般是不适用的.这是任意项级数与正项级数收敛性判别中的一个根本区别. (3)【答案】(C)【解析】伴随矩阵的基本关系式为AA A A A E **==,现将A *视为关系式中的矩阵A ,则有()A A A E ****=.方法一:由1n A A-*=及1()AA A*-=,可得 故应选(C). 方法二:由()AA A E ****=,左乘A 得1()()n AA A AA -***=,即1()()n A E A AA -**=.故应选(C). (4)【答案】(D)【解析】本题考查对向量组线性相关、线性无关概念的理解.若向量组12,,,s γγγ线性无关,即若11220s s x x x γγγ+++=,必有120,0,,0s x x x ===.既然1,,m λλ与1,,m k k 不全为零,由此推不出某向量组线性无关,故应排除(B)、(C).一般情况下,对于 不能保证必有11220,s s k k k ααα+++=及110,s s l l ββ++=故(A)不正确.由已知条件,有()()()()1111110m m m m m m k k λαβλαβαβαβ+++++-++-=,又1,,m λλ与1,,m k k 不全为零,故1111,,,,,m m m m αβαβαβαβ++--线性相关.故选(D). (5)【答案】(B)【解析】依题意 因()0P B >,故有()()1212)(PA B A B P A B P A B +=+.因此应选(B).注:有些考生错误地选择(D).他们认为(D)是全概率公式,对任何事件B 都成立,但是忽略了全概率公式中要求作为条件的事件12,A A 应满足12()0,()0P A P A >>,且12,A A 是对立事件. 【相关知识点】条件概率公式:()(|)()P AB P B A P A =.三、(本题满分6分)【解析】(1) 由于()g x 有二阶连续导数,故当0x ≠时,()f x 也具有二阶连续导数,此时,()f x '可直接计算,且()f x '连续;当0x =时,需用导数的定义求(0)f '.当0x ≠时, 22[()]()()()(1)().x x xx g x e g x e xg x g x x e f x x x ---''+-+-++'== 当0x =时,由导数定义及洛必达法则,有2000()()()(0)1(0)lim lim lim 222x x x x x x g x e g x e g x e g f x x ---→→→'''''-+--'==洛洛. 所以 2()()(1),0,()(0)1,0.2xxg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩(2) ()f x '在0x =点的连续性要用定义来判定.因为在0x =处,有0()(0)1lim(0)22x x g x e g f -→''''--'===.而()f x '在0x ≠处是连续函数,所以()f x '在(,)-∞+∞上为连续函数. 四、(本题满分6分) 【解析】由()zf u =可得(),()z u z u f u f u x x y y∂∂∂∂''==∂∂∂∂. 在方程()()xyu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-. 于是()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u ϕϕ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦. 五、(本题满分6分)【分析】题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法. 【解析】方法1:因为 所以20lim ln(1)ln 2.(1)1x x x x x x xe xe dx e e e -+∞-→+∞⎡⎤=-++⎢⎥++⎣⎦⎰而 lim ln(1)lim ln (1)11x x x x xxx x x xe xe e e e e e -→+∞→+∞⎡⎤⎧⎫⎡⎤-+=-+⎨⎬⎢⎥⎣⎦++⎣⎦⎩⎭lim001x x xe →+∞-=-=+,故原式ln 2=. 方法2:220001(1)(1)1x x x x x xe xe dx dx xd e e e -+∞+∞+∞-==-+++⎰⎰⎰六、(本题满分5分)【分析】由结论可知,若令()()x xf x ϕ=,则()()()x f x xf x ϕ''=+.因此,只需证明()x ϕ在[0,1]内某一区间上满足罗尔定理的条件. 【解析】令()()x xf x ϕ=,由积分中值定理可知,存在1(0,)2η∈,使112201()()()2xf x dx x dx ϕϕη==⎰⎰,由已知条件,有1201(1)2()2()(),2f xf x dx ϕηϕη==⋅=⎰于是且()x ϕ在(,1)η上可导,故由罗尔定理可知,存在(,1)(0,1),ξη∈⊂使得()0,ϕξ'=即()()0.f f ξξξ'+=【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[ ,]a b 上连续,则在[ ,]a b 上至少存在一个点ξ,使下式成立:()()()()baf x dx f b a a b ξξ=-≤≤⎰.这个公式叫做积分中值公式. 2.罗尔定理:如果函数()f x 满足(1)在闭区间[ ,]a b 上连续; (2)在开区间()a,b 内可导;(3)在区间端点处的函数值相等,即()()f a f b =,那么在()a,b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.七、(本题满分6分)【分析】利用函数的单调性的判定,如果在x 的某个区间上导函数()0f x '≥,则函数()f x 单调递增,反之递减.【解析】(1)设售出商品的销售额为R ,则 令0,R '=得00p b ==>.当0p <<时,0R '>,所以随单价p 的增加,相应销售额R 也将增加.当p >时,有0R '<,所以随单价p 的增加,相应销售额R 将减少. (2)由(1)可知,当p =时,销售额R 取得最大值,最大销售额为2maxR b c ⎡⎤⎫⎥==⎪⎪⎥⎭⎥⎦. 八、(本题满分6分) 【解析】令y zx =,则dy dz z x dx dx=+. 当0x >时,原方程化为dzz xz dx +=,dx x =-,其通解为1ln(ln z x C =-+ 或C z x=.代回原变量,得通解(0)y C x =>.当0x <时,原方程的解与0x >时相同,理由如下: 令t x =-,于是0t>,而且dy dy dx dydt dx dt dx =⋅=-===从而有通解(0)y C t +=>,即(0)y C x =<.综合得,方程的通解为y C =.注:由于未给定自变量x 的取值范围,因而在本题求解过程中,引入新未知函数yzx=后得=,从而,应当分别对0x >和0x <求解,在类似的问题中,这一点应当牢记. 九、(本题满分8分)【分析】本题的(1)是考查特征值的基本概念,而(2)是把实对称矩阵合同于对角矩阵的问题转化成二次型求标准形的问题,用二次型的理论与方法来处理矩阵中的问题. 【解析】(1)因为3λ=是A 的特征值,故所以2y =. (2)由于TAA =,要2()()T T AP AP P A P ==Λ,而是对称矩阵,故可构造二次型2Tx A x ,将其化为标准形T y y Λ.即有2A 与Λ合同.亦即2T P A P =Λ.方法一:配方法.由于 22222123434558T x A x x x x x x x =++++那么,令1122334444,,,,5y x y x y x x y x ===+=即经坐标变换有 222221234955T x A x y y y y =+++.所以,取 10000100400150001P ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,有 211()()595T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 方法二:正交变换法.二次型22222123434558Tx A x x x x x x x =++++对应的矩阵为21000010000540045A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 其特征多项式231000010(1)(9)005445E A λλλλλλλ---==------.2A 的特征值12341,1,1,9λλλλ====.由21()0E A x λ-=,即12340000000000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,和24()0E A x λ-=,即12348000080000044000440x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,分别求得对应1,2,31λ=的线性无关特征向量123(1,0,0,0),(0,1,0,0),(0,0,1,1)T T T ααα===-,和49λ=的特征向量4(0,0,1,1)Tα=.对123,,ααα用施密特正交化方法得123,,βββ,再将4α单位化为4β,其中:1234(1,0,0,0),(0,1,0,0),,T T T Tββββ====. 取正交矩阵[]123410000100000,,,P ββββ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎢⎢⎢⎣,则 1221119T P A P P A P -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 即 211()()19T T AP AP P A P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦. 十、(本题满分8分)【解析】证法1: (定义法)若有一组数12,,,,,t k k k k 使得1122()()()0,t t k k k k ββαβαβα+++++++= (1)则因12,,,t ααα是0AX =的解,知0(1,2,,)i A i t α==,用A 左乘上式的两边,有12()0t k k k k A β++++=. (2)由于0A β≠,故120t k k k k ++++=. 对(1)重新分组为121122()0t t t k k k k k k k βααα++++++++=. (3) 把(2)代入(3)得 11220t t k k k ααα+++=.由于12,,,t ααα是基础解系,它们线性无关,故必有120,0,,0t k k k ===.代入(2)式得:0k =.因此向量组12,,,,t ββαβαβα+++线性无关.证法2: (用秩)经初等变换向量组的秩不变.把第一列的-1倍分别加至其余各列,有 因此 ()()1212,,,,,,,,.t t rr ββαβαβαβααα+++=由于12,,,t ααα是基础解系,它们是线性无关的,秩()12,,,t r t ααα=,又β必不能由12,,,t ααα线性表出(否则0A β=),故()12,,,,1t r t αααβ=+.所以 ()12,,,, 1.t rt ββαβαβα+++=+即向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)【解析】设一周5个工作日内发生故障的天数为X ,则X 服从二项分布即(5,0.2)B . 由二项分布的概率计算公式,有设一周内所获利润Y (万元),则Y 是X 的函数,且 由离散型随机变量数学期望计算公式,100.3276850.409620.05792 5.20896EY =⨯+⨯-⨯=(万元).【相关知识点】1.二项分布的概率计算公式:若(,)YB n p ~,则{}(1)k kn k n P Y k C p p -==-, 0,1,,k n =.2.离散型随机变量数学期望计算公式:{}1()nkk k E X xP X x ==⋅=∑.十二、(本题满分6分)【解析】一枚色子(骰子)接连掷两次,其样本空间中样本点总数为36.设事件1A =“方程有实根”,2A =“方程有重根”,则{}221404B A B C C ⎧⎫=-≥=≤⎨⎬⎩⎭.用列举法求有利于i A 的样本点个数(1,2i =),具体做法见下表:有利于的意思就是使不等式24B C ≤尽可能的成立,则需要B 越大越好,C 越小越好.当B 取遍1,2,3,4,5,6时,由古典型概率计算公式得到【相关知识点】古典型概率计算公式:().i i A P A =有利于事件的样本点数样本空间的总数十三、(本题满分6分) 【解析】依题意,12,,,n X X X 独立同分布,可见22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX a k ==及方差计算公式,有因此,根据中心极限定理的极限分布是标准正态分布,即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布. 【相关知识点】1.列维-林德伯格中心极限定理,又称独立同分布的中心极限定理:设随机变量12,,,n X X X 独立同分布,方差存在,记μ与2σ()0σ<<+∞分别是它们相同的期望和方差,则对任意实数x ,恒有 其中()x Φ是标准正态分布函数.2.方差计算公式:22()()()D X E X E X =-.。

1999年考研数学试题详解及评分参考

1999年考研数学试题详解及评分参考

X - Y +1 ~ N (0,1). 2
于是有
P(
X
+Y 2
-1
£
0)
=
1 2
,
P(
X
-Y 2
+1
£
0)
=
1 2
.

P( X
+Y
£
1)
=
1 2

P(
X
-
Y
£
-1)
=
1 2
,故选
(B).
三、(本题满分 5 分)
设 y = y(x) , z = z(x) 是方程 z = xf (x + y) 和 F (x, y, z) = 0 所确定的函数,其中 f 和
(A)
P( X
+Y
£
0)
=
1 2
(B)
P( X
+Y
£ 1)
=
1 2
(C)
P( X
-Y
£
0)
=
1 2
(D)
P( X
-Y
£ 1)
=
1 2
【答】 应选 (B).
【解】 由于服从正态分布的相互独立的随机变量的线性组合仍服从正态分布,因此
X + Y ~ N (1,
2 2 ), X - Y ~ N (-1,
2 2 ). 即 X + Y -1 ~ N (0,1), 2
=
2 ln
x
+1+
1 x2
,
j¢¢(1)
=
2
>
0
.
j ¢¢¢( x)
=
2(x3 -1) x3

1999年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

1999年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

由格林公式,前一部分 I1
D
(b a)dxdy
2
a2 (b a) ,
„„1 分 „„3 分
1999 年 • 第 2 页
其中 D 为 L L1 所围成的半区域. 直接计算后一积分可得
I2
2a (bx)dx 2a2b .
0
„„4 分
从而
I
I1
I2
2
a2 (b
a)
2a2b
( 2
2)a2b
解:曲线 y y(x) 上在点 P(x, y) 处的切线方程为Y y y(x)( X x) .
它与 x 轴的交点为 (x y , 0) .由于 y(x) 0, y(0) 1 ,从而 y(x) 0 , y
于是 S1
1 2
y
x (x
y) y
y2 2 y
.
又 S2
dz dx
f
xf Fx
.
由此解得 dz ( f xf )Fy xf F x
dx
Fy xf F z
( Fy x f Fz 0 ) .
„„5 分
(注:不写出条件 Fy x f Fz 0 不扣分).
四、(本题满分 5 分)
求 I (ex sin y b(x y)) dx (ex cos y ax) dy ,其中 a, b 为正的常数, L 为从点 L
A(2a, 0) 沿曲线 y= 2ax x2 到点 O(0, 0) 的弧.
解一:添加从点 O(0, 0) 沿 y 0 到点 A(2a, 0) 的有向直线段 L1 ,
I (ex sin y b(x y))dx (ex cos y ax)dy L L1
(ex sin y b(x y))dx (ex cos y ax)dy L1

1999-数三真题、标准答案及解析

1999-数三真题、标准答案及解析

-4-
∫∫ f (x, y)dxdy = ∫∫ xydxdy + ∫∫ xydxdy ∫∫ f (u, v)dudvA
D
D
D
D
∫∫ ∫ ∫ ∫ ∫∫ f (x, y)dxdy =
1
dx
x2
xydxdy +
1 x2dx
f (x, y)dxdy
0
0
0
D
D
∫∫
D
f
(x,
y)dxdy
=
1 12
+
1 3
∫∫
2
0
⎟ ⎟
⎜ ⎜
0
2
0
⎟ ⎟
=
⎜ ⎜
0
4
0
⎟ ⎟
=
2
A.
⎜⎝ 1 0 1 ⎟⎠ ⎜⎝ 1 0 1 ⎟⎠ ⎜⎝ 2 0 2⎟⎠
故有 An − 2 An−1 = An−2 ( A2 − 2 A) = O.
(4) 在天平上重复称量一重维 a 的物品,假设各次称量结果相互独立且服从正态分布,
( ) { } N 0, 0.22 ,若以 X n 表示 n 称量结果的算术平均值,则为使 P X n − a < 0.1 ≥ 0.95, n 的
【答】 4
【详解】 考虑幂级数

∑ S ( x) = nxn−1, −1 < x < 1, i =1
∫ ∑ ∫ ∑ 因为 x S ( x)dx = ∞ x nxn−1dx = ∞ xndx = x ,
0
i=1 0
i =1
1− x
所以
S
(
x
)
=
⎛ ⎜⎝
1
x −

1999年普通高等学校招生全国统一考试数学试题及答案(理)

1999年普通高等学校招生全国统一考试数学试题及答案(理)

1999年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第I 卷(选择题共60分)一、选择题:本大题共14小题;第1~10题每小题4分,第11~14题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 ( )(A) (M ∩P )∩S (B) (M ∩P )∪S (C) (M ∩P )∩S(D) (M ∩P )∪S2.已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是( )(A) 4(B) 5(C) 6(D) 73. 若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于 ( ) (A) a(B) 1-a(C) b(D) 1-b4.函数()()()0s i n >+=ωϕωx M x f 在区间[]b a ,上是增函数,且()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上( )(A) 是增函数(B) 是减函数(C) 可以取得最大值M(D) 可以取得最小值M -5.若()x x f sin 是周期为π的奇函数,则()x f 可以是( )(A) x sin(B) x cos(C) x 2sin(D) x 2cos6.在极坐标系中,曲线⎪⎭⎫⎝⎛-=3sin 4πθρ关于 ( )(A) 直线3πθ=轴对称(B) 直线πθ65=轴对称 (C) 点⎪⎭⎫⎝⎛3,2π中心对称(D) 极点中心对称7.若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )(A) cm 36 (B) cm 6(C) cm 3182(D) cm 31238.若(),32443322104x a x a x a x a a x ++++=+则()()2312420a a a a a +-++的值为( )(A) 1(B) -1(C) 0(D) 29.直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 ( )(A)6π (B)4π (C)3π (D)2π 10.如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为( )(A)29 (B) 5 (C) 6 (D)215 11.若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α( )(A) ⎪⎭⎫⎝⎛--4,2ππ (B) ⎪⎭⎫⎝⎛-0,4π (C) ⎪⎭⎫⎝⎛4,0π (D) ⎪⎭⎫⎝⎛2,4ππ 12.如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R =( )(A) 10(B) 15(C) 20(D) 2513.已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是 ( )(A) ①③(B) ②④(C) ①②③(D) ②③④14.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )(A) 5种(B) 6种(C) 7种(D) 8种第II 卷(非选择题共90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.15.设椭圆()012222>>=+b a by a x 的右焦点为1F ,右准线为1l ,若过1F 且垂直于x 轴的弦长等于点1F 到1l 的距离,则椭圆的率心率是_____16.在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有___________种(用数字作答)17.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是______________18.α、β 是两个不同的平面,m 、n 是平面α及β 之外的两条不同直线,给出四个论断:①m ⊥n②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题:________________________________三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)解不等式()1,01log22log3≠>-<-aaxxaa20.(本小题满分12分)设复数.sin2cos3θθ⋅+=iz求函数⎪⎭⎫⎝⎛<<-=2argπθθzy的最大值以及对应的θ值.21.(本小题满分12分)如图,已知正四棱柱1111DCBAABCD-,点E在棱DD1上,截面EAC∥BD1,且面EAC与底面ABCD所成的角为.,45aAB=Ⅰ.求截面EAC的面积;Ⅱ.求异面直线11BA与AC之间的距离;Ⅲ.求三棱锥EACB-1的体积.22.(本小题满分12分)右图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.Ⅰ.输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过0r.问冷轧机至少需要安装多少对轧辊?(一对轧辊减薄率输入该对的带钢厚度从该对输出的带钢厚度输入该对的带钢厚度-=)Ⅱ.已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600.mm若第k 对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为.kL为了便于检修,请计算1L、2L、3L并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).23.(本小题满分14分)已知函数()xfy=的图像是自原点出发的一条折线,当(),2,1,01=+≤≤nnyn时,该图像是斜率为nb 的线段(其中正常数1≠b ),设数列n x 由()(),2,1==n n x f n 定义.Ⅰ.求1x 、2x 和n x 的表达式;Ⅱ.求()x f 的表达式,并写出其定义域;Ⅲ.证明:()x f y =的图像与x y =的图像没有横坐标大于1的交点. 24.(本小题满分14分)如图,给出定点()()00,>a a A 和直线B x l .1:-=是直线l 上的动点,BOA ∠的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.1999年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答一、选择题(本题考查基础知识和基础运算).1. C2. A3. A4. C5. B6. B7. B8. A9. C10. D 11.B12. D13.D14. C二、填空题(本题考查基本知识和基本运算).15.2116. 12 17. [)+∞,9 18. n m n m ⊥⇒⊥⊥⊥βαβα,,或βαβα⊥⇒⊥⊥⊥n m n m ,,三、解答题19. 本小题主要考查对数函数的性质、对数不等式、无理不等式解法等基础知识,考查分类讨论的思想.解:原不等式等价于① ② ③()⎪⎩⎪⎨⎧>--<-≥-.01log 2,1log 22log 3,02log 32x x x x a a a a 由①得,32log ≥x a 由②得,43log <x a 或1log >x a , 由③得.21log >x a由此得,43log 32<≤x a 或.1log >x a当1>a 时得所求的解是{}a x x a x a x >⎭⎬⎫⎩⎨⎧≤≤||4332 ; 当10<<a 时得所求的解是{}.0||3243a x x a x a x <<⋃⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤< 20.本小题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所学数学知识解决问题的能力.解:由20πθ<<得.0>θtg由θθsin 2cos 3i z +=得2arg 0π<<z 及().32cos 3sin 2arg θθθtg tg ==z故 ()z y arg -=θtg tgθθθ232132tg tg tg +-= ,231θθtg tg +=因为,6223≥+θθtg tg所以.126231≤+θθtg tg 当且仅当⎪⎭⎫ ⎝⎛<<=2023πθθθtg tg 时,即26=θtg 时,上式取等号. 所以当26arctg=θ时,函数y tg 取得最大值.126由z y arg -=θ得.2,2⎪⎭⎫ ⎝⎛-∈ππy 由于在⎪⎭⎫⎝⎛-2,2ππ内正切函数是递增函数,函数y也取最大值.126arctg21.本小题主要考查空间线面关系、二面角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ. 解:如图,连结BD 交AC 于O ,连结EO 因为底面ABCD 是正方形, 所以DO ⊥AC又因为ED ⊥底面AC , 因为EO ⊥AC所以∠EOD 是面EAC 与底面AC 所成二面角的平面角. 所以, 45=∠EOD.45sec 22,2,22a a EO a AC a DO =⋅===故.222a S EAC =∆ II. 解:由题设1111D C B A ABCD -是正四棱柱,得A A 1⊥底面AC ,A A 1⊥AC , 又A A 1⊥,11B A所以A A 1是异面直线11B A 与AC 间的公垂线.因为11B D ∥面EAC ,且面BD D 1与面EAC 交线为EO 所以11B D ∥EO 又O 是DB 的中点,所以E 是D D 1的中点,11B D =2EO =2a 所以D D 1.2221a DB B D =-=异面直线11B A 与AC 间的距离为.2a Ⅲ. 解法一:如图,连结11B D 因为D D 1=DB =.2a 所以11B BDD 是正方形,连结D B 1交B D 1于P ,交EO 于Q 因为D B 1⊥B D 1,EO ∥B D 1, 所以D B 1⊥EO 又AC ⊥EO ,AC ⊥ED 所以AC ⊥面11B BDD , 所以D B 1⊥AC , 所以D B 1⊥面EAC .所以Q B 1是三棱锥EAC B -1的高. 由DQ =PQ ,得.234311a D B Q B == 所以.42232231321a a a V EAC B =⋅⋅=- 所以三棱锥EAC B -1的体积是.423a 解法二:连结O B 1,则112EO B A EAC B V V --= 因为AO ⊥面11B BDD ,所以AO 是三棱锥1EOB A -的高,AO .22a =在正方形11B BDD 中,E 、O 分别是D D 1、DB 的中点(如右图),则.4321a S EOB =∆ ∴.422243312321a a a V EAC B =⋅⋅⋅=- 所以三棱锥EAC B -1的体积是.423a 22. 本小题主要考查等比数列、对数计算等基本知识,考查综合运用数学知识和方法解决实际问题的能力.Ⅰ.解:厚度为α的带钢经过减薄率均为0r 的n 对轧辊后厚度为().10nr a -为使输出带钢的厚度不超过β,冷轧机的轧辊数(以对为单位)应满足()β≤-nr a 01即().10ar nβ≤- 由于(),0,010>>-ar nβ对比上式两端取对数,得().lg1lg 0ar n β≤-由于(),01lg 0<-r 所以().1lg lg lg 0r an --≥β因此,至少需要安装不小于()01lg lg lg r a--β的整数对轧辊.Ⅱ. 解法一:第k 对轧辊出口处疵点间距离为轧辊周长,在此处出口的两疵点间带钢体积为()⋅-⋅kr a 11600宽度(),%20=r 其中而在冷轧机出口处两疵点间带钢的体积为()⋅-⋅41r a L k 宽度.因宽度相等,且无损耗,由体积相等得()=-⋅kr a 11600()41r a L k -⋅ (),%20=r即.8.016004-⋅=k k L 由此得(),20003mm L =(),25002mm L = ()mm L 31251= 填表如下 轧锟序号k1 2 3 4 疵点间距k L (单位:mm )3125250020001600解法二:第3对轧辊出口处疵点间距为轧辊周长,在此处出口的两疵点间带钢体积与冷轧机出口处两疵点间带钢体积相等,因宽度不变,有(),2.0116003-⋅=L所以().20008.016003mm L == 同理(),25008.032mm LL ==().31258.021mm LL ==填表如下 轧锟序号k1 2 3 4 疵点间距k L (单位:mm )312525002000160023.本小题主要考查函数的基本概念、等比数列、数列极限的基础知识,考查归纳、推理和综合的能力.Ⅰ.解:依题意()00=f ,又由()11=x f ,当10≤≤y 时,函数()x f y =的图像是斜率为10=b 的线段,故由()()10011=--x f x f得.11=x又由()22=x f ,当21≤≤y 时,函数()x f y =的图像是斜率为b 的线段,故由()()b x x x f x f =--1212,即b x x 112=-得.112b x += 记.00=x 由函数()x f y =图像中第n 段线段的斜率为1-n b,故得()().111---=--n n n n n b x x x f x f 又()()1,1-==-n x f n x f n n ; 所以 .2,1,111=⎪⎭⎫ ⎝⎛=---n b x x n n n由此知数列{}1--n n x x 为等比数列,其首项为1,公比为.1b因,1≠b 得(),111111111-⎪⎭⎫ ⎝⎛-=+++=-=--=-∑b b b b b x x x n n nk k k n即.111-⎪⎭⎫⎝⎛-=-b b b x n nⅡ. 解:当10≤≤y ,从Ⅰ可知,x y =当10≤≤x 时,().x x f = 当1+≤≤n y n 时,即当1+≤≤n n x x x 时,由Ⅰ可知()()().3,2,1,1 =≤≤-+=+n x x x x x b n x f n n n n为求函数()x f 的定义域,须对() ,3,2,1111=-⎪⎭⎫ ⎝⎛-=-n b b b x n n 进行讨论.当1>b 时,111limlim 1-=-⎪⎭⎫ ⎝⎛-=-∞→∞→b bb b b x n n n n ; 当10<<b 时,n x n ,∞→也趋向于无穷大. 综上,当1>b 时,()x f y =的定义域为⎪⎭⎫⎢⎣⎡-1,0b b ;当10<<b 时,()x f y =的定义域为[)+∞,0. Ⅲ. 证法一:首先证明当1>b ,11-<<b bx 时,恒有()x x f >成立. 用数学归纳法证明:(ⅰ)由Ⅱ知当1=n 时,在(]2,1x 上, ()(),11-+==x b x f y 所以()()()011>--=-b x x x f 成立(ⅱ)假设k n =时在(]1,+k k x x 上恒有()x x f >成立. 可得 (),111++>+=k k x k x f在(]21,++k k x x 上,()().111++-++=k k x x b k x f 所以 ()()x x x b k x x f k k --++=-++111()()()011111>-++--=+++k k k x k x x b 也成立.由(ⅰ)与(ⅱ)知,对所有自然数n 在(]1,+n n x x 上都有()x x f >成立. 即 11-<<b bx 时,恒有()x x f >. 其次,当1<b ,仿上述证明,可知当1>x 时,恒有()x x f <成立. 故函数()x f y =的图像与x y =的图像没有横坐标大于1的交点. 证法二:首先证明当1>b ,11-<<b bx 时,恒有()x x f >成立. 对任意的,1,1⎪⎭⎫ ⎝⎛-∈b b x 存在n x ,使1+≤<n n x x x ,此时有 ()()()(),10≥->-=-n x x x x b x f x f n n n所以()().n n x x f x x f ->- 又(),1111n n n x bb n x f =+++>=- 所以()0>-n n x x f ,所以()()0>->-n n x x f x x f , 即有()x x f >成立.其次,当1<b ,仿上述证明,可知当1>x 时,恒有()x x f <成立. 故函数()x f 的图像与x y =的图像没有横坐标大于1的交点.24. 本小题主要考查曲线与方程,直线和圆锥曲线等基础知识,以及求动点轨迹的基本技能和综合运用数学知识解决问题的能力.解法一:依题意,记()(),,1R ∈-b b B 则直线OA 和OB 的方程分别为0=y 和.bx y -=设点()y x C ,,则有a x <≤0,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得.12bbx y y ++=①依题设,点C 在直线AB 上,故有().1a x aby -+-= 由0≠-a x ,得().1ax y a b -+-= ②将②式代入①式得()()(),11122222⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡-++a x xy a y a x y a y 整理得()()[].0121222=++--y a ax x a y 若0≠y ,则()()()a x y a ax x a <<=++--0012122;若0=y ,则π=∠=AOB b ,0,点C 的坐标为(0,0),满足上式. 综上得点C 的轨迹方程为()()()a x y a ax x a <≤=++--0012122(ⅰ)当1=a 时,轨迹方程化为().102<≤=x x y ③此时,方程③表示抛物线弧段; (ⅱ)当1≠a 时,轨迹方程化为()a x a a y a a a a x <≤=-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--0111122222④ 所以,当10<<a 时,方程④表示椭圆弧段; 当1>a 时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x 轴,E 是垂足. (ⅰ)当| BD |≠0时,设点C (x ,y ),则.0,0≠<<y a x 由CE ∥BD 得().1a xa y EADA CE BD +-=⋅=因为∠COA =∠COB=∠COD -∠BOD =π-∠COA -∠BOD ,所以2∠COA =π-∠BOD 所以(),1222COACOACOA ∠-∠=∠tg tg tg ()BOD BOD ∠-=∠-tg tg π因为,xy COA =∠tg().1a xa y ODBD BOD +-==∠tg所以(),11222a x a y xy x y+--=-⋅整理得()()().0012122a x y a ax x a <<=++--(ⅱ)当| BD | = 0时,∠BOA =π,则点C 的坐标为(0,0),满足上式. 综合(ⅰ),(ⅱ),得点C 的轨迹方程为()()().0012122a x y a ax x a <≤=++--以下同解法一.。

1999年普通高等学校招生全国统一考试数学试题及答案(理)

1999年普通高等学校招生全国统一考试数学试题及答案(理)

1999年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第I 卷(选择题共60分)一、选择题:本大题共14小题;第1~10题每小题4分,第11~14题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 ( )(A) (M ∩P )∩S (B) (M ∩P )∪S (C) (M ∩P )∩S(D) (M ∩P )∪S2.已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是( )(A) 4(B) 5(C) 6(D) 73. 若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于 ( ) (A) a(B) 1-a(C) b(D) 1-b4.函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos 在[]b a ,上( )(A) 是增函数(B) 是减函数(C) 可以取得最大值M(D) 可以取得最小值M -5.若()x x f sin 是周期为π的奇函数,则()x f 可以是( )(A) x sin(B) x cos(C) x 2sin (D) x 2cos6.在极坐标系中,曲线⎪⎭⎫⎝⎛-=3sin 4πθρ关于 ( )(A) 直线3πθ=轴对称(B) 直线πθ65=轴对称 (C) 点⎪⎭⎫⎝⎛3,2π中心对称 (D) 极点中心对称7.若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )(A) cm 36 (B) cm 6(C) cm 3182(D) cm 31238.若(),32443322104x a x a x a x a a x ++++=+则()()2312420a a a a a +-++的值为( )(A) 1(B) -1(C) 0(D) 29.直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为( )(A)6π (B)4π (C)3π (D)2π 10.如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为( )(A)29 (B) 5 (C) 6 (D)215 11.若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α( )(A) ⎪⎭⎫⎝⎛--4,2ππ (B) ⎪⎭⎫⎝⎛-0,4π (C) ⎪⎭⎫⎝⎛4,0π (D) ⎪⎭⎫⎝⎛2,4ππ 12.如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R =( )(A) 10(B) 15(C) 20(D) 2513.已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是 ( )(A) ①③(B) ②④(C) ①②③(D) ②③④14.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )(A) 5种(B) 6种(C) 7种(D) 8种第II 卷(非选择题共90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.15.设椭圆()012222>>=+b a by a x 的右焦点为1F ,右准线为1l ,若过1F 且垂直于x 轴的弦长等于点1F 到1l 的距离,则椭圆的率心率是_____16.在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有___________种(用数字作答)17.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是______________18.α、β 是两个不同的平面,m 、n 是平面α及β 之外的两条不同直线,给出四个论断:①m ⊥n②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题:________________________________三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)解不等式()1,01log 22log 3≠>-<-a a x x a a20.(本小题满分12分)设复数.sin 2cos 3θθ⋅+=i z 求函数⎪⎭⎫ ⎝⎛<<-=20arg πθθz y 的最大值以及对应的θ值.21.(本小题满分12分)如图,已知正四棱柱1111D C B A ABCD -,点E 在棱D D 1上,截面EAC ∥B D 1,且面EAC 与底面ABCD 所成的角为.,45a AB =Ⅰ.求截面EAC 的面积;Ⅱ.求异面直线11B A 与AC 之间的距离; Ⅲ.求三棱锥EAC B -1的体积. 22.(本小题满分12分)右图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.Ⅰ.输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过0r .问冷轧机至少需要安装多少对轧辊?(一对轧辊减薄率输入该对的带钢厚度从该对输出的带钢厚度输入该对的带钢厚度-=)Ⅱ.已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600.mm 若第k 对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为.k L 为了便于检修,请计算1L 、2L 、3L 并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).23.(本小题满分14分)已知函数()x f y =的图像是自原点出发的一条折线,当(),2,1,01=+≤≤n n y n时,该图像是斜率为nb 的线段(其中正常数1≠b ),设数列n x 由()(),2,1==n n x f n 定义.Ⅰ.求1x 、2x 和n x 的表达式;Ⅱ.求()x f 的表达式,并写出其定义域;Ⅲ.证明:()x f y =的图像与x y =的图像没有横坐标大于1的交点. 24.(本小题满分14分)如图,给出定点()()00,>a a A 和直线B x l .1:-=是直线l 上的动点,BOA ∠的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.1999年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答一、选择题(本题考查基础知识和基础运算).1. C2. A3. A4. C5. B6. B7. B8. A9. C10. D 11.B12. D13.D14. C二、填空题(本题考查基本知识和基本运算).15.2116. 12 17. [)+∞,9 18. n m n m ⊥⇒⊥⊥⊥βαβα,,或βαβα⊥⇒⊥⊥⊥n m n m ,,三、解答题19. 本小题主要考查对数函数的性质、对数不等式、无理不等式解法等基础知识,考查分类讨论的思想.解:原不等式等价于① ② ③()⎪⎩⎪⎨⎧>--<-≥-.01log 2,1log 22log 3,02log 32x x x x a a a a 由①得,32log ≥x a 由②得,43log <x a 或1log >x a , 由③得.21log >x a由此得,43log 32<≤x a 或.1log >x a当1>a 时得所求的解是{}a x x a x a x >⎭⎬⎫⎩⎨⎧≤≤||4332 ; 当10<<a 时得所求的解是{}.0||3243a x x a x a x <<⋃⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤< 20.本小题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所学数学知识解决问题的能力.解:由20πθ<<得.0>θtg由θθsin 2cos 3i z +=得2arg 0π<<z 及().32cos 3sin 2arg θθθtg tg ==z故 ()z y arg -=θtg tgθθθ232132tg tg tg +-= ,231θθtg tg +=因为,6223≥+θθtg tg所以.126231≤+θθtg tg 当且仅当⎪⎭⎫ ⎝⎛<<=2023πθθθtg tg 时,即26=θtg 时,上式取等号. 所以当26arctg=θ时,函数y tg 取得最大值.126 由z y arg -=θ得.2,2⎪⎭⎫ ⎝⎛-∈ππy 由于在⎪⎭⎫⎝⎛-2,2ππ内正切函数是递增函数,函数y也取最大值.126arctg21.本小题主要考查空间线面关系、二面角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ. 解:如图,连结BD 交AC 于O ,连结EO 因为底面ABCD 是正方形, 所以DO ⊥AC又因为ED ⊥底面AC , 因为EO ⊥AC所以∠EOD 是面EAC 与底面AC 所成二面角的平面角. 所以, 45=∠EOD.45sec 22,2,22a a EO a AC a DO =⋅===故.222a S EAC =∆ II. 解:由题设1111D C B A ABCD -是正四棱柱,得A A 1⊥底面AC ,A A 1⊥AC , 又A A 1⊥,11B A所以A A 1是异面直线11B A 与AC 间的公垂线.因为11B D ∥面EAC ,且面BD D 1与面EAC 交线为EO 所以11B D ∥EO 又O 是DB 的中点,所以E 是D D 1的中点,11B D =2EO =2a 所以D D 1.2221a DB B D =-=异面直线11B A 与AC 间的距离为.2a Ⅲ. 解法一:如图,连结11B D 因为D D 1=DB =.2a 所以11B BDD 是正方形,连结D B 1交B D 1于P ,交EO 于Q 因为D B 1⊥B D 1,EO ∥B D 1, 所以D B 1⊥EO 又AC ⊥EO ,AC ⊥ED 所以AC ⊥面11B BDD , 所以D B 1⊥AC , 所以D B 1⊥面EAC .所以Q B 1是三棱锥EAC B -1的高. 由DQ =PQ ,得.234311a D B Q B == 所以.42232231321a a a V EAC B =⋅⋅=- 所以三棱锥EAC B -1的体积是.423a 解法二:连结O B 1,则112EOB A EAC B V V --= 因为AO ⊥面11B BDD ,所以AO 是三棱锥1EOB A -的高,AO .22a =在正方形11B BDD 中,E 、O 分别是D D 1、DB 的中点(如右图),则.4321a S EOB =∆ ∴.422243312321a a a V EAC B =⋅⋅⋅=- 所以三棱锥EAC B -1的体积是.423a 22. 本小题主要考查等比数列、对数计算等基本知识,考查综合运用数学知识和方法解决实际问题的能力.Ⅰ.解:厚度为α的带钢经过减薄率均为0r 的n 对轧辊后厚度为().10nr a -为使输出带钢的厚度不超过β,冷轧机的轧辊数(以对为单位)应满足()β≤-nr a 01即().10ar nβ≤-由于(),0,010>>-ar nβ对比上式两端取对数,得().lg1lg 0ar n β≤-由于(),01lg 0<-r 所以().1lg lg lg 0r an --≥β因此,至少需要安装不小于()01lg lg lg r a--β的整数对轧辊.Ⅱ. 解法一:第k 对轧辊出口处疵点间距离为轧辊周长,在此处出口的两疵点间带钢体积为()⋅-⋅kr a 11600宽度(),%20=r 其中而在冷轧机出口处两疵点间带钢的体积为()⋅-⋅41r a L k 宽度.因宽度相等,且无损耗,由体积相等得()=-⋅kr a 11600()41r a L k -⋅ (),%20=r即.8.016004-⋅=k k L由此得(),20003mm L =(),25002mm L = ()mm L 31251=填表如下 轧锟序号k1 2 3 4 疵点间距k L (单位:mm )3125250020001600解法二:第3对轧辊出口处疵点间距为轧辊周长,在此处出口的两疵点间带钢体积与冷轧机出口处两疵点间带钢体积相等,因宽度不变,有(),2.0116003-⋅=L所以().20008.016003mm L == 同理(),25008.032mm LL ==().31258.021mm LL ==填表如下 轧锟序号k1 2 3 4 疵点间距k L (单位:mm )312525002000160023.本小题主要考查函数的基本概念、等比数列、数列极限的基础知识,考查归纳、推理和综合的能力.Ⅰ.解:依题意()00=f ,又由()11=x f ,当10≤≤y 时,函数()x f y =的图像是斜率为10=b 的线段,故由()()10011=--x f x f得.11=x又由()22=x f ,当21≤≤y 时,函数()x f y =的图像是斜率为b 的线段,故由()()b x x x f x f =--1212,即b x x 112=-得.112bx +=记.00=x 由函数()x f y =图像中第n 段线段的斜率为1-n b ,故得()().111---=--n n n n n b x x x f x f 又()()1,1-==-n x f n x f n n ; 所以 .2,1,111=⎪⎭⎫ ⎝⎛=---n b x x n n n由此知数列{}1--n n x x 为等比数列,其首项为1,公比为.1b因,1≠b 得(),111111111-⎪⎭⎫ ⎝⎛-=+++=-=--=-∑b b b b b x x x n n nk k k n即.111-⎪⎭⎫⎝⎛-=-b b b x n nⅡ. 解:当10≤≤y ,从Ⅰ可知,x y =当10≤≤x 时,().x x f = 当1+≤≤n y n 时,即当1+≤≤n n x x x 时,由Ⅰ可知()()().3,2,1,1 =≤≤-+=+n x x x x x b n x f n n n n为求函数()x f 的定义域,须对() ,3,2,1111=-⎪⎭⎫ ⎝⎛-=-n b b b x n n 进行讨论.当1>b 时,111limlim 1-=-⎪⎭⎫ ⎝⎛-=-∞→∞→b bb b b x n n n n ; 当10<<b 时,n x n ,∞→也趋向于无穷大. 综上,当1>b 时,()x f y =的定义域为⎪⎭⎫⎢⎣⎡-1,0b b ;当10<<b 时,()x f y =的定义域为[)+∞,0. Ⅲ. 证法一:首先证明当1>b ,11-<<b bx 时,恒有()x x f >成立. 用数学归纳法证明:(ⅰ)由Ⅱ知当1=n 时,在(]2,1x 上, ()(),11-+==x b x f y 所以()()()011>--=-b x x x f 成立(ⅱ)假设k n =时在(]1,+k k x x 上恒有()x x f >成立. 可得 (),111++>+=k k x k x f在(]21,++k k x x 上,()().111++-++=k k x x b k x f所以 ()()x x x b k x x f k k --++=-++111()()()011111>-++--=+++k k k x k x x b 也成立.由(ⅰ)与(ⅱ)知,对所有自然数n 在(]1,+n n x x 上都有()x x f >成立. 即 11-<<b bx 时,恒有()x x f >. 其次,当1<b ,仿上述证明,可知当1>x 时,恒有()x x f <成立. 故函数()x f y =的图像与x y =的图像没有横坐标大于1的交点. 证法二:首先证明当1>b ,11-<<b bx 时,恒有()x x f >成立. 对任意的,1,1⎪⎭⎫ ⎝⎛-∈b b x 存在n x ,使1+≤<n n x x x ,此时有 ()()()(),10≥->-=-n x x x x b x f x f n n n所以()().n n x x f x x f ->- 又(),1111n n n x bb n x f =+++>=- 所以()0>-n n x x f ,所以()()0>->-n n x x f x x f , 即有()x x f >成立.其次,当1<b ,仿上述证明,可知当1>x 时,恒有()x x f <成立. 故函数()x f 的图像与x y =的图像没有横坐标大于1的交点.24. 本小题主要考查曲线与方程,直线和圆锥曲线等基础知识,以及求动点轨迹的基本技能和综合运用数学知识解决问题的能力.解法一:依题意,记()(),,1R ∈-b b B 则直线OA 和OB 的方程分别为0=y 和.bx y -=设点()y x C ,,则有a x <≤0,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得.12bbx y y ++=①依题设,点C 在直线AB 上,故有().1a x aby -+-= 由0≠-a x ,得().1ax y a b -+-= ②将②式代入①式得()()(),11122222⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡-++a x xy a y a x y a y 整理得()()[].0121222=++--y a ax x a y 若0≠y ,则()()()a x y a ax x a <<=++--0012122;若0=y ,则π=∠=AOB b ,0,点C 的坐标为(0,0),满足上式. 综上得点C 的轨迹方程为()()()a x y a ax x a <≤=++--0012122(ⅰ)当1=a 时,轨迹方程化为().102<≤=x x y ③此时,方程③表示抛物线弧段; (ⅱ)当1≠a 时,轨迹方程化为()a x a a y a a a a x <≤=-+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--0111122222④ 所以,当10<<a 时,方程④表示椭圆弧段; 当1>a 时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x 轴,E 是垂足. (ⅰ)当| BD |≠0时,设点C (x ,y ),则.0,0≠<<y a x 由CE ∥BD 得().1a xa y EADA CE BD +-=⋅=因为∠COA =∠COB=∠COD -∠BOD =π-∠COA -∠BOD ,所以2∠COA =π-∠BOD 所以(),1222COACOACOA ∠-∠=∠tg tg tg ()BOD BOD ∠-=∠-tg tg π因为,xy COA =∠tg().1a xa y ODBD BOD +-==∠tg所以(),11222a x a y xy x y+--=-⋅整理得()()().0012122a x y a ax x a <<=++--(ⅱ)当| BD | = 0时,∠BOA = π,则点C 的坐标为(0,0),满足上式. 综合(ⅰ),(ⅱ),得点C 的轨迹方程为()()().0012122a x y a ax x a <≤=++--以下同解法一.。

考研真题【【数学三】试题版--1989-2019】数学三考研真题(2000-2017打印版)

考研真题【【数学三】试题版--1989-2019】数学三考研真题(2000-2017打印版)

2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001 年全国硕士研究生入学统一考试数学三试题一、填空题(1) 设生产函数为Q AL K αβ=, 其中Q 是产出量, L 是劳动投入量, K 是资本投入量,而A , α, β均为大于零的参数,则当Q =1时K 关于L 的弹性为(2) 某公司每年的工资总额比上一年增加20%的基础上再追加2 百万.若以t W 表示第t 年的工资总额(单位:百万元),则t W 满足的差分方程是___(3) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且秩(A )=3,则k = (4) 设随机变量X ,Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不等式{}-6P X Y ≥≤ .(5) 设总体X 服从正态分布2(0,0.2),N 而1215,,X X X 是来自总体X 的简单随机样本,则随机变量()221102211152X X Y X X ++=++服从___分布,参数为_______ 二、选择题(1) 设函数f (x )的导数在x =a 处连续,又'()lim1,x af x x a→=--则( ) (A) x = a 是f (x )的极小值点. (B) x = a 是f (x )的极大值点. (C) (a , f (a ))是曲线y = f (x )的拐点.(D) x =a 不是f (x )的极值点, (a , f (a ))也不是曲线y =f (x )的拐点.(2) 设函数0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则g (x )在区间(0,2) 内( )(A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 设A 是n 阶矩阵,α是n 维列向量.若秩0TA αα⎛⎫=⎪⎝⎭秩(A),则线性方程组( )(A)AX =α必有无穷多解 ()B AX =α 必有惟一解.()C 00TA X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭仅有零解 ()D 00TAX y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭必有非零解.(5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于( )(A) -1 (B) 0 (C)12(D) 1三 、(本题满分5 分)设u = f (x ,y ,z )有连续的一阶偏导数,又函数y =y (x )及z =z (x )分别由下列两式确定:2xy e xy -=和0sin ,x zxt e dt t -=⎰求dudx四 、(本题满分6 分)已知f (x )在(−∞,+∞)内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=--- 求c的值.五 、(本题满分6 分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线y =x , y = −1及x =1围成的平面区域六、(本题满分7 分)已知抛物线2y px qx =+(其中p <0,q >0)在第一象限与直线x +y =5相切,且此抛物线与x 轴所围成的平面图形的面积为S.(1) 问p 和q 为何值时,S 达到最大? (2)求出此最大值.七、(本题满分6 分)设f (x )在区间[0,1]上连续,在(0,1)内可导,且满足1130(1)(),(1).x f k xe f x dx k -=>⎰证明:存在ξ∈(0,1), 使得1'() 2(1)().f f ξξξ-=-八、(本题满分7 分)已知()n f x 满足'1()()n x n n f x f x x e -=+(n 为正整数)且(1),n ef n=求函数项级数 1()ni fx ∞=∑之和.九、(本题满分9 分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX =β有解但不唯一,试求: (1) a 的值;(2) 正交矩阵Q,使T Q AQ 为对角矩阵.十、(本题满分8 分)设A 为n 阶实对称矩阵,秩(A)=n ,ij A 是()ijn nA a ⨯=中元素ij a 的代数余子式(i ,j=1,2,…,n ),二次型1211(,,).n nij n i j i j A f x x x x x A===∑∑(1) 记12(,,),n A x x x =把1211(,,).nnij n i j i j A f x x x x x A===∑∑写成矩阵形式,并证明二次型()f X 的矩阵为1A -;(2) 二次型()T g X X AX =与()f X 的规范形是否相同?说明理由.十一、(本题满分8 分)生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x) 是标准正态分布函数).十二、(本题满分8 分)设随机变量X 和Y 对联和分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,p u试求随机变量U={X−Y} 的概率密度().2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则a =.(4) 设随机变量X 和Y 的联合概率分布为X 和Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若 而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=.(B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑的收敛半径分别为3与13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( )(A) 5 (B)13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TPα-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布 三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y z xe ye ze -=所确定,求du .五、(本题满分6分)设2(sin ),sin x f x x =求()x dx .六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵.假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若 试求:(1)X 和Y 的联合概率分布;(2)()D X Y +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则的取值范围是_____.(2)已知曲线与x 轴相切,则可以通过a 表示为________.(3)设a>0,而D 表示全平面,则=_______.(4)设n 维向量;E 为n 阶单位矩阵,矩阵 , , 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,为来自总体X 的简单随机样本,则当时,依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数 (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0. (C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是(A) 在处的导数等于零. (B )在处的导数大于零. (C) 在处的导数小于零. (D) 在处的导数不存在. [ ]λb x a x y +-=2332b =2b ,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==⎰⎰-=Ddxdy x y g x f I )()(0,),0,,0,(<=a a a T αT E A αα-=T aE B αα1+=4.0-=X Z n X X X ,,,21 ∞→n ∑==ni i n X n Y 121)0(f 'xx f x g )()(=),(00y x ),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =(3)设,,,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. [ ](4)设三阶矩阵,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b 0.(C) a b 且a+2b=0. (D) a b 且a+2b 0. [ ] (5)设均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件(A) 相互独立. (B) 相互独立. (C) 两两独立. (D) 两两独立. [ ] 三、(本题满分8分) 设 2nn n a a p +=2nn n a a q -=,2,1=n ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ∑∞=1n n a ∑∞=1n n p ∑∞=1n n q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ≠≠≠≠s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα s ααα,,,21 s ααα,,,21 1A 2A 3A 4A 321,,A A A 432,,A A A 321,,A A A 432,,A A A ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求五、(本题满分8分) 计算二重积分其中积分区域D=六、(本题满分9分)求幂级数的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,,且f(0)=0, (1) 求F(x)所满足的一阶微分方程;(2) 求出F(x)的表达式.]1,21[12222=∂∂+∂∂vfu f )](21,[),(22y x xy f y x g -=.2222yg x g ∂∂+∂∂.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π}.),{(22π≤+y x y x ∑∞=<-+12)1(2)1(1n nnx n x ),(+∞-∞)()(x g x f =')()(x f x g ='.2)()(x e x g x f =+八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使九、(本题满分13分) 已知齐次线性方程组其中 试讨论和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分) 设二次型,中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.)3,0(∈ξ.0)(='ξf ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a .01≠∑=ni i a n a a a ,,,21 )0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T十一、(本题满分13分) 设随机变量X 的概率密度为F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f ⎪⎪⎭⎫ ⎝⎛7.03.021~X2004年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则. (3) 设,则.(4) 二次型的秩为 . (5) 设随机变量服从参数为的指数分布, 则_______.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).[ ](8) 设f (x )在(-∞ , +∞)内有定义,且, ,则(A) x = 0必是g (x )的第一类间断点.(B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关.[ ]5)(cos sin lim 0=--→b x a e xx x 2f u v∂=∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 212(1)f x dx -=⎰213232221321)()()(),,(x x x x x x x x x f ++-++=X λ=>}{DX X P X ),(21σμN Y ),(22σμN 1,,21n X X X 2,,21n Y Y Y X Y 12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑2)2)(1()2sin(||)(---=x x x x x x f a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g(9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点. (D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ ](10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3).(C) (3) (4).(D) (1) (4).[ ](11) 设在[a , b]上连续,且,则下列结论中错误的是 (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ). (C) 至少存在一点,使得. (D) 至少存在一点,使得= 0.[ D ](12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, . (C) 当时, . (D) 当时, . [ ](13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系 (A) 不存在. (B) 仅含一个非零解向量.∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u 1lim 1>+∞→nn n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f ),(0b a x ∈)(0x f n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于 (A) . (B) . (C) . (D) . [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求.(16) (本题满分8分) 求,其中D 是由圆和所围成的平面区域(如图).(17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足 ,x ∈ [a , b ),.证明:.X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1)cos sin 1(lim 2220xxx x -→⎰⎰++Dd y y x σ)(22422=+y x 1)1(22=++y x ⎰⎰≥xaxadt t g dt t f )()(⎰⎰=babadt t g dt t f )()(⎰⎰≤babadx x xg dx x xf )()(设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性(> 0); (II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.(20)(本题满分13分)设, , , , 试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式.d E d E )1(d E Q dPdR-=d E )(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x T α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=T β)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,ααα设阶矩阵. (Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵.(22) (本题满分13分)设,为两个随机事件,且, , , 令 求(Ⅰ) 二维随机变量的概率分布; (Ⅱ) 与的相关系数 ; (Ⅲ) 的概率分布.n ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A A P AP P 1-A B 41)(=A P 31)|(=AB P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本,(Ⅰ) 当时, 求未知参数的矩估计量; (Ⅱ) 当时, 求未知参数的最大似然估计量; (Ⅲ) 当时, 求未知参数的最大似然估计量.X ⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(1,0>>βαn X X X ,,,21 X 1=αβ1=αβ2=βα2005年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限= . (2) 微分方程满足初始条件的特解为______. (3)设二元函数,则________.(4)设行向量组,,,线性相关,且,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则=______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设,,,其中,则(A) . (B ).(C) . (D) . [ ]12sinlim 2+∞→x xx x 0=+'y y x 2)1(=y )1ln()1(y x xe z y x +++=+=)0,1(dz)1,1,1,2(),,1,2(a a ),1,2,3(a )1,2,3,4(1≠a X ,,2,1 }2{=Y P }0{=X }1{=+Y X a x x x x f -+-=1292)(23σd y x I D ⎰⎰+=221cos σd y x I D⎰⎰+=)cos(222σd y x I D⎰⎰+=2223)cos(}1),{(22≤+=y x y x D 123I I I >>321I I I >>312I I I >>213I I I >>(9)设若发散,收敛,则下列结论正确的是(A) 收敛,发散 . (B ) 收敛,发散.(C) 收敛. (D) 收敛. [ ](10)设,下列命题中正确的是(A) f(0)是极大值,是极小值. (B ) f(0)是极小值,是极大值.(C ) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值.[ ](11)以下四个命题中,正确的是(A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B )若在(0,1)内连续,则f(x)在(0,1)内有界. (C )若在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若在(0,1)内有界,则在(0,1)内有界. [ ] (12)设矩阵A= 满足,其中是A 的伴随矩阵,为A 的转置矩阵. 若为三个相等的正数,则为(A). (B) 3. (C) . (D) . [ ](13)设是矩阵A 的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . [ ](14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是(A) (B) (C)(D) [ ] ,,2,1,0 =>n a n ∑∞=1n n a ∑∞=--11)1(n n n a ∑∞=-112n n a ∑∞=12n n a ∑∞=12n n a ∑∞=-112n n a )(1212∑∞=-+n n n a a )(1212∑∞=--n n n a a x x x x f cos sin )(+=)2(πf )2(πf )2(πf )2(πf )(x f ')(x f )(x f ')(x f )(x f '33)(⨯ij a T A A =**A T A 131211,,a a a 11a 3331321,λλ21,αα1α)(21αα+A 01=λ02=λ01≠λ02≠λ),(2σμN 2,σμ)(20cm x =)(1cm s =μ)).16(4120),16(4120(05.005.0t t +-)).16(4120),16(4120(1.01.0t t +-)).15(4120),15(4120(05.005.0t t +-)).15(4120),15(4120(1.01.0t t +-三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求(16)(本题满分8分)设f(u)具有二阶连续导数,且,求(17)(本题满分9分)计算二重积分,其中.(18)(本题满分9分) 求幂级数在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,,.证明:对任何a ,有).111(lim 0xe x x x --+-→)()(),(y x yf x y f y xg +=.222222yg y x g x ∂∂-∂∂σd y x D⎰⎰-+122}10,10),{(≤≤≤≤=y x y x D ∑∞=-+12)1121(n n x n 0)(≥'x f 0)(≥'x g ]1,0[∈⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i )和(ii ) 同解,求a,b, c 的值.(21)(本题满分13分)设为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为矩阵.(I) 计算,其中; (II )利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.(22)(本题满分13分) 设二维随机变量(X,Y)的概率密度为求:(I ) (X,Y)的边缘概率密度; (II ) 的概率密度⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x ⎥⎦⎤⎢⎣⎡=B CC AD Tn m ⨯DP P T⎥⎦⎤⎢⎣⎡-=-n mE o C A EP 1C A C B T 1--.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=)(),(y f x f Y X Y X Z -=2).(z f Z考研资料( III )(23)(本题满分13分)设为来自总体N(0,)的简单随机样本,为样本均值,记求:(I ) 的方差; (II )与的协方差(III )若是的无偏估计量,求常数c.}.2121{≤≤X Y P )2(,,,21>n X X X n 2σX .,,2,1,n i X X Y i i =-=i Y n i DY i ,,2,1, =1Y n Y ).,(1n Y Y Cov 21)(n Y Y c +2σ2006年全国硕士研究生入学统一考试数学三试题一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)(2)设函数在的某邻域内可导,且,,则(3)设函数可微,且,则在点(1,2)处的全微分(4)设矩阵,为2阶单位矩阵,矩阵满足,则 .(5)设随机变量相互独立,且均服从区间上的均匀分布,则_______.(6)设总体的概率密度为为总体的简单随机样本,其样本方差为,则二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . [ ] (8)设函数在处连续,且,则(A) 存在 (B) 存在 (C) 存在 (D)存在 [ ] (9)若级数收敛,则级数()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭()f x 2x =()()e f x f x '=()21f =()2____.f '''=()f u ()102f '=()224z f x y =-()1,2d _____.z=2112A ⎛⎫= ⎪-⎝⎭E B 2BA B E =+=B X Y 与[]0,3{}{}max ,1P X Y ≤=X ()()121,,,,2xn f x e x X X X -=-∞<<+∞X 2S 2____.ES =()y f x =()0,()0f x f x '''>>x ∆x 0x d y y ∆与()f x 0x 0x ∆>0d y y <<∆0d y y <∆<d 0y y ∆<<d 0y y <∆<()f x 0x =()22lim1h f h h →=()()000f f -'=且()()010f f -'=且()()000f f +'=且()()010f f +'=且1n n a ∞=∑(A) 收敛 . (B )收敛.(C) 收敛. (D) 收敛. [ ] (10)设非齐次线性微分方程有两个不同的解为任意常数,则该方程的通解是(A). (B). (C). (D) [ ](11)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则.(D) 若,则. [ ] (12)设均为维列向量,为矩阵,下列选项正确的是(A) 若线性相关,则线性相关.(B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关.(D) 若线性无关,则线性无关. [ ](13)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(A). (B).(C). (D). [ ](14)设随机变量服从正态分布,服从正态分布,且则必有1n n a ∞=∑1(1)n n n a ∞=-∑11n n n a a ∞+=∑112n n n a a ∞+=+∑()()y P x y Q x '+=12(),(),y x y x C []12()()C y x y x -[]112()()()y x C y x y x +-[]12()()C y x y x +[]112()()()y x C y x y x ++(,)(,)f x y x y ϕ与(,)0y x y ϕ'≠00(,)x y (,)f x y (,)0x y ϕ=00(,)0x f x y '=00(,)0y f x y '=00(,)0x f x y '=00(,)0y f x y '≠00(,)0x f x y '≠00(,)0y f x y '=00(,)0x f x y '≠00(,)0y f x y '≠12,,,s αααn A m n ⨯12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A αααA A B B 1-C 110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭1C P AP -=1C PAP -=T C P AP =T C PAP =X 211(,)N μσY 222(,)N μσ{}{}1211P X P Y μμ-<>-<(A) (B)(C) (D) [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设,求 (Ⅰ) ; (Ⅱ) .(16)(本题满分7分) 计算二重积分,其中是由直线所围成的平面区域.(17)(本题满分10分) 证明:当时,.(18)(本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于(常数).(Ⅰ) 求的方程;(Ⅱ) 当与直线所围成平面图形的面积为时,确定的值. 12σσ<12σσ>12μμ<12μμ>()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+()()lim ,y g x f x y →+∞=()0lim x g x +→d Dx y D ,1,0y x y x ===0a b π<<<sin 2cos sin 2cos b b b b a a a a ππ++>++xOy L ()1,0M ()(),0P x y x ≠OP ax >0a L L y ax =83a求幂级数的收敛域及和函数.(20)(本题满分13分)设4维向量组,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解. (Ⅰ)求的特征值与特征向量;(Ⅱ)求正交矩阵和对角矩阵,使得;(Ⅲ)求及,其中为3阶单位矩阵.()()1211121n n n x n n -+∞=--∑()s x ()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+a 1234,,,αααα1234,,,ααααA ()()TT121,2,1,0,1,1αα=--=-0Ax =A Q ΛT Q AQ =ΛA 632A E ⎛⎫- ⎪⎝⎭E设随机变量的概率密度为,令为二维随机变量的分布函数. (Ⅰ)求的概率密度; (Ⅱ);(Ⅲ).(23)(本题满分13分)设总体的概率密度为其中是未知参数,为来自总体的简单随机样本,记为样本值中小于1的个数. (Ⅰ)求的矩估计; (Ⅱ)求的最大似然估计X ()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他()2,,Y X F x y =(,)X Y Y ()Y f y Cov(,)X Y 1,42F ⎛⎫- ⎪⎝⎭X (),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,θ()01θ<<12n ,...,X X X X N 12,...,n x x x θθ2007年全国硕士研究生入学统一考试数学三试题一. 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内) (1) 当等价的无穷小量是( ).(2)设函数在处连续,下列命题错误的是: ( ).若存在,则 若存在,则.若存在,则存在 若存在,则存在(3) 如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:( ).(4) 设函数连续,则二次积分等于( )(5) 设某商品的需求函数为,其中,分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ) 10 20 30 40 (6) 曲线渐近线的条数为( ) 0 1 2 3(7)设向量组线性无关,则下列向量组线相关的是( )(A ) (B) (C ) (D)0x +→A 1-.ln(1B +1C -.1D -()f x 0x =A 0()limx f x x →(0)0f =.B 0()()lim x f x f x x →+-(0)0f =.C 0()limx f x x →'(0)f .D 0()()lim x f x f x x→--'(0)f ()y f x =[][]3,2,2,3--[][]2,0,0,2-0()(),xF x f t dt =⎰.A (3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(,)f x y 1sin 2(,)xdx f x y dy ππ⎰⎰.A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dx ππ+⎰⎰.D 1arcsin 02(,)ydy f x y dx ππ-⎰⎰1602Q ρ=-Q ρ.A .B .C .D 1ln(1),x y e x=++.A .B .C .D 12αα-2131,,αααα--21αα-2331,,αααα++1223312,2,2αααααα---1223312,2,2αααααα+++(8)设矩阵,则A 与B ( )(A )合同,且相似 (B) 合同,但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(10) 设随机变量服从二维正态分布,且与不相关,分别表示X, Y 的概率密度,则在条件下,的条件概率密度为( ) (A ) (B) (C) (D)二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11).(12)设函数,则. (13)设是二元可微函数,则________. (14)微分方程满足的特解为__________.(15)设距阵则的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为________. 三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (17)(本题满分10分)211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(,)X Y X Y (),()x y f x f y Y y =X ()X Y x y f ()X f x ()y f y ()()x y f x f y ()()x y f x f y 3231lim (sin cos )________2x x x x x x x →∞+++=+123y x =+()(0)_________n y =(,)f u v (,),y x z f x y =z zy x y∂∂-=∂∂31()2dy y y dx x x=-11x y ==01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A 12设函数由方程确定,试判断曲线在点(1,1)附近的凹凸性.(18)(本题满分11分) 设二元函数计算二重积分其中(19)(本题满分11分)设函数,在上内二阶可导且存在相等的最大值,又=,=,证明:(Ⅰ)存在使得; (Ⅱ)存在使得 (20)(本题满分10分)将函数展开成的幂级数,并指出其收敛区间.(22)(本题满分11分)设3阶实对称矩阵A 的特征值是A 的属于的一个特征向量.记,其中E 为3阶单位矩阵.(Ⅰ)验证是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量的概率密度为()y y x =ln 0y y x y -+=()y y x=2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤(,).Df x y d σ⎰⎰{}(,)2D x y x y =+≤()f x ()g x [],a b ()f a ()g a ()f b ()g b (,),a b η∈()()f g ηη=(,),a b ξ∈''()''().f g ξξ=21()34f x x x =--1x -1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解12311,2,2,(1,1,1)T λλλα===-=-1λ534B A A E =-+1α(,)X Y(Ⅰ)求;(Ⅱ)求的概率密度. (24)(本题满分11分)设总体的概率密度为.其中参数未知,是来自总体的简单随机样本,是样本均值.(Ⅰ)求参数的矩估计量;(Ⅱ)判断是否为的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他{}2P X Y >Z X Y =+()Z f z X 1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他(01)θθ<<12,,...n X X X X X θθ24X 2θ(1)设函数在区间上连续,则是函数的( )跳跃间断点. 可去间断点.无穷间断点.振荡间断点.(2)曲线段方程为,函数在区间上有连续的导数,则定积分等于( )曲边梯形面积. 梯形面积.曲边三角形面积.三角形面积.(3)已知(A ),都存在 (B )不存在,存在 (C )不存在,不存在 (D ),都不存在 (4)设函数连续,若,其中为图中阴影部分,则( ) (A ) (B)(C ) (D ) (5)设为阶非0矩阵为阶单位矩阵若,则( )不可逆,不可逆.不可逆,可逆.可逆,可逆.可逆,不可逆.(6)设则在实数域上域与合同矩阵为( ).... ()f x [1,1]-0x =0()()xf t dtg x x=⎰()A ()B ()C ()D ()y f x =()f x [0,]a 0()at af x dx ⎰()A ABCD ()B ABCD ()C ACD ()D ACD (,)f x y =(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f '(0,0)x f '(0,0)y f 'f 22(,)uvD f u v =uv D Fu∂=∂2()vf u 2()v f u u ()vf u ()vf u uA E 30A =()A E A -E A +()B E A -E A +()C E A -E A +()D E A -E A +1221A ⎛⎫= ⎪⎝⎭A ()A 2112-⎛⎫⎪-⎝⎭()B 2112-⎛⎫⎪-⎝⎭()C 2112⎛⎫⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭(7)随机变量独立同分布且分布函数为,则分布函数为( )....(8)随机变量,且相关系数,则( ). . ..二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数在内连续,则 .(10)设,则.(11)设,则.(12)微分方程满足条件的解.(13)设3阶矩阵的特征值为1,2,2,E 为3阶单位矩阵,则. (14)设随机变量服从参数为1的泊松分布,则. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限. (16) (本题满分10分)设是由方程所确定的函数,其中具有2阶导数且时.(1)求 (2)记,求. ,X Y X ()F x {}max ,Z X Y =()A ()2F x ()B ()()F x F y ()C ()211F x --⎡⎤⎣⎦()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦()~0,1X N ()~1,4Y N 1XY ρ=()A {}211P Y X =--=()B {}211P Y X =-=()C {}211P Y X =-+=()D {}211P Y X =+=21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩(,)-∞+∞c =341()1x x f x x x ++=+2()______f x dx =⎰22{(,)1}D x y x y =+≤2()Dx y dxdy -=⎰⎰ 0xy y '+=(1)1y =y = A 14_____A E --=X {}2P X EX == 201sin limlnx xx x→(,)z z x y =()22x y z x y z ϕ+-=++ϕ1ϕ'≠-dz ()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭u x ∂∂(17) (本题满分11分)计算其中.(18) (本题满分10分)设是周期为2的连续函数, (1)证明对任意实数,有;(2)证明是周期为2的周期函数.(19) (本题满分10分)设银行存款的年利率为,并依年复利计算,某基金会希望通过存款A 万元,实现第一年提取19万元,第二年提取28万元,…,第n 年提取(10+9n )万元,并能按此规律一直提取下去,问A 至少应为多少万元? (20) (本题满分12分)设矩阵,现矩阵满足方程,其中,,(1)求证; (2)为何值,方程组有唯一解; (3)为何值,方程组有无穷多解. (21)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足,证明(1)线性无关;(2)令,求. (22)(本题满分11分)设随机变量与相互独立,的概率分布为,的概率密度为,记max(,1),Dxy dxdy ⎰⎰{(,)02,02}D x y x y =≤≤≤≤()f x t ()()22t tf x dx f x dx +=⎰⎰()()()202x t t G x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰0.05r =2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭A AX B =()1,,Tn X x x =()1,0,,0B =()1n A n a =+a a A 12,a a A 1,1-3a 323Aa a a =+123,,a a a ()123,,P a a a =1P AP -X Y X {}()11,0,13P X i i ===-Y ()1010Y y f y ≤≤⎧=⎨⎩其它Z X Y =+(1)求;(2)求的概率密度. (23) (本题满分11分)是总体为的简单随机样本.记,,. (1)证 是的无偏估计量. (2)当时 ,求.2009年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上.102P Z X ⎧⎫≤=⎨⎬⎩⎭Z 12,,,n X X X 2(,)N μσ11ni i X X n ==∑2211()1n ii S X X n ==--∑221T X S n=-T 2μ0,1μσ==DT(1)函数的可去间断点的个数为(A)1.(B)2.(C)3.(D)无穷多个.(2)当时,与是等价无穷小,则(A),. (B ),. (C),. (D ),. (3)使不等式成立的的范围是 (A).(B). (C).(D).(4)设函数在区间上的图形为则函数的图形为(A)(B)3()sin x x f x xπ-=0x →()sin f x x ax =-2()ln(1)g x x bx =-1a =16b =-1a =16b =1a =-16b =-1a =-16b =1sin ln xtdt x t>⎰x (0,1)(1,)2π(,)2ππ(,)π+∞()y f x =[]1,3-()()0xF x f t dt =⎰(C)(D)(5)设均为2阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为 (A). (B). (C).(D). (6)设均为3阶矩阵,为的转置矩阵,且,若,则为(A).(B).(C).(D).(7)设事件与事件B 互不相容,则(A). (B).(C).(D).(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为,记为随机变量的分布函数,则函数的间断点个数为 ,A B *,A B *,A B ||2,||3A B ==O A B O ⎛⎫⎪⎝⎭**32O B A O ⎛⎫⎪⎝⎭**23O B AO ⎛⎫⎪⎝⎭**32O A BO ⎛⎫⎪⎝⎭**23O A BO ⎛⎫⎪⎝⎭,A P T P P 100010002TP AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭1231223(,,),(,,)P Q ααααααα==+T Q AQ 210110002⎛⎫⎪ ⎪ ⎪⎝⎭110120002⎛⎫⎪ ⎪ ⎪⎝⎭200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭100020002⎛⎫ ⎪ ⎪ ⎪⎝⎭A ()0P AB =()()()P AB P A P B =()1()P A P B =-()1P A B ⋃=X Y X (0,1)N Y 1{0}{1}2P Y P Y ====()z F Z Z XY =()z F Z(A) 0. (B)1. (C)2 . (D)3.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) .(10)设,则. (11)幂级数的收敛半径为 . (12)设某产品的需求函数为,其对应价格的弹性,则当需求量为10000件时,价格增加1元会使产品收益增加 元.(13)设,,若矩阵相似于,则 .(14)设,,…,为来自二项分布总体的简单随机样本,和分别为样本均值和样本方差,记统计量,则 .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数的极值. (16)(本题满分10 分) 计算不定积分 . (17)(本题满分10 分)计算二重积分,其中.(18)(本题满分11 分)(Ⅰ)证明拉格朗日中值定理,若函数在上连续,在上可导,则,得证.(Ⅱ)证明:若函数在处连续,在内可导,且,则存在,且. cos 0x x →=()y x z x e =+(1,0)zx ∂=∂21(1)n n nn e x n ∞=--∑()Q Q P =P 0.2p ξ=(1,1,1)T α=(1,0,)T k β=T αβ300000000⎛⎫⎪⎪ ⎪⎝⎭k =1X 2X n X (,)B n p X 2S 2T X S =-ET =()22(,)2ln f x y x y y y =++ln(1dx +⎰(0)x >()Dx y dxdy -⎰⎰22{(,)(1)(1)2,}D x y x y y x =-+-≤≥()f x [],a b (),a b (),a b ξ∈()'()()()f b f a f b a ξ-=-()f x 0x =()0,,(0)σσ>'0lim ()x f x A +→='(0)f +'(0)f A +=。

数学三考研真题(1989-1999年)

数学三考研真题(1989-1999年)

1989年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.) (1) 曲线2sin y x x =+在点122,ππ⎛⎫+ ⎪⎝⎭处的切线方程是__ _ .(2)幂级数nn ∞=的收敛域是__ _ . (3) 齐次线性方程组1231231230,0,0x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩ 只有零解,则λ应满足的条件是__ _ . (4) 设随机变量X 的分布函数为()00sin 0212,x ,F x A x,x ,,x ,ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩ 则A =__________,6P X π⎧⎫<=⎨⎬⎩⎭ .(5) 设随机变量X 的数学期望()E X μ=,方差2()D X σ=,则由切比雪夫(Chebyshev)不等式,有{3}P X μσ-≥≤__ _ .二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设()232x x f x ,=+-则当0x →时 ( )(A) ()f x 与x 是等价无穷小量 (B) ()f x 与x 是同阶但非等价无穷小量(C) ()f x 是比x 较高阶的无穷小量 (D) ()f x 是比x 较低阶的无穷小量 (2) 在下列等式中,正确的结果是 ( )(A) ()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C)()()df x dx f x dx=⎰ (D) ()()d f x dx f x =⎰ (3) 设A 为n 阶方阵且0A =,则( )(A) A 中必有两行(列)的元素对应成比例(B) A 中任意一行(列)向量是其余各行(列)向量的线性组合 (C) A 中必有一行(列)向量是其余各行(列)向量的线性组合 (D) A 中至少有一行(列)的元素全为0(4) 设A 和B 均为n n ⨯矩阵,则必有 ( )(A) A B A B +=+ (B)AB BA =(C) AB BA = (D) ()111A B A B ---+=+ (5) 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 ( )(A) “甲种产品滞销,乙种产品畅销” (B) “甲、乙两种产品均畅销” (C) “甲种产品滞销” (D) “甲种产品滞销或乙种产品畅销”三、计算题(本题满分15分,每小题5分)(1) 求极限11lim sin cos xx .x x →∞⎛⎫+ ⎪⎝⎭(2) 已知(,),,,z f u v u x y v xy ==+=且(,)f u v 的二阶偏导数都连续.求2zx y∂∂∂.(3) 求微分方程562x y y y e -'''++=的通解.四、(本题满分9分)设某厂家打算生产一批商品投放市场.已知该商品的需求函数为2()10x P P x e -==,且最大需求量为6,其中x 表示需求量,P 表示价格.(1) 求该商品的收益函数和边际收益函数.(2分)(2) 求使收益最大时的产量、最大收益和相应的价格.(4分) (3) 画出收益函数的图形.(3分)五、(本题满分9分)已知函数,01,()2,1 2.x x f x x x ≤≤⎧=⎨-≤≤⎩ 试计算下列各题:(1) 200();xS f x e dx -=⎰(4分) (2) 412(2);x S f x e dx -=-⎰(2分)(3) 222(2)(2,3,);n xn nS f x n e dx n +-=-=⎰(1分) (4) 0n n S S ∞==∑.(2分)六、(本题满分6分)假设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且()0f x '≤,记1()(),xa F x f t dt x a=-⎰ 证明在(,)a b 内,()0F x '≤.七、(本题满分5分)已知X AX B,=+其中010111101A ,⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦112053B ,-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求矩阵X .八、(本题满分6分)设123(1,1,1),(1,2,3),(1,3,)t ααα===.(1) 问当t 为何值时,向量组123,,ααα线性无关?(3分) (2) 问当t 为何值时,向量组123,,ααα线性相关?(1分)(3) 当向量组123,,ααα线性相关时,将3α表示为1α和2α的线性组合.(2分)九、(本题满分5分)设122212221A .-⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦(1)试求矩阵A 的特征值;(2分)(2)利用(1)小题的结果,求矩阵1E A -+的特征值,其中E 是三阶单位矩阵.(3分)十 、(本题满分7分)已知随机变量X 和Y 的联合密度为(),,,(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩ 00其它.试求:(1) {}P X Y <;(5分) (2) ()E XY .(2分)十一、(本题满分8分)设随机变量X 在[2,5]上服从均匀分布,现在对X 进行三次独立观测,试求至少有两次观测值大于3的概率.1990年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.) (1)极限n →∞=_________.(2) 设函数()f x 有连续的导函数,(0)0,(0)f f b '==,若函数()sin ,0,(),0f x a xx F x xA x +⎧≠⎪=⎨⎪=⎩在0x =处连续,则常数A =___________.(3) 曲线2y x =与直线2y x =+所围成的平面图形的面积为_________.(4) 若线性方程组121232343414,,,x x a x x a x x a x x a +=-⎧⎪+=⎪⎨+=-⎪⎪+=⎩有解,则常数1234,,,a a a a 应满足条件________.(5) 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为________.二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数sin ()tan x f x x x e =⋅⋅,则()f x 是 ( )(A) 偶函数 (B) 无界函数 (C) 周期函数 (D) 单调函数(2) 设函数()f x 对任意x 均满足等式(1)()f x af x +=,且有(0),f b '=其中,a b 为非零常数,则()(A) ()f x 在1x =处不可导 (B) ()f x 在1x =处可导,且(1)f a '=(C) ()f x 在1x =处可导,且(1)f b '= (D) ()f x 在1x =处可导,且(1)f ab '= (3) 向量组12,,,s ααα线性无关的充分条件是 ( )(A) 12,,,s ααα均不为零向量(B) 12,,,s ααα中任意两个向量的分量不成比例(C) 12,,,s ααα中任意一个向量均不能由其余1s -个向量线性表示(D) 12,,,s ααα中有一部分向量线性无关(4) 设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( )(A) ()()P A B P A += (B) ()()P AB P A =(C) ()()P B A P B = (D) ()()()P B A P B P A -=- (5) 设随机变量X 和Y 相互独立,其概率分布为则下列式子正确的是 ( )(A) X Y = (B) {}0P X Y ==(C) {}12P X Y ==(D) {}1P X Y ==三、计算题(本题满分20分,每小题5分.)(1) 求函数2ln ()21xe t I x dt t t =-+⎰在区间2[,]e e 上的最大值. (2) 计算二重积分2y Dxe dxdy -⎰⎰,其中D 是曲线24y x =和29y x =在第一象限所围成的区域.(3) 求级数21(3)nn x n ∞=-∑的收敛域. (4) 求微分方程sin cos (ln )x y y x x e -'+=的通解.四、(本题满分9分)某公司可通过电台及报纸两种形式做销售某种商品的广告,根据统计资料,销售收入R (万元)与电台广告费用1x (万元)及报纸广告费用2x (万元)之间的关系有如下经验公式:221212121514328210.R x x x x x x =++---(1) 在广告费用不限的情况下,求最优广告策略;(2) 若提供的广告费用为1.5万元,求相应的最优广告策略.五、(本题满分6分)设()f x 在闭区间[0,]c 上连续,其导数()f x '在开区间(0,)c 内存在且单调减少;(0)0f =,试应用拉格朗日中值定理证明不等式:()()()f a b f a f b +≤+,其中常数a b 、满足条件0a b a b c ≤≤≤+≤.六、(本题满分8分)已知线性方程组1234512345234512345,3230,226,54332,x x x x x a x x x x x x x x x b x x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩ (1) a b 、为何值时,方程组有解?(2) 方程组有解时,求出方程组的导出组的一个基础解系; (3) 方程组有解时,求出方程组的全部解.七、(本题满分5分)已知对于n 阶方阵A ,存在自然数k ,使得0k A =,试证明矩阵E A -可逆,并写出其逆矩阵的表达式(E 为n 阶单位阵).八、(本题满分6分)设A 是n 阶矩阵,1λ和2λ是A 的两个不同的特征值,12,X X 是分别属于1λ和2λ的特征向量.试证明12X X +不是A 的特征向量.九、(本题满分4分)从0,1,2,,9十个数字中任意选出三个不同数字,试求下列事件的概率:1A ={三个数字中不含0和5};2A ={三个数字中不含0或5}.十、(本题满分5分)一电子仪器由两个部件构成,以X 和Y 分别表示两个部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为:0.50.50.5(),0,0,(,)0,x y x y e e e x y F x y ---+⎧-+≥≥=⎨⎩1-若其他.(1) 问X 和Y 是否独立?(2) 求两个部件的寿命都超过100小时的概率α.十一、(本题满分7分) 某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率.[表中1991年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分15分,每小题3分.把答案填在题中横线上.) (1) 设sin ,xy z e =则dz = _______.(2) 设曲线()3f x x ax =+与()2g x bx c =+都通过点()10,,-且在点()10,-有公共切线,则a = _______,b = _______,c = _______.(3) 设()x f x xe =,则()()nf x 在点x = _______处取极小值 _______.(4) 设A 和B 为可逆矩阵,00A X B ⎛⎫=⎪⎝⎭为分块矩阵,则1X -= _______. (5) 设随机变量X 的分布函数为0,1,0.4,11,(){}0.8,13,1,3.x x F x P X x x x <-⎧⎪-≤<⎪=≤=⎨≤<⎪⎪≥⎩则X 的概率分布为 _______.二、选择题(本题满分15分,每小题3分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 下列各式中正确的是 ( )(A) 01lim 11x x x +→⎛⎫+= ⎪⎝⎭(B) 01lim 1xx e x +→⎛⎫+= ⎪⎝⎭ (C) 1lim 1xx e x →∞⎛⎫-=- ⎪⎝⎭ (D) 1lim 1xx e x -→∞⎛⎫+= ⎪⎝⎭(2) 设10(1,2,)n a n n≤≤=则下列级数中肯定收敛的是( )(A) 1nn a∞=∑ (B)1(1)nn n a ∞=-∑(C)1n ∞=∑21(1)n n n a ∞=-∑(3) 设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随矩阵*A 的特征根之一是( )(A) 1n A λ- (B) 1A λ- (C) A λ (D) nA λ (4) 设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ( )(A) A 与B 不相容 (B) A 与B 相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -=(5) 对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则 ( )(A) ()()()D XY D X D Y =⋅ (B) ()()()D X Y D X D Y +=+ (C) X 和Y 独立 (D) X 和Y 不独立三、(本题满分5分)求极限 120lim x xnxxx e e e n →⎛⎫+++⎪⎝⎭,其中n 是给定的自然数.四、(本题满分5分)计算二重积分DI ydxdy =⎰⎰,其中D 是由x 轴,y 1=所围成的区域,0,0a b >>.五、(本题满分5分)求微分方程22dyxyx y dx=+满足条件2x e y e ==的特解.六、(本题满分6分)假设曲线1L :()2101y x x =-≤≤、x 轴和y 轴所围区域被曲线2L :2y ax =分为面积相等的两部分,其中a 是大于零的常数,试确定a 的值.七、(本题满分8分)某厂家生产的一种产品同时在两个市场销售,售价分别为1p 和2p ;销售量分别为1q 和2q ;需求函数分别为112402q .p =-和2210005q .p =-,总成本函数为()123540C q q .=++试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大利润为多少?八、(本题满分6分)试证明函数1()(1)x f x x=+在区间(0,)+∞内单调增加.九、(本题满分7分)设有三维列向量12321110111111,,,,λααλαβλλλ+⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==+==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦问λ取何值时,(1) β可由123,,ααα线性表示,且表达式唯一? (2) β可由123,,ααα线性表示,且表达式不唯一? (3) β不能由123,,ααα线性表示?十、(本题满分6分)考虑二次型22212312132344224f x x x x x x x x x λ=+++-+.问λ取何值时,f 为正定二次型.十一、(本题满分6分)试证明n 维列向量组12,,,n ααα线性无关的充分必要条件是1112121222120T T T nT T T nT T T n n n nD αααααααααααααααααα=≠,其中T i α表示列向量i α的转置,1,2,,i n =.十二、(本题满分5分)一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数.求X 的概率分布.十三、(本题满分6分)假设随机变量X 和Y 在圆域222x y r +≤上服从联合均匀分布. (1) 求X 和Y 的相关系数ρ;(2) 问X 和Y 是否独立? 十四、(本题满分5分) 设总体X 的概率密度为1,0,(;)0,0,aa x ax e x p x x λλλ--⎧>⎪=⎨≤⎪⎩其中0λ>是未知参数,0a >是已知常数.试根据来自总体X 的简单随机样本12,,,nX X X ,求λ的最大似然估计量ˆλ.1992年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 设商品的需求函数为1005Q P =-,其中,Q P分别表示为需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是_________.(2) 级数21(2)4nnn x n ∞=-∑的收敛域为_________. (3) 交换积分次序1(,)dy f x y dx =⎰_________.(4) 设A 为m 阶方阵,B 为n 阶方阵,且0,,0A A a B b C B ⎛⎫===⎪⎝⎭,则C =________.(5) 将,,,,,,C C E E I N S 等七个字母随机地排成一行,那么,恰好排成英文单词SCIENCE 的概率为__________.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(1) 设2()()xax F x f t dt x a =-⎰,其中()f x 为连续函数,则lim ()x a F x →等于 ( )(A) 2a (B) 2()a f a (C) 0 (D) 不存在(2) 当0x →时,下面四个无穷小量中,哪一个是比其他三个更高阶的无穷小量? ( )(A) 2x (B) 1cos x -1 (D) tan x x -(3) 设A 为m n ⨯矩阵,齐次线性方程组0Ax =仅有零解的充分条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关 (D) A 的行向量线性相关(4) 设当事件A 与B 同时发生时,事件C 必发生,则 ( )(A) ()()()1P C P A P B ≤+- (B) ()()()1P C P A P B ≥+- (C) ()()P C P AB = (D) ()()P C P A B = (5) 设n 个随机变量12,,,n X X X 独立同分布,2111(),,ni i D X X X n σ===∑2211()1ni i S X X n ==--∑,则 ( )(A) S 是σ的无偏估计量 (B) S 是σ的最大似然估计量 (C) S 是σ的相合估计量(即一致估计量) (D) S 与X 相互独立三、(本题满分5分)设函数ln cos(1),1,1sin ()21, 1.x x x f x x π-⎧≠⎪⎪-=⎨⎪=⎪⎩问函数()f x 在1x =处是否连续?若不连续,修改函数在1x =处的定义使之连续.四、(本题满分5分)计算arccot .xxe I dx e=⎰五、(本题满分5分)设sin()(,)xz xy x yϕ=+,求2z x y ∂∂∂,其中(,)u v ϕ有二阶偏导数.六、(本题满分5分)求连续函数()f x ,使它满足20()2()xf x f t dt x +=⎰.七、(本题满分6分)求证:当1x ≥时,212arctan arccos 214x x x π-=+.八、(本题满分9分)设曲线方程(0)x y e x -=≥.(1) 把曲线x y e -=,x 轴,y 轴和直线(0)x ξξ=>所围成平面图形绕x 轴旋转一周,得一旋转体,求此旋转体体积()V ξ;求满足1()lim ()2V a V ξξ→+∞=的a . (2) 在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.九、(本题满分7分)设矩阵A 与B 相似,其中20010022,02031100A x B y --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.(1) 求x 和y 的值.(2) 求可逆矩阵P ,使得1P AP B -=.十、(本题满分6分)已知三阶矩阵0B ≠,且B 的每一个列向量都是以下方程组的解:123123123220,20,30.x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ (1) 求λ的值; (2) 证明0B =.十一、(本题满分6分)设A B 、分别为m n 、阶正定矩阵,试判定分块矩阵00A C B ⎛⎫=⎪⎝⎭是否是正定矩阵. 十二、(本题满分7分)假设测量的随机误差2(0,10)X N ,试求100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松分布求出α的近似值(要求小数点后取两位有效数字). [十三、(本题满分5分)一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30.假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望EX 和方差DX .十四、(本题满分4分)设二维随机变量(,)X Y 的概率密度为,0,(,)0,y e x y f x y -⎧<<=⎨⎩其他,(1) 求随机变量X 的密度()X f x ; (2) 求概率{1}P X Y +≤.1993年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 2352limsin 53x x x x→∞+=+ .(2) 已知()232,arctan ,32x y f f x x x -⎛⎫'==⎪+⎝⎭则0x dy dx == .(3) 级数0(ln 3)2nnn ∞=∑的和为 . (4) 设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为 .(5) 设总体X 的方差为1,根据来自X 的容量为100的简单随机样本,测得样本均值为5,则X 的数学期望的置信度近似等于0.95的置信区间为 .二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(1) 设()f x =21,0,0,0,x xx ≠⎪=⎩则()f x 在点0x =处 ( )(A) 极限不存在 (B) 极限存在但不连续 (C) 连续但不可导 (D) 可导 (2) 设()f x 为连续函数,且()()ln 1,xxF x f t dt =⎰则()F x '等于( )(A)()2111ln f x f x x x ⎛⎫+ ⎪⎝⎭ (B) ()11ln f x f x x ⎛⎫+ ⎪⎝⎭ (C) ()2111ln f x f x x x ⎛⎫- ⎪⎝⎭ (D) ()1ln f x f x ⎛⎫- ⎪⎝⎭(3) n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的( )(A) 充分必要条件 (B) 充分而非必要条件 (C) 必要而非充分条件 (D) 既非充分也非必要条件 (4) 假设事件A 和B 满足()1P B A =,则 ( )(A) A 是必然事件 (B) ()0P B A =.(C) A B ⊃ (D) A B ⊂(5) 设随机变量X 的密度函数为()x ϕ,且()()x x ϕϕ-=.()F x 是X 的分布函数,则对任意实数a ,有 ( )(A) 0()1()aF a x dx ϕ-=-⎰. (B) 01()()2a F a x dx ϕ-=-⎰(C) ()()F a F a -= (D) ()2()1F a F a -=-三、(本题满分5分)设()z f x,y =是由方程0z y x z y x xe ----+=所确定的二元函数,求dz .四、(本题满分7分)已知22lim 4xxax x a x e dx x a +∞-→∞-⎛⎫= ⎪+⎝⎭⎰,求常数a 的值.五、(本题满分9分)设某产品的成本函数为2,C aq bq c =++需求函数为1(),q d p e=-其中C 为成本,q 为需求量(即产量),p 为单价,,,,,a b c d e 都是正的常数,且d b >,求:(1) 利润最大时的产量及最大利润; (2) 需求对价格的弹性;(3) 需求对价格弹性的绝对值为1时的产量.六、(本题满分8分)假设:(1) 函数()(0)y f x x =≤<+∞满足条件(0)0f =和0()1x f x e ≤≤-;(2) 平行于y 轴的动直线MN 与曲线()y f x =和1x y e =-分别相交于点1P 和2P ;(3) 曲线()y f x =,直线MN 与x 轴所围封闭图形的面积S 恒等于线段12P P 的长度.求函数()y f x =的表达式.七、(本题满分6分)假设函数()f x 在[0,1]上连续,在(0,1)内二阶可导,过点(0,(0))A f 与(1,(1))B f 的直线与曲线()y f x =相交于点(,())C c f c ,其中01c <<.证明:在(0,1)内至少存在一点ξ,使()0f ξ''=.八、(本题满分10分)k 为何值时,线性方程组12321231234,,24x x kx x kx x k x x x ++=⎧⎪-++=⎨⎪-+=-⎩ 有惟一解,无解,有无穷多组解?在有解情况下,求出其全部解.九、(本题满分9分)设二次型222123122313222f x x x x x x x x x αβ=+++++经正交变换X PY =化成22232f y y =+,其中123(,,)T X x x x =和123(,,)T Y y y y =是三维列向量, P 是3阶正交矩阵.试求常数,αβ.十、(本题满分8分)设随机变量X 和Y 同分布, X 的概率密度为23,02,()80,.x x f x ⎧<<⎪=⎨⎪⎩其他 (1) 已知事件{}A X a =>和{}B Y a =>独立,且()34P A B .=求常数a.(2) 求21X的数学期望.十一、(本题满分8分)假设一大型设备在任何长为t 的时间内发生故障的次数()N t 服从参数为t λ的泊松分布.(1) 求相继两次故障之间时间间隔T 的概率分布;(2) 求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q .1994年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1) 2222x xdx x -+=+⎰_____________. (2) 已知()1f x '=-,则000lim (2)()x xf x x f x x →=---_____________.(3) 设方程2cos xy e y x +=确定y 为x 的函数,则dydx=_____________.(4) 设121000000,000000n na a A a a -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦其中0,1,2,,,i a i n ≠=则1A -=_____________. (5) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其他, 以Y 表示对X 的三次独立重复观察中事件12X ⎧⎫≤⎨⎬⎩⎭出现的次数,则{}2P Y ==_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 曲线2121arctan (1)(2)x x x y e x x ++=+-的渐近线有( )(A) 1条 (B) 2条 (C) 3条 (D) 4条 (2) 设常数0λ>,而级数21nn a∞=∑收敛,则级数1(1)nn ∞=-∑( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关(3) 设A 是m n ⨯矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B AC =的秩为1r ,则( )(A) 1r r > (B) 1r r <(C) 1r r = (D) r 与1r 的关系由C 而定 (4) 设0()1,0()1,()()1P A P B P A B P A B <<<<+=,则 ( )(A) 事件A 和B 互不相容 (B) 事件A 和B 相互对立(C) 事件A 和B 互不独立 (D) 事件A 和B 相互独立(5) 设12,,,n X X X 是来自正态总体2(,)N μσ的简单随机样本,X 是样本均值,记222212112222341111(),(),111(),(),1n n i i i i n ni i i i S X X S X X n n S X S X n n μμ=====-=--=-=--∑∑∑∑则服从自由度为1n -的t 分布的随机变量是( )(A) X t S μ-=(B) X t S μ-=(C) X t S μ-=(D) X t S μ-=三、(本题满分6分)计算二重积分(),Dx y dxdy +⎰⎰其中{}22(,)1D x y x y x y =+≤++.四、(本题满分5分)设函数()y y x =满足条件440,(0)2,(0)4,y y y y y '''++=⎧⎨'==-⎩求广义积分0()y x dx +∞⎰.五、(本题满分5分)已知22(,)arctan arctan y x f x y x y x y=-,求2f x y ∂∂∂.六、(本题满分5分)设函数()f x 可导,且10(0)0,()()xn n n f F x t f x t dt -==-⎰,求20()limnx F x x →.七、(本题满分8分)已知曲线0)y a =>与曲线ln y =00(,)x y 处有公共切线,求: (1) 常数a 及切点00(,)x y ;(2) 两曲线与x 轴围成的平面图形绕x 轴旋转所得旋转体的体积x V .八、(本题满分6分)假设()f x 在[,)a +∞上连续,()f x ''在(),a +∞内存在且大于零,记()()()()f x f a F x x a x a-=>-,证明()F x 在(),a +∞内单调增加.九、(本题满分11分)设线性方程组231121312312223223132********434,,,.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 证明:若1234,,,a a a a 两两不相等,则此线性方程组无解;(2) 设1324,(0)a a k a a k k ====-≠,且已知12,ββ是该方程组的两个解,其中12111,1,11ββ-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦写出此方程组的通解.十、(本题满分8分)设0011100A x y ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦有三个线性无关的特征向量,求x 和y 应满足的条件.十一、(本题满分8分)假设随机变量1234,,,X X X X 相互独立,且同分布{}{}00.6,10.4(1,2,3,4)i i P X P X i =====,求行列式1234X X X X X =的概率分布.十二、(本题满分8分) 假设由自动线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T (单位:元)与销售零件的内径X 有如下关系:1,10,20,1012,5,12.X T X X -<⎧⎪=≤≤⎨⎪->⎩问平均内径μ取何值时,销售一个零件的平均利润最大?1995年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1) 设1()1xf x x -=+,则()()n f x = . (2) 设()yz xyf x=,()f u 可导,则x y xz yz ''+= .(3) 设(ln )1f x x '=+,则()f x = .(4) 设100220345A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A *是A 的伴随矩阵,则1()A *-= .(5) 设12,,,n X X X 是来自正态总体2(,)N μσ的简单随机样本,其中参数μ和2σ未知,记22111,(),n ni i i i X X Q X X n ====-∑∑则假设0:0H μ=的t 检验使用统计量t =_____.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 设()f x 为可导函数,且满足条件0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点(1,(1))f 处的切线斜率为( )(A) 2 (B) 1- (C)12(D) 2- (2) 下列广义积分发散的是 ( )(A)111sin dx x-⎰(B) 1-⎰ (C) 20x e dx +∞-⎰ (D) 221ln dx x x+∞⎰(3) 设矩阵m n A ⨯的秩为()r A m n =<,m E 为m 阶单位矩阵,下述结论中正确的是( )(A) A 的任意m 个行向量必线性无关 (B) A 的任意一个m 阶子式不等于零 (C) 若矩阵B 满足0BA =,则0B =(D) A 通过初等行变换,必可以化为(,0)m E 的形式(4) 设随机变量X 和Y 独立同分布,记,U X Y V X Y =-=+,则随机变量U 与V 必然()(A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零(5) 设随即变量X 服从正态分布2(,)N μσ,则随σ的增大,概率{}P X μσ-< ( )(A) 单调增大 (B) 单调减少 (C) 保持不变 (D) 增减不定三、(本题满分6分)设2202(1cos ),0()1,01cos ,0xx x x f x x t dt x x ⎧-<⎪⎪==⎨⎪⎪>⎩⎰,试讨论()f x 在0x =处的连续性和可导性.四、(本题满分6分)已知连续函数()f x 满足条件320()3xx t f x f dt e ⎛⎫=+ ⎪⎝⎭⎰,求()f x .五、(本题满分6分)将函数2ln(12)y x x =--展成x 的幂级数,并指出其收敛区间.六、(本题满分5分)计算22()min{,}xy x y e dxdy +∞+∞-+-∞-∞⎰⎰.七、(本题满分6分)设某产品的需求函数为()Q Q p =,收益函数为R pQ =,其中p 为产品价格,Q 为需求量(产品的产量),()Q p 为单调减函数.如果当价格为0p ,对应产量为0Q 时,边际收益00Q Q dR a dQ ==>,收益对价格的边际效应0p p dRc dp ==<,需求对价格的弹性1p E b =>.求0p 和0Q .八、(本题满分6分)设()f x 、()g x 在区间[,]a a -(0a >)上连续,()g x 为偶函数,且()f x 满足条件 ()()f x f x A +-=(A 为常数).(1) 证明()()()aaaf xg x dx A g x dx -=⎰⎰;(2) 利用(1)的结论计算定积分22sin arctan xx e dx ππ-⎰.九、(本题满分9分)已知向量组(Ⅰ)123,,ααα;(Ⅱ)1234,,,αααα;(Ⅲ)1235,,,αααα,如果各向量组的秩分别为(I)(II)3r r ==,(III)4r =.证明:向量组12354,,,ααααα-的秩为4.十、(本题满分10分)已知二次型2212323121323(,,)43448f x x x x x x x x x x x =-+-+. (1) 写出二次型f 的矩阵表达式;(2) 用正交变换把二次型f 化为标准形,并写出相应的正交矩阵.十一、(本题满分8分)假设一厂家生产的每台仪器,以概率0.70可以直接出厂;以概率0.30需进一步调试,经调试后以概率0.80可以出厂;以概率0.20定为不合格品不能出厂.现该厂新生产了(2)n n ≥台仪器(假设各台仪器的生产过程相互独立).求: (1) 全部能出厂的概率α;(2) 其中恰好有两台不能出厂的概率β; (3) 其中至少有两台不能出厂的概率θ.十二、(本题满分8分)已知随机变量X 和Y 的联合概率密度为4,01,01,(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其他, 求X 和Y 联合分布函数(,)F x y .1996年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设方程y x y =确定y 是x 的函数,则dy =___________. (2) 设()arcsin x f x dx x C =+⎰,则1()dx f x =⎰___________.. (3) 设()00,x y 是抛物线2y ax bx c =++上的一点,若在该点的切线过原点,则系数应满足的关系是___________. (4) 设123222212311111231111n nn n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 其中(;,1,2,,)i j a a i j i j n ≠≠=.则线性方程组T A X B =的解是___________.(5) 设由来自正态总体2~(,0.9)X N μ容量为9的简单随机样本,得样本均值5X =,则未知参数μ的置信度为0.95的置信区间为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 累次积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成( )(A)100(,)dy f x y dx ⎰(B) 1(,)dy f x y dx ⎰(C) 110(,)dx f x y dy ⎰⎰(D)100(,)dx f x y dy ⎰(2) 下述各选项正确的是 ( ) (A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B)1n nn u v∞=∑收敛,则21nn u∞=∑与21nn v∞=∑都收敛(C) 若正项级数1nn u∞=∑发散,则1n u n≥(D) 若级数1nn u∞=∑收敛,且(1,2,)n n u v n ≥=,则级数1n n v ∞=∑也收敛(3) 设n 阶矩阵A 非奇异(2n ≥),A *是矩阵A 的伴随矩阵,则 ( ) (A) 1()n A A A -**= (B) 1()n A A A +**=(C) 2()n A AA -**= (D) 2()n A A A +**=(4) 设有任意两个n 维向量组1,,m αα和1,,m ββ,若存在两组不全为零的数1,,m λλ 和1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-=,则()(A) 1,,m αα和1,,m ββ都线性相关(B) 1,,m αα和1,,m ββ都线性无关(C) 1111,,,,,m m m m αβαβαβαβ++--线性无关(D) 1111,,,,,m m m m αβαβαβαβ++--线性相关(5) 已知0()1P B <<且()1212[]()()P A A B P A B P A B +=+,则下列选项成立的是( ) (A) ()1212[]()()P A A B P A B P A B +=+ (B) ()1212()()P A B A B P A B P A B +=+ (C) ()1212()()P A A P A B P A B +=+(D) ()()1122()()()P B P A P B A P A P B A =+三、(本题满分6分)设(),0,()0,0,xg x e x f x xx -⎧-≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1,(0)1g g '==-. (1)求()f x ';(2)讨论()f x '在(,)-∞+∞上的连续性.四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是,x y 的函数,其中(),()f u u ϕ可微;()p t ,()u ϕ'连续,且()1u ϕ'≠.求()()z z p y p x x y∂∂+∂∂.五、(本题满分6分)计算2(1)xx xe dx e -+∞-+⎰.六、(本题满分5分)设()f x 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰.试证:存在(0,1)ξ∈使()()0.f f ξξξ'+=七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成aQ c p b=-+,其中a b 、、 c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少.(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少?八、(本题满分6分)求微分方程dy dx =的通解.九、(本题满分8分)设矩阵010010000010012A y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. (1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使()()T AP AP 为对角矩阵.十、(本题满分8分)设向量12,,,t ααα是齐次线性方程组0AX =的一个基础解系,向量β不是方程组0AX =的解,即0A β≠.试证明:向量组12,,,,t ββαβαβα+++线性无关.十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障仍可获得利润5万元;发生两次故障所获利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?十二、(本题满分6分)考虑一元二次方程20x Bx C ++=,其中B C 、分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p 和有重根的概率q .十三、(本题满分6分)假设12,,,n X X X 是来自总体X 的简单随机样本;已知(1,2,3,4)k k EX a k ==.证明:当n 充分大时,随机变量211n n i i Z X n ==∑近似服从正态分布,并指出其分布参数.1997年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1) 设()(ln )f x y f x e =,其中f 可微,则dy =___________.(2)若1201()()1f x f x dx x =+,则10()f x dx =⎰___________.(3) 差分方程12t t t y y t +-=的通解为___________.(4) 若二次型2221231231223(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是___________.(5) 设随机变量X 和Y 相互独立且都服从正态分布2(0,3)N ,而19,,X X 和19,,Y Y 分别是来自总体X Y 和的简单随机样本,则统计量92X U Y ++=++服从___________分布(2分),参数为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 设561cos 2()sin ,()56xx x f x t dt g x -==+⎰,则当0x →时,()f x 是()g x 的( )(A) 低阶无穷小 (B) 高阶无穷小(C) 等价无穷小 (D) 同阶但不等价的无穷小 (2) 若()()()f x f x x -=-∞<<+∞,在(,0)-∞内()0f x '>,且()0f x ''<,则在(0,)+∞内有 ( )(A) ()0f x '>,()0f x ''< (B) ()0f x '>,()0f x ''> (C) ()0f x '<,()0f x ''< (D) ()0f x '<,()0f x ''> (3) 设向量组1α,2α,3α线性无关,则下列向量组中,线性无关的是 ( )(A) 12αα+,23αα+,31αα-(B) 12αα+,23αα+,1232ααα++ (C) 122αα+,2323αα+,313αα+(D) 123ααα++,1232322ααα-+,123355ααα+-(4) 设,A B 为同阶可逆矩阵,则 ( )(A) AB BA = (B) 存在可逆矩阵P ,使1P AP B -= (C) 存在可逆矩阵C ,使T C AC B = (D) 存在可逆矩阵P 和Q ,使PAQ B =(5) 设两个随机变量X 与Y 相互独立且同分布:{}{}111,2P X P Y =-==-={}1P X ={}112P Y ===,则下列各式中成立的是( )(A) {}12P X Y == (B) {}1P X Y == (C) {}104P X Y +== (D) {}114P XY ==三、(本题满分6分)在经济学中,称函数1()[(1)]xxxQ x A KL δδ---=+-为固定替代弹性生产函数,而称函数1Q AK L δδ-=为Cobb-Douglas 生产函数(简称C —D 生产函数).试证明:但0x →时,固定替代弹性生产函数变为C —D 生产函数,即有lim ()x Q x Q →=.四、(本题满分5分)设(,,)u f x y z =有连续偏导数,()y y x =和()z z x =分别由方程0xy e y -=和0x e xz -=所确定,求du dx.五、(本题满分6分)一商家销售某种商品的价格满足关系70.2p x =-(万元/吨),x 为销售量(单位:吨),商品的成本函数31C x =+(万元).(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时的销售量; (2) t 为何值时,政府税收总额最大.六、(本题满分6分)设函数()f x 在[0,)+∞上连续、单调不减且(0)0f ≥,试证函数1(),0,()0,0,x nt f t dt x F x x x ⎧>⎪=⎨⎪=⎩⎰若若 在[0,)+∞上连续且单调不减(其中0n >).七、(本题满分6分)从点1(1,0)P 作x 轴的垂线,交抛物线2y x =于点1(1,1)Q ;再从1Q 作这条抛物线的切线与x 轴交于2P ,然后又从2P 作x 轴的垂线,交抛物线于点2Q ,依次重复上述过程得到一系列的点1122,;,;;,;n n P Q P Q P Q .(1) 求n OP ;(2) 求级数1122n n Q P Q P Q P ++++的和.其中(1)n n ≥为自然数,而12M M 表示点1M 与2M 之间的距离.八、(本题满分6分)设函数()f t 在[0,)+∞上连续,且满足方程222244()t x y t f t e f dxdy π+≤=+⎰⎰, 求()f t .九、(本题满分6分)设A 为n 阶非奇异矩阵,α为n 维列向量,b 为常数.记分块矩阵0,T T E A P Q A A b ααα*⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦, 其中A *是矩阵A 的伴随矩阵,E 为n 阶单位矩阵. (1) 计算并化简PQ ;(2) 证明:矩阵Q 可逆的充分必要条件是1T A b αα-≠.十、(本题满分10分)设三阶实对称矩阵A 的特征值是1,2,3;矩阵A 的属于特征值1,2的特征向量分别是12(1,1,1),(1,2,1)T T αα=--=--. (1) 求A 的属于特征值3的特征向量; (2) 求矩阵A .十一、(本题满分7分)假设随机变量X 的绝对值不大于1;11{1},{1}84P X P X =-===;在事件 {11}X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间长度成正比.试求X 的分布函数(){}F x P X x =≤.十二、(本题满分6分)游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第5分钟、25分钟和55分钟从底层起行. 假设一游客在早晨八点的第X 分钟到达底层候梯处,且X 在[0,60]上均匀分布,求该游客等候时间的数学期望.十三、(本题满分6分)两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时停用而另一台自行开动.试求两台记录仪无故障工作的总时间T 的概率密度()f t 、数学期望和方差.。

1999数学三解析

1999数学三解析

1999年数学(三)真题解析一、填空题(1)【答案】—-1.【解】由 /(z )x cos x — sin jcx 2得J ”工十(工)dr = jc f {x ) I 守—_ z cos 工一sin 工 卜 sin 工 I" _ 4方法点评:计算定积分时,若被积函数含导数,有时使用分部积分法.【例】 设 —/(攵)=%/2rr — x 2 且 /(I ) = 2,求[/(无)dr ・【解】jcf\jc ) — /(□; ) =(2工一芒两边在[0,1]上积分,得[—[ /(jT )drc =| — x 2 dx ,Jo Jo J 0而£x/z (j?)dx =[严甘(工)=jcf(x) L —J /Q )dz = 2 —『y (z )dz ,[J 2工一x 1 dx = [ / —Q — I)' d(_r — 1) = [ s/1 — t 2 dx =「%/l — j :2 dx =—Jo Jo J —1 J 0 4所以 2 — 2 f /(jt )dj?=弓■,故[)djr = 1----.Jo 4 Jo 8(2)【答案】4.【解】 令SQ )=工处”t (—IV 工< 1),由逐项可导性得S&)=工(工”),=(工=(―”=i” = i '1 —于是》什厂"(*)7(3) 【答案】O./I 0 1\ /I 0【解】由A 2 = 0 2 0 0 2'1 0 V '1 0^A n = 2n_1A, A n_1 = 2n_2A A n - 2A n_1 = O.(4) 【答案】16.【解】 因为疋〜N (a,㈣),所以电丄上〜N(0,l).\ n f 0. 2](1 一 X )22201L(o :o|/'9 n 9'=2A ,由 p {|Xn -a |<o.1} = P 釜丨万16.得①$ 0. 975,而①(1. 96) = 0. 975,所以各 N 1. 96,于是 n(5)【答案】0.【解】由行列式的定义,得Y (-1)5宀九厲2“汕”,因为X ij (i ,j = 1,2 9…,/z )相互独立,所以 E(Y)= 工(一1)"sv /e (X w )E(X% "•E(X ”J ”)E(Xn )E(XQ •・E(X ”)22 ・・2e (x 21)e (x 22) •・E(Xn )=22・・ 2E(X ”QEg) •・・E(X22・・ 2二、选择题(1)【答案】(A).【解】方法一设/(^) = 3工彳,则FQ)=川+c,即当/(乂)为偶函数时,FQ)不一定是奇函数设/(无)=cos x — 1,则F(z) = sin jc — x + C,即当f {x )为周期函数时,F(h )不是周期函数;2令/•&) = Z 为单调增函数,F&) = y+ C 不是单调增函数,应选(A).方法二设 f(.x )为奇函数,FQ) =[ f (z)dz ,J a因为F (— x ) = J/(— u ) (— du )j f(u)duJ /(u)du(“)d “ =£fCu)du =F(h ),所以FQ)为偶函数,应选(A).方法点评:本题需要掌握函数及原函数奇偶性、单调性及周期性的关系,其关系如下.函数奇偶性单调性周期性)奇函数 偶函数单调周期函数F(z)偶函数不一定为奇函数不单调不一定为周期函数(2)【答案】(C).*2{jcy + A )dj/o【解】 令』f(u 9v)dudv = A,则f(sc 9$) = xy + A,两边在区域D 上积分得DJJ/(x )dzdy =Djcy + A )dj? dj; =J djcD血=令+令,1 A1 1即 A = — + —,于是 A =故 _/(工,夕)=xy + ―,应选(C).1Zooo(3)【答案】(B ).【解】 因为0可由向量组线性表示,所以存在常数,k 2,-,k m ,使得卩=bg +k 2a 2 H -------H k m a,… ,又因为“不可由(I ):心‘a?,…,a,,—线性表示,所以k,… # 0,于是即a ”可由(U )线性表示k\ k 2a,” = — r~ai — —a 2 -R nt便 m若a ”可由(I )线性表示,则一定有0可由(I )线性表示,矛盾,故a,”可由(H )线性表示,但不能由(I ) 线性表示,应选(B ).(4)【答案】(D ).【解】 因为A 〜B.所以存在可逆矩阵P,使得P *AP = B,于是 P 1 (rE — A)P = tE — B ,即 /E — A 〜tE-B,应选(D).方法点评:本题考查矩阵相似的性质.在矩阵的几大关系中,两个矩阵相似是矩阵关系中最重要的关系.设A,B 为两个”阶矩阵,若存在可逆矩阵P,使得P AP = B ,称A 与B 相似,记为A 〜B.矩阵相似有如下性质.(1) 相似关系是等价关系,即:1) A 〜A ;2) 若A 〜B,则B 〜A ;3) 若A 〜B,B 〜C,则A 〜C.(2) 若A 〜B,则r (A ) = r (B ),反之不对.(3) 若A 〜B,则1) A t 〜矿;2) 若A ,B 可逆,则〜B 1 ,A '〜B * ;3) 令 /(工)=a ”z" + …+ a x x + a Q ,则 /(A )〜/(B ).(4) 若 A 〜B ,则 tr (A ) = tr (B ), | A | = \B\.(5)【答案】(A ).【解】X 2X,Pi.-11-101014411104421110044111p .J1424由 P{X i X 2=0} = 1,得 P{X 1X 2 H 0} = 0,于是P{X1 ==—1 »X 2 = — 1} = 0, P {X } = — 1 ,X 2 = 1} = 0,P{X1 =二 1,X2=—l}=0,P{X] = 1 ,X 2 = 1} = 0.再由联合分布与边缘分布的关系,得•由y P{X l = o,x 2 =_1} = T 5P{X,=0 9X 2 ==1}=1T 9P{X| = -l,x 2, 1= 0} = T !P{X1=1 »x 2 ==0}=1T9 P {X x = 0,X 2 = 0} = 0,因此 P{X1 = x 2应选(A).} = P{Xi ==—1, X 2=—1} +P{X]=0 ,X 2 = 0} + P {Xj = 1 ,X 2 = 1} = 0,三、【解】设切点为A4。

1999考研数三真题及解析

1999考研数三真题及解析

1999 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分。

把答案填在题中横线上。

)(1) 设()f x 有一个原函数sin xx ,则2()xf x dx ππ'=⎰(2) 1112n n n -∞=⎛⎫= ⎪⎝⎭∑(3) 设101020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,而2n ≥为整数,则12n n A A --=(4) 在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N a .若以n X 表示n 次称量结果的算术平均值,则为使{}0.10.95n P X a -<≥, n 的最小值应不小于自然数(5) 设随机变量(),1,2,,;2ij X i j n n =≥独立同分布,2ij EX =,则行列式111212122212n n n n nnX X X X X X Y X X X =的数学期望EY =二、选择题(本题共5小题,每小题3分,满分15分。

每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。

) (1) 设()f x 是连续函数,()F x 是()f x 的原函数,则 ( )(A) 当()f x 是奇函数时,()F x 必是偶函数。

(B) 当()f x 是偶函数时,()F x 必是奇函数。

(C) 当()f x 是周期函数时,()F x 必是周期函数。

(D) 当()f x 是单调增函数时,()F x 必是单调增函数。

(2) 设(,)f x y 连续,且(,)(,)Df x y xy f u v dudv =+⎰⎰,其中D 是由20,,1y y x x ===所围成的区域,则(,)f x y 等于 ( )(A)xy (B)2xy (C)18xy +(D)1xy +(3) 设向量β可由向量组12,,,m ααα线性表示,但不能由向量组(Ⅰ)121,,,m ααα-线性表示,记向量组(Ⅱ)121,,,m αααβ-,,则 ( )(A) m α不能由(I)线性表示,也不能由(Ⅱ)线性表示。

1999年考研数学三真题

1999年考研数学三真题

1999年考研数学三真题一、选择题1. 设函数f(x)满足f''(x)>0,下列哪个选项是正确的?a. f(x)在x=0处取得极小值b. f(x)在x=1处取得极大值c. f(x)在x=2处取得拐点d. f(x)在x=3处取得最小值解析:根据f''(x)>0可以得知f(x)是上凸函数,也就是说,对于任意的x1 < x2,有f(x1) < f(x2)。

由此可知,选项b是正确的。

2. 设函数f(x)在任意区间上可导,并且f'(x)在区间(0,1)非零。

若f(1) = 2,下列哪个选项是正确的?a. f(x)在(0,1)内不存在驻点b. 在(0,1)内,f(x)单调递减c. f(x)在(0,1)内存在极大值d. 在(0,1)内,f(x)单调递增解析:根据题干条件可知f'(x)在区间(0,1)非零,即在(0,1)内存在导数不为零的点。

根据导数的定义,导数不为零的点处,函数是单调的。

因此,选项d是正确的。

3. 在直角坐标系中,点A的坐标为(4,6),点B的坐标为(2,2)。

则点A和点B的中点的坐标为:a. (1,4)b. (2,4)c. (3,4)d. (4,4)解析:点A和点B的横坐标取平均数得到中点的横坐标,点A和点B的纵坐标取平均数得到中点的纵坐标。

因此,中点的坐标为((4+2)/2, (6+2)/2),即(3,4)。

因此,选项c是正确的。

二、填空题1. 设n为正整数,且(1+2+...+n)的和为1001,则n等于_________。

解析:根据等差数列的求和公式可知,1+2+...+n = n(n+1)/2。

因此,要找到满足1+2+...+n = 1001的n,可以解方程n(n+1)/2 = 1001。

解得n ≈ 44.17。

由于n为正整数,因此n取45。

因此,n等于45。

2. 设A,B两事件相互独立,且P(A) = 0.4,P(B) = 0.6,则P(A并B的补事件)等于_________。

哈工大考研数学真题

哈工大考研数学真题

考研试题A1999年全国硕士研究生入学考试数学试题三(四)(概率统计部分)一、填空题(每小题3分)(4)在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布若以表示n次称量结果的算术平均值,则为使n的最小值应不小于自然数_____.(5)设随机变量(i,j=1,2,…,n;n>1)独立同分布,, 则行列式的数学期望EY=_______.二、选择题(每小题3分)(5) 在电炉上安装了4个温控器,其显示温度的误差是随机的。

在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电。

以E表示事件“电炉断电”,设为4个温控器显示的按递增顺序排列的温度值,则事件E等于()。

(A); (B) ;(C) ; (D) 。

十一、(8分)设0.05,1.25,0.80,2.00是来自总体X的简单随机样本值,已知Y=lnX服从正态分布N(μ,1).(1)求X的数学期望E(X),(记E(X)为b).(2)求μ的置信度为0.95置信区间.(3); 利用上述结果求b的置信度为0.95置信区间.十二、(8分)设A,B是二随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。

考研试题C2000年全国硕士研究生入学考试数学试题三(四)(概率统计部分)解答一、填空题(4)[1,3];(5)8/9二、选择题(5)C十一、(1)Y的概率密度函数为于是(2)当置信度时,标准正态分布的分位数为1.96,由于,所以其中从而(-0.98,0.98)就是的置信度为0.95置信区间.(3)由于函数严格单调增加,所以b的置信度为0.95置信区间是() .十二、记,由数学期望的定义,知由于XY只有两个可能值1和-1,所以从而,因此,Cov(X,Y)=0当且仅当, 即X和Y不相关当且仅当事件A与B 相互独立。

考研试题B1999年全国硕士研究生入学考试数学试题四(三)(概率统计部分)一、填空题(每小题3分)(5)设随机变量X服从参数为λ的Poisson分布,且已知E[(X-1)(X-2)]=1,则=_________.考研试题B1999年全国硕士研究生入学考试数学试题四(三)(概率统计部分)一、填空题二、选择题(每小题3分)(4)设随机变量X和Y的方差存在且不等于0,则D(X+Y)=D(X)+D(Y)是X和Y(A) 不相关的充分条件,但不是必要条件;(B) 独立的必要条件,但不是充分条件;(C) 不相关的充分必要条件;(D) 独立的充分必要条件.(5)假设随机变量X服从指数分布,则随机变量Y=min(X,2)的分布函数(B)是连续函数; (B)至少有两个间断点;(B)是阶梯函数; (D) 恰好有一个间断点十一、(8分)设二维随机变量(X,Y)在矩形上服从均匀分布,试求边长X和Y的面积S的概率密度f(s).十二、(8分)已知随机变量和的概率分布而且.(1)求和联合分布;(2)问和是否独立?为什么?考研试题B1999年全国硕士研究生入学考试数学试题四(三)(概率统计部分)解答一、填空题(5)1二、选择题(4)C;(5)D十一、二维随机变量(X,Y)的概率密度为设为S的分布函数,则当时,F(s)=0, 当时,F(s)=1.设0<s<2. 曲线xy=s与矩形G的上边交于点(s,1),位于曲线xy=s上方的点满足xy>s,位于曲线xy=s下方的点满足xy<s, 于是于是十二、(1)由,可得因此,和联合分布如下:(2)由以上结果,得而,所以和不是独立的。

考研数学三(微积分)历年真题试卷汇编32(题后含答案及解析)

考研数学三(微积分)历年真题试卷汇编32(题后含答案及解析)

考研数学三(微积分)历年真题试卷汇编32(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2009年)函数的可去间断点的个数为( )A.1.B.2.C.3.D.无穷多个.正确答案:C解析:当x=k(k=0,±1,±2,…)时,sinnx=0,则这些点都是f(x)的间断点.而当x=0,±1时,x—x3=0,又则x=0,x=±1为f(x)的可去间断点,其余均为无穷间断点.故应选C.2.(1995年)设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为( )A.2B.-1C.D.-2正确答案:D解析:由得f(1)=一2.所以,应选D.3.(2006年)设函数f(x)在x=0处连续,,则( )A.f(0)=0且f-’(0)存在.B.f(0)=1且f-’(0)存在.C.f(0)=0且f+’(0)存在.D.f(0)=1且f+’(0)存在.正确答案:C解析:直接法故应选C.4.(2018年)下列函数中,在x=0处不可导的是( )A.f(x)=|x|sin|x|.B.C.f(x)=cos|x|正确答案:D解析:由导数定义知该极限不存在,则在x=0处不可导,故应选D.5.(2009年)设函数y=f(x)在区间[一1,3]上的图形为则函数F(x)=∫0xf(t)dt 的图形为( )A.B.C.D.正确答案:D解析:由题设知,当X∈(一1,0)时F’(x)=f(x),而当x∈(一1,0)时f(x)≡1>0,即F’(x)>0,从而F(x)单调增.显然A选项是错误的,因为A选项中F(x)在(一1,0)中单调减.由于F(x)=∫0xf(t)dt,则F(0)=0,显然C选项错误.由于当x∈(2,3]时f( x)≡0,则当x∈(2,3]时F(x)=∫0xf(t)dt=∫02f(t)dt+∫2xf(t)dt=∫02f(t)dt+∫2x0dt=F(2) 则B是错误的,D是正确的.6.(1999年)设f(x,y)连续,且其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于( )A.xyB.2xyC.D.xy+1正确答案:C解析:令则f(x,y)=xy+A,将f(x,y)=xy+A代入(*)式得7.(2012年)已知级数条件收敛,则( )A.B.C.D.正确答案:D解析:又由条件收敛知0<2一a≤1则1≤a<2故应选填空题8.(2004年)若,则a=______,b=______.正确答案:应填a=1,b=一4.解析:当a=1时,又1—b=5,则b=—4.9.(1997年)设y=f(lnx)ef(x),其中f可微,则dy=______.正确答案:应填解析:由y=f(lnx)ef(x)可知10.(2014年)设某商品的需求函数为Q=40—2p(p为商品的价格),则该商品的边际收益为______.正确答案:应填20—Q.解析:由题设知收益函数为则边际收益为11.(2000年)=______。

考研数三(1998-2007年)历年真题

考研数三(1998-2007年)历年真题

2007年全国硕士研究生入学统一考试数学(三)试题一、选择题:1~10小题,每小题4分,共40分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1) 当时,与等价的无穷小量是:()(A) (B) (C) (D) .(2) 设函数在处连续,则下列命题错误的是:()(A) 若存在,则(B) 若存在,则.(C) 若存在,则存在. (D) 若存在,则存在.(3) 如图,连续函数在区间上的图形分别是直径为的上、下半圆周,在区间上的图形分别是直径为的上、下半圆周,设则下列结论正确的是:()(A) (B)(C) (D)(4) 设函数连续,则二次积分等于:()(A) (B)(C) (D)(5) 设某商品的需求函数为,其中分别表示需要量和价格,如果该商品需求弹性的绝对值等于,则商品的价格是:()(A) (B) (C) (D)(6) 曲线渐近线的条数为:()(A) (B) (C) (D)(7) 设向量组线性无关,则下列向量组线性相关的是:()(A) (B)(C) (D)(8) 设矩阵,,则与:()(A) 合同,且相似(B) 合同,但不相似(C) 不合同,但相似(D) 既不合同,也不相似(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第次命中目标的概率为:()(A)(B) (C) (D)(10) 设随机变量服从二维正态分布,且与不相关,分别表示的概率密度,则在条件下,的条件概率密度为:()(A) (B) (C) (D) .二、填空题:11~16小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(11) _________.(12) 设函数,则_________.(13) 设是二元可微函数,则_________.(14) 微分方程满足的特解为=_________.(15) 设矩阵则的秩为_________.(16) 在区间中随机地取两个数,则这两数之差的绝对值小于的概率为_________.三、解答题:17~24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17) (本题满分10分)设函数由方程确定,试判断曲线在点附近的凹凸性.(18) (本题满分11分)设二元函数计算二重积分Ddxdyyxf),(,其中.(19) (本题满分11分)设函数在上连续,在内二阶可导且存在相等的最大值,又,=,证明:(I) 存在使得;(II) 存在使得(20) (本题满分10分)将函数展开成的幂级数,并指出其收敛区间.(21) (本题满分11分)设线性方程组①与方程②有公共解,求的值及所有公共解.设阶实对称矩阵的特征值是的属于的一个特征向量,其中为阶单位矩阵验证是矩阵的特征向量,并求的全部特征值与特征向量;求矩阵.设二维随机变量的概率密度为求;求的概率密度.设总体的概率密度为,其中参数未知,是来自总体的简单随机样本,是样本均值求参数的矩估计量;判断是否为的无偏估计量,并说明理由2006年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分. 请将答案写在答题纸指定位置上. (1) _________.(2) 设函数在的某邻域内可导,且,则_________.(3) 设函数可微,且,则在点处的全微分_________.(4) 设矩阵 ,为阶单位矩阵,矩阵B 满足,则_________.(5) 设随机变量与相互独立,且均服从区间上的均匀分布,则_______.(6) 设总体的概率密度为n X X X ,,21 ,为总体的简单随机样本,其样本方差,则=_________.二、选择题:7~14小题,每小题4分,共32分. 下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数具有二阶导数,且,为自变量在处的增量,与分别为在点处对应的增量与微分,若,则:( )(A) (B) (C)(D)(8) 设函数在处连续,且,则:( )(A) 存在 (B) 存在 (C) 存在 (D) 存在(9) 若级数收敛,则级数:( )(A) 收敛 (B) 收敛(C) 收敛 (D)收敛(10) 设非齐次线性微分方程有两个的解为任意常数,则该方程的通解是:(A) (B)(C) (D)(11) 设均为可微函数,且已知是在约束条件下的一个极值点,下列选项正确的是:()(A) 若(B) 若(C) 若(D) 若(12) 设均为维列向量,是矩阵,下列选项正确的是:()(A) 若线性相关,则线性相关(B) 若线性相关,则线性无关(C) 若线性无关,则线性相关(D) 若线性无关,则线性无关(13) 设为阶矩阵,将的第行加到第行得,再将的第列的倍加到第列得,记,则:()(A) (B)(C) (D) .(14) 设随机变量服从正态分布,随机变量服从正态分布,且,则必有:()(A) (B) (C) (D)三、解答题:15~23小题,共94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15) (本题满分7分)设,求(I) ;(II) .(16) (本题满分7分)计算二重积分,其中是由直线所围成的平面区域.(17) (本题满分10分)证明:当时,.(18) (本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于.(I) 求的方程;(II) 当与直线所围成平面图形的面积为时,确定的值.(19) (本题满分10分)求幂级数的收敛域及和函数.(20) (本题满分13分)设维向量组,,,,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.(21) (本题满分13分)设阶实对称矩阵的各行元素之和均为,向量是线性方程组的两个解.(I) 求的特征值与特征向量;(II) 求正交矩阵和对角矩阵,使得;(III) 求及,其中为阶单位矩阵.(22) (本题满分13分)设随机变量的概率密度为令,为二维随机变量的分布函数.求:(I) 的概率密度;(II) ;(III) .(23) (本题满分13分)设总体的概率密度为其中是未知参数(),为来自总体的简单随机样本.记为样本值中小于的个数,求:(I) 的矩估计;(II) 的最大似然估计.2005年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 极限=_________.(2) 微分方程满足初始条件的特解为_________.(3) 设二元函数,则_________.(4) 设行向量组,,,线性相关,且,则_________.(5) 从数中任取一个数,记为,再从中任取一个数,记为,则=_______.(6) 设二维随机变量的概率分布为若随机事件与相互独立,则=_________,=_________.二、选择题:7~14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 当取下列哪个值时,函数恰好有两个不同的零点:()(A) . (B) (C)(D) .(8) 设,,,其中,则:()(A) (B) . (C) (D) .(9) 设若发散,收敛,则下列结论正确的是:()(A) 收敛,发散(B)收敛,发散(C) 收敛(D) 收敛(10)设,下列命题中正确的是:()(A) 是极大值,是极小值(B) 是极小值,是极大值(C) 是极大值,也是极大值(D) 是极小值,也是极小值.(11)以下四个命题中,正确的是:()(A)若在内连续,则在内有界(B) 若在内连续,则在内有界(C) 若在内有界,则在内有界(D) 若在内有界,则在内有界(12) 设矩阵=满足,其中是的伴随矩阵,为的转置矩阵.若为三个相等的正数,则为:()(A) (B) (C) (D)(13) 设是矩阵的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是:()(A)(B) (C) (D)(14) 设一批零件的长度服从正态分布,其中均未知.现从中随机抽取个零件,测得样本均值,样本标准差,则的置信度为的置信区间是:()(A) (B)(C) (D)(注:大纲已不要求)三、解答题:本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.(15) (本题满分8分)求.设具有二阶连续导数,且,求.(17) (本题满分9分)计算二重积分,其中.(18) (本题满分9分)求幂级数在区间内的和函数.(19) (本题满分8分)设在上的导数连续,且,,.证明:对任何,有.(20) (本题满分13分)已知齐次线性方程组(I) 和 (II)同解,求的值.(21) (本题满分13分)设为正定矩阵,其中分别为阶,阶对称矩阵,为矩阵.(I) 计算,其中;(II) 利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.设二维随机变量的概率密度为求:(I) 的边缘概率密度;(II) 的概率密度;(Ⅲ) .(23) (本题满分13分)设为来自总体的简单随机样本,其样本均值为,记.求:(I) 的方差;(II)与的协方差;(III) 若是的无偏估计量,求常数.2004年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分. 请将答案写在答题纸指定位置上.(1) 若,则_________,_________.(2) 函数由关系式确定,其中函数可微,且,则_________.(3) 设则_________.(4) 二次型的秩为_________.(5) 设随机变量服从参数为的指数分布,则=_________.(6) 设总体服从正态分布,总体服从正态分布,和分别是来自总体和的简单随机样本,则_________.二、选择题:7~14小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(7) 函数在下列哪个区间内有界:()(A)(B) (C). (D) .(8) 设在内有定义,且,则:()(A) 必是的第一类间断点. (B) 必是的第二类间断点.(C) 必是的连续点. (D) 在点处的连续性与a的取值有关.(9) 设,则:()(A) 是的极值点,但不是曲线的拐点.(B) 不是的极值点,但是曲线的拐点.(C)是的极值点,且是曲线的拐点.(D) 不是的极值点,也不是曲线的拐点.(10) 设有以下命题:()①若收敛,则收敛.②若收敛,则收敛.③若,则发散.④若收敛,则,都收敛.则以上命题中正确的是:()(A) ①②. (B) ②③.(C) ③④. (D) ①④.(11) 设在上连续,且,则下列结论中错误的是:()(A) 至少存在一点,使得>.(B) 至少存在一点,使得>.(C) 至少存在一点,使得.(D) 至少存在一点,使得=.(12) 设阶矩阵与等价,则必有:()(A) 当时,(B) 当时,.(C) 当时,. (D) 当时,.(13) 设阶矩阵的伴随矩阵若是非齐次线性方程组的互不相等的解,则对应的齐次线性方程组的基础解系:()(A) 不存在(B) 仅含一个非零解向量(C) 含有两个线性无关的解向量(D) 含有三个线性无关的解向量.(14) 设随机变量服从正态分布,对给定的,数满足,若,则=()(A) (B) (C) (D) .三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分8分)求.(16) (本题满分8分)求,其中是由圆和所围成的平面区域(如图).(17) (本题满分8分)设在上连续,且满足,.证明:.(18) (本题满分9分)设某商品的需求函数为,其中价格,为需求量.(I) 求需求量对价格的弹性(>);(II) 推导(其中为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为.求:(I) 所满足的一阶微分方程;(II)的表达式.(20) (本题满分13分)设,,,,试讨论当为何值时,(I) 不能由线性表示;(II) 可由唯一地线性表示,并求出表示式;(III) 可由线性表示,但表示式不唯一,并求出表示式.(21) (本题满分13分)设阶矩阵 .(I) 求的特征值和特征向量;(II) 求可逆矩阵,使得为对角矩阵.(22) (本题满分13分)设为两个随机事件,且,,,令求(I) 二维随机变量的概率分布;(II) 与的相关系数;(III) 的概率分布.(23) (本题满分13分)设随机变量的分布函数为其中参数.设为来自总体的简单随机样本,(I) 当时,求未知参数的矩估计量;(II) 当时,求未知参数的最大似然估计量;(III) 当时,求未知参数的最大似然估计量.2003年全国硕士研究生入学统一考试数学(三)试题一、填空题:1~6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 设其导函数在处连续,则的取值范围是_________.(2) 已知曲线与轴相切,则可以通过表示为_________.(3) 设,而表示全平面,则=_________.(4) 设维向量,为阶单位矩阵,矩阵,,其中的逆矩阵为,则_________.(5) 设随机变量和的相关系数为,若,则与的相关系数为_________.(6) 设总体服从参数为的指数分布,为来自总体的简单随机样本,则当时,依概率收敛于_________.二、选择题:7~12小题,每小题4分,共24分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(7) 设为不恒等于零的奇函数,且存在,则函数:()(A) 在处左极限不存在(B) 有跳跃间断点(C) 在处右极限不存在(D) 有可去间断点(8) 设可微函数在点取得极小值,则下列结论正确的是:()(A) 在处的导数等于零(B) 在处的导数大于零(C) 在处的导数小于零(D) 在处的导数不存在.(9) 设,,,则下列命题正确的是:()(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不确定.(D) 若绝对收敛,则与敛散性都不确定.(10) 设三阶矩阵,若的伴随矩阵的秩等于,则必有:()(A) 或(B) 或(C) 且(D)且.(11) 设均为维向量,下列结论不正确的是:()(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,有(C) 线性无关的充分必要条件是此向量组的秩为.(D) 线性无关的必要条件是其中任意两个向量线性无关.(12) 将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件:()(A) 相互独立(B) 相互独立(C)两两独立(D) 两两独立.三、解答题:13~22小题,共102分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(13) (本题满分8分)设,试补充定义使得在上连续.(14) (本题满分8分)设具有二阶连续偏导数,且满足,又,求(15) (本题满分8分)计算二重积分,其中积分区域(16) (本题满分9分)求幂级数的和函数及其极值.(17) (本题满分9分)设,其中函数在内满足以下条件:,且,(I) 求所满足的一阶微分方程;(II) 求出的表达式.(18) (本题满分8分)设函数在上连续,在内可导,且.试证必存在,使(19) (本题满分13分)已知齐次线性方程组其中试讨论和满足何种关系时,(I) 方程组仅有零解;(II) 方程组有非零解.在有非零解时,求此方程组的一个基础解系.(20) (本题满分13分)设二次型),0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T 其中二次型的矩阵的特征值之和为,特征值之积为. (I) 求的值;(II) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵.(21) (本题满分13分) 设随机变量的概率密度为是的分布函数.求随机变量的分布函数.(22) (本题满分13分) 设随机变量与独立,其中的概率分布为而的概率密度为,求随机变量的概率密度.2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设3阶矩阵122212304A -⎛⎫⎪=⎪ ⎪⎝⎭,3维列向量(),1,1T a α=.已知A α与α线性相关,则a =.(4) 设随机变量X则2X 和2Y 的协方差=),(22Y X Cov .(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若 而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为.二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑的收敛半径分别为3与13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( )(A) 5 (B)(C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组0=ABx ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解 (C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵()1TP AP -属于特征值λ的特征向量是 ( )(A) 1Pα- (B) T P α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布 (C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程xyzxe ye ze -=所确定,求du . 五、(本题满分6分)设2(sin ),sin x f x x =求()x dx . 六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值. 七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为3阶实对称矩阵,且满足条件O A A =+22,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为3阶单位矩阵.十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若 试求:(1)X 和Y 的联合概率分布;(2)()D X Y +.十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间)(EX 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2001 年全国硕士研究生入学统一考试数学三试题一、填空题(1) 设生产函数为βαK AL Q =, 其中Q 是产出量, L 是劳动投入量, K 是资本投入量,而A , α, β均为大于零的参数,则当Q =1时K 关于L 的弹性为.(2) 某公司每年的工资总额比上一年增加20%的基础上再追加2 百万元.若以t W 表示第t 年的工资总额(单位:百万元),则t W 满足的差分方程是___(3) 设矩阵111111,111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦且r (A )=3,则k =.(4) 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5.则根据切比雪夫不等式{}≤≥+6||Y X P . (5) 设总体X 服从正态分布)(22,0N ,而1215,,X X X 是来自总体X 的简单随机样本,则随机变量()221102211152X X Y X X ++=++服从____________分布,参数为__________.二、选择题(1) 设f (x )的导数在x =a 处连续,又'()lim1,x af x x a→=--则( ) (A) x = a 是f (x )的极小值点. (B) x = a 是f (x )的极大值点. (C) (a , f (a ))是曲线y = f (x )的拐点.(D) x =a 不是f (x )的极值点, (a , f (a ))也不是曲线y =f (x )的拐点.(2) 设函数0()(),xg x f u du =⎰其中21(1),012(),1(1),123x x f x x x ⎧+≤≤⎪⎪=⎨⎪-≤≤⎪⎩则g (x )在区间(0,2) 内( ) (A)无界 (B)递减 (C) 不连续 (D) 连续(3) 设1112131414131211212223242423222113132333434333231414243444443424100010100,,,00101000a a a a a a a a a a a a a a a a A B P a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦210000010,01000001P ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中A 可逆,则1B -等于( ) (A)112A P P - (B)112P A P - (C)112P P A - (D)121P A P -.(4) 设A 是n 阶矩阵,α是n 维列向量.若r 0TA αα⎛⎫=⎪⎝⎭r (A),则线性方程组( )(A)AX =α必有无穷多解 ()B AX =α 必有惟一解.()C 00TA X y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭仅有零解 ()D 00TAX y αα⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭必有非零解. (5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于( )(A) -1 (B) 0 (C)12(D) 1三 、(本题满分5 分)设u = f (x ,y ,z )有连续的一阶偏导数,又函数y =y (x )及z =z (x )分别由下列两式确定:2xy e xy -=和0sin ,x zx t e dt t -=⎰求dudx.四 、(本题满分6 分)已知f (x )在(−∞,+∞)内可导,且lim '(),x f x e →∞=lim()lim[()(1)],xx x x c f x f x x c→∞→∞+=--- 求c 的值.五 、(本题满分6 分)求二重积分221()2[1]x y Dy xedxdy ++⎰⎰的值,其中D 是由直线y =x , y = −1及x =1围成的平面区域六、(本题满分7 分)已知抛物线2y px qx =+(其中p <0,q >0)在第一象限与直线x +y =5相切,且此抛物线与x 轴所围成的平面图形的面积为S.(1) 问p 和q 为何值时,S 达到最大? (2)求出此最大值.七、(本题满分6 分)设f (x )在[0,1]上连续,在(0,1)内可导,且满足),1()()1(101>=⎰-k dx x f xe kf k x证明至少存在一点ξ∈(0,1), 使得).()1()(1ξξξf f --=' 八、(本题满分7 分)已知()n f x 满足'1()()n xnn f x f x x e -=+(n 为正整数)且(1),n ef n =求函数项级数1()n i f x ∞=∑之和.九、(本题满分9 分)设矩阵11111,1.112a A a a β⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦已知线性方程组AX =β有解但不唯一,试求: (1) a 的值;(2) 正交矩阵Q,使TQ AQ 为对角矩阵.十、(本题满分8 分)设A 为n 阶实对称矩阵,r (A)=n ,ij A 是()ijn nA a ⨯=中元素ij a 的代数余子式(i ,j =1,2,…,n ),二次型.||),,(1121j i n i nj ijn x x A A x x x f ∑∑===(1) 记),,,(,),,2121n T n x x x f x x x X 把(=写成矩阵形式,并证明二次型()f X 的矩阵为1A -; (2) 二次型()Tg X X AX =与()f X 的规范形是否相同?说明理由.十一、(本题满分8 分)一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x ) 是标准正态分布函数).十二、(本题满分8 分)设随机变量X 和Y 对联和分布是正方形G ={(x ,y )|1≤x ≤3,1≤y ≤3}上的均匀分布,试求随机变量U =||Y X -的概率密度().p u(1)β可由321,,a a a 线性表出,且表示唯一?(2)β可由321,,a a a 线性表出?(3)β可由321,,a a a 线性表出,但表示不唯一?并求出一般表达式。

数学三考研真题(1989-1999年)

数学三考研真题(1989-1999年)

假设函数 f ( x) 在 [ a,b] 上连续 , 在 (a,b) 内可导 , 且 f ( x)
证明在 (a,b) 内, F (x)
F ( x) 0.
1x f (t)dt ,
x aa
0, 记
七、 ( 本题满分 5 分 )
2
已知 X AX B, 其中 A
01 11 10
0 1 ,B 1
11 2 0 ,求矩阵 X . 53
x, 0 x 1, f (x)
2 x, 1 x 2.
试计算下列各题:
(1) S0
2 f ( x)e xdx; (4 分 )
0
(2)
(3) Sn
2n 2
f (x
2n)e xdx( n
2,3,
); (1 分) (4)
2n
S1
4
f (x
2)e xdx; (2 分)
2
S
Sn .(2 分)
n0
六、 ( 本题满分 6 分 )
x1 x2 x3 0, 只有零解 , 则 应满足的条件是 __ _ .
x1 x2 x3 0
(4) 设随机变量 X 的分布函数为
0,
x 0,
F x Asinx, 0 x , 则 2
1,
x,
2
A =__________, P X 6
(5) 设随机变量 X 的数学期望 E ( X ) (Chebyshev) 不等式 , 有 P{ X
x
P P ( x) 10e 2 ,
且最大需求量为 6, 其中 x 表示需求量 , P 表示价格 .
(1) 求该商品的收益函数和边际收益函数 .(2 分) (2) 求使收益最大时的产量、最大收益和相应的价格 .(4 分 ) (3) 画出收益函数的图形 .(3 分 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(2)对于任意实数 ,必存在 0, ,使得 f f 1.
九、(本题满分 9 分) 设矩阵
a 1 c
A
5
b
3 , 且 | A | -1.又设A伴随矩阵A*有特征值0,属于0的特征向量为a 1,1,1T
1 c 0 a
求 a、b、c、及0的值。
十、(本题满分 7 分)
设 A 为 m n 实矩阵, E 为 n 阶单位矩阵。已知矩阵 B E AT A 试证:当 0 时,矩阵 B 为正定矩阵。
其中, 为正常数,且 1 。假设两种元素的价格分别为 p1和p2 ,试问,当产量为 12 时,两元素各投入多
少可以使得投入总费用最小?
六、(本题满分 6 分)
设有微分方程
y
2
y
x
,其中
x
2, 0,
x 1, x 1.
试求出 , 内的连续函数 y yx,使之在 ,1 和 1, 内都满足所给方程,且满足条件 y0 0.
切点沿曲线趋于无穷远时,该面积的变化趋势如何?
四、(本题满分 7 分)
计算二重积分 ydxdy, 其中 D 是由直线 x 2, y 0, y 2 以及曲线 x 2 y y2 所围成的平面区域。
D
五、(本题满分 6 分)
设生产某种产品必须投入两种两种元素, x1和x2 分别为两元素要投入量, Q 为产出量;若生产函数为 Q 2x1a x2 ,
D
(A) xy
(B) 2xy
(C) xy 1 8
(D) xy 1
(3) 设向量 可由向量组 a1, a2 ,am 线形表示,但不能有向量组(Ⅰ) a1, a2 ,am1 线性表示,记向量组(Ⅱ):
a1, a2 ,am1,,则( )
(A) am 不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示
(B) am 不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示
1 0 1
(4)在天平上重复称量一重为 a 的物品,假设各次称重结果相互独立且同服从正态分布, N a,0.22 ,若以 X n 表
示 n 次称重结果的算术平均值,则为使 P Xn - a 0.1 0.95, n 的最小值应不小于自然数= ________ .
X11 X12 X1n
1 0 1
(5)设随机变量
Xi
~
1 4
1 2
1 i 1,2
4
,且满足 PX1X 2 0 1,则 PX1 X 2等于(
)
1
(A)0
(B)
4
1
(C)
2
(D) 1
三、(本题满分 6 分)
曲线 y 1 的切线与 x 轴和 y 轴围成一个图形,记切点的横坐标为 a ,试求切线方程和这个图形的面积,当 x
七、(本题满分 6 分)
设函数 f x 连续,且
x
tf
2x
tdt
1
arctan
x2
。已知
f
1
1,求
2 f xdx 的值。
0
2
1
八、(本题满分 7 分)
设函数 f x 在区间 0,1上连续,在 0,1内可导,且 f 0 f 1 0,f 1 1.
2
试证:(1)存在 1 ,1,使f ;
(B)当 f x 是偶函数时, F x必为奇函数
(C)当 f x 是周期函数时, F x必为周期数
(D)当 f x 是单调增函数时, F x必为单调增函数
(2)设 f x, y 连续,且 f x, y xy f u, vdudv ,其中 D 是由 y 0, y x2, x 1所围区域,则 f x, y 等于( )
十一、(本题满分 9 分)
假设二维随机变量 X
,Y 在矩阵形 G
x,
y|
0
x
2,0
y
1上服从均匀分布。记U
0, 1,
X X
Y, Y,
V
0, 1,
X X
2Y , 2Y ,
(1) 求U和V的联合分布;
(2) 求U和V的相关系数r.
十二、(本题满分 9 分)

X1,
X 2,
X 9是来自正态总体X的简单随机样本,Y1
1 6
X1
X6
,
Y2
1 3
X7
X8
X9

S 2 1 9 2 i7
X i Y2 2 , Z
2 Y1
Y2
,

t
分布。
S
1999 年全国硕士研究生入学统一考试数学(三)试题
一、填空题
(1)设
f x 有一个原函数 sin x
x
,则
xf
xdx
2
________ .
(2) n 1 n1 ________ .
n1 2
(3)设
1 A 0
0 2
1 0 ,而 n
2 为正整数,则 An
2 An1
________ .
(5)设随机变量
X ij i,
j
1,2,..., n; n
2 独立同分布,
EX ij
2 ,则行列式Y
X
21
X
22
X
2n
的数学期望
X n1
X n1
X nn
EY ________ .
二、选择题
(1)设 f x 是连续奇函数, F x是f x的原函数,则( )
(A)当 f x 是奇函数时, F x必为偶函数
(C) am 可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示
(D) am 可由(Ⅰ)线性表示,但不能由(Ⅱ)线性表示
(4)设 A, B为n 阶矩阵,且 A与B 相似, E为n 阶单位矩阵,则( )
(A) E A E B
(B) A与B 有相同的特征值和特征向量
(C) A与B 都相似于一个对角矩阵
(D) 对于任意常数 t,tE A与tE B相似
相关文档
最新文档