弹性力学及有限元法学习总结

合集下载

弹性力学与有限元分析

弹性力学与有限元分析

第一部分:有限元基本理论与方法长安大学张青哲一、有限元基本理论有限元方法是一种有效的数值计算方法。

目前,它已广泛地应用于各类工程技术领域,如结构的应力、应变分析,各种连续问题的场变量——温度、压力、流速势、电磁场等问题的数值计算,并日益受到重视。

其基本思想是:将一个连续的求解域离散化,即分割成彼此用节点(离散点)互相联系的有限个单元,在单元体内假设近似解的模式,用有限个节点上的未知参数表征单元的特性,然后用适当的方法,将各个单元的关系式组合成包含这些未知参数的方程组,求解这个方程组,得出各节点的未知参数,利用插值函数求出近似解。

随着单元尺寸的缩小,单元数目也就增加,解的近似程度不断提高,如果单元满足收敛要求的话,近似解就收敛于真实解。

二、有限元法的分类与求解步骤从选择基本未知量的角度来看,有限元法分为以下三类:�位移法——以节点位移作为基本未知量�力法——以节点力作为基本未知量�混合法——取一部分节点位移和一部分节点力作为基本未知量由于位移法比较简单,计算规律性强,便于编写计算机通用程序,因此在用有限元法进行结构分析时,大多采用位移法。

其求解步骤如下:1、结构的离散化——单元划分2、假设单元的位移插值函数和形函数3、计算单元刚度矩阵4、载荷移置——把非节点载荷等效地移置到节点上5、计算结构刚度矩阵,形成结构刚度方程6、引入位移边界条件,求解方程7、计算应力与应变三、两种平面问题平面问题分为平面应力问题和平面应变问题两大类。

体力——指分布于物体体积内的外力,它作用于物体内部的各个质点上,如重力、磁力和运动时的惯性力等。

面力——指均布于物体表面上的外力,它作用于物体表面的各个质点上,如物体间的接触力和气体压力等。

1、平面应力问题在这类问题的应力分量中,凡带某一脚标的(如z )都为零。

其特点是:几何形状特点:物体在一个方向(如z 向)上的尺寸远 小于其他两个方向的几何尺寸,如薄 板。

所受外力特点:在薄板的两个侧面上无面力作用,只 在其边缘受到平行于板面且沿板厚均 匀分布的面力(面力分量中 )作 用,同时体力也平行于板面且不沿板厚变化(体力分量中 )。

弹性力学基础及有限单元法

弹性力学基础及有限单元法

第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。

2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。

实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。

根据这个假设所得的结果与实验结果是符合的。

(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。

这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。

钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。

木材不是各向同性的。

(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。

同时还假定材料服从胡克定律,即应力与形变成正比。

(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。

在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。

在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。

(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。

也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。

物体中初应力的性质及数值与物体形成的历史有关。

若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。

上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。

弹性力学作业总结

弹性力学作业总结

弹性⼒学作业总结⼀、综述这学期我们有幸跟着邱⽼师学习了弹性⼒学这门课程,虽然我本科是学习机械专业的,但经过这学期的系统学习,使我对弹性⼒学的认识也越发的清晰,我对平⾯问题、空间问题等基本知识有了较为清晰的了解与掌握,会⽤逆解法、半逆解法、差分法、变分法和有限元法解决⼀些基础的弹性⼒学问题。

弹性⼒学是固体⼒学的⼀个分⽀,研究弹性体由于外⼒作⽤或温度改变等原因⽽发⽣的应⼒、形变和位移。

它是学习塑性⼒学、断裂⼒学、有限元⽅法的基础,⼴泛应⽤于建筑、机械、化⼯、航天等⼯程领域。

本课程较为完整的表现了⼒学问题的数学建模过程,建⽴了弹性⼒学的基本⽅程和边值条件,并对⼀些问题进⾏了求解。

弹性⼒学基本⽅程的建⽴为进⼀步的数值⽅法奠定了基础。

⼆、绪论弹性⼒学所依据的基本规律有三个:变形连续规律、应⼒-应变关系和运动(或平衡)规律,它们有时被称为弹性⼒学三⼤基本规律。

弹性⼒学中许多定理、公式和结论等,都可以从三⼤基本规律推导出来。

通过对弹性⼒学的学习,我感觉整本书就讲了⼗五个控制⽅程解⼗五个未知数。

⽽剩下的问题就是如何求解这些⽅程的问题,这也是数学和⼒学结合最紧密的地⽅。

⽽求解的⽅法⽆外乎有:基于位移的求解(位移法)和基于应⼒的求解(应⼒函数法),差分法、变分法。

⽽前⼈的研究⼤部分都是如何使这些⽅程求解起来更⽅便。

弹性⼒学思路清晰,但是⽅程和公式复杂。

1.⼯程⼒学问题建⽴⼒学模型的过程,⼀般要对三⽅⾯进⾏简化:结构简化、材料简化及受⼒简化。

建模过程如右图:结构简化:如空间问题向平⾯问题的简化,向轴对称问题的简化,实体结构向板、壳结构的简化。

受⼒简化:根据圣维南原理,复杂⼒系简化为等效⼒系。

材料简化:根据各向同性、连续、均匀等假设进⾏简化。

在建⽴数学模型的过程中,通常要注意分清问题的性质进⾏简化:线性化和实验验证。

2.弹性⼒学的基本内容就是研究研究弹性体由于外⼒作⽤或温度改变等原因⽽发⽣的应⼒、形变和位移。

应⽤在⼯程中的实例有⽐赛斜塔,⽔轮机以及各种齿轮等等。

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。

正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。

弹性力学的研究对象:材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。

结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。

弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。

弹性力学研究方法:在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。

弹性力学的基本假设:1)连续性,假定物体是连续的。

连续性因此,各物理量可用连续函数表示。

2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不计,由此得到的弹性力学微分方程将是线性的。

4)完全弹性假设假设固体材料是完全弹性的。

5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所引起的。

有限元法的基本思想:有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。

及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组合体来加以分析。

有限元分析第3章弹性力学基础知识2

有限元分析第3章弹性力学基础知识2

应变能密度的性质
U0 1 x x y y z z xy xy yz yz zx zx 2 1 1 2 2 2 2 2 2 U 0 ij x y z x y y z z x xy yz zx 2E E 2G 1 2 2 2 2 2 2 2 U 0 ij e 2 G G x y z xy yz zx 2
1
1
1 1
1 0 0 0
0 0 0 1 2 2 1 0 0
0 0 0 0 1 2 2 1 0
1
0 0 0
xy yz zx
xy
G
yz
G
0 x 0 y z 0 xy yz 0 zx 1 2 2 1 0
2、力的边界条件
边界上给定面力时,则物体边界上的应 力应满足与面力相平衡的力的平衡条件
X 0
以二维问题为例
注意ds为边界斜边的长度,边界外法 线n的方向余弦l=dy/ds,m=dx/ds
有:
一、弹性力学的边界条件
以二维问题为例
同理:
Y 0
M 0
一、弹性力学的边界条件
以二维问题为例
x z y
T
w (x,y,z) dz v dx u
Sp
dy
Ω
Su
一、弹性力学的边界条件
1、位移边界条件
T 边界上已知位移时,应建 立物体边界上点的位移与 给定位移相等的条件
w (x,y,z) dz v dx u dy

弹性力学总结

弹性力学总结

通过圣维南原理的使用,可以将一些难以处理的边界条件
转化为基本方程所能够满足的边界条件,使得弹性力学问题得 到解答。
应用的注意事项:
1、取代原力系的必须是静力等效力系:主失量和主矩相等。 2、应用时不能讨论局部应力场。
弹性力学问题的提出
极坐标中的基本方程和边界条件
(1)平衡微分方程

1 f 0 2 1 f 0
(2)几何方程
(4-9)

u
u 1 u u u 1 u
(4-13)
弹性力学问题的提出
(3)物理方程(平面应力问题)
1 ( ) E 1 ( ) E 2(1 ) E
xБайду номын сангаас
0, 0,
o
a ( )
a

r
rd cos ( ) r rd sin 0 rd sin ( ) r rd cos 0
y
a ( )
a

r
M
0, ( ) r rd r M 0
习题课
A cos 2 B sin 2 C D
(3)求应力分量一般表达式:将上式代入(4-15),得 应力分量为:
1 1 2 1 2 2 4 A cos 2 4 B sin 2 2 2 0 1 1 ( ) 2 2 A sin 2 2 B cos 2 C
2 2
0
2
(4-14)

弹性力学及有限元

弹性力学及有限元

热传导案例
总结词
热传导是有限元分析中用于模拟物体内部热量传递规律的应用之一。
详细描述
在电子、机械、化工和材料等领域,热传导分析用于研究材料的热性能、热应力和热变形等。通过有 限元方法,可以模拟物体内部的热量传递过程,预测温度分布和热应力分布,优化材料和系统的热设 计。
06
结论展望
结论
01
02
有限元分析
有限元分析是一种数值分析方法,通过将复杂的物体或系统离散 化为有限个小的单元(或称为元素),并分析这些单元的应力、 应变和位移,从而对整个物体或系统的行为进行预测和分析。
主题的重要性
工程应用
弹性力学和有限元分析在工程领域中具有广泛的应用,如结 构分析、机械设计、航空航天、土木工程等。通过这些方法 ,工程师可以更准确地预测和分析结构的性能,优化设计, 提高安全性。
03
04
研究意义
弹性力学及有限元分析在工程 领域具有广泛应用,为复杂结 构的分析提供了有效方法。
主要成果
本文系统地介绍了弹性力学的 基本原理和有限元分析的方法 ,并通过实例验证了其有效性 。
研究限制
由于时间和资源的限制,本研 究未能涵盖所有相关领域,未 来研究可进一步拓展。
对实践的指导意义
本文为实际工程中的结构分析 提供了理论依据和实践指导, 有助于提高结构的安全性和稳 定性。
优势
有限元方法具有广泛的适用性,可以用于求解各种复杂的物理问题;能够处理 复杂的几何形状和边界条件;可以通过增加单元数目来提高解的精度;可以方 便地处理非线性问题和材料非均质性问题等。
局限性
有限元方法需要较大的计算资源和时间,尤其对于大规模问题;对于某些特殊 问题(如高速冲击、爆炸等),需要采用特殊处理方法;对于多物理场耦合问 题,需要采用多场耦合有限元方法等。

有限元基础课程学习总结

有限元基础课程学习总结

有限元基础理论学习总结报告中国矿业大学(北京)14级硕士王涛通过课上和课下的学习,对有限元基础理论有了一定的了解和认识。

经过学习,更加深刻的理解了有限元的离散、单元类型、插值函数构造和等参变换等知识,现对有限元的基本理论和用法做了如下学习和报告。

已经发展的偏微分方程数值分析方法可以分为两大类。

一类是有限差分法,其特点是直接求解基本方程和相应定解条件的近似解,求解步骤归纳为:首先将求解域划分为网格,然后在网格的节点上用差分方程来近似微分方程。

借助于有限差分法能够求解相当复杂的问题,特别是求解方程建立于固结在空间的坐标系(Euler坐标系)的流体力学问题,有限差分法有自身的优势,因此在流体力学领域内,至今仍占支配地位。

但是对于固体结构问题,由于方程通常建立于固结的物体上的坐标系(Lagrange坐标系)和形状复杂,另一类数值分析方法——有限元法则更为合适。

有限差分法:特点:以差分方程近似微分方程,直接数值求解原问题的微分方程,在流体力学,岩土力学领域占重要地位。

有限元法:特点:区别于有限差分法,即不是直接从问题的微分方程和相应的定解条件出发,而是从等效的积分形式出发,数值求解原问题的等效积分方程。

基本思想:1 将求解域离散为有限个子域(单元)的集合2 分片逼近待求函数分析过程:1 单元特性分析,单元节点位移与节点力之间的关系2 系统特性分析,将单元刚度矩阵集成整体刚度方程1. 有限元法的理论基础——加权余量法和变分原理1.1 微分方程的等效积分形式和加权余量法1.1.1 微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件形式提出来的,可以一般地表示为未知函数应满足微分方程组()0A u =(在Ω内) (1.1.1) 域Ω可以是体积域、面积域等。

同时未知函数还应满足边界条件()0B u =(在Г内) (1.1.2) Г是域Ω的边界。

由于微分方程组(1.1.1)在域Ω中每一点都必须为零,因此就有0...))()(()(2211=Ω++=Ω⎰⎰ΩΩd A A d A T μυμυμυ (1.1.3)其中是函数向量,它是一组和微分方程个数相等的任意函数。

2弹性力学及有限元法-弹性力学基础知识

2弹性力学及有限元法-弹性力学基础知识

2、内力与应力
第 1.内力?2.应力矢量?3.应力矢量的特点? 二 章 符号规定: 弹 正面:单元体面的外法线与坐标轴 性 力 同向 学 基 负面:单元体面的外法线与坐标轴 础 z 反向 知 识 o
x
y
τyz
在正面上,应力分量与坐标轴同向为 正,反向为负。在负面上相反。 应力符号第一下标表示所在的平面, 第二下标表示沿坐标轴的方向。
x a 2
b
fx p fx p
a o
y
xa 2
x
y b 2 y b 2
fy p fy p
22
2、内力与应力
力的概念-举例 第 二 章 例3 已知单元体各面上的应力分量,试在单元上标出方向与数值。 弹 性 5 10 13 力 x yx zx 100 40 80 5 学 40 50 60 20 8 y zy xy 基 yz z 60 120 xz 80 10 8 50 础 知 o 识 50 x

是宏观假设,微观上这个假设不可能成立。
固体材料都是由微粒组成
工程材料内部的缺陷
4
2.1 弹性力学基本假设
第 二 章 弹 性 力 学 基 础 知 识
2. 均匀性假设

——假设弹性物体是由同一类型的均匀材料组成的。因此, 物体各个部分的物理性质都是相同的,不随坐标位置的变化 而改变。 —— 物体的弹性性质处处都是相同的。
x y z xy yz zx
T
点的应变状态也是坐标的单值连续函数
25
5.主应力与主平面
第 二 章 弹 性 力 学 基 础 知 识
1)任意斜截面上的应力

有限元总结

有限元总结

有限元总结第一篇:有限元总结1、有限元法是近似求解连续场问题的数值方法。

2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(结点相连。

3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。

4、以(结点位移)为基本未知量的求解方法称为位移量。

5、以(结点力)为基本未知量的求解方法称为力法。

7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。

8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。

9、进行直梁有限元分析,结点位移有(转角)、(挠度)。

12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。

13、弹性力学平面问题方程个数有(8),未知数(8)个。

15、几何方程是研究(应变)和(位移)关系的方程。

16、物理方程描述(应力)和(应变)关系的方程。

17、平衡方程反映(应力)和(位移)关系的方程。

18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。

19、形函数在单元结点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一结点上,三个形函数之和为(1)。

20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。

21、结点编号时,同一单元相邻结点的(编号)尽量小。

25、单元刚度矩阵描述了(结点力)和(结点位移)之间的关系。

矩形单元边界上位移是(线性)变化的。

1、从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中(C)。

A、力法B、位移法C、应变法D、混合法2、下面对有限元法特点的叙述中,哪种说法是错误的(D)。

A、可以模拟各种几何形状负责的结构,得出其近似值。

B、解题步骤可以系统化,标准化。

C、容易处理非均匀连续介质,可以求解非线性问题。

D、需要适用于整个结构的插值函数。

3、几何方程研究的是(A)之间关系的方程式。

A、应变和位移B、应力和体力C、应力和位移D、应力和应变 4.物理方研究的是(D)之间关系的方程式。

弹性力学学习心得

弹性力学学习心得

弹性力学学习心得第一篇:弹性力学学习心得弹性力学学习心得大学时期就学习过弹性力学这门学科,当时的课本是徐芝纶教授的《简明弹性力学》,书的内容很丰富,但是由于课时有限加上我们自身能力的限制,本科期间只学习了前四章内容,学的比较粗略,理解的也不是很多,研一的这学期又有了一次学习的机会,通过杨老师耐心细致的讲解,我觉得弹性力学是一门十分有用并且基础的学科,值得我们去研究学习。

弹性力学与材料力学、结构力学的研究对象和研究方法上存在着一些差异,但是他们之间的界限却又不是那么明显。

以弹性力学的平面问题为例,由弹性力学中平面问题的三套基本方程(平衡方程、几何方程和物理方程)和两种边界条件(应力边界、位移边界和混合)联立,就得到了求解两类平面问题(平面应力和平面应变)的一些基本方程。

但是要由这些基本方程求得解析解,又是一个复杂而困难的问题。

此时,引入结构力学中的力法和位移法,可以使得某些比较复杂的本来是无法求解的问题,得到解答。

其中,位移法是以位移分量为基本未知函数,从基本方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,求出位移分量后,再求出形变分量和应力分量的方法。

由于位移法能更方便地处理方程中的边界条件,因此,课本中多用位移法来进行求解。

在这个章节的学习中,要先复习、回忆结构力学中关于力法、位移法的知识概念,再总结弹性力学按位移求解平面应力问题的步骤和方法。

弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构设计中所提出的强度和刚度问题。

在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。

材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。

弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。

弹性力学及其有限元法

弹性力学及其有限元法

弹性力学及有限元分析1、 设试件两定点之间的长度为L 0,其截面积为F 0,加上拉力P 后,L 0 伸长了△L 。

我们把P/ F 0 称为拉伸应力(σ),△L/ L 0 称为拉伸应变(ε),于是有σ=P/ F 0 ,ε= △L/ L 0某种材料的拉伸应力和拉伸应变的比,称为该材料的杨氏模量或弹性模量(E),即 LF PL E ∆==00εσ,弹性模量E 表征了材料的物理性质。

2、 根据力学特性,固体通常分为韧性固体和脆性固体。

首先分析韧性材料,材料在受力变形过程中,明显地有四个特性点划分三各阶段。

a. 弹性阶段,这一阶段的明显特征是,当外力逐渐去掉时,变形也逐渐消失,物体能够恢复到原来的形状,物体的这种性质称为弹性,存在一个应力极限称为弹性极限。

随着外力的消失而消失的变形称为弹性变形;去掉外力后仍然保留的变形称为残余变形或永久变形。

弹性阶段另一个明显特征是,应力与应变保持线性关系。

设受力方向为x 方向,x xE εσ=,这就是简单拉伸时的虎克定律,弹性模量E 为常数,表示应力与应变成正比例。

通常把弹性极限和比例极限规定为一个值。

b. 塑性阶段,超过弹性极限后,材料开始失去弹性,进入塑性阶段,这时产生较大的永久变形,应力应变关系不再是线性的。

当曲线超过s 点(屈服极限)后,材料开始屈服,即在应力几乎不增加的情况下,应变会不断的增加,称s 点为屈服极限;当变形大到一定程度后,材料开始强化,要继续增加变形必须再增加外力,到达b 点后产生颈缩。

从弹性极限到b 的变形范围统称为塑性阶段,属于塑性力学的研究范畴。

c. 断裂阶段,试件产生颈缩后,开始失去抵抗外力的能力,最后发生断裂,相对于b点的应力称为强度极限。

脆性材料:它的拉伸曲线图没有明显的三个阶段之分,也没有明显的屈服应力点,材料亦不再满足虎克定律。

为了分析上的需要,往往以切线斜率作为弹性模量,即εσd d E =。

如果对脆性固体材料加载,应力应变曲线将沿着OA 上升,若到A 点后即行卸载,应力应变曲线并不沿着原来的途径回复到原点,而是沿着直线AB 下降,当全部载荷卸去之后,试件中尚残存一部分永久变形''ε。

弹性力学学习心得

弹性力学学习心得

弹性力学学习心得孙敬龙S201201024大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。

研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。

弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。

弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。

在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。

材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。

弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。

它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。

弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。

绝对弹性体是不存在的。

物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。

弹性力学的发展大体分为四个时期。

人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。

当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。

发展初期的工作是通过实践,探索弹性力学的基本规律。

这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。

第二个时期是理论基础的建立时期。

这个时期的主要成就是,从1822~1828年间,在A.L•柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。

有限元分析学习心得4页

有限元分析学习心得4页

有限元分析学习心得4页一说到有限元分析理论学习,我就觉得我上的那个是假大学,为啥随便来几个不是新手的人都是学过这么多课的,看过这么多书的,我上的大学不都是浪出来的么?我相信很多新手和我的感觉是一样一样的。

首先我以我目前的认知以及在网上很多人解答新手的问题来大致罗列下出镜率比较高的理论科目,并大致评估下学习需要的时间。

大学本科四年掌握:高等数学、线性代数、材料力学、理论力学、概率统计,到这里24岁,这一阶段大多数的步调基本一致,接下来开始:弹性力学(1年);数值方法(0.5年);有限单元法(1年);振动力学(1年);损伤力学(1年);张量分析(1年);线性空间(1年);软件应用(0.5年)。

把以上的内容相加,大概7年时间,WTF!这些学完已经30+了,这玩意我还是按照及其保守的时间,实际操作起来只会长不会短,有人说我可以一起学,有这种想法的人可以试试,或者去问问身边群里那些正在学习的人(这类人肯定不少,而且多数都是新手),听听他们学习之后的感受。

已经参加工作的朋友们肯定知道,过了大学本科之后的阶段,还要学相关的产品设计,产品标准一大堆的东西,读书的还要应对考试,工作的每天还说不定要加班,还要谈恋爱,到了27岁以后还有要考虑结婚生孩子,要照顾家里人,年纪大了记忆能力理解能力衰退,学这些玩意,确实想太多了,即使学个大概,估计30岁前能学完都谢天谢地了!所以这种学习方式适合那些精英群体(如果你不清楚自己是不是精英群体的,我想这样判断,反正高数、材料力学或者概率统计这些都是必修的,能够每本一个月内看完并且理解80%考试轻松过的,那可能可以步入精英群体行列了,如果做不到的,那肯定不是了),不适合一般的普通学习者,更加不适合在24岁之后就走上工作岗位的工程人员,所以我们这样的非精英群体该如何学习有限元分析的理论部分?我们多数人学习的目的是为了保证未来工作中的应用(这个是学习的核心一定要牢牢记住,如果家里有矿学着玩的,不用往下看)。

《弹性力学与有限元》第1章弹性力学的基础知识

《弹性力学与有限元》第1章弹性力学的基础知识

(五)小应变位移假设 物体在外加因素作用下,物体变形产生的位移与物体尺寸相比极其微小,因 而应变分量和转角均远小于 1。这样,在建立物体变形后的平衡方程时,可以不 考虑由于变形引起的物体尺寸和位置的变化;在建立几何方程和物理方程时,可 以略去应变、转角的二次幂或二次乘积以上的项,使得到的基本方程是线性偏微 分方程组。这个假设又称为几何线性的假设。
物体的弹性性质是客观存在的,人类很早就可以利用物体的弹性性质了,比 如在树枝上荡漾,古代的弓箭等等。
了解掌握弹性物体的客观规律,并形成弹性力学这样一门学科,则经过了三 个发展时期:
弹性力学的发展初期。17 世纪开始,主要是通过实践,尤其是通过实验来 探索弹性力学的基本规律。英国的胡克和法国的马略特于 1680 年分别独立地提 出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于 1687 年确立了力学三定律,奠定了力学的发展基础。
《弹性力学与有限元》
第 1 章 弹性力学的基础知识
第 1 章 弹性力学的基础知识
弹性力学(Elastic Mechanics)是固体力学的重要分支,它研究弹性物体在外力 和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结 构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天 等工程领域。
材料力学的研究对象主要是杆状构件(一维弹性杆件),而且常采用一些关 于变形的近似假设,如“平面截面”的假设等等,使得计算简化。
而弹性力学的分析方法在一开始并不考虑平面截面的假设,而是从变形连续 性的观念出发列出几何方程,所谓变形连续性是指在变形前的连续物体在变形后 仍保持连续,物体的任一部分及单元体均保持连续。在保持变形连续的情况下, 平面界面变形以后可能不再保持平面,

总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤,指出其异同点

总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤,指出其异同点

总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤,指出其异同点航天航空学院1334班艾松学号:4113006012杆件在多种外力共同作用下的变形(或力),可先分别求出各外力单独作用下杆件的变形(或力),然后将这些变形(或力)叠加,从而得到最终结果。

②几何非线性问题。

若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。

这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。

③物理非线性问题。

在这类问题中,材料的变形和力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。

在几何非线性问题和物理非线性问题中,叠加原理失效。

解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法解。

直角坐标系下的弹性力学的基本方程为:平衡微分方程(1)几何方程(2)物理方程(3)(1)式中的σx、σy、σz、τyz=τzy、τxz=τzx、τxy=τyx为应力分量,X、Y、函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单二、变形及刚度条件 拉压:∑⎰===∆LEAxx N EAL N EANLL d )(ii 扭转:()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L弯曲:(1)积分法:)()(''x M x EIy =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…()21,P P θ=()()++21P P θθ…三、应力状态与强度理论 二向应力状态斜截面应力:ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=二向应力状态极值正应力及所在截面方位角:到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学及有限元法学习总结
摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。

正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。

弹性力学的研究对象:
材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。

结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。

弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。

弹性力学研究方法:
在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。

弹性力学的基本假设:
1)连续性,假定物体是连续的。

连续性因此,各物理量可用连续函数表示。

2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不
计,由此得到的弹性力学微分方程将是线性的。

4)完全弹性假设假设固体材料是完全弹性的。

5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所
引起的。

有限元法的基本思想:
有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。

及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组合体来加以分析。

有限元法的数学基础:
微分方程的近似求解法,包括有限差分方法,变分原理和加权余量法。

有限元法分析的基本步骤:
1)建立研究对象的近似模型
2)将研究对象分割成有限数量的单元
3)用标准方法对每一个单元提出一个近似解
4)将所有单元按标准方法组合成一个与原有系统近似的系统
5)用数值方法求解这个近似系统
在力学学科和工程学科中, 弹性力学在力学学科和工程学科中, 具有重要的地位:弹性力学是其他固体力学分支学科的基础。

弹性力学是工程结构分析的重要手段。

通过学习弹性力学及有限元法,我取得了以下成绩,(1)理解和掌握弹力的基本理论;理解和掌握弹力的基本理论;(2)能阅读和应用弹力文献;能阅读和应用弹力文献;(3)能用弹力近似解法(变分法、差分法能用弹力近似解法(变分法、和有限单元法)解决工程实际问题;和有限单元法)解决工程实际问题;(4)为进一步学习其他固体力学分支学科打下基础。

参考文献:《弹性力学简明教程》徐芝纶 2002年 8 月第 3 版
同济大学弹性力学讲义李遇春编。

相关文档
最新文档