Eviews6.0面板数据操作
EVIEWS面板数据分析操作教程之PanelData模型
首先:建立随机效应回归
yi vi xi β ui
其次:用Hausman检验该模型是否是随机效应模型
21
此处选 random
一
确定影响形式软件操作
yi vi xi β ui
第一步:建立建立随机效应回归
◎POOL/ESTIMATE如右窗口
点确定结果请点 结果
由于自变量前
系数不变,所
k
1)]
F1
(S 2 S1 ) /[( N 1)k ] S1 ( NT N (k 1))
~
F[( N
1)k , N (T
k
1)]
获得S1,S2,S3后手工计算F2,F1,并查找临界值做出判定
请点:判定规则 请点 判定实例
27
模型形式检验步骤:注要手工计算
例10.5中系数 和 取何种形式可以利用模型形式设定检验方法
yi
m
xi β
* i
ui
由于自变量前 系数不变,所 以自变量填写
在此处
◎POOL/ESTIMATE如右 窗口 点确定结果请点 结果
说明 软件给出的固定影响分为: 一 总体均值 二 个体对总体的偏离
31
记下:自 由度为N (T-1)-K
记下 S2
32
附注:包含时期个体恒量的固定影响变截距模型
yit
F1=((S2-S1)/8)/(S1 /85) = 3.29 F2=((S3-S1)/12)/(S1 /85) = 25.73 界到点相利应,用的k1函和临数k界2是值@自为q由f:di度st(。d,k在1,给k2)定得5%到的F分显布著的性临水界平值下,(d其=0中.95d),是得临 F2(12, 85) = 1.87 F1(8, 85) =2.049 H1。由因于此,F2例>11.807.5,的所模以型拒应绝采H用2;变又系由数于的形F1式>2。.049,所以也拒绝28
基于EViews 6的面板数据计量分析
基于EViews 6的面板数据计量分析对于面板数据,EViews 6 提供的估计方法有如下三种,最小二乘估计——LS - Least Squares (and AR)二阶段最小二乘估计——TSLS - Two-Stage Least Squares (and AR)动态面板数据模型的广义矩估计——GMM / DPD - Generalized Method of Moments/Dynamic Panel Data第1节“LS - Least Squares (LS and AR)”估计如果选择最小二乘方法估计面板数据模型,在“Equation Estimation”窗口中,须依次设置“Specification”、“Panel Options”和“Options”页面。
1.1“Specification”页面在“Specification”页面中,完成模型设定和估计样本时间范围的选择。
1 在“Equation specification”编辑区,指定模型的被解释变量、截距项和解释变量;2 在“Sample”编辑区,指定估计样本时间的范围。
1.2“Panel Options”页面设置模型中不可观测的双(单)因素效应,即面板数据回归模型的选择。
点击“Panel Options”该页面包含三方面内容。
1 效应设置在“Effects specification”选择区,设定面板数据模型的个体效应和时间效应,可选择的选项有“None”、“Fixed”和“Random”,分别表示“无效应”、“固定效应”和“随机效应”。
如果选择了“Fixed”或“Random”,EViews在输出结果中自动添加一个共同常数,即截距项,以保证效应之和为零。
否则,截距项必要时,须在“Specification”页面的“Equation specification”编辑区设定模型截距项。
2 GLS加权设置“GLS Weights”可以在下拉框中选择如下选项之一。
详细的EVIEWS面板数据分析操作 LN
形式一:变系数模型
yi ixiβiui
形式二:固定影响模型 yi mxiβi*ui
形式二:不变参数模型 yi xiβui
(2)根据F检验确定上述三种形式之一
请点(确定模型形式的F检验)
25
确定模型形式的F检验
原假设:两个如下
H1:
β 1 β 2 β N
H2:
12 N
β 1 β 2 β N
View/Spreadsheet View:i? m? k?
4
第二步 分析数据的平稳性(单位根检验) 请点 说明 请点 软件操作 结果 点检验结果1 结果2
5
分析数据的平稳性(单位根检验)说明 注:所有序列者要检验
原:不稳定(Hadri 除外, Hadri 中 原:稳定)
目的:防止虚假回归或伪回归
10
思路一:变量之间是非同阶单整 :序列变换
◎变量之间是非同阶单整的指即面板数据中有些序列平稳而有些序列不平稳,
此时不能进行协整检验与直接对原序列进行回归。
◎对序列进行差分或取对数使之变成同阶序列
若变换序列后均为平稳序列可用变换后的序列直接进行回归
思路二 若变换序列后均为同阶非平稳序列,则请点
11
详细的EVIEWS面板数据分析操作
第一步 录入数据 一 请点 实例数据 二 请点 录入数据软件操作
2
实例数据
录入企业投资需求模型数据:五家企业和三个变量的20个年度 (1935-1954年)观测值的时间序列 (数据略)
5家企业: GM:通用汽车公司 CH:克莱斯勒公司 GE:通用电器公司
3个变量: I :总投资 M :前一年企业的市场价值 (反映企业的检验
请点协整检验说明 请点 软件操作 结果判定请点 1 2 3 协整检验通过:
使用Eviews进行面板数据操作(有详图,包括Hausman检验,单位根检验)
每个个体有共
同的参数 bi
bi 随个体不
同而发生
变
变化
参
数
bi 随个体不 同而发生
模 型
变化
下面为个体固定效应的结果。 点击view——representation可以显示具体的回归方程式。
2. 面板数据的检验
① Hausman检验(要在随机效应结果窗口中进行) 对数据进行随机效应模型估计,在估计结果窗口点击view——Fixed/Random Effects testing——Correlated Random Effect-Hausman Test(6.0以上的 版本才可以)
⑤ 在打开的数据组中点击view——graph——scatter——simple scatter, 便可得到不同时间的散点图。
⑥ 同理,按ctrl键,分别选择ip_i, ip_ah,I p_bj, ip_hb…便可得到不同个体 的散点图。
由于是用同一组数据画出的图形,所以虽然采用的 是不同的方法,但是绘出的两个图形一样。
在估计结果中点击proc——Make Model可以出现估计结果的联立方 程形式,进一步点击Solve键可以 在弹出的对话框中进行动态和静态 预测。
在估计结果或原始的面包数据窗口中点击view——unit root test
这里默认为 Schwarz检 验,因为在 小样本情况 下Schwarz 检验效果最 好。
注意:只有在随机效应估计窗口中才能 进行Hausman检验,只有在固定效应估 计窗口中才能进行似然比检验
Hausman检验的原假设是个体效 应与回归变量无关,应建立随机效 应模型,因此当Hausman值较大, 其对应的P值远小于0.05时,拒绝
基于eviews6的面板数据计量分析1
基于EViews 6的面板数据计量分析 对于面板数据,EViews 6 提供的估计方法有如下三种,最小二乘估计——LS - Least Squares (and AR)二阶段最小二乘估计——TSLS - Two-Stage Least Squares (and AR)动态面板数据模型的广义矩估计——GMM / DPD - Generalized Method ofMoments/Dynamic Panel Data第1节“LS - Least Squares (LS and AR)”估计如果选择最小二乘方法估计面板数据模型,在“Equation Estimation”窗口中,须依次设置“Specification”、“Panel Options”和“Options”页面。
1.1“Specification”页面在“Specification”页面中,完成模型设定和估计样本时间范围的选择。
1 在“Equation specification”编辑区,指定模型的被解释变量、截距项和解释变量;2 在“Sample”编辑区,指定估计样本时间的范围。
1.2“Panel Options”页面设置模型中不可观测的双(单)因素效应,即面板数据回归模型的选择。
点击“Panel Options”该页面包含三方面内容。
1 效应设置在“Effects specification”选择区,设定面板数据模型的个体效应和时间效应,可选择的选项有“None”、“Fixed”和“Random”,分别表示“无效应”、“固定效应”和“随机效应”。
如果选择了“Fixed”或“Random”,EViews在输出结果中自动添加一个共同常数,即截距项,以保证效应之和为零。
否则,截距项必要时,须在“Specification”页面的“Equation specification”编辑区设定模型截距项。
2 GLS加权设置“GLS Weights”可以在下拉框中选择如下选项之一。
计量经济学软件Eviews6.0基本操作
计量经济学软件EVIEWS6.0基本操作一、什么是EVIEWSEVIEWS (ECONOMETRIC VIEWS)软件是QMS(QUANTITATIVE MICRO SOFTWARE)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。
EVIEWS软件主要应用在经济学领域,可用于回归分析与预测(REGRESSION AND FORECASTING)、时间序列(TIME SERIES)以及横截面数据(CROSS-SECTIONAL DATA )分析。
与其他统计软件(如EXCEL、SAS、SPSS、stata、R)相比,EVIEWS功能优势是菜单操作简单明了,使用方法,非常适用计量经济学初级学员。
本手册对EVIEWS软件6.0版本进行简单介绍,目的是让初级学员通过本章介绍,能够对学过的计量经济理论和方法进行简单应用,以便完成本书所述的相关实验项目。
二、EVIEWS安装EVIEWS6.0文件安装包大小约190MB,可在网上下载①。
下载完毕后,按照包中安装文件所述安装方法安装该软件。
安装完毕后,将快捷键发送的桌面,电脑桌面显示有EVIEWS6.0图标,整个安装过程就结束了。
双击EVIEWS按钮即可启动该软件(图1),图1所示界面称为EVIEWS软件主窗口,主窗口中的菜单,如File菜单称为EVIEWS主菜单。
图1三、Eviews工作特点初次使EVIEWS6.0计量经济学软件,必须了解其工作过程。
如,想要完成一个校准一元线性回归模型的参数估计,必须要完成两大步工作。
第一大步工作就是在建立一个工作文档(即EVIEWS6.0中的Workfile文档)、建立变量、导入数据;第二大步工作是在第一大步工作的基础上,根据模型特征,选用适当的参数估计方法,完成参数估计及相关检验。
四、具体示例在这里,我们通过一个简单的标准一元线性回归模型的估计过程来说明Eviews软件完成回归分析的基本过程。
EViews6.0在面板数据模型估计中的操作
EViews 6.0在面板数据模型估计中的实验操作1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯2、建立面板数据工作文件workfile(1)最好不要选择EViews默认的blanaced panel 类型Moren_panel(2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件3、建立pool对象(1)新建对象(2)选择新建对象类型并命名(3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。
建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图关闭建立的pool对象,它就出现在当前工作文件中。
4、在pool对象中建立面板数据序列双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表)在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。
例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。
请看工作文件窗口中的序列名。
展开表(类似excel)中等待你输入、贴入数据。
(1)打开编辑(edit)窗口(2)贴入数据(3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验选择单位根检验设置单位根检验单位根检验结果注意检验方法和两种检验的零假设:Null: Unit root (assumes common unit root process)各截面有相同的单位根Null: Unit root (assumes individual unit root process)允许各截面有不同单位根其中,Levin, Lin & Chu t*检验拒绝含有单位根的零假设,即拒绝非平稳7、在pool窗口对面板数据组合进行协整检验选择进行协整检验协整检验设置对话框,注意有3种检验方法(test type)协整检验结果,同样要注意两种假定(含有AR,即含有单位根,非协整),两种零假设都是非协整,小概率事件发生拒绝非协整。
详细的EVIEWS面板数据分析操作
m? k?
方式二(方式是否正确,有待考证)
File/New/ Workfile Workfile structure type : Balanced Panel Start date 1935 End date 1954 Number of cross 1 OK Cross Section Identifiers:_GM _CH _GE _WE _US View/Spreadsheet View:i?
5家企业: GM:通用汽车公司 CH:克莱斯勒公司 GE:通用电器公司 3个变量: I :总投资 M :前一年企业的市场价值 (反映企业的预期利润)
WE:西屋公司
US:美国钢铁公司
K :前一年末工厂存货和设备的价值
(反映企业必要重置投资期望值)
3
录入 数据软件操作(EVIEW6.0) 方式一
File/New/ Workfile Workfile structure type : Dated-regular frequency Start date 1935 End date 1954 OK Objects/New Object : Type of Object pool OK Cross Section Identifiers:_GM _CH _GE _WE _US View/Spreadsheet View:i?
m? k?
4
第二步 分析数据的平稳性(单位根检验) 请点 说明
请点 软件操作 结果 点检验结果1 结果2
5
分析数据的平稳性(单位根检验)说明 注:所有序列者要检验
原:不稳定(Hadri 除外, Hadri 中 原:稳定)
目的:防止虚假回归或伪回归
方法: 相同根下:LLC、Breintung 、 Hadri 不同根下:IPS、ADF-Fisher 和PP-Fisher5
精选EVIEWS面板数据分析操作教程及实例krn
格兰杰因果检验(因果检验的前提是变量协整)。Eviews好像没有在POOL窗口中提供Granger causality test,如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试
因果分析
2.099652(0.044)*
Panel rho-Statistic
-3.415758(0.0012)*
Panel PP-Statistic
-5.991403(0.0000)*
Panel ADF-Statistic
-7.835311(0.0000)*
H0: = 1 H1 :(i = )< 1
录入 数据软件操作(EVIEW6.0)方式一 File/New/ Workfile Workfile structure type : Dated-regular frequency Start date 1935 End date 1954 OK Objects/New Object : Type of Object pool OKCross Section Identifiers:_GM _CH _GE _WE _USView/Spreadsheet View:i? m? k? 方式二(方式是否正确,有待考证)File/New/ Workfile Workfile structure type : Balanced Panel Start date 1935 End date 1954 Number of cross 1 OKCross Section Identifiers:_GM _CH _GE _WE _USView/Spreadsheet View:i? m? k?
详细的EVIEWS面板数据分析操作
至少1个协整向量 65.74 (0.2266)
65.74 (0.2266)
注:加“*”表示在5%的显著性水平下拒绝原假设而接受备择假设。
上述检验结果检验的样本区间为1991-2003年,从表10.8和 表10.9的检验结果可以看出,我国29个省市的城镇居民消费和 收入的面板数据之间存在协整关系。
详细的EVIEWS面板数据分析操作
View/Spreadsheet View:i? m? k?
详细的EVIEWS面板数据分析操作
第二步 分析数据的平稳性(单位根检验) 请点 说明 请点 软件操作 结果 点检验结果1 结果2
详细的EVIEWS面板数据分析操作
分析数据的平稳性(单位根检验)说明 注:所有序列者要检验
原:不稳定(Hadri 除外, Hadri 中 原:稳定)
除此项 外均支 持协整
详细的EVIEWS面板数据分析操作
表10.8 Johansen面板协整检验结果
(选择序列有确定性趋势而协整方程只有截距的情况)
原假设
支
Fisher联合迹统计量 Fisher联合-max统计
持
(p值)
量(p值)
协Leabharlann 整0个协整向量133.4 (0.0000)*
128.7 (0.0000)*
此时不能进行协整检验与直接对原序列进行回归。
◎对序列进行差分或取对数使之变成同阶序列
若变换序列后均为平稳序列可用变换后的序列直接进行回归
思路二 若变换序列后均为同阶非平稳序列,则请点
详细的EVIEWS面板数据分析操作
思路二 变量之间是同阶单整:协整检验
请点协整检验说明 请点 软件操作 结果判定请点 1 2 3 协整检验通过:
Eviews6.0面板数据操作指南
Eviews6.0面板数据操作一、数据输入1、创建工作文档。
如下图操作,在” workfile create”文本框的“workfile structure type”选择“balanced panel”,”panel specification”的”start date”和”end date”输入数据的起止期间,”wf”输入工作文档的名称,点击” OK”即跳出新建的工作文档a界面。
2、创建新对象。
操作如下图。
在”new object”文本框的”type of object”选择”pool”,”name for object ”输入新对象的名称。
创建成功后的界面如下面第3张图所示。
3、输入数据。
双击”workfile”界面的,跳出”pool”界面,输入个体。
一般输入方式为如下:若上海输入_sh,北京输入_bj,…。
个体输入完成后,点击该界面的键,在跳出的”series list”输入变量名称,注意变量后要加问号。
格式如下:y? x?。
点击”OK”后,跳出数据输入界面,如下面第4张图所示。
在这个界面上点击键,即可以输入或者从EXCEL处复制数据。
在输入数据后,记得保存数据。
保存操作如下:在跳出的“workfile save”文本框选择“ok”即可,则自动保存到我的文档。
然后在“workfile”界面如下会显示保存路径:d:\my documents\a.wf1。
若要保存到自己选择的路径下面,则在保存时选择“save as”,在跳出的文本框里选择自己要保存的路径以及命名文件名称。
4、单位根检验。
一般回归前要检验面板数据是否存在单位根,以检验数据的平稳性,避免伪回归,或虚假回归,确保估计的有效性。
单位根检验时要分变量检验。
(补充:网上对面板数据的单位根检验和协整检验存在不同意见,一般认为时间区间较小的面板数据无需进行这两个检验。
)(1)生成数据组。
如下图操作。
点击”make group”后在跳出的”series list”里输入要单位根检验的变量,完成后就会跳出如下图3所示的组数据。
Eviews6.0面板数据操作
E 【2 】views6.0面板数据操作一、数据输入1.创建工作文档.如下图操作,在”workfile create”文本框的“workfile structure type”选择“balanced panel”,”panel specification”的”start date”和”end date”输入数据的起止时代,”wf”输入工作文档的名称,点击”OK”即跳出新建的工作文档a界面.2.创建新对象.操作如下图.在”new object”文本框的”type of object”选择”pool”,”name for object ”输入新对象的名称.创建成功后的界面如下面第3张图所示.-3.输入数据.双击”workfile”界面的,跳出”pool”界面,输入个别.一般输入方法为如下:若上海输入_sh,北京输入_bj,….个别输入完成后,点击该界面的键,在跳出的”series list”输入变量名称,留意变量后要加问号.格局如下:y?x?.点击”OK”后,跳出数据输入界面,如下面第4张图所示.在这个界面上点击键,即可以输入或者从EXCEL处复制数据.在输入数据后,记得保存数据.保存操作如下:在跳出的“workfile save”文本框选择“ok”即可,则主动保存到我的文档.然后在“workfile”界面如下会显示保存路径:d:\my documents\a.wf1.若要保存到本身选择的路径下面,则在保存时选择“save as”,在跳出的文本框里选择本身要保存的路径以及定名文件名称.4.单位根磨练.一般回归前要磨练面板数据是否消失单位根,以磨练数据的安稳性,避免伪回归,或虚伪回归,确保估量的有用性.单位根磨练时要分变量磨练.(补充:网上对面板数据的单位根磨练和协整磨练消失不赞成见,一般以为时光区间较小的面板数据无需进行这两个磨练.)(1)生成数据组.如下图操作.点击”make group”后在跳出的”series list”里输入要单位根磨练的变量,完成后就会跳出如下图3所示的组数据.(2)生成时序图.如下图操作.在”graghoptions”界面的”specifi”下选择生成的时序图的外形,一般都默认设置,生成的时序图如下图3所示.不雅察时序图的趋向,以肯定单位根磨练的磨练模式.(3)单位根磨练.单位根磨练时,在”group unit root test”里的”test for root in”按磨练成果一步步磨练,假如原值”level”的磨练成果相符请求,即不消失单位根,则单位根磨练就不须要磨练下去了,假如不相符请求,则需持续磨练一阶差分”1stdifference”.二阶差分”2nd difference”.”include in test equation”是磨练模式的选择,依据上面时序图的外形来选择.从上面的时序图可以看出,原值的磨练模式应当选择含有截距项和趋向的磨练模式,即”include in test equation”选择”individual intercept and trend”.磨练成果如下图3所示.从磨练成果可以看出,磨练成果除了levin磨练办法外其他办法的成果都不相符请求(Prob.xx小于置信度(如0.05),则以为谢绝单位根的原假设,经由过程磨练).所以持续磨练一阶差分和二阶差分,直到磨练成果达到请求.假如变量原值序列经由过程单位根磨练,则称变量为0阶单整;假如变量一阶差分后的序列经由过程单位根磨练,则称变量为一阶单整,以此推之.留意:单位根磨练的办法(test type)较多,可以运用LLC.IPS.Breintung.ADF-Fisher 和PP-Fisher这5种办法进行面板单位根磨练.一般,为了便利起见,只采用雷同根单位根磨练LLC和不同根单位根磨练Fisher-ADF这两种磨练办法,假如它们都谢绝消失单位根的原假设,则可以以为此序列是安稳的,反之就长短安稳的.5.协整磨练.协整磨练磨练的是模子的变量之间是否消失长期稳固的关系,其前提是解释变量和被解释变量在单位根磨练时为同阶单整.操作如下图所示.6.回归估量面板数据模子依据常数项和系数向量是否为常数,分为3种类型:混杂回归模子(都为常数).变截距模子(系数项为常数)和变系数模子(皆异常数).混杂模子: itit it y x αβμ=++1,2,,;1,2,,i N t T == 变截距模子:iti it it y x αβμ=++1,2,,;1,2,,i N t T == 变系数模子:iti it i it y x αβμ=++1,2,,;1,2,,i N t T ==断定一个面板数据毕竟属于哪种模子,用F 统计统计量:()[]()2111()/11,(1)/(1)S S N K F F N K N T K S NT N K --⎡⎤⎣⎦=---⎡⎤⎣⎦-+()[]()3121()/1(1)1(1),(1)/(1)S S N K F F N K N T K S NT N K --+⎡⎤⎣⎦=-+--⎡⎤⎣⎦-+来磨练以下两个假设:121:N H βββ===,12122:,N N H αααβββ======.个中,1S .2S .3S 分离为变系数模子.变截距模子和混杂模子的残差平方和,K 为解释变量的个数,N 为截面个别数目,α为常数项,β为系数向量.若盘算得到的统计量2F 的值小于给定明显性程度下的响应临界值,则接收假设2H ,用混杂模子拟合样本.反之,则需用1F 磨练假设1H ,假如盘算得到的1F 值小于给定明显性程度下的响应临界值,则以为接收假设1H ,用变截距模子拟合,不然用变系数模子拟合.具体操作:1).分离对面板数据进行3种类型模子的回归,得到1S .2S .3S .此外,一般来说,用样本数据揣摸总体效应,运用随机效应回归模子;直接对样本数据进行剖析,采用固定效应回归模子. 起首回到面板数据表,假如是在如下这个界面时,点击按钮,在跳出的“series list”文本框里输入模子变量,如下图.也可以经由过程从新打开工作文件,如下图操作.选择本身当初保存的路径和文件名,点击打开.打开后,跳出工作文件双击,然后分离进行变系数.变截距和混杂模子的回归估量:点击,进行变系数回归(变系数)变截距回归混杂模子估量前面同2)操作,在“pool estimation”输入如下2).肯定模子情势把模子估量取得的s1.s2.s3数值代入前述公式(第13页),如下()[]()2111()/11,(1)/(1)S S N K F F N K N T K S NT N K --⎡⎤⎣⎦=---⎡⎤⎣⎦-+()[]()3121()/1(1)1(1),(1)/(1)S S N K F F N K N T K S NT N K --+⎡⎤⎣⎦=-+--⎡⎤⎣⎦-+盘算得到F1.F2值,磨练假设H1.H2,从而肯定采用何种模子情势(变系数.变截距.混杂效应).3).回归剖析若磨练成果表明应采用变系数模子,回到以下界面进行估量点击,进行变系数回归上图列示了回归成果,个中:①Coefficient为系数,比如AH的系数为0.760053,截距项为477.4820-315.8649②t-Statistic为t值,磨练每一个自变量的合理性.|t|大于临界值表示可谢绝系数为0的假设,即系数合理.Prob为系数的概率,若其小于置信度(如0.05)则表明|t|大于临界值,即以为系数合理.从成果可以看出,本例中系数合理.③R-squared为样本决议系数,表示总离差平方和中由回归方程可以解释部分的比例,比例越大解释回归方程可以解释的部分越多.值为0-1,越接近1表示拟合越好,>0.8以为可以接收,但是R2随因变量的增多而增大,所以可以经由过程增长自变量的个数来进步模子的R-squared.本例中R-squared0.995382,接近1,拟合度相当好.Adjust R-seqaured为修改的R-squared,与R-squared有类似意义.④F-statistic表示模子拟合样本的后果,即选择的所有自变量对因变量的解释力度.F大于临界值则解释谢绝0假设.若Prob(F-statistic)小于置信度(如0.05)则解释F大于临界值,方程明显性明显.本例中Prob(F-statistic)为0.000000, 模子方程明显.⑤Durbin-Watson stat:磨练残差序列的自相干性.其值在0-4之间._01_02_03_04_05_06_08 _09 _10 _11 _12 _13 _14 _15 _16 _17 _18 _19 _20 _21 _22 _23 _24 _25 _26 _27 _28 _29 _30 _31_33_34w? trade? ex? im? pr? mo? rc? tech? dex? dim? log(ex?) log(im?) log(pr?) log(mo?) rc? log(tech?)。
EVIEWS面板数据分析操作教程及实例解析课件.ppt
再检验只含截距项的模型,最后检验二者都不含的模型。并且认为,只有三个模
型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其
中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。
精品
分析数据的平稳性软 件 操 作
在Pool对象,View/Unit Root Test,输入相应的Pool序列名
精品
协整检验 说 明
原:不存在协整
面板数据的协整检验方法可以分为两大类,一类是建立在Engle and Granger二 步法检验基础上的面板协整检验,具体方法主要有Pedroni检验和Kao检验;另 一类是建立在Johansen协整检验基础上的面板协整检验。
1.Pedroni检验 2.Kao检验 3.Johansen面板协整检验
精品
协整检验操作
Pool序列的协整检验 ※在EViews中打开pool对象,选
择Views/ Cointegration Test…, 则显示协整检验的对话框。
图10.6 面板数据的协整检验的对精话品框
Pedroni检验:
原假设:无协 整关系
此栏目下P值 均小于0.05 存在协整关系
此栏目下P值均 两个小于0.05 存在协整关系 一个大于0.05, 不支持协整
精品
思路一:变量之间是非同阶单整 :序列变换
◎变量之间是非同阶单整的指即面板数据中有些序列平稳而有些序列不平稳,
此时不能进行协整检验与直接对原序列进行回归。
◎对序列进行差分或取对数使之变成同阶序列
若变换序列后均为平稳序列可用变换后的序列直接进行回归
思路二 若变换序列后均为同阶非平稳序列,则请点
精品
方式二(方式是否正确,有待考证)
EVIEWS面板数据分析操作教程及实例 ppt课件
◎对序列进行差分或取对数使之变成同阶序列
若变换序列后均为平稳序列可用变换后的序列直接进行回归
思路二 若变换序列后均为同阶非平稳序列,则请点
EVIEWS面板数据分析操作教程及
实例
12
思路二 变量之间是同阶单整:协整检验
请点协整检验说明 请点 软件操作 结果判定请点 1 2 3 协整检验通过:
只有此处小于 0.05,说明除此 法外都认为非
平稳
各种方法的结果(E除VIEBWrSe面i板tu数n据g分检析操验作教外程)及都接受原假设, I?
存在单位根,是非平稳的。 实例
9
例10.4中I?的一阶差分变量的所有方法的单位根检验结果:
所有P值均小于 0.05,说明平稳
各种方法的结果都EV拒IEW绝S面原板数假据分设析,操作所教程以及可
目的:防止虚假回归或伪回归
方法:
相同根下:LLC、Breintung 、 Hadri
不同根下:IPS、ADF-Fisher 和PP-Fisher5
模式:
三种检验模式:既有趋势又有截距、只有截距、以上都无(对面板序列绘制时
序图做出模式选择)。
秩序:水平(level)、一阶差分、二阶甚至高阶差分直至序列平稳为止。
以得出结论: I?是I(1)的。 实例
10
第三步 平稳性检验后分析路径选择
平稳性检验后若: 变量之间是非同阶单整 请点 思路一 序列变换 变量之间是同阶单整 请点 思路二 协整检验
EVIEWS面板数据分析操作教程及
实例
11
思路一:变量之间是非同阶单整 :序列变换
◎变量之间是非同阶单整的指即面板数据中有些序列平稳而有些序列不平稳,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Eviews6.0面板数据操作一、数据输入1、创建工作文档。
如下图操作,在” workfile create”文本框的“workfile structure type”选择“balanced panel”,”panel specification”的”start date”和”end date”输入数据的起止期间,”wf”输入工作文档的名称,点击” OK”即跳出新建的工作文档a界面。
2、创建新对象。
操作如下图。
在”new object”文本框的”type of object”选择”pool”,”name for object ”输入新对象的名称。
创建成功后的界面如下面第3张图所示。
-3、输入数据。
双击”workfile”界面的,跳出”pool”界面,输入个体。
一般输入方式为如下:若上海输入_sh,北京输入_bj,…。
个体输入完成后,点击该界面的键,在跳出的”series list”输入变量名称,注意变量后要加问号。
格式如下:y? x?。
点击”OK”后,跳出数据输入界面,如下面第4张图所示。
在这个界面上点击键,即可以输入或者从EXCEL处复制数据。
在输入数据后,记得保存数据。
保存操作如下:在跳出的“workfile save”文本框选择“ok”即可,则自动保存到我的文档。
然后在“workfile”界面如下会显示保存路径:d:\my documents\a.wf1。
若要保存到自己选择的路径下面,则在保存时选择“save as”,在跳出的文本框里选择自己要保存的路径以及命名文件名称。
4、单位根检验。
一般回归前要检验面板数据是否存在单位根,以检验数据的平稳性,避免伪回归,或虚假回归,确保估计的有效性。
单位根检验时要分变量检验。
(补充:网上对面板数据的单位根检验和协整检验存在不同意见,一般认为时间区间较小的面板数据无需进行这两个检验。
)(1)生成数据组。
如下图操作。
点击”make group”后在跳出的”series list”里输入要单位根检验的变量,完成后就会跳出如下图3所示的组数据。
(2)生成时序图。
如下图操作。
在”gragh options”界面的”specifi”下选择生成的时序图的形状,一般都默认设置,生成的时序图如下图3所示。
观察时序图的趋势,以确定单位根检验的检验模式。
(3)单位根检验。
单位根检验时,在”group unit root test”里的”test for root in”按检验结果一步步检验,如果原值”level”的检验结果符合要求,即不存在单位根,则单位根检验就不需要检验下去了,如果不符合要求,则需继续检验一阶差分”1st difference”、二阶差分”2nddifference”。
”include in test equation”是检验模式的选择,根据上面时序图的形状来选择。
从上面的时序图可以看出,原值的检验模式应该选择含有截距项和趋势的检验模式,即”include in test equation”选择”individual intercept and trend”。
检验结果如下图3所示。
从检验结果可以看出,检验结果除了levin检验方法外其他方法的结果都不符合要求(Prob.xx小于置信度(如0.05),则认为拒绝单位根的原假设,通过检验)。
所以继续检验一阶差分和二阶差分,直到检验结果达到要求。
如果变量原值序列通过单位根检验,则称变量为0阶单整;如果变量一阶差分后的序列通过单位根检验,则称变量为一阶单整,以此推之。
注意:单位根检验的方法(test type)较多,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher这5种方法进行面板单位根检验。
一般,为了方便起见,只采用相同根单位根检验LLC和不同根单位根检验Fisher-ADF这两种检验方法,如果它们都拒绝存在单位根的原假设,则可以认为此序列是平稳的,反之就是非平稳的。
5、协整检验。
协整检验检验的是模型的变量之间是否存在长期稳定的关系,其前提是解释变量和被解释变量在单位根检验时为同阶单整。
操作如下图所示。
6、回归估计面板数据模型根据常数项和系数向量是否为常数,分为3种类型:混合回归模型(都为常数)、变截距模型(系数项为常数)和变系数模型(皆非常数)。
混合模型:it it it y x αβμ=++ 1,2,,;1,2,,i N t T == 变截距模型:it i it it y x αβμ=++ 1,2,,;1,2,,i N t T == 变系数模型:iti it i it y x αβμ=++ 1,2,,;1,2,,i N t T ==判断一个面板数据究竟属于哪种模型,用F 统计统计量:()[]()2111()/11,(1)/(1)S S N K F F N K N T K S NT N K --⎡⎤⎣⎦=---⎡⎤⎣⎦-+()[]()3121()/1(1)1(1),(1)/(1)S S N K F F N K N T K S NT N K --+⎡⎤⎣⎦=-+--⎡⎤⎣⎦-+来检验以下两个假设:121:N H βββ===,12122:,N N H αααβββ======。
其中,1S 、2S 、3S 分别为变系数模型、变截距模型和混合模型的残差平方和,K 为解释变量的个数,N 为截面个体数量,α为常数项,β为系数向量。
若计算得到的统计量2F 的值小于给定显著性水平下的相应临界值,则接受假设2H ,用混合模型拟合样本。
反之,则需用1F 检验假设1H ,如果计算得到的1F 值小于给定显著性水平下的相应临界值,则认为接受假设1H ,用变截距模型拟合,否则用变系数模型拟合。
具体操作: 1)、分别对面板数据进行3种类型模型的回归,得到1S 、2S 、3S 。
此外,一般来说,用样本数据推断总体效应,应用随机效应回归模型;直接对样本数据进行分析,采用固定效应回归模型。
首先回到面板数据表,如果是在如下这个界面时,点击按钮,在跳出的“series list ”文本框里输入模型变量,如下图。
也可以通过重新打开工作文件,如下图操作。
选择自己当初保存的路径和文件名,点击打开。
打开后,跳出工作文件双击,然后分别进行变系数、变截距和混合模型的回归估计:点击,进行变系数回归(变系数)变截距回归混合模型估计前面同2)操作,在“pool estimation”输入如下2)、确定模型形式把模型估计取得的s1、s2、s3数值代入前述公式(第13页),如下()[]()2111()/11,(1)/(1)S S N K F F N K N T K S NT N K --⎡⎤⎣⎦=---⎡⎤⎣⎦-+()[]()3121()/1(1)1(1),(1)/(1)S S N K F F N K N T K S NT N K --+⎡⎤⎣⎦=-+--⎡⎤⎣⎦-+计算得到F1、F2值,检验假设H1、H2,从而确定采用何种模型形式(变系数、变截距、混合效应)。
3)、回归分析若检验结果表明应采用变系数模型,回到以下界面进行估计点击,进行变系数回归上图列示了回归结果,其中:①Coefficient为系数,比如AH的系数为0.760053,截距项为477.4820-315.8649②t-Statistic为t值,检验每一个自变量的合理性。
|t|大于临界值表示可拒绝系数为0的假设,即系数合理。
Prob为系数的概率,若其小于置信度(如0.05)则表明|t|大于临界值,即认为系数合理。
从结果可以看出,本例中系数合理。
③R-squared为样本决定系数,表示总离差平方和中由回归方程可以解释部分的比例,比例越大说明回归方程可以解释的部分越多。
值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,所以可以通过增加自变量的个数来提高模型的R-squared。
本例中R-squared0.995382,接近1,拟合度相当好。
Adjust R-seqaured为修正的R-squared,与R-squared有相似意义。
④F-statistic表示模型拟合样本的效果,即选择的所有自变量对因变量的解释力度。
F大于临界值则说明拒绝0假设。
若Prob(F-statistic)小于置信度(如0.05)则说明F大于临界值,方程显著性明显。
本例中Prob(F-statistic)为0.000000,模型方程显著。
⑤Durbin-Watson stat:检验残差序列的自相关性。
其值在0-4之间。
_01_02_03_04_05_06_07_08_09_10_11_12_13_14_15_16_17_18_19_20_21_22_23_24_25_26_27_28_29_30_31_32_33_34w? trade? ex? im? pr? mo? rc? tech? dex? dim? log(ex?) log(im?) log(pr?) log(mo?) rc? log(tech?)。