精馏塔的设计计算-hu

合集下载

塔精馏塔的计算1

塔精馏塔的计算1

一、塔精1.全的物料衡算由于水的沸点为100℃,正丁醇的沸点为117.7℃故水作为轻组分,正丁醇作为重组分,产品正丁醇从塔底出来。

%74.9874/05.018/95.018/95.0F =+=xM F =74⨯(1-0.9874)+0.9874⨯18=18.71kmol kg / F =20⨯1000/18.71=1069.03/kmol h总物料衡算 F=D+W=252 (1) 采用填料塔连续精馏由正丁醇-水平衡数据作图,画出正丁醇—水溶液y-x 图,求得mi n R 取min 5.1R R =过点(0.9994,0.9994)作平衡线的切线,则求出此线与y 轴的交点截距为0.5192,故求得最小回流比为0.9248,所以操作状态的回流比为1.387 数直角梯级即为理论塔板数:T N (包括再沸器)=9块其中精馏段1N =4块,提留段(包括再沸器)=5块,第五块为进料板。

实际塔板数求取:由平衡线得塔顶:9994.01==x y D ,在图中求得x 1=0.9946%892.574/985.018/015.018/015.0=+=W x由平衡线方程1(1)xy xαα=+-得顶α=8.99塔底:x x w m ==0.05892,y m =0.2234 同理得底α=4.56ααα==6.4塔顶温度100℃,塔底温度117.7℃ 定性温度为85.10827.117100=+℃查附录得s Pa ⋅=m 390.0μ1μ正丁醇=2.948求得()smPa m ⋅=⨯-+⨯=422.0948.29874.019874.0390.0μ⋅αmμ=6.4×0.422=2.70查得0E =55.1% 校正后为55.1%×1.1=60.61% 实际塔板:%1000⨯=PT N N E8110=-=+E N N T P ,取8块(包括再沸器)精馏段取4块 提馏段取4块 第5块进料板 3.塔高的计算有效高度:Z=øP ×Nt=0.67×(8-1)=4.67mZ=4×60.61%=2.42m(精馏段) Z=4.67-2.42=2.25m(提留段)实际填料高度:2.42×(1+0.2)=2.9m(精馏段) 2.25×(1+0.2)=2.7m(提留段) 设裙座为1m总塔高;H=2.9+2.7+1=6.6m4.泛点气速的计算影响泛点气速的因素很多,其中包括填料的特性、流体的物理性质以及液气比等。

精馏塔的计算

精馏塔的计算
则F = D + W
FxF= DxD+ WxW
175 = D + WD=76.6kmol/h
175×0.44=0.974D+0.0235WW=98.4kmol/ h
例:将含24%(摩尔分率,以下同)易挥发组分的某混合液送入连续操作的精馏塔。要求馏出液中含95%的易挥发组分,残液中含3%易挥发组分。塔顶每小时送入全凝器850kmol蒸汽,而每小时从冷凝器流入精馏塔的回流量为670kmol。试求每小时能抽出多少kmol残液量。回流比为多少?
Y =nA/nB=yA/yB=yA/(1-yA)kmolA / kmolB
Y =pA/pB=pA/(P - pA)
在吸收操作中,通常A组分:指吸收质
B组分:液相xB指吸收剂,气相yB指惰气
四.吸收推动力:实际浓度与平衡浓度之差。即ΔY=Y–Y*(以气相浓度表示)
ΔX=X*- X(以液相浓度表示)
脱收推动力:ΔY=Y*- Y(以气相浓度表示)
气膜、液膜越厚,传质阻力越大,传质速率就越小,而膜越薄,自然越有利传质。
(三)提高吸收速率:流体力学指出,流速越大,边界膜越薄。因此按照双膜理论,在其它条件不变时,增大流速,就可以减小双膜阻力,从而提高吸收速率。
七.吸收速率
1.吸收速率:是指单位传质面积上,单位时间内吸收的溶质量。
在稳定操作的吸收设备中吸收设备内的任一部位上,相界面两侧的对流传质速率是相等的(否则会在界面处有溶质积累)。因此其中任何一侧有效膜中的传质速率都能代表该处的吸收速率。
阻力阻力
双膜理论模型
通过假设,把整个相际传质的复杂过程简化为吸收质只是经气、液两层的分子扩散过程。因此两膜层就成为吸收过程的两个基本阻力。
(二)在两相主体浓度一定的情况下,两膜层的阻力便决定了传质速率的大小。双膜理论也称双阻力理论。

精馏塔主要工艺尺寸计算

精馏塔主要工艺尺寸计算

精馏塔主要工艺尺寸计算一、塔径D1、精馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0319.030.28.87792.00015.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SS V L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /45.21时的C0720.02045.21071.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /405.130.230.28.8770720.0max =-⨯=-=ρρρ可取安全系数为,则s m u u /843.0405.160.060.0max =⨯==故m u V D S 179.1843.092.044=⨯⨯==ππ 按标准,塔径圆整为1.2m,则空塔气速。

2、提馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0782.070.20.96041.00017.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SSV L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /92.19时的C ,即0679.02092.19068.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /279.170.270.20.9600679.0max =-⨯=-=ρρρ 可取安全系数为,则s m u u /767.0279.160.060.0max =⨯== 故m u V D S 825.0767.041.044=⨯⨯==ππ 按标准,塔径圆整为1.0m,则空塔气速。

为统一精馏段和提馏段塔径,取为。

精馏塔优化设计计算

精馏塔优化设计计算

一.精馏塔优化设计计算【设计要求】375.71吨/溶度35wt%,产品溶度84(wt%),易挥发组分回收率0.98,1476小时。

进料热状况自选回流比自选单板压降≤0.7 kPa塔底温度100104℃本设计任务为分离二甲基亚砜-升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔物系属易分离物系,,2倍。

塔釜采用间接蒸汽加热,1二甲基亚砜摩尔质量MA=78.13kg/kmol水的摩尔质量MB=18 kg/kmolX F==0.7X D==0.96M F=0.3×78.13+0.7×18=36.04 kg/kmolM D=0.96×78.13+0.04×18=75.72 kg/kmol3.物料衡算原料处理量F==7.06水回收率衡算;=0.98 D=5.04总物料衡算7.06=D+W水物料衡算7.06×0.3=0.04D+WX W联立解得D=5.04kmol/h W=2.02kmol/h X w=0.05气液平衡数据6KPa下二甲基亚砜-水溶液平衡与温度的关系根据上表,利用内插法求进料,塔顶,塔底温度,由=得;塔顶;=T D=40.8°C+塔釜;=T W=96.7°C进料;=T F=48.1°C原料液,溜出液与釜残液的含量与温度相对挥发度的计算根据上表,利用内插法急速那精馏段和提馏段对应的气液相摩尔分率,得;精馏段;t1==44.45°C==X=0.75 y=0.98提馏段;t2==72.4°C==X=0.3 y=0.85将X1 Y1 X2 Y2分别带入气液平衡方程,得a1=16.3 a2=13.2a=(a1a2)0.5=14.67最小回流比及操作回流比的确定由泡点进料,可得X q=XF=0.7;Y q==o.97R min===-0.03一般回流比取最小回流比的2倍即R=2R min=0.1×2=0.2。

精馏塔的工艺计算

精馏塔的工艺计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1根底数据 〔一〕生产能力:10万吨/年,工作日330天,每天按24小时计时。

〔二〕进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。

〔三〕别离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。

2.1.2物料衡算〔清晰分割〕以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

01.0=D H K x ,005.0=W LK x ,表2.1 进料和各组分条件由?别离工程?P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ 〔式2. 1〕编号 组分 i f /kmol/h i f /%1 苯 3.5448 1.56252 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591002434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件确实定 一、塔顶温度纯物质饱和蒸气压关联式〔化工热力学 P199〕:CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0注:压力单位0.1Mpa ,温度单位K表2-3饱和蒸汽压关联式数据以苯为例,2.562/15.3181/1-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CSP PIn01.02974.09.48)1.5exp(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计名称 A B C D 苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯-7.28607 1.38091-2.83433 -2.79168 乙苯 -7.48645 1.45488-3.37538-2.23048故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度 泡点方程:p x pni i i=∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α; 136=底t ℃, 96.1=甲苯α1=乙苯α; 133=进t ℃, 38.4=苯α97.1=甲苯α1=乙苯α 综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。

精馏塔工艺工艺设计计算

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。

3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。

(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,kg/m 3V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W O W L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。

32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。

hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。

精馏塔的设计计算方法

精馏塔的设计计算方法

精馏塔的设计计算方法各位尊敬的评委老师、领导、各位同学:上午好!这节课我们一起学习一下精馏塔的设计计算方法。

二元连续精馏的工程计算主要涉及两种类型:第一种是设计型,主要是根据分离任务确定设备的主要工艺尺寸;第二种是操作型,主要是根据已知设备条件,确定操作时的工况。

对于板式精馏塔具体而言,前者是根据规定的分离要求,选择适宜的操作条件,计算所需理论塔板数,进而求出实际塔板数;而后者是根据已有的设备情况,由已知的操作条件预计分离结果。

设计型命题是本节的重点,连续精馏塔设计型计算的基本步骤是:在规定分离要求后(包括产品流量D、产品组成x D及回收率η等),确定操作条件(包括选定操作压力、进料热状况q及回流比R等),再利用相平衡方程和操作线方程计算所需的理论塔板数。

计算理论塔板数有三种方法:逐板计算法、图解法及简捷法。

本节就介绍前两种方法。

首先,我们看一下逐板计算法的原理。

该方法假设:塔顶为全凝器,泡点液体回流;塔底为再沸器,间接蒸汽加热;回流比R、进料热状况q和相对挥发度α已知,泡点进料。

从塔顶最上一层塔板(序号为1)上升的蒸汽经全凝器全部冷凝成饱和温度下的液体,因此馏出液和回流液的组成均为y1,且y1=x D。

根据理论塔板的概念,自第一层板下降的液相组成x1与上升的蒸汽组成y1符合平衡关系,所以可根据相平衡方程由y1 求得x1。

从第二层塔板上升的蒸汽组成y2与第一层塔板下降的液体组成x1符合操作关系,故可用根据精馏段操作线方程由 x1求得y2。

按以上方法交替进行计算。

因为在计算过程中,每使用一次相平衡关系,就表示需要一块理论塔板,所以经上述计算得到全塔总理论板数为m块。

其中,塔底再沸器部分汽化釜残夜,气液两相达平衡状态,起到一定的分离作用,相当于一块理论板。

这样得到的结果是:精馏段的理论塔板数为n-1块,提馏段为m-n块,进料板位于第n板上。

逐板计算法计算准确,但手算过程繁琐重复,当理论塔板数较多时可用计算机完成。

精馏塔的工艺计算

精馏塔的工艺计算

2 精馏塔得工艺计算2、1精馏塔得物料衡算2、1、1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。

(二)进料组成:乙苯212、6868Km ol/h;苯3、5448 Kmol/h;甲苯10、6343Kmo l/h 。

(三)分离要求:馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。

2、1、2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。

表2、1 进料与各组分条件由《分离工程》P65式3-23得: ﻩKm ol /hW=F-D =226、8659-13、2434=213、6225Kmol/h Km ol/h K mo l/h K mol/h Kmo l/h表2-2 物料衡算表 2、2精馏塔工艺计算2、2、1操作编号 组分 /kmol/h /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500总计226、8659100编号 组分 /km ol/h 馏出液 釜液 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544总计226、865913、2434213、6225条件得确定 一、塔顶温度纯物质饱与蒸气压关联式(化工热力学 P199):表2-3 物性参数注:压力单位0、1Mp a,温度单位K表2-3饱与蒸汽压关联式数据 以苯为例,.033213.1434.098273.6()434.01()(1⨯+⨯-⨯-=-CSP PIn 同理,可得露点方程:,试差法求塔顶温度表2-4 试差法结果统计二、塔顶压力 塔顶压力 三、塔底温度泡点方程: 试差法求塔底温度组份 相对分子质量临界温度 临界压力 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 AB C D 苯-6、982731、33213-2、62863-3、33399 甲苯 -7、28607 1、38091 -2、83433 -2、79168 乙苯 -7、486451、45488 -3、37538-2、23048故塔底温度=136℃ 四、塔底压力 塔底压力 五、进料温度进料压力为,泡点方程: 试差法求进料温度六、相对挥发度得计算据化学化工物性数据手册,用内插法求得各个数据 ℃, ; ℃, ; ℃,综上,各个组份挥发度见下表 据清晰分割结果,计算最少平衡级数。

精馏塔的计算

精馏塔的计算

本次设计的一部分是设计苯酐轻组分塔,塔型选用F1浮阀塔,进料为两组分进料连续型精馏。

苯酐为重组分,顺酐为轻组分,从塔顶蒸除去,所以该塔又称为顺酐塔。

5.1 确定操作条件顺酐为挥发组分,所以根据第3章物料衡算得摩尔份率:进料: 794.0074.43239072.5x F ==塔顶: D x =0.8502塔底: w x =0.002该设计根据工厂实际经验及相关文献给出实际回流比R=2(R=1.3R min ),及以下操作条件: 塔顶压力:10.0kPa ;塔底压力:30.0kPa ; 塔顶温度:117.02℃; 塔底温度:237.02℃; 进料温度:225℃; 塔板效率:E T =0.5 5.2 基础数据整理 (1)精馏段:图5-1 精馏段物流图平均温度:()01.17122502.11721=+℃平均压力:()=⎥⎦⎤⎢⎣⎡⨯+⨯⨯-⨯333100.107519.75100.10100.30213103.015⨯pa 根据第3章物料衡算,列出精馏段物料流率表如下:标准状况下的体积: V 0=2512.779.42234.7880=⨯Nm 3/h操作状况下的体积: V 1=63610101.01003.1510101.027301.1712732512.779⨯+⨯⨯⨯+⨯=1103.2112 Nm 3/h气体负荷: V n =3064.036001103.2112= m 3/s气体密度: =n ρ0903.32112.11033409.2240= kg/m 3液体负荷: L n =9470.036003409.2240= m 3/s171.01℃时 苯酐的密度为1455kg/m 3(2)提馏段:图5-2 提馏段物料图平均温度:()01.23122502.23721=+℃ 入料压力:()Pa k 9.147519751030=-⨯-平均压力:()=+0.309.142122.5kPa 根据第3章物料衡算列出提馏段内回流如下图:表5-2 提馏段内回流标准状况下的体积:='0V 4054.4974.222056.22=⨯Nm 3/h 操作状态下的体积:='1V 63610101.0105.2210101.027301.2312734054.497⨯+⨯⨯⨯+⨯ =751.0162 Nm 3/h气体负荷:V m =2086.03600751.0162=m 3/s气体密度 m ρ=7022.110162.7518788.5420=kg/m 3查得进料状态顺酐与苯酐混合物在温度225℃下,含顺酐 5.41(wt)%,密度1546kg/m 3。

精馏塔严格计算模块 radfrac 公式(一)

精馏塔严格计算模块 radfrac 公式(一)

精馏塔严格计算模块 radfrac 公式(一)精馏塔严格计算模块 radfrac 公式1. 引言精馏塔是一种常用的化工设备,在化工工艺的应用中起着重要的作用。

为了准确计算和设计精馏塔,我们可以使用精馏塔严格计算模块 radfrac,该模块中包含了多个公式用于精确计算和模拟精馏塔的性能。

2. 相关公式以下是一些与精馏塔严格计算模块 radfrac 相关的公式:精馏塔传质计算公式•塔内液相总摩尔流率公式•塔内汽相总摩尔流率公式•传质系数计算公式精馏塔热力计算公式•塔顶液相温度计算公式•塔底汽相温度计算公式•塔内液相温度计算公式•塔内汽相温度计算公式•热效应计算公式精馏塔塔板计算公式•塔板上液相摩尔流率公式•塔板上汽相摩尔流率公式•塔板塔筐液相压强计算公式•塔板塔筐汽相压强计算公式3. 具体例子和解释精馏塔传质计算公式•塔内液相总摩尔流率公式:该公式用于计算精馏塔内液相的总摩尔流率。

例如,如果精馏塔内液相摩尔流率为10mol/s,可以使用下述公式计算:LiquidFlowrate = 10mol/s•传质系数计算公式:该公式用于计算精馏塔内的传质系数,以衡量液相和汽相之间的质量传递速度。

例如,传质系数为 mol/m^2s,可以使用下述公式计算:MassTransferCoefficient = mol/m^2s精馏塔热力计算公式•塔顶液相温度计算公式:该公式用于计算精馏塔顶部液相的温度。

例如,塔顶液相温度为80°C,可以使用下述公式计算:TopLiquidTemperature = 80°C•热效应计算公式:该公式用于计算精馏塔内的热效应,即液相和汽相之间的能量传递速率。

例如,热效应为500 kJ/mol,可以使用下述公式计算:HeatEffect = 500 kJ/mol精馏塔塔板计算公式•塔板上液相摩尔流率公式:该公式用于计算精馏塔塔板上液相的摩尔流率。

例如,塔板上液相摩尔流率为2 mol/s,可以使用下述公式计算:LiquidFlowrateOnTray = 2 mol/s •塔板塔筐汽相压强计算公式:该公式用于计算精馏塔塔板上塔筐内汽相的压强。

精馏塔的计算

精馏塔的计算
kmol吸收质/kmol惰性气V,Y1L,X1
X1、X2—分别为出塔和进塔液体的组成,
(1)分子扩散的阻力和速率主要决定于扩散物质和流体的温度以及某些物理性质。
(2)分子扩散速率与其在扩散方向上的浓度梯度成正比。
分子扩散系数是物质的物理性质之一。扩散系数大,表示分子扩散快。
(3)分子在液体中扩散速率比在气体中要慢的多。因为液体的密度比气体的密度大得多,其分子间距小。
2.涡流扩散:通过流体质点的湍动和旋涡而传递物质的现象。主要发生在湍流流体中。
所以气体的摩尔分率为yA=pA/P=vA/V;xD
yB=PB/P= vB/V或yB=1-yAF,xF
三.物料衡算(双组分)
对总物料衡算F =D+W
对易挥发组分衡算FxF=DxD+ WxW
式中:W
F——原料液、塔顶产品(馏出液)、塔底产品(釜残液)流量,kmol/hxW
xF、xD、xW——分别为原料液、馏出液、釜残液中易挥发组分的摩尔分率
二.吸收分类
组分数目:单组分吸收,多组分吸收。
化学反应:物理吸收,化学吸收。
热效应:等温吸收,非等温吸收。
三.相组成表示
1.比质量分率XW(YW):混合物中两组分的质量之比。
XW(YW)= GA/GB=αA/αBkgA / kgB
2.比摩尔分率X(Y):混合物中两组分的摩尔数之比。
X =nA/nB=xA/xB=xA/(1-xA)kmolA / kmolB
3.对流扩散:湍流主体与相界面间的涡流扩散与分子扩散两种传质作用的总称。
它与传热过程的对流传热类似。
六.吸收机理
(一)吸收机理(双膜理论要点)
1.相互接触的汽液两流体间存在着稳定的相界面,界面两侧各存在着一个很薄的有效层流膜层。吸收质以分子扩散方式通过两膜层。

精馏塔的设计计算-hu

精馏塔的设计计算-hu

792.5 780.3 790.3 780.3 18.85 17.66 19.94 18.41 0.255 0.233 0.284 0.254
σL(苯) mN/m
甲苯) σ L(甲苯) mN/m
µ L(苯) m·Pas
甲苯) µ L(甲苯) m·Pas
(三) 气液负荷的计算 精馏段:V=(R+1)D kmol/h L=RD
物性参数表
温度t ℃ 80 815 810 21.27 21.69 0.308 0.311 90 803.9 800.2 20.06 20.59 0.279 0.286 100 110 120 768.9 770.0 16.49 17.31 0.215 0.228
ρL(苯) kg/m3
甲苯) ρL(甲苯) kg/m3
3、注意事项 、 整个设计是由论述、计算和绘图三部分组成。 ◇论述应该条理清晰,观点明确; ◇计算要求方法正确,误差小于设计要求,计算公式和所用 数据必须注明出处; ◇图表应能简要表达计算的结果。
三、化工原理课程设计的步骤
本设计按以下几个阶段进行: 1、根据设计任务和工艺要求,确定设计方案。根据给定任务, 对精馏装置的流程、操作条件、塔板类型等进行论述。 2、蒸馏塔的工艺计算 ◇确定理论塔板数(作图法 作图法)、实际板数; 作图法 ◇确定塔高和塔径。
LM Lm Ls = 3600 ρ Lm
VM Vm Vs = 3600 ρ Vm
m3/s
m3/s
提馏段: V′=V +(q-1)F L′ =L +F
第三节 板式塔主要尺寸的计算
板式塔主要尺寸的设计计算: ◇包括塔高 ◇塔径的设计计算 ◇板上液流形式的选择 ◇溢流装置的设计 ◇塔板布置等 设计时,先选取某段塔板(如精馏段、提馏段)条件下的参 数作为设计依据,以此确定塔的尺寸,应尽量保持塔径相同, 以便于加工制造。 由于塔中两相流动情况和传质过程的复杂性,许多参数和塔 板尺寸需根据经验来选取,因此设计过程中不可避免要进行试 差,计算结果也需要工程标准化。

精馏塔的设计计算

精馏塔的设计计算

第2章精馏塔的设计计算2.1 进料状况设计中采用泡点进料,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下回流至塔内该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.7倍。

塔釜采用间接蒸汽加热具体如下:塔型的选择本设计中采用浮阀塔。

2.2 加料方式和加料热状况加料方式和加料热状况的选择:加料方式采用泵加料。

虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取泡点进料。

2.3 塔顶冷凝方式塔顶冷凝采用全冷凝器用水冷却。

甲醇和水不反应而且容易冷却,故使用全冷凝器,塔顶出来的气体温度不高冷凝回流液和产品温度不高无需进一步冷却,此分离也是为了得到甲醇故选用全冷凝器。

2.4 回流方式回流方式可分为重力回流和强制回流,对于小型塔冷凝器一般安装在塔顶。

其优点是回流冷凝器无需支撑结构,其缺点是回流控制较难。

需要较高的塔处理或因为不易检修和清理,这种情况下采用强制回流.故本设计采用强制回流。

2.5加热方式加热方式为直接加热和间接加热。

直接加热由塔底进入塔内。

由于重组分是水故省略加热装置。

但在一定的回流比条件下,塔底蒸汽对回流有稀释作用,使理论板数增加,费用增加,间接蒸汽加热器是塔釜液部分汽化维持原来浓度,以减少理论板数。

本设计采用间接蒸汽加热。

2.6工艺流程简介连续精馏装置主要包括精馏塔,蒸馏釜(或再沸器),冷凝器,冷却器,原料预热器及贮槽等.原料液经原料预热器加热至规定温度后,由塔中部加入塔内.蒸馏釜(或再沸器)的溶液受热后部分汽化,产生的蒸汽自塔底经过各层塔上升,与板上回流液接触进行传质,从而使上升蒸汽中易挥发组分的含量逐渐提高,至塔顶引出后进入冷凝器中冷凝成液体,冷凝的液体一部分作为塔顶产品,另一部分由塔顶引入塔内作为回流液,蒸馏釜中排出的液体为塔底的产品。

精馏塔的简洁计算公式

精馏塔的简洁计算公式

精馏塔的简洁计算公式精馏塔是一种用于分离液体混合物的设备,通过不同组分的沸点差异来实现分离。

在工程设计和操作中,需要对精馏塔进行计算和分析,以确保其正常运行和达到预期的分离效果。

在本文中,我们将介绍精馏塔的简洁计算公式,帮助读者更好地理解和应用这些公式。

1. 精馏塔的传质效率公式。

精馏塔的传质效率是评价其性能的重要指标之一。

传质效率通常用塔板数或高度来表示,其计算公式如下:N = HETP × (n-1)。

其中,N表示塔板数或塔高度,HETP表示每塔板传质高度,n表示理论板数。

2. 精馏塔的塔板压降公式。

塔板压降是精馏塔运行中需要考虑的重要参数之一。

塔板压降的计算公式如下:ΔP = ρ× g × H × (1-ε) + ΔPv。

其中,ΔP表示塔板压降,ρ表示液体密度,g表示重力加速度,H表示塔板高度,ε表示塔板孔隙率,ΔPv表示气体速度压降。

3. 精馏塔的塔顶温度计算公式。

精馏塔的塔顶温度是其操作中需要重点关注的参数之一。

塔顶温度的计算公式如下:T = T0 + ΔT。

其中,T表示塔顶温度,T0表示进料温度,ΔT表示塔顶降温。

4. 精馏塔的塔板液体高度计算公式。

塔板液体高度是精馏塔操作中需要实时监测和控制的参数之一。

塔板液体高度的计算公式如下:H = H0 + ΔH。

其中,H表示塔板液体高度,H0表示初始液位高度,ΔH表示液位变化量。

5. 精馏塔的塔板塔顶气体速度计算公式。

塔板塔顶气体速度是精馏塔操作中需要关注的参数之一。

塔板塔顶气体速度的计算公式如下:V = Q / A。

其中,V表示塔板塔顶气体速度,Q表示气体流量,A表示塔板横截面积。

总结。

精馏塔是一种重要的分离设备,其性能和操作参数需要通过计算和分析来进行评估和控制。

本文介绍了精馏塔的传质效率、塔板压降、塔顶温度、塔板液体高度和塔板塔顶气体速度的计算公式,希望能对读者有所帮助。

当然,精馏塔的计算和分析涉及到更多的参数和复杂的情况,需要结合具体的工程实际情况进行综合分析和计算。

精馏塔设计计算

精馏塔设计计算

精馏塔设计计算1精馏塔工艺设计1.1设计参数该乙酸乙酯精馏塔设计处理乙酸乙酯和乙酸丁酯混合物的年处理能力为10000吨,进料含乙酸乙酯的质量分数为32%,塔顶产品乙酸乙酯的含量大于95%,釜液中乙酸乙酯的残留量小于4%。

操作条件:塔顶压力为常压,进料温度60℃,回流比为6.5。

1.2物料衡算根据设计参数中对乙酸乙酯产品产量及产品含量的要求,首先要进行物料衡算,得出塔顶产品和塔釜产品的流量,为了便于计算和区分,用A 代指混合物料中的乙酸乙酯,用B 代指乙酸丁酯。

乙酸乙酯的摩尔质量A M =88.11kg/kmol乙酸丁酯的摩尔质量B M =116.16kg/kmol进料含乙酸乙酯的摩尔百分数为F x =(32/88.11)/(32/88.11+68/116.16)=0.38287塔顶产品中乙酸乙酯摩尔百分数为D x =(95/88.11)/(95/88.11+5/116.16)=0.96161釜液中乙酸乙酯的的摩尔百分数为W x =(4/88.11)/(4/88.11+96/116.16)=0.05207原料液平均摩尔质量为B F A F F M x M x M )1(-+==105.42050kg/kmol (3.1) 塔顶产品平均摩尔质量为B D A D D M x M x M )1(-+==89.18684kg/kmol (3.2) 塔釜液体平均摩尔质量为B W A W W M x M x M )1(-+==114.69944kg/kmol (3.3) 设精馏塔平均每年工作300天,每天24小时连续运行,则进料摩尔流量为F =1000×103/(300×24×105.42050)=13.17475kmol/h由W D F += (3.4)))(W D w F x x x x F D --= (3.5)两式联立求解得塔顶液体摩尔流量D =4.79166kmol/h ,塔釜釜液摩尔流量W =8.38309kmol/h 。

化工原理课程设计精馏塔工艺设计计算

化工原理课程设计精馏塔工艺设计计算

第一章 精馏塔工艺设计计算本设计任务为分离乙醇-丙醇混合物。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用气液混合进料,将原料通过预热器加热至指定温度后送入精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分作为产品冷却后送至储罐。

随着全球能源紧缺,国家节能降耗方案的提出。

故操作回流比取最小回流比的 1.5倍。

以减少塔釜的加热负荷。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

1.1原料液及塔顶,塔底产品的摩尔分率0.2980.9180.018F D W x x x === 1.2 物料衡算总物料衡算:W D F += 即100D W += ……………………………………………(1-1) 易挥发组分物料衡算:Fw D Fx Wx Dx =+即 0.9180.0180.298D W F ⨯+⨯=⨯ …………………………………(1-2)1112 =31.111 kmol/h =68.889kmol/h D W --解()()得,46.07kg kmol 60.10kg kmol A B M M ==乙醇的摩尔质量丙醇的摩尔质量x =0.298Fx =0.918Dx 0.018F =1.3 相对挥发度的计算0.298y 0.464F F ==由X , 0.46410.464==2.0400.29810.298F α--得0.918y 0.955W D ==由X , 0.95510.955==1.8960.91810.918D α--得0.018y 0.034W W ==由X , 0.03410.034==1.9200.01810.018W α--得精馏段的平均相对挥发度:1= 1.9682F Dααα+=提馏段的平均相对挥发度:2= 1.9802F Wααα+=1.4 最小回流比的确定气液相平衡方程为 1.9681(1)1(1.9681)n nn n nx x y x x αα==+-+-得 1.9680.968nn ny x y =-0.298F X ==q 由泡点进料:q=1,X 代入上式解得: 0.455q y =min 0.9180.4552.9500.4550.298D q q qx y R y x --===--取操作回流比为 min 1.52 2.950 4.425R R ==⨯=1.5 操作线方程的确定 精馏段操作线方程:111+++=+R x x R Ry Dn n得:10.8160.169n n y x +=+提馏段操作线方程:1111n n W R F D F D y x x R R ++-=-++0.9180.0183.2140.2980.018D W F W x x F D x x --===-- 1 1.4080.007n n y x +=-111121α0.976,0.9180.863,1(α-1)D x y x y x y x =====+由由相平衡方程得由精馏段操作线方程得同理求以下。

塔精馏塔的计算1

塔精馏塔的计算1

一、塔精1.全的物料衡算由于水的沸点为100℃,正丁醇的沸点为117.7℃故水作为轻组分,正丁醇作为重组分,产品正丁醇从塔底出来。

%74.9874/05.018/95.018/95.0F =+=xM F =74⨯(1-0.9874)+0.9874⨯18=18.71kmol kg / F =20⨯1000/18.71=1069.03/kmol h总物料衡算 F=D+W=252 (1) 采用填料塔连续精馏由正丁醇-水平衡数据作图,画出正丁醇—水溶液y-x 图,求得mi n R 取min 5.1R R =过点(0.9994,0.9994)作平衡线的切线,则求出此线与y 轴的交点截距为0.5192,故求得最小回流比为0.9248,所以操作状态的回流比为1.387 数直角梯级即为理论塔板数:T N (包括再沸器)=9块其中精馏段1N =4块,提留段(包括再沸器)=5块,第五块为进料板。

实际塔板数求取:由平衡线得塔顶:9994.01==x y D ,在图中求得x 1=0.9946%892.574/985.018/015.018/015.0=+=W x由平衡线方程1(1)xy xαα=+-得顶α=8.99塔底:x x w m ==0.05892,y m =0.2234 同理得底α=4.56ααα==6.4塔顶温度100℃,塔底温度117.7℃ 定性温度为85.10827.117100=+℃查附录得s Pa ⋅=m 390.0μ1μ正丁醇=2.948求得()smPa m ⋅=⨯-+⨯=422.0948.29874.019874.0390.0μ⋅αmμ=6.4×0.422=2.70查得0E =55.1% 校正后为55.1%×1.1=60.61% 实际塔板:%1000⨯=PT N N E8110=-=+E N N T P ,取8块(包括再沸器)精馏段取4块 提馏段取4块 第5块进料板 3.塔高的计算有效高度:Z=øP ×Nt=0.67×(8-1)=4.67mZ=4×60.61%=2.42m(精馏段) Z=4.67-2.42=2.25m(提留段)实际填料高度:2.42×(1+0.2)=2.9m(精馏段) 2.25×(1+0.2)=2.7m(提留段) 设裙座为1m总塔高;H=2.9+2.7+1=6.6m4.泛点气速的计算影响泛点气速的因素很多,其中包括填料的特性、流体的物理性质以及液气比等。

精馏塔的计算

精馏塔的计算

4.3 塔设备设计4.3.1 概述在化工、石油化工及炼油中,由于炼油工艺和化工生产工艺过程的不同,以及操作条件的不同,塔设备内部结构形式和材料也不同。

塔设备的工艺性能,对整个装置的产品产量、质量、生产能力和消耗定额,以及“三废”处理和环境保护等各个方面,都用重大的影响。

在石油炼厂和化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.93%。

塔设备所耗用的钢材料重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压减压炼油装置中耗用的钢材重量占62.4%,在年产60-120万吨催化裂化装置中占48.9%。

因此,塔设备的设计和研究,对石油、化工等工业的发展起着重要的作用。

本项目以正丁醇精馏塔的为例进行设计。

4.3.2 塔型的选择塔主要有板式塔和填料塔两种,它们都可以用作蒸馏和吸收等气液传质过程,但两者各有优缺点,要根据具体情况选择。

a.板式塔。

塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。

b.填料塔。

塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。

4.3.2.1 填料塔与板式塔的比较:表4-2 填料塔与板式塔的比较4.3.2.2 塔型选择一般原则:选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。

(1)下列情况优先选用填料塔:a.在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度;b.对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔;c.具有腐蚀性的物料,可选用填料塔。

化工单元操作:精馏塔计算

化工单元操作:精馏塔计算
(三)塔釜为间接加热 塔釜间壁式换热器,物料与加热蒸汽不混合。
(四)单股进料,无侧线出料 塔体上只有一个进料口,除塔顶馏出液和塔底残液,没有其他出料口。
二、全塔物料衡算(质量守恒)
1、物料衡算公式:
F = D + W FzF = DxD + WxW 2、采出率、易挥发组分回收率、难挥发组分回收率的概念和计算
3)进料线方程 y = q x − xF 进料线的意义:精馏段与提馏段两段操作线的交点轨迹。 q −1 q −1
二、操作线的绘制 步骤:
1、精馏段操作线 2、进料线,并与精馏段操作线有一交点 3、提馏段操作线
精馏塔算
一、精馏塔塔板层数的确定
1、理论塔板的概念 汽液两相在塔板上充分接触,使离开塔板的两相温度相同,且两相组成互为平衡,则称
=
L′ V′
xm

Wx w V′
2)进料热状况的影响
进料板上的物料衡算和热量衡算: q =
HV HV
− HF − HL
=
将1kmol进料变为饱和蒸汽所需的热量 原料液的千摩尔汽化潜热
五种进料热状:由此引出热状况参数概念以及各种进料热状况参数的确定。各种进料热状态
参数:冷液进料 q>1、饱和液体进料 q=1、汽液混合进料 0<q<1、饱和蒸汽进料 q=0、过热蒸 汽进料 q<0。
该塔板为理论塔板。 2、理论塔板层数的确定 (1)逐板计算法:计算方法是交替使用平衡关系和操作关系。(计算量大,但精确) (2)图解法(适宜进料板的位置确定,提前进料和推迟进料对理论板数的影响) (3)捷算法 简单介绍(吉利兰图的使用) 3、理论板数的求解(逐板计算法和图解法)
进料板位置对理论塔板数的影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、塔板设计: ◇设计塔板各主要工艺尺寸 溢流装置、塔板布置、筛孔或浮阀的设计及排列(图); 筛孔或浮阀的设计及排列( 筛孔或浮阀的设计及排列 ◇进行流体力学校核计算; ◇画出塔的负荷性能图 负荷性能图。 负荷性能图 4、管路及附属设备的设计与选型,如冷凝器、泵等。 5、抄写说明书。 6、绘制精馏装置工艺流程图和精馏塔装配图。
第二节 板式精馏塔的工艺计算
一、设计方案的确定 1、装置流程的确定: 经济方面:充分考虑整个系统的热能利用,降低操作费用。 操作的稳定性:加热蒸汽的压力、进料量、回流液等 2、操作压力的选择:设计压力一般指塔顶压力。 蒸馏操作通常可在常压、加压和减压下进行。 确定操作压力时,必须根据所处理物料的性质, 兼顾技术上的可行性和经济上的合理性进行考虑。 可考虑取常压操作,塔顶压力为4kPa(表压), 每层塔板压降∆p≤0.7kPa。
A = AT − Ad
A AT = Ad 1− AT
Vs A = u A Ad = 1− AT AT
Ad:降液管截面
AT =
π
4
D2
D=
4AT
π
sin
−1
lw D
的单位取弧度
Ad/AT也可由 w/D查图得(教材 也可由l 查图得 教材P.137) 查图得( ) lw/D的确定: 的确定: 的确定 单流型: 双流型:
二、工艺计算 (一)全塔物料衡算 1、计算原料液、塔顶、塔底浓度 2、平均分子量:(原料液MF、塔顶MD 、塔底MW ) 3、物料衡算求W、D kmol/h 4、塔板数的计算 (1)理论板数的计算: 作y-x图、t-x-y图; 求最小回流比Rmin、实际回流比R; 图解法求理论板数N。
(2)全塔效率ET 可查P145页图11-21确定 或:αµav =0.1~1.0时, (3)实际塔板数NP
0.01 0.01
0.02 0.03 0.04
0.07 0.1
0.2
0.3 0.4
0.7 1.0
FP =
VL VG
ρL ρG
筛板塔气体负荷因子关联图 课本P.129
② 选取设计气速 u 选取泛点率: u / umax 泛点率: 泛点率 一般液体, 0.7 ~0.8 易起泡液体, 0.5 ~ 0.6 设计气速 u = 泛点率 ×umax ③ 计算塔径 D 所需气体流通截面积 AT:塔截面 AT D Ad lw
塔径 D,m 0.3-0.5 0.5-0.8 0.8-1.6 1.6-2.0 2.0-2.4 >2.4
塔板间距 0.8 0.2-0.3 0.3-0.35 0.35-0.45 0.45-0.6 0.5-0.8 ≥0.6 HT,m
2、塔径估算 、 确定原则: 确定原则: 防止过量液沫夹带液泛 步骤: 步骤: 先确定最大空塔气速 umax (m/s); 然后根据经验确定设计气速 u; 最后计算塔径 D。 ① 最大空塔气速(液泛气速,课本 最大空塔气速(液泛气速,课本P.128—129) )
精馏塔的设计计算
第一节 概述
一、化工原理课程设计的目的和要求
通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据的能力; 2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合 理性,并注意到操作时的劳动条件和环境保护的正确设计思想, 在这种设计思想的指导下去分析和解决实际问题的能力; 3. 迅速准确的进行工程计算的能力; 4. 用简洁的文字,清晰的图表来表达自己设计思想的能力。
5、加热方式的选择 ◇加热方式:蒸馏釜的加热方式通常采用间接蒸汽加热,设 置再沸器。若塔底产物近于纯水,而且在浓度稀薄时溶液的相对 挥发度较大(如酒精与水的混合液),便可采用直接蒸汽加热。 ◇加热剂:T<180℃,常用饱和水蒸气。 ◇再沸器结构: 小塔可在塔底,形式有夹套式、蛇管式、列管式。 大塔一般在塔外,形式为列管式,有立式和卧式两种。 6、冷却方式 通常在塔顶设置蒸气全部冷凝的全凝器。其为辅助设备,需 进行选型,多采用列管式,水平或垂直放置。
一、精馏塔的结构设计 1、塔的有效高度和板间距 、 已知: 已知:实际塔板数 NP ;
选取塔板间距 HT; ; 有效塔高: 有效塔高: Z = H T ⋅ N p 塔体高度=有效高+顶部空间+底部空间+ 塔体高度=有效高+顶部空间+底部空间+塔裙座高度 选取塔板间距 HT : 塔板间距和塔径的经验关系
4、液体平均表面张力 (1)液相平均表面张力 σ m = ∑ xiσ i (2)查塔顶、塔底、进料温度下的液体的表面张力; (3)计算塔顶、塔底、进料处液相平均表面张力; (4)计算精馏段、提馏段平均表面张力。 5、液体平均粘度 (1)液相平均粘度
µ m = ∑ xi µi
(2)查塔顶、塔底、进料温度下的液体的粘度; (3)计算塔顶、塔底、进料处液相平均粘度; (4)计算精馏段、提馏段平均粘度。
pm(提)=( pW+ pF)/2
2、操作温度 塔顶tD :可由t-x-y图查得塔顶tD 、塔底tW 、进料处tF 。 平均温度:tm(精)=( tD+ tF)/2 tm(提)=( tW+ tF)/2 如图:xF=0.5, xw=0.05时, 泡点进料tF=92℃ (露点进料tF=101℃) 塔底 twC = C20 L 20
ρ L − ρV ρV
0 .2
筛板塔,可查教材Smith图 求 C20 ; 浮阀塔可查数据手册书确定C20 。 浮阀塔
C20
0.1 0.09 0.07 0.06 0.05 0.04 0.03 0.02
HT=0.6 0.45 0.3 0.15
lW D = 0.6 − 0.8
lW D = 0.5 − 0.7
lw/D
说明:计算得到的塔径需圆整。 说明:计算得到的塔径需圆整。
标准直径为: 标准直径为:0.4、0.5、0.6、0.7、0.8、1.0、1.2、1.4、1.6、 1.8、2.0(m)……。 直径确定后应重新计算实际气速及泛点率。
Ad /AT 和 Wd /D
ρ Vm
pm M Vm = RTm
1
(2)液相平均密度
ρ Lm
=∑
ρi
ai
(3)计算塔顶、塔底、进料处气、液相平均密度; (4)计算精馏段、提馏段平均密度。 平均密度:ρLm (精)=(ρLD+ ρLF)/2
ρVm (精)=(ρVD+ ρVF)/2 ρLm (提)=(ρLW+ ρLF)/2 ρVm (提)=(ρVW+ ρVF)/2
物性参数表
温度t ℃ 80 815 810 21.27 21.69 0.308 0.311 90 803.9 800.2 20.06 20.59 0.279 0.286 100 110 120 768.9 770.0 16.49 17.31 0.215 0.228
ρL(苯) kg/m3
甲苯) ρL(甲苯) kg/m3
100 90 t-x 80 0 x (y) 1.0 t-y t/℃
p=101.3kPa 110
提馏段平均温度: tm=( tW+ tF)/2 =(92+108)/2=100 ℃
2、平均摩尔质量 (1)由塔顶、塔底、进料处的浓度计算平均摩尔质量; (2)计算精馏段平均摩尔质量MVm (精)、 MLm (精); (3)计算提馏段平均摩尔质量MVm (提)、 MLm (提)。
Ad = sin AT
−1
lw lw − D D
1 − (l w / D ) 2 / π
Wc r x lW
Ws
hb
Wd
底隙: 底隙: hb 堰头液高: 堰头液高: h0W 堰高: 堰高: hW
3、溢流装置设计 、 ① 溢流型式的选择 依据: 依据:塔径 、流量; 型式:单流型 型式 单流型、U 形流型、双流型、阶梯流型等。 单流型
U型流型
单流型
双流型
液流型式选取参考表
塔径 m 1.0 1.4 2.0 3.0 4.0 5.0 6.0 液 体 流 量 m3/h U 型流型 单流型 双流型 阶梯流型 <7 <9 <11 <11 <11 <11 <11 <45 <70 <90 <110 <110 <110 <110 90-160 110-200 200-300 110-230 230-350 110-250 250-400 110-250 250-450
LM Lm Ls = 3600 ρ Lm
VM Vm Vs = 3600 ρ Vm
m3/s
m3/s
提馏段: V′=V +(q-1)F L′ =L +F
第三节 板式塔主要尺寸的计算
板式塔主要尺寸的设计计算: ◇包括塔高 ◇塔径的设计计算 ◇板上液流形式的选择 ◇溢流装置的设计 ◇塔板布置等 设计时,先选取某段塔板(如精馏段、提馏段)条件下的参 数作为设计依据,以此确定塔的尺寸,应尽量保持塔径相同, 以便于加工制造。 由于塔中两相流动情况和传质过程的复杂性,许多参数和塔 板尺寸需根据经验来选取,因此设计过程中不可避免要进行试 差,计算结果也需要工程标准化。
如塔顶:y1 = xD =0.966,按气液平衡关系 可查得x1 =0.916 则:MVDm= 0.966×78.11+(1-0.966) ×92.13=78.59 kg/kmol MLDm= 0.916×78.11+(1-0.916) ×92.13=79.29 kg/kmol
3、平均密度 (1)气相平均密度
2、课程设计组成 、 (1)设计说明书主要内容: )设计说明书主要内容: ◇封面(课程设计题目、班级、姓名、指导教师、时间 ); ◇ 目录; ◇ 设计任务书; ◇ 工艺流程图及设计方案说明; ◇ 设计条件及主要物性参数表; ◇ 工艺设计计算; ◇ 设计结果汇总表; ◇ 辅助设备的设计及选型; ◇ 设计评述及设计者对本设计有关问题的讨论; ◇参考资料。 工艺流程图及主体设备装配图; (2) 工艺流程图及主体设备装配图;
相关文档
最新文档