数学1模拟试题及答案
2020-2021学年最新云南省中考数学模拟试卷(一)及答案解析
云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A ′B ′,若点A ′的坐标为(﹣2,2),则点B ′的坐标为( )A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)11.下面空心圆柱形物体的左视图是( )2019x y ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)【考点】LF :正方形的判定;L5:平行四边形的性质.2019x y ()【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2 B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。
数学一考研模拟试题及答案
数学一考研模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,满足f(-x) = f(x)的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 设函数f(x)在点x=a处连续,且lim (x→a) [f(x) - f(a)]/(x-a) = L,那么f'(a) = ()A. LB. 0C. 不存在D. 13. 曲线y = x^2 在点(1,1)处的切线斜率为()A. 1B. 2C. 4D. 04. 设随机变量X服从参数为λ的泊松分布,P(X=k) = e^(-λ) *λ^k / k!,k=0,1,2,...,则E(X)等于()A. λB. λ^2C. kD. e^λ5. 以下哪个数列是发散的?()A. 1, 1/2, 1/3, ...B. 1, 2, 4, 8, ...C. 1, 0, 1, 0, ...D. -1, 1, -1, 1, ...6. 设A和B是两个n阶方阵,|A| = 2,|B| = 3,则|AB| = ()A. 6B. 5C. 1D. 无法确定7. 以下哪个选项是正确的?()A. ∫(0 to 1) x^2 dx = 1/3B. ∫(0 to 1) x^2 dx = 1/2C. ∫(0 to 1) x^2 dx = 2/3D. ∫(0 to 1) x^2 dx = 3/28. 设函数f(x)在区间[a,b]上可积,且f(x) ≥ 0,则()A. ∫(a to b) f(x) dx ≥ 0B. ∫(a to b) f(x) dx > 0C. ∫(a to b) f(x) dx = 0D. 无法确定9. 以下哪个级数是收敛的?()A. 1 + 1/2 + 1/3 + ...B. 1 - 1/2 + 1/2 - 1/3 + ...C. 1 + 1/4 + 1/9 + ...D. 1 - 1/2 + 1/4 - 1/8 + ...10. 设函数f(x)在点x=a处可导,且f'(a) = 2,则曲线y = f(x)在点(x=a, y=f(a))处的切线方程为()A. y = 2x - aB. y = 2x - 2aC. y = 2x + f(a)D. y = 2x - f(a)/2二、填空题(每题4分,共20分)11. 若函数f(x) = 2x^3 - 3x^2 + 5在点x=1处取得极小值,则f'(1) = ____。
九年级第一次数学模拟考试试题含答案
九年级第一次数学模拟考试(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.抛物线y=x2﹣1的顶点坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)2.(4分)2.若,则等于()A.B.C.D.3.(4分)3.下列各组线段(单位:cm)中,是成比例线段的是()A.3,5,7,9B.2,5,6,8C.1,3,4,7D.3,6,9,18 4.(4分)4.线段AB=8,P是AB的黄金分割点,且AP<BP,则BP的长度为()A.4﹣4B.8+8C.8﹣8D.4+45.(4分)5.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.B.C.4D.66.(4分)6.二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是()A.a<0,b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5,x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<57.(4分)7.如图,在Rt△ABC中,∠ACB=90°,D是AB边的中点,AF⊥CD于点E,交BC边于点F,连接DF,则图中与△ACE相似的三角形共有()A.2个B.3个C.4个D.5个8.(4分)8.如图,点A在反比例函数y=−4x(x<0)的图象上,点B在反比例函数的图象上,且AB∥y轴,BC⊥AB于点B,交y轴于点C.若△ABC的面积为3,则k的值为()A.﹣3B.﹣2C.2D.3第8题图第9题图第10题图9.9.(4分)已知反比例函数y=的图象如图所示,则二次函数y=bx2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共计4小题,总分25分)11.(8分)11.线段a=2cm,线段b=8cm,则线段a、b的比例中项是cm.12.(8分)12.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)第12题图13.(5分)13.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.14.(4分)14.如图,在△ABC中,∠A=90°,∠BCD=∠BCA,BD⊥DC于点D,DC交AB于点E,请完成下列探究.(1)若∠BCD=n°,那么∠EBD=°;(结果用含n的代数式表示)(2)若=m,那么=.(结果用含m的代数式表示)三、解答题(本题共计9小题,总分90分)15.(8分)15.已知==,且x+2y+3z=﹣46,求x,y,z的值.16.(8分)16.如图,已知DE∥BC,FE∥CD,AF=3,AD=5,AE=4.(1)求CE的长;(2)求AB的长.17.(8分)17.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.18.(8分)18.如图,已知一次函数y=ax+b与反比例函数的图象相交于点A(1,3)和B(m,1).(1)求反比例函数与一次函数的解析式;(2)当反比例函数的值小于一次函数的值时,请直接写出实数x的取值范围;(3)求△OAB 的面积.19.(10分)19.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,2BP =3CD ,BP =1. (1)求证△ABP ∽△PCD ; (2)求△ABC 的边长.20.(10分)20.如图,在四边形ABCD 中,AC ,BD 相交于点E ,点F 在BD 上,且∠BAF =∠DBC ,.(1)求证:△ABC ∽△AFD ; (2)若AD =2,BC =5,求AE BE的值.21.(12分)21.如图,AC 为平行四边形ABCD 的对角线,∠ABE =∠ACB ,BE 交边AD 于点E ,交AC 于点F . (1)求证:AE 2=EF •BE ;(2)若EF =1,E 是边AD 的中点,求边BC 的长.22.(12分)22.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)求芒果一天的销售量y与该天售价x之间的一次函数关系式,写出x的取值范围.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式,并求出最大利润.23.(14分)23.如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.(1)设△APQ的面积为S,求S与t的函数关系式;(2)当t为何值时,△APQ与△ABC相似?(3)在P、Q的运动过程中,△APQ能否构成等腰三角形?如能,直接写出t的值,如不能,说明理由.答案一、 单选题 (本题共计10小题,总分40分)1.(4分)B2.(4分)A3.(4分)D4.(4分)A5.(4分)A6.(4分)D7.(4分)B8.(4分)C 9.(4分)C10.(4分)C二、 填空题 (本题共计4小题,总分25分)11.(8分)11. 4,12.(8分)12. 答案不唯一, 略,13.(5分)13. 12,14.(4分) 14.(1)n,(2)2m 三、 解答题 (本题共计9小题,总分90分) 15.(8分)15.X=-4,Y=-6,Z=-10 16.(8分)16.325,38==AB CE 17.(8分)17. 过B 作BM ‖AC ,交DF 于M 因为BM ‖AC 所以BM/AE =BD/AD 因为AD/DB =3/2 所以BM/AE =2/3 因为AE/EC =1/2 所以BD/EC =1/3 所以FB/FC =BM/EC =1/3即FB:FC=1:318.18.(8(2)1<x<3,或x<0(4)419.(10分)19(1)∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△PCD.(2)设△ABC的边长为x,易得:△ABP∽△PCD;故可得:=;即=,解得△ABC的边长为3.解答:解:设△ABC的边长为x,由(1)得,△ABP∽△PCD.∴=,∴=.∴x=3.即△ABC的边长为3.20.(10分)20(1)∵∠BAF=∠DBC∴∠BAE=∠DBF,△ABC∽△AFD(2)AEBE =5221.(12分)21.(1)可证△ABE ∽△F AE ,AE 2=EF •BE (2)23=BC22. 22.(12分)(1)y=-x+60(15≤x ≤40).(2)m=y(x-10)=(-x+60)(x-10)=-2x +70x-600. 当x=35时,m 取最大值625. 23. 23.(14分)(1)28.0-4t t s = (2)13501130或=t (3)8251760310或或=t。
专业科目考试:2022数学1真题模拟及答案(1)
专业科目考试:2022数学1真题模拟及答案(1)共670道题1、微分方程y ″-y =e x+1的一个特解应具有形式( )。
(单选题) A. ae x+b B. axe x +b C. ae x +bx D. axe x +bx 试题答案:B2、设(a →×b →)·c →=2,则[(a →+b →)×(b →+c →)]·(c →+a →)=( )。
(单选题)A. 2B. 4C. 1D. 0 试题答案:B3、平行于平面5x -14y +2z +36=0且与此平面距离为3的平面方程为( )。
(单选题)A. 5x -14y +2z +36=0或5x -14y +2z -18=0B. 5x -14y +2z +36=0或5x -14y +2z -9=0C. 5x -14y +2z +81=0或5x -14y +2z -9=0D. 5x -14y +2z +81=0或5x -14y +2z -18=0 试题答案:C4、设0<x n<1,n=1,2,…,且有x n+1=-x n2+2x n,则()。
(单选题)A.B. 不存在C.D.试题答案:C5、设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()。
(单选题)A.B.C.D.试题答案:D6、下列结论正确的是()。
(单选题)A. z=f(x,y)在点(x0,y0)处两个偏导数存在,则z=f(x,y)在点(x0,y0)处连续B. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数存在C. z=f(x,y)在点(x0,y0)处的某个邻域内两个偏导数存在且有界,则z=f(x,y)在点(x0,y0)处连续D. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数有界试题答案:C7、设函数f(x)在x=0处连续,下列命题错误的是()。
01小升初数学模拟试题一(北师大)(含答案+解析)
小升初数学模拟试题一(北师大)一、选择题。
1.商场搞促销活动,原价80元的商品,现在八折出售,可以便宜()元.A.100B.64C.162.下面各数中,最接近1000的数是()A.899B.987C.10023.与数对(3,5)在同一行的是()A.(5,3)B.(3,4)C.(4,5)D.(5,6)4.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果。
A.1B.2C.3D.45.把一个圆柱削成一个与它等底等高的圆锥,削去的体积是90立方厘米,这个圆柱的体积是多少立方厘米?列式正确的是()A.90÷3=30B.90÷2×3=135C.90×3=270D.90÷2=456.一辆客车从甲地到乙地,第一天行驶了全程的15,第二天行驶了450千米,这时已行路程和剩下路程的比是3:7.甲乙两地相距()千米.A.750B.900C.2250D.45007.小明看一本书,已经看的与没看的比是3:7,那么已看的占全书的()A.37B.310C.710D.138.数学书厚7()A.毫米B.厘米C.分米9.小明在桌子上用小正方体摆了一个几何体,从上面看到的图形是,从左面看到的图形是,小明最多用了个小正方体,最少用了个小正方体.10.在下面各比中,和15:12比值相等的是()A.5:2B.1.5:0.6C.14:58D.15:211.六年级某班男生人数与女生人数的比是3:2,男生比女生多()A.60%B.50%C.40%D.66.6%二、判断题12.真分数就是最简分数。
()13.两个完全一样的梯形一定能拼成一个长方形.()14.一种商品先涨价10%,再降价10%,原价不变.( )15.36只鸽子飞进5个鸽笼,总有一个笼子至少飞进了8只鸽子.( ) 16.圆锥的体积等于圆柱体积的 13,圆柱与圆锥一定等底等高。
( )三、填空题17.在笔直的公路两旁栽树(两端都栽),每隔5米栽一棵,一共栽了36棵树.这条公路长 米. 18.小于60的数中,7的所有倍数有 . 19.以下四个说法中正确的是 (填序号).①两位小朋友独立操作,共编了7个中国结,有一个小朋友至少编了4个;②若一个圆锥的底面半径扩大到原来的3倍,则底面周长扩大到原来的3倍,体积扩大到原来的27倍; ③在美术本上画一栋50米高的房子,比较合适的比例尺是1:50; ④正方形的周长与边长成正比例关系.20.将2016颗黑子,201颗白子排成一条直线,至少会有 颗黑子连在一起.21.一个外表涂色的正方体木块,切成8个一样大的小正方体,只有一个面涂色的正方体有 块;如果切成一样大的27块,那么只有一面涂色的正方体有 块.22.五(1)班教室在4楼,每层楼有20级台阶,从一楼回到教室需要走 级台阶. 23.计算:(2.25÷0.375﹣0.3×2)÷(2.3×0.25+0.27×2.5)= .24.一个圆柱的底面周长是12.56厘米,高是5厘米,它的侧面积是 平方厘米,表面积是平方厘米,体积是 立方厘米.四、计算题25.下面各题,怎样简便就怎样算.(1)517÷9+ 19 × 1217(2)2﹣ 613 ÷ 926 ﹣ 23(3)87× 386(4)511 - 57+ 611 -2726.解比例(1)3:5=x :15(2)7x = 2124(3)35 : 47 = 78 :x五、应用题27.学校新进150本《童话故事》,《科技书》比《童话故事》的 45少15本,新进《科技书》多少本?28.如图,一个棱长8厘米的正方体,在它的前面的正中间画一个边长2厘米的正方形,再由正方形向对面挖一个长方体洞,剩下物体的表面积是多少平方厘米?29.有A,B,C,D,E五个朋友相聚在一起,互相握手致意.B握了4次手,A握了3次手,C握了2次手,D握了1次手,那么E握了几次手?30.餐厅买了面粉和大米各12袋,面粉每袋83元,大米每袋62元,一共需要多少元?31.甲乙两辆汽车同时从相距630千米的两地相对开出,经过4.2小时两车相遇.已知乙车每小时行70千米,甲车每小时行多少千米?答案解析部分1.【答案】C【解析】【解答】80×(1﹣80%)=80×0.2=16(元),所以可以便宜16元。
中考数学2022年上海市中考数学第一次模拟试题(含答案及解析)
2022年上海市中考数学第一次模拟试题 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分数中,最简分数是( )A .69B .24C .46D .292、下列说法中,正确的是( ) A .整数包括正整数和负整数 B .自然数都是正整数C .一个数能同时被2、3整除,也一定能被6整除D .若0.3m n ÷=,则n 一定能整除m3、下列四条线段为成比例线段的是 ( )A .a =10,b =5,c =4,d =7B .a =1,bc,dC .a =8,b =5,c =4,d =3D .a =9,bc =3,d4、关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( ) A .1a ≥ B .1a ≤- C .1a ≥- D .0a ≥ ·线○封○密○外5、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A.B.C.D.6、下列说法中正确的是()A.符号相反的两个数互为相反数B.0是最小的有理数C.规定了原点、方向和单位长度的射线叫做数轴D.0既不是正数,也不是负数〈〉=,不超过7的素数有2、3、5、7共4 7、x是正整数,x〈〉表示不超过x的素数的个数.如:74〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉的值是()个,那么2395134188A.9 B.10 C.11 D.128、下列命题正确的有几个()①如果整数a能被整数b(不为0)除尽,那么就说a能被b整除;②任何素数加上1都成为偶数;③一个合数一定可以写成几个素数相乘的形式;④连续的两个正整数,它们的公因数是1.A.0 B.1 C.2 D.39、下列哪个数不能和2,3,4组成比例()A .1B .1.5C .223D .6 10、下面分数中可以化为有限小数的是( ) A .764 B .730 C .7172 D .1272 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、若3423x =,则x =______. 2、一个扇形面积等于这个扇形所在圆面积的25,则这个扇形的圆心角是______. 3、若23a b =,则a a b =+________. 4、13小时=________分钟. 5、求比值:125克:0.5千克=_______________ 三、解答题(5小题,每小题10分,共计50分) 1、已知::2:3a b =,(5):()2:3a b x ++=,求x 的值 2、计算:1743.51 1.252 3.84105⨯+⨯-÷. 3、一条公路长1500米,已修好900米,还需修全长的几分之几? 4、将6本相同厚度的书叠起来,它们的高度为14厘米,再将15本这样相同厚度的书叠在上面,那么这叠书的总高度是多少厘米? 5、求19962的末三位是多少.-参考答案- 一、单选题·线○封○密○外1、D【分析】根据最简分数是分子,分母只有公因数1的分数即可得出答案.【详解】∵622142=== 934263,,,∴29是最简分数,故选:D.【点睛】本题主要考查最简分数,掌握最简分数的定义是解题的关键.2、C【分析】根据整数的分类,自然数的定义,倍数与约数,可得答案.【详解】解:A、整数包括正整数、零和负整数,故A错误;B、自然数都是非负整数,故B错误;C、一个数能同时被2、3整除,也一定能被6整除,故C正确;D、m÷n=整数,则n一定能整除m,故D错误;故选:C.【点睛】本题考查了有理数,整数包括正整数、零和负整数,注意自然数都是非负整数.3、B【详解】A .从小到大排列,由于5×7≠4×10,所以不成比例,不符合题意; B1=,所以成比例,符合题意; C .从小到大排列,由于4×5≠3×8,所以不成比例,不符合题意; D故选B . 【点睛】 本题考查线段成比例的知识.解决本类问题只要计算最大最小数的积以及中间两个数的积,判断是否相等即可,相等即成比例,不相等不成比例. 4、C 【分析】 先求出方程的解,然后根据题意得到含参数的不等式求解即可. 【详解】 解:由5264x a a x -=+-,方程的解为1x a =+, ∴10a +≥,即1a ≥-. 故选C . 【点睛】 本题主要考查一元一次方程的解及一元一次不等式的解,熟练掌握运算方法是解题的关键. 5、D 【分析】 观察两图象,分别确定,a c 的取值范围,即可求解. 【详解】·线○封○密○外解:A 、抛物线图象,开口向下,即0a < ,而一次函数图象自左向右呈上升趋势,则0a > ,相矛盾,故本选项错误,不符合题意;B 、抛物线图象与y 轴交于负半轴,即0c < ,而一次函数图象与y 轴交于正半轴,0c > ,相矛盾,故本选项错误,不符合题意;C 、抛物线图象,开口向上,即0a > ,而一次函数图象自左向右呈下降趋势,即0a < ,相矛盾,故本选项错误,不符合题意;D 、抛物线图象,开口向下,即0a < ,一次函数图象自左向右呈下降趋势,即0a < ,两图象与y 轴交于同一点,即c 相同,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了二次函数、一次函数的图象和性质,熟练掌握二次函数20y ax bx c a ++≠=() a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点位置是解题的关键.6、D【分析】根据有理数的相关概念直接进行排除选项即可.【详解】A 、符号相反的两个数不一定是相反数,如4和-3,故错误;B 、0不是最小的有理数,还有负数比它小,故错误;C 、规定了原点、正方向和单位长度的直线叫做数轴,故错误;D 、0既不是正数也不是负数,故正确.故选D .【点睛】本题主要考查相反数、数轴及零的意义,熟练掌握各个知识点是解题的关键.7、C【分析】根据题意所给定义新运算及素数与合数的概念直接进行求解.【详解】解:23〈〉表示不超过23的素数有2、3、5、7、11、13、17、19、23共九个,则23=9〈〉;95〈〉表示不超过95的素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89共24个,则有95=24〈〉, 由1=0〈〉可得134188=0〈〉⨯〈〉⨯〈〉; 2395134188=33=11∴〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉〈〉; 故选C . 【点睛】 本题主要考查素数与合数,熟练掌握素数与合数的概念是解题的关键. 8、C 【分析】 ①除尽是指被除数除以除数(除数≠0),除到最后没有余数,就说一个数能被另一个数除尽;而整除是指一个整数除以一个非0整数,得到的商是整数还没有余数,就说一个数能被另一个数整除; ②根据质数的定义,2为最小的质数,但是2+1=3,3为质数; ③根据合数的定义:一个数除了1和它本身以外还有别的因数,这样的数叫做合数,分解质因数就是把一个合数写成几个质数的连乘积形式,所以任何一个合数都可以写成几个质数相乘的形式; ④相邻的两个正整数是互质数,互质数的公因数是1,由此即可解答. 【详解】 ①根据“整除”和“除尽”概念的不同,可知能被b 除尽的数不一定能被b 整除. 如:15÷2=7.5,15能被2除尽,但不能被2整除,故①错误; ②由于2为最小的质数,2+1=3,3为奇数,所以任何质数加1都成为偶数的说法是错误的,故②错误;·线○封○密○外③任何一个合数都可以写成几个质数相乘的形式,故③正确;④根据相邻的两个自然数是互质数,互质数的公因数是1,故④正确;综上,正确的是③和④,共2个.故选:C.【点睛】本题考查了数的整除,合数的定义以及分解质因数的意义,因数、公因数的概念,解题的关键是理解“整除”和“除尽”的意义以及两个数互质,最大公因数是1,最小公倍数是它们的积.9、A【分析】根据比例的基本性质,两内项之积等于两外项之积逐一分析即可.【详解】解:根据比例的基本性质,两内项之积等于两外项之积,则:A.1423⨯≠⨯,不可以组成比例;B.1.5423⨯=⨯,可以组成比例;C.223243⨯=⨯,可以组成比例;D.2634⨯=⨯,可以组成比例;故选:A.【点睛】本题考查比例,掌握比例的基本性质:两内项之积等于两外项之积是解题的关键.10、A【分析】根据题意可直接进行分数化简小数,然后排除选项即可.【详解】A 、7=0.10937564,故符合题意;B 、7=0.2330,故不符合题意; C 、71=1.097272,故不符合题意; D 、72=2.58312,故不符合题意; 故选A .【点睛】 本题主要考查分数化小数,熟练掌握分数化小数是解题的关键. 二、填空题 1、89 【分析】 根据等式的基本性质解方程即可. 【详解】 解:3423x = 34232233x ⨯=⨯ 89x = 故答案为:89. 【点睛】 此题考查的是解方程,掌握等式的基本性质是解题关键. ·线○封○密○外2、144°【分析】由题意可知:扇形面积占圆面积的25,则其圆心角也占圆的度数的25,而整圆是360°,所以就能求出圆心角是多少度.【详解】解:360°×25=144°故答案为:144°.【点睛】此题主要考查圆的面积的计算方法以及在同圆或等圆中,扇形面积与圆面积的比等于扇形圆心角与圆周角度数的比.3、2 5【分析】根据23ab=,得到23a b=,代入式子计算即可.【详解】解:∵23ab=,∴23a b =,∴2233232553aa b b bb bb+===+,故答案为:25.【点睛】此题考查分式的求值以及比例式恒等变形能力,掌握等式的性质变形得到23a b =是解题的关键. 4、20 【分析】 根据1小时等于60分钟换算即可.【详解】 13小时=160=203⨯分钟, 故答案为:20. 【点睛】 本题主要考查单位的换算,掌握小时和分钟之间的换算是解题的关键. 5、14 【分析】 先统一单位,再用比的前项除以比的后项,据此解答. 【详解】 解:125克:0.5千克 =125克:500克 =125÷500 =14 故答案为:14. 【点睛】 本题主要考查了求比值方法的掌握情况,注意要先统一单位. ·线○封○密○外三、解答题1、152【分析】根据:2:3a b =可用a 表示b 并代入(5):()2:3a b x ++=中化简即可抵消a ,解出x .【详解】解:因为:2:3a b =, 所以32b a =, 所以3(5):()2:32a a x ++=, 即33(5)2()2a a x +=⋅+ 31532a a x +=+ 解得152x =. 【点睛】本题考查比的性质.化简过程中注意内项之积等于外项之积.2、3【分析】把分数统一成小数,除法运算转化成乘法运算,再利用乘法分配律计算.【详解】1743.51 1.252 3.84105⨯+⨯-÷ 3.5 1.25 1.25 2.7 3.8 1.25=⨯+⨯-⨯1.25(3.52.73.8)=⨯+-1.252.4=⨯3=. 【点睛】 本题考查了有理数的加减乘除混合运算,运用乘法分配律能使计算简便. 3、25 【分析】 先求出剩下的米数,再用剩下的米数除以公路的总长度即可. 【详解】 解:(1500-900)÷1500, =600÷1500, =25, 答:还需修全长的25. 【点睛】 本题属于求一个数是另一个数几分之几,只要找准对应量,用除法计算即可.4、49厘米【分析】先算出每本书的厚度,再乘以书的总本数即可得到解答.【详解】 解:由题意得:()14615496⨯+=,∴这叠书的总高度是49厘米, 答:这叠书的总高度是49厘米. 【点睛】 ·线○封○密·○外本题考查乘除法的综合应用,根据不同的问题情境采用不同的列式计算方法是解题关键.5、336.【分析】末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336,依此即可求解.【详解】解:末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336.故答案为:336.【点睛】本题主要考查了数字类规律探索,解题的关键是从简单的乘方运算开始,通过运算找出规律解决问题.。
高考数学(理科)模拟试题含答案(一)精编版
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
小学数学一年级上册竞赛模拟提高试题(附答案解析)
小学数学一年级上册竞赛模拟提高试题(附答案解析)1.请你把0、1、2、3、4、5 这六个数字填在苹果里,使算式成立,每个数字只能用一次。
2.按规律填上括号里的数。
2,5,8,11,( ),17,20。
3.按规律填出空缺的项。
1,9,2,8,3,( ),4,6,5,5。
4.把一根粗细均匀的木头锯成6段,需要锯( )次。
如果锯一次需要2分钟,一共要锯( )分钟。
5.大牛从1楼走到5楼需要4分钟,那么用同样的速度,他从1楼走到8楼需要( )分钟。
6.雁雁有10颗巧克力,旦旦有8颗巧克力。
雁雁给旦旦一些巧克力后,旦旦有15颗巧克力,那么此时雁雁有( )颗巧克力。
7.计算:10+9-8+7-6+5-4+3-2+1=_______。
8.小军喝一杯牛奶,第一次喝了半杯,用水加满,第二次喝了半杯后又用水加满,然后全部喝完。
小军一共喝了( )杯牛奶,( )杯水。
9.有一个教室里的桌子上放着9支蜡烛,点着了3只,突然一阵风吹来,吹灭了2支,过了一天后教室里还有( )支蜡烛。
10.有16位小朋友在玩游戏,后来有3位小朋友加入,又有6位小朋友回家去了,现在有__位小朋友在玩。
11.下面五角星里的数字都是按一定规律排列的,你能填出“?”里的数吗?12.小华和爸爸、妈妈为植树节义务植树,小华植了1棵,爸爸植了5棵,妈妈比爸爸少植2棵,妈妈植了多少棵,他们一共植了多少棵?13.下面每幅图中各有几个小正方体?( )个 ( )个14.同学们排队做操,从前面数,小明排第4,从后面数,小明排第5,这一队一共有多少人?15.小红有9只铅笔,小明有5只铅笔,小红给小明( )支铅笔两人的铅笔同样多。
16.小化过生日,请来5个小朋友一起吃饭。
每人一个饭碗,2人一个菜碗,3人一个汤碗,请你算一算,他们一共用了( )个碗。
17.一只小猫5分钟吃完一条小鱼,5只小猫同时吃5条同样的小鱼要( )分钟。
18.一根电线,对折后从中间剪开,剪开的电线一共有( )段。
广东省初中毕业生学业考试数学模拟试卷一及答案
广东省初中毕业生学业考试数学模拟试卷一及答案广东省初中毕业生学业考试数学模拟试卷一及答案中考试题对于每个考生来说都是很重要的,它影响着考生的高中去向,下面是店铺整理的最新中考模拟试题,希望能帮到你。
广东省初中毕业生学业考试数学模拟试卷一一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是( )A.|-2|=2B.|+2|=|-2|C.-|+2|=±|-2|D.-|-3|=+(-3)2.下列各实数中,最小的是( )A.-πB.(-1)0C.3-1D.|-2|3.如图M11,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为( )A.120°B.128°C.110°D.100°图M11 图M124.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5.下列计算正确的是( )A.2a+3b=5abB.(a2)4=a8C.a3•a2=a6D.(a-b)2=a2-b26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( )A.73×102B.7.3×103C.0.73×104D.7.3×1027.如图M12是根据某班50名一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为( )A.9,8B.8,9C.8,8.5D.19,178.已知x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( )A.m<-1B.m>1C.m<1,且m≠0D.m>-1,且m≠09.如图M13,在矩形ABCD中,AB=1,AD=2,将AD边绕点A 顺时针旋转,使点D恰好落在BC边上的点D′处,则阴影部分的扇形面积为( )A.πB.π2C.π3D.π4图M13 图M1410.如图M14,已知在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC 上任一点,连接DE,DF.设EC的长为x,则△DEF的面积y关于x的函数关系大致为( )A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.12.分式方程1x=32x+3的解为________.13.如图M15,自行车的链条每节长为2.5 cm,每两节链条相连接部分重叠的圆的直径为0.8 cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为________cm.14.如图M16,菱形ABCD的边长为15,sin∠BAC=35,则对角线AC的长为________.15.如图M17,△ABC与△DEF是位似图形,位似比为2∶3,若AB=6,那么DE=________.16.如图M18,已知S△ABC=8 m2,AD平分∠BAC,且AD⊥BD 于点D,则S△ADC=________ m2.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2-2x-4=0.18.先化简,再求值:2xx+1-2x+6x2-1÷x+3x2-2x+1.其中x=3.19.如图M19,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?21.如图M110,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.(1)求证:①△ABG≌△AFG; ②BG=GC;(2)求△FGC的面积.22.“关注校车,关儿童”成为今年全社会热议的焦点之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M111,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于P(n,2),与x轴交于A(-4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B,C,P,D为顶点的四边形是菱形,求出点D的坐标.24.⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.(1)如图M112(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;(2)如图M112(2),CD与⊙O交于另一点E.BD∶DE∶EC=2∶3∶5,求圆心O到直线CD的距离;(3)若图M112(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的.情况出现几次?25.如图M113(1),矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图M113(2),若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M,N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.广东省初中毕业生学业考试数学模拟试卷一答案一、选择题(本大题共10小题,每小题3分,共30分)1.在12,2,4,-2这四个数中,互为相反数的是( )A.12与2B.2与-2C.-2与12D.-2与42.下列四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个3.计算(-1)2+20-|-3|的值等于( )A.-1B.0C.1D.54.若m>n,则下列不等式中成立的是( )A.m+ana2 D.a-m5.植树造林可以净化空气、美化环境.据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为( )A.196×103B.19.6×104C.1.96×105D.0.196×1066.如图M21是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A.22℃B.22.5℃C.23℃D.23.5℃7.如图M22,a∥b,∠3+∠4=110°,则∠1+∠2的度数为( )A.60°B.70°C.90°D.110°8.如图M23,下列四个图形中,既是轴对称图形又是中心对称图形的有( )图M23A.1个B.2个C.3个D.4个9.不等式组x-1≥1,2x-5<1的解集在数轴上表示为( )A. B. C. D.10.如图M24,已知直线AB与反比例函数y=-2x和y=4x交于A,B两点,与y轴交于点C,若AC=BC,则S△AOB=()A.6B.7C.4D.3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a3-4a2b+4ab2=________.12.已知|a-1|+2a+b-5=0,则ab的值为________.13.一个多边形的每个外角都等于72°,则这个多边形的边数为________.14.如图M25,在△ABC中,D,E分别为AB,AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长=________.图M25 图M26 图M2715.如图M26,△ABC的顶点都在正方形网格的格点上,则cosC=________.16.如图M27,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是________(结果保留π).三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程组x-2y=8,①2x+y=1.②18.先化简,再求值:2x+1x2+6x+9-13+x÷x-2x2+3x,其中x=3-3.19.如图M28,在△ABC中,AB=AC,点M在BA的延长线上.(1)按下列要求作图,并在图中标明相应的字母.①作∠CAM的平分线AN;②作AC的中点O,连接BO,并延长BO交AN于点D,连接CD.(2)在(1)的条件下,判断四边形ABCD的形状.并证明你的结论.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?21.某市某校在推进体育学科新课改的过程中,开设的选修课有A:篮球;B:排球;C:羽毛球;D:乒乓球.学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图M29).(1)求出该班的总人数,并补全频数分布直方图;(2)求出B,D所在扇形的圆心角的度数和;(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?22.如图M210,已知矩形ABCD,动点E从点B沿线段BC向点C运动,连接AE,DE,以AE为边作矩形AEFG,使边FG过点D.(1 )求证:△ABE∽△AGD;(2)求证:矩形AEFG与矩形ABCD的面积相等;(3)当AB=2 3,BC=6时,①求BE为何值时,△AED为等腰三角形?②直接写出点E从点B运动到点C时,点G所经过的路径长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M211,二次函数y=12x2+bx+c的图象交x轴于A,D 两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.已知:AD,BC是⊙O的两条互相垂直的弦,垂足为点E,点H是弦BC的中点,AO是∠DAB的平分线,半径OA交弦CB于点M.图M212 图M213 图M214(1)如图M212,延长OH交AB于点N,求证:∠ONB=2∠AON;(2)如图M213,若点M是OA的中点,求证:AD=4OH;(3)如图M214,延长HO交⊙O于点F,连接BF,若CO的延长线交BF于点G,CG⊥BF,CH=3,求⊙O的半径长.25.操作:如图M215,将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A,P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有的大小关系?试证明你观察到的结论;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x 之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.图M215广东省初中毕业生学业考试数学模拟试卷一答案1.C2.A3.D4.C5.B6.B7.B8.D9.C 10.D11.8 12.x=3 13.102.8 14.24 15.9 16.417.解:由原方程移项,得x2-2x=4.等式两边同时加上一次项系数一半的平方,得x2-2x+1=5.配方,得(x-1)2=5.∴x=1±5.∴x1=1+5,x2=1-5.18.解:原式=2xx+1-2x+3x+1x-1•x-12x+3=2xx+1-2x-1x+1=2x+1.当x=3时,原式=23+1=3-1.19.(1)解:如图D160,EF即为所求.图D160(2)证明:如图,∵四边形ABCD为矩形,∴AD∥BC.∴∠ADB=∠CBD.∵EF垂直平分线段BD,∴BO=DO.在△DEO和△BFO中,∵∠ADB=∠CBD,BO=DO,∠DOE=∠BOF,∴△DEO≌△BFO(ASA).∴EO=FO.∴四边形DEBF是平行四边形.又∵EF⊥BD,∴四边形DEBF是菱形.20.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴P(抽到奇数)=23.(2)画树状图(如图D161)得图D161∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13.21.(1)证明:①在正方形ABCD中,AD=AB,∠D=∠B=∠DCB=90°,又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G,∴∠AFG=∠AFE=∠D=90°,AF=AD.即有∠B=∠AFG=90°,AB=AF,AG=AG.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,∴△ABG≌△AFG.②∵AB=6,点E在边CD上,且CD=3DE,∴DE=FE=2,CE=4.不妨设BG=FG=x,(x>0),则CG=6-x,EG=2+x,在Rt△CEG中,(2+x)2=42+(6-x)2 ,解得x=3,于是BG=GC=3.(2)解:∵GFFE=32,∴GFGE=35.∴S△FGC=35S△EGC=35×12×4×3=185.22.解:(1)设单独租用35座客车需x辆.由题意,得35x=55(x-1)-45.解得x=5.∴35x=35×5=175.答:该幼儿园现有的需接送儿童人数为175人.(2)设租35座客车y辆,则租55座客车(4-y)辆.由题意,得35y+554-y≥175,32y+404-y≤150.解这个不等式组,得114≤y≤214.∵y取正整数,∴y=2.∴4-y=4-2=2.∴购进小车的费用为32×2+40×2=144(万元).答:本次购进小车的费用是144万元.23.解:(1)∵AC=BC,CO⊥AB,A(-4,0),∴O为AB的中点,即OA=OB=4.∴P(4,2),B(4,0).将A(-4,0)与P(4,2)代入y=kx+b,得-4k+b=0,4k+b=2.解得k=14,b=1.∴一次函数解析式为y=14x+1.将P(4,2)代入反比例函数解析式得m=8,即反比例函数解析式为y=8x.(2)如图D162,图D162当PB为菱形的对角线时,∵四边形BCPD为菱形,∴PB垂直且平分CD.∵PB⊥x轴,P(4,2),∴点D(8,1).当PC为菱形的对角线时,PB∥CD,此时点D在y轴上,不可能在反比例函数的图象上,故此种情形不存在.综上所述,点D(8,1).24.(1)证明:如图D163,连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵AB是⊙O的直径,∴∠ACB=90°.又∵∠BCD=∠BAC=∠OCA,∴∠BCD+∠OCB=90°,即OC⊥CD.∴CD是⊙O的切线.图D163 图D164(2)解:∵∠ADE=∠CDB,∠BCD=∠EAD,∴△BCD∽△EAD.∴CDAD=BDED.∴CE+EDAB+BD=BDED.又∵BD∶DE∶EC=2∶3∶5,⊙O的半径为5,∴BD=2,DE=3,EC=5.如图D164,连接OC,OE,则△OEC是等边三角形,作OF⊥CE于F,则EF=12CE=52,∴OF=5 32.∴圆心O到直线CD的距离是5 32.(3)解:这样的情形共有出现三次,当点D在⊙O外时,点E是CD中点,有以下两种情形,如图D165、图D166;当点D在⊙O内时,点D是CE中点,有以下一种情形,如图D167.图D165 图D166 图D16725.(1)证明:由矩形和翻折的性质可知AD=CE,DC=EA.在△ADE与△CED中,AD=CE,DE=ED,DC=EA,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE.∴AF=CF.设DF=x,则AF=CF=4-x.在Rt△ADF中,AD2+DF2=AF2,即32+x2=(4-x)2.解得x=78,即DF=78.(3)解:如图D168,由矩形PQMN的性质得PQ∥CA,图D168∴PECE=PQCA.又∵CE=3,AC=AB2+BC2=5.设PE=x(0过点E作EG⊥AC于G,则PN∥EG,∴CPCE=PNEG.又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=125,∴3-x3=PN125,即PN=45(3-x).设矩形PQMN的面积为S,则S=PQ•PN=-43x2+4x=-43x-322+3(0所以当x=32,即PE=32时,矩形PQMN的面积最大,最大面积为3.【广东省初中毕业生学业考试数学模拟试卷一及答案】。
体育单招数学模拟试题(一)及答案(最新整理)
(A) 5 (B) 5 (C) 12 (D) 12
12
12
5
5
5,等比数列 an 中, a1 a2 a3 30 , a4 a5 a6 120 ,则 a7 a8 a9 ( )
(A)240 (B) 240
6, tan 330 ( )
(A) 3
A4 , A8 ,A4 , A11 ,A8 , A11 ,共10 种.
………6 分
“从得分在区间 10, 20 内的运动员中随机抽取 2 人,这 2 人得分之和大于 25 ”(记为事件 B )的所有可能
结果有:A2 , A4 ,A2 , A11 ,A3 , A4 ,A3 , A8 ,A3 , A11 ,A4 , A8 ,
A4 , A11 ,A8 , A11 ,共 8 种.
………8 分
所以 P B 8 0.8 .
10
答 : 从 得 分 在 区 间 10, 20 内 的 运 动 员 中 随 机 抽 取 2 人 , 这 2 人 得 分 之 和 大 于 25 的 概 率 为 0.8
.
………10 分
14.(1)T=
(B) 3 3
(C) 480
(D) 480
(C) 3
(D) 3 3
7,
过椭圆 ()
x2 36
y2 25
1的焦点F1作直线交椭圆于A、B两点,F2 是椭圆另一焦 点,则△ABF2 的周长是
(A).12
(B).24
(C).22
(D).10
8,
函数
y
sin
2x
6
图像的一个对称中心是(
)
(A) ( , 0) 12
体育单招数学模拟试题(一)
一、 选择题
数学一模拟试题(二)
数学一模拟试题(二)一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xdx x f n ⎰=40tan )(π,则n n n nf n nf )]2()([lim -+∞→= . (2) 微分方程x e y y y 223=+'-''满足1)(lim0=→x x y x 的特解为 . (3) 设L 为取正向的圆周9:22=+y x L ,则曲线积分=-++-⎰dy x y x dx y xy L )42()22(222 .(4) 已知A,B 为三阶相似矩阵,2,121==λλ为A 的两个特征值,行列式2=B ,则行列式=+-*1)2(00)(B E A . (5) 设随机变量X 与Y 相互独立,且均服从正态分布N(0,1),则概率 =≥}0{XY P .(6) 设总体X N ~(,),μ22X X X n 12,,, 为取自总体的一个样本,X 为样本均值, 要使1.0)(2≤-μX E 成立,则样本容量n 至少应取多大 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)以下命题正确的是(A) 21arctan sin lim 0π=→x x x x . (B) 21arctan sin lim 0π=→x x x x . (C) 21arctan sin lim 0π=→x x xx . (D) 21arctan sin lim 0π=→x x x x . [ ] (2) 设区域D 由y=x ,x=1,y=-1所围成,则(A)⎰⎰⎰⎰=D D xdxdy xydxdy 2. (B) ⎰⎰⎰⎰=D D ydxdy xydxdy 2. (C) ⎰⎰⎰⎰+=D D dxdy y x xydxdy )(. (D) ⎰⎰⎰⎰-=D Ddxdy y x xydxdy )(. [ ](3) 设f(x)、g(x)在点x=0的某邻域内连续,且f(x)具有连续一阶导数,满足0)(lim 0=→xx g x ,⎰-+-='xdt t x g x x f 02)(2)(,则 (A) x=0为f(x)的极小值点.(B) x=0为f(x)的极大值点.(C) (0, f(0))为曲线y=f(x)的拐点.(D) x=0不是f(x)的极值点,(0, f(0))也不是曲线y=f(x)的拐点. [ ](4) 已知三阶矩阵A 的特征值为0,1±,则下列结论中不正确的是(A) 矩阵A 是不可逆的. (B )矩阵A 的主对角元素之和为0.(C) 1和-1所对应的特征向量是正交的. (C) Ax=0的基础解系由一个向量组成. [ ](5) 设A 为四阶实对称矩阵,满足03=-A A ,且其正、负惯性指数均为1,则(A) 行列式1=+E A . (B) 2E+A 为正定矩阵.(C) 秩r(E-A)=2. (D) Ax=0解空间的维数为1. [ ](6) 样本),,,(21n X X X 取自总体X~N(0,1),X 及S 分别表示样本均值和均方差,则(A) )1,0(~N X . (B) ).1,0(~N X n (C) ).(~122n X n k k ∑=χ (D)).1(~-n t SX [ ] 三、(本题满分8分)设ψϕ,都具有连续的一、二阶偏导数,⎰+-+-++=ax y ax y dt t aax y ax y z )(21)]()([21ψϕϕ,试求.22222y z a x z ∂∂-∂∂ 四、(本题满分10分)试证:对于在(1,2)内任一点x 处均有.)1(411)1(2ln 3-<+--x x x x 五、(本题满分12分)设f(x,y)在单位圆上有连续的偏导数,且在边界上取值为零,证明dxdy y x y f y x f x f D ⎰⎰+∂∂+∂∂-=→22021lim)0,0(πε 其中D 为圆环域:.1222≤+≤y x ε六、(本题满分12分)设u(x,y),v(x,y)在全平面内有连续的偏导数,且满足x v y u y v x u ∂∂-=∂∂∂∂=∂∂,,记C 为包围原点的正向简单闭曲线,计算.)()(22⎰+++-=C y x dy yv xu dx yu xv I七、(本题满分12分)设f(u)连续,222,0:t y x h z G t ≤+≤≤,而dV y x f zt F t G )]([)(222++=⎰⎰⎰,求dt dF 及.)(lim 100t dx xt F t ⎰+→八、(本题满分12分)设稳定流动的不可压缩流体(假设密度为1)的速度场由j x z i z y v )()(22-+-=+k y x )(2-给出,锥面)0(22h z y x z ≤≤+=是速度场中一片有向曲面,求在单位时间内流向曲面∑外侧的流体的质量.九、(本题满分9分)设βαααα,,,,4321为四维列向量,A=],,,[4321αααα, 已知β=Ax 的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=01111021121121k k x . 其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0111,1021为对应齐次方程组的基础解系,21,k k 为任意常数. 令B=],,[321ααα, 试求B β=y 的通解.十、(本题满分9分)设A,B 为n 阶矩阵,秩r(A)+r(B)<n.(1) 证明0=λ为A,B 相同的特征值;(2) Ax=0与Bx=0的基础解系组成的向量组线性相关;(3) A,B 具有公共的特征向量.十一 (本题满分9分)在线段[0,1]上任取n 个点,试求其中最远两点的距离的数学期望 .十二 (本题满分9分)设有n 台仪器. 已知用第i 台仪器测量时,测定值总体的标准差为),,2,1(n i i =σ.用这些仪器独立地对某一物理量θ各观察一次,分别得到n X X X ,,,21 . 设仪器都没有系统误差,即),,2,1()(n i X E i ==θ,问n k k k ,,,21 应取何值,方能在使用ini i X k ∑==1ˆθ估计θ时,θˆ无偏,并且)ˆ(θD 最小?。
2020届初中学业水平 第一模拟考试 数学试题(含答案)
解不等式组 得-4≤x<2.5, -------------------------7 分 则该不等式组的整数解为-4,-3,-2,-1,0,1,2, ∵x≠±1 且 x≠±2,x≠0, ∴x=-4 或 x=-3,
当 x=-4 时,原式=- = ;
当 x=-3 时,原式=- = . -------------------------10 分 22、(12 分)解: 设每只 A 型口罩销售利润为 a 元,每只 B 型口罩销售利润为 b 元,根据题意得
(2)连接 OC,设⊙O 的半径为 r, ∵AH=3、CH=4, ∴OH=r﹣3,OC=r,
则(r﹣3)2+42=r2,
解得:r= , ∵GM∥AC, ∴∠CAH=∠M, ∵∠OEM=∠AHC, ∴△AHC∽△MEO,
∴ = ,即 = ,-------------------------13 分
解得:EM= . 25.【13 分】解:(1)∵线段 OB 的长是方程 x2﹣2x﹣8=0 的解,
13、-b(3a-2)2 ,11;14、 ﹣1,a≥-3 且 a≠±1;15、
16、 17、(2,2)) 18、 -6<a≤-5
19、
20、
三、解答题:本大题共 6 个小题,满分 74 分.解答时请写出必要的演推过程.
21、(10 分)解:原式=
-·
=
-
=
-
= =- ,
-------------------------5 分
即药店购进 A 型口罩 500 只、B 型口罩 1500 只,才能使销售总利润最大;
设 B 型口罩降价的幅度是 x,根据题意得
,
解得
.
答:B 型口罩降价的幅度 23、(12 分)
成人高考专升本高等数学(一)全真模拟试题及答案解析⑤
成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析⑤1(单选题)函数在x=0处()(本题4分)A 连续且可导B 连续且不可导C 不连续D 不仅可导,导数也连续标准答案: B解析:【考情点拨】本题考查了函数在一点处的连续性和可导性的知识点。
【应试指导】因为所以函数在x=0处连续;又因不存在,所以函数在x=0处不可导。
2(单选题)曲线()(本题4分)A 没有渐近线B 仅有水平渐近线C 仅有铅直渐近线D 既有水平渐近线,又有铅直渐近线标准答案: D解析:【考情点拨】本题考查了曲线的渐近线的知识点。
【应试指导】所以y=1为水平渐近线。
又因所以x=0为铅直渐近线。
3(单选题)则α的值为()(本题4分)A -1B 1C -1/2D 0标准答案: B解析:【考情点拨】本题考查了洛必达法则的知识点。
【应试指导】因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故解得a=-1,所以4(单选题)设()(本题4分)A 等价无穷小B f(x)是比g(x)高阶无穷小C f(x)是比gCc)低阶无穷小D f(x)与g(x)是同阶但非等价无穷小标准答案: D解析:【考情点拨】本题考查了两个无穷小量阶的比较的知识点。
【应试指导】故f(x)与g(x)是同价但非等价无穷小。
5(单选题)已知=()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了已知积分函数求原函数的知识点。
【应试指导】因为所以6(单选题)曲线y=e^x与其过原点的切线及y轴所围面积为()(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了曲线围成的面积的知识点。
【应试指导】设(x0,y0)为切点,则切线方程为联立得x0=1,y0=e,所以切线方程为y=ex。
故所求面积为7(单选题)设函数()(本题4分)A 1B 0C -1/2D -1标准答案: D解析:【考情点拨】本题考查了一元函数在一点处的一阶导数的知识点。
2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
2020-2021学年河北省中考数学模拟试卷(1)及答案解析
河北省中考数学模拟试卷(1)一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.﹣3的相反数是()A.3 B.C.﹣3 D.﹣2.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1 D.a3÷a=a23.如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12 B.16 C.20 D.244.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形5.用配方法解方程x2+x﹣1=0,配方后所得方程是()A.(x﹣)2=B.(x+)2=C.(x﹣)2=D.(x+)2=6.在半径为1的⊙O中,弦AB=1,则的长是()A.B.C.D.7.估计+1的值是()A.在42和43之间 B.在43和44之间 C.在44和45之间 D.在45和46之间8.已知如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,化简的结果为①c,②b,③b﹣a,④a﹣b+2c,其中正确的有()A.一个B.两个C.三个D.四个二、填空题9.从一副扑克牌(除去大小王)中摸出两张牌都是梅花的概率为.10.如图,直线y=kx(k>0)与双曲线y=交于A(a,b),B(c,d)两点,则3ad ﹣5bc= .11.分解因式:x3﹣xy2= .12.如图,四边形ABCD是平行四边形,E为BC边的中点,DE、AC相交于点F,若△CEF的面积为6,则△ADF的面积为.13.等腰三角形的腰长为2,腰上的高为1,则它的底角等于.14.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长为2、3、4…的等边三角形(如图所示),根据图形推断,每个等边三角形所用的等边三角形所用的卡片数S与边长n的关系式是.15.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为,面积为.16.△ABC是⊙O的内接三角形,∠BAC=60°,D是的中点,AD=a,则四边形ABDC 的面积为.三、解答题(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.3﹣2+4﹣(2006﹣sin45°)018.已知,求代数式的值.19.如图,在平面直角坐标系中,点A的坐标为(3,﹣3),点B的坐标为(﹣1,3),回答下列问题(1)点C的坐标是.(2)点B关于原点的对称点的坐标是.(3)△ABC的面积为.(4)画出△ABC关于x轴对称的△A′B′C′.20.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC 于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.四、应用题21.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)22.如图,在一块如图所示的三角形余料上裁剪下一个正方形,如果△ABC为直角三角形,且∠ACB=90°,AC=4,BC=3,正方形的四个顶点D 、E 、F 、G 分别在三角形的三条边上.求正方形的边长.五、解答题(本题12分)23.已知:如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连接AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC •AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.六、解答题(本题12分)24.某开发公司现有员工50名,所有员工的月工资情况如下表:员工 管理人员 普通工作人员 人员结构总经理部门经理 科研人员 销售人员 高级技工中级技工 勤杂工 员工数/名14 2 322 3 每人月工资/元 21000 84002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.七、计算题(本题12分)25.某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)如果每套定价700元,软件公司售出多少套可以收回成本?(3)某承包商与软件开发公司签订合同,买下公司生产的全部软件,但700元的单价要打折,并且公司仍然要负责安装调试.如果公司总共可生产该软件1500套,并且公司希望从这个软件项目上获得不少于280000元的利润,最多可以打几折?八、计算题(本题14分)26.如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于点C.(1)求这条抛物线的顶点D的坐标;(2)经过点(0,4)且与x轴平行的直线与抛物线y=x2﹣4x﹣1相交于M、N两点(M在N的左侧),以MN为直径作⊙P,过点D作⊙P的切线,切点为E,求点DE 的长;(3)上下平移(2)中的直线MN,以MN为直径的⊙P能否与x轴相切?如果能够,求出⊙P的半径;如果不能,请说明理由.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.﹣3的相反数是()A.3 B.C.﹣3 D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.【点评】此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1 D.a3÷a=a2【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【解答】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选D.【点评】本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.3.如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12 B.16 C.20 D.24【考点】平移的性质;等边三角形的性质.【专题】数形结合.【分析】根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得.【解答】解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴AD=BE=2,各等边三角形的边长均为4.∴四边形ABFD的周长=AD+AB+BE+FE+DF=16.故选B.【点评】本题考查平移的性质,用到的知识点为:平移前后对应线段相等;关键是找到所求四边形的各边长.4.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A.两条对角线相等的平行四边形是矩形,故本选项错误;B.两条对角线互相垂直的平行四边形是菱形,故本选项错误;C.两条对角线互相垂直且相等的平行四边形是正方形,故本选项错误;D.两条对角线互相平分的四边形是平行四边形,正确;故选:D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.用配方法解方程x2+x﹣1=0,配方后所得方程是()A.(x﹣)2=B.(x+)2=C.(x﹣)2=D.(x+)2=【考点】解一元二次方程﹣配方法.【分析】移项后两边都配上一次项系数一半的平方可得.【解答】解:∵x2+x=1,∴x2+x+=1+,即(x+)2=,故选:D.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.6.在半径为1的⊙O中,弦AB=1,则的长是()A.B.C.D.【考点】弧长的计算.【分析】先利用垂径定理求出角的度数,再利用弧长公式求弧长.【解答】解:如图,作OC⊥AB,则利用垂径定理可知BC=∵弦AB=1,∴sin∠COB=∴∠COB=30°∴∠AOB=60°∴的长==.故选C.【点评】此题先利用垂径定理求出角的度数,再利用弧长公式求弧长.7.估计+1的值是()A.在42和43之间 B.在43和44之间 C.在44和45之间 D.在45和46之间【考点】估算无理数的大小.【分析】首先拿44的平方试一下,45的平方大于2009,所以很容易得到结果.【解答】解:∵1936<2009<2025,∴44<<45,即45<<46.故选D.【点评】本题考查估计无理数的大小,本题是选择题可以先从选项算起,很容易得到结论.8.已知如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,化简的结果为①c,②b,③b﹣a,④a﹣b+2c,其中正确的有()A.一个B.两个C.三个D.四个【考点】抛物线与x轴的交点;二次根式的性质与化简.【专题】压轴题;数形结合.【分析】先把A点坐标代入抛物线的解析式可得a﹣b+c=0,再根据抛物线的开口向下可得a<0,由抛物线的图象可知对称轴在x轴的正半轴可知﹣>0,抛物线与y 轴相交于y轴的正半轴,所以c>0,根据此条件即可判断出a+c及c﹣b的符号,再根据二次根式的性质即可进行解答.【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴a﹣b+c=0,即a+c=b,∵抛物线的开口向下,∴a<0,∵对称轴在x轴的正半轴可知﹣>0,∴b>0,∵抛物线与y轴相交于y轴的正半轴,∴c>0,∴a+c=b>0,c>b,∴①原式=b+(c﹣b)=c,故①正确,④原式=a+c+c﹣b=a﹣b+2c,故④正确.③∵a﹣b+c=0∴原式=a﹣b+2c=a﹣b+c+c=0+c=c,故③正确.故选C.【点评】本题考查的是抛物线与x轴的交点,涉及到抛物线的图象与系数的关系,抛物线的对称轴方程等相关知识.二、填空题9.从一副扑克牌(除去大小王)中摸出两张牌都是梅花的概率为.【考点】加法原理与乘法原理.【专题】计算题.【分析】让摸出第一张牌是梅花的概率乘以摸出第二张牌是梅花的概率即为所求的概率.【解答】解:第一张摸出梅花的概率:=,此时梅花还剩12张,牌一共还有51张,第二张又摸到梅花的概率是:=,两张牌都摸到梅花的概率是:×=,故答案为.【点评】考查乘法原理的应用;两次实验的概率=第一次实验的可能性与第二次实验的可能性的积.10.如图,直线y=kx(k>0)与双曲线y=交于A(a,b),B(c,d)两点,则3ad ﹣5bc= 6 .【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】本题需先根据交点的性质,把A(a,b),B(c,d)分别代入直线y=kx(k >0)与双曲线y=中,求出它们之间相等的量,最后再把他们代入及可求出结果.【解答】解:∵直线y=kx(k>0)与双曲线y=交于A(a,b),B(c,d)两点,∴把A(a,b),B(c,d)代入上式得;k=,k=∴∴ad=bc∵ab=3,cd=3∴abcd=9,即(ad)2=9,∴ad=bc=﹣3,∴3ad﹣5bc=﹣9+15=6.故答案为6.【点评】本题主要考查了反比例函数与一次函数的交点问题,在解题时要注意交点与函数的性质问题.11.分解因式:x3﹣xy2= x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.12.如图,四边形ABCD是平行四边形,E为BC边的中点,DE、AC相交于点F,若△CEF的面积为6,则△ADF的面积为24 .【考点】平行四边形的性质.【专题】压轴题;数形结合.【分析】根据E为BC边的中点可得出CE和AD的比,进而根据面积比等于相似比的平方可得出△ADF的面积.【解答】解:∵四边形ABCD是平行四边形,E为BC边的中点,∴=,∴S△CFE:S△ADF=1:4,又∵△CEF的面积为6,∴△ADF的面积为24.故答案为:24.【点评】本题考查平行四边形的性质,属于基础的应用题,难度不大,解答本题的关键是掌握面积比等于相似比的平方.13.等腰三角形的腰长为2,腰上的高为1,则它的底角等于15°或75°..【考点】等腰三角形的性质;勾股定理.【专题】计算题;分类讨论.【分析】此题分两种情况,当顶角为锐角时,利用勾股定理,AD的长,然后即可得出∠ABD=60°,可得顶角度数.同理即可求出顶角为钝角时,底角的度数.【解答】解;如图1,△ABC中,AB=AC=2,BD为腰上的高,且BD=1,顶角为锐角,∵AD2=AB2﹣BD2,∴AD2=4﹣1=3,∴AD=,∴∠ABD=60°,∴顶角为30°,底角为75°;如图2,△ABC中,AB=AC=2,BD为腰上的高,且BD=1,顶角为钝角同理可得,底角为15°.故答案为:15°或75°.【点评】此题主要考查学生对等腰三角形性质的理解和掌握,解答此题的关键是利用分类讨论的思想进行分析,对顶角为锐角和顶角为钝角时分别进行分析.14.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长为2、3、4…的等边三角形(如图所示),根据图形推断,每个等边三角形所用的等边三角形所用的卡片数S与边长n的关系式是S=n2(n≥2).【考点】函数关系式;规律型:图形的变化类.【分析】长特殊到一般探究规律后,利用规律即可解决问题.【解答】解:图1中,当n=2时,S=4;如图2中当n=3时,S=9;图3中,当n=4时,S=16.….依此类推,总数S与边长n的关系式S=n2(n≥2).故答案为S=n2(n≥2)【点评】本题考查函数关系式、规律型:图形的变化类题目,解题的关键是学会从特殊到一般的探究方法,学会探究规律,利用规律解决问题.15.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为90 ,面积为270 .【考点】相似三角形的性质;勾股定理的逆定理.【分析】由相似三角形对应边比相等,知道已知三角形的三边和较大三角形的最大边,根据相应比求得边和周长,由三角形是直角三角形面积即求得.【解答】解:设较大三角形的其他两边长为a,b.∵由相似三角形的对应边比相等∴解得:a=15,b=36,则较大三角形的周长为90,面积为270.故较大三角形的周长为90,面积为270.【点评】本题考查了相似三角形对应边的比相等,根据已知三角形的三边,未知三角形的最长边,知道了对应比,从而求得.16.△ABC是⊙O的内接三角形,∠BAC=60°,D是的中点,AD=a,则四边形ABDC的面积为a2.【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【专题】计算题;压轴题.【分析】根据题意求得∠DBC=∠DCB=30°,设BD=DC=x,那么BC=x,由正弦定理和托勒密定理AB+AC=a,再根据S四边形ABDC=S△ABD+S△ACD,从而求得答案.【解答】解:解法一:在ABDC中,∠BAC=60度,所以∠BDC=120°,∵点D是弧BC的中点,∴BD=DC,∴∠DBC=∠DCB=30°,在△BDC中用正弦定理,得∴BC=BD,设BD=DC=x,那么BC=x,用托勒密定理:AD•BC=AB•DC+BD•AC,即ax=x•AB+x•AC,则AB+AC=a,S四边形ABDC=S△ABD+S△ACD=(AB•AD•sin∠BAD+AC•AD•sin∠DAC),=(AB+AC)AD•sin30°,=a2;解法二:如图,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,∵D是的中点,∴BD=CD,∠BAD=∠FAD,∴DE=DF(角平分线上的点到角的两边的距离相等),在Rt△DBE与Rt△DCF中,,∴Rt△DBE≌Rt△DCF(HL),∴S△DBE=S△DCF,∴S四边形ABDC=S四边形AEDF,∵点D是弧BC的中点,∠BAC=60°,∴∠BAD=∠BAC=×60°=30°,∵AD=a,∴AE=AD•cos30°=a,DE=AD•sin30•=a,∴S四边形AEDF=2S△ADE=2××a×a=a2.故答案为:a2.【点评】本题考查了圆内接四边形的性质以及圆周角定理,是竞赛题难度偏大.三、解答题(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.3﹣2+4﹣(2006﹣sin45°)0【考点】特殊角的三角函数值;二次根式的混合运算.【专题】计算题.【分析】本题涉及零指数幂、二次根式化简及特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:3﹣2+4﹣(2006﹣sin45°)0,=3﹣2+20﹣×1,=20.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、二次根式化简及特殊角的三角函数值等考点的运算.18.已知,求代数式的值.【考点】二次根式的化简求值.【专题】计算题.【分析】由已知条件得到a﹣1=1﹣<0,再把代数式利用因式分解变形得到原式=﹣,则根据二次根式的性质得原式=a﹣1﹣=a﹣1+,然后把a的值代入计算即可.【解答】解:∵a=2﹣,∴a﹣1=1﹣<0,∴原式=﹣=a﹣1﹣=a﹣1+,当a=2﹣时,原式=2﹣﹣1+=2﹣﹣1+2+=3.【点评】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.19.如图,在平面直角坐标系中,点A的坐标为(3,﹣3),点B的坐标为(﹣1,3),回答下列问题(1)点C的坐标是(﹣3,﹣2).(2)点B关于原点的对称点的坐标是(1,﹣3).(3)△ABC的面积为16 .(4)画出△ABC关于x轴对称的△A′B′C′.【考点】作图﹣轴对称变换.【专题】作图题.【分析】(1)根据平面直角坐标系写出即可;(2)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解;(4)根据网格结构找出点A、B、C关于x轴的对称点A′、B′、C′的位置,然后顺次连接即可.【解答】解:(1)点C的坐标是(﹣3,﹣2);(2)点B关于原点的对称点的坐标是(1,﹣3);(3)△ABC的面积=6×6﹣×2×5﹣×1×6﹣×4×6,=36﹣5﹣3﹣12,=36﹣20,=16;(4)如图所示,△A′B′C′即为所求作的三角形.故答案为:(1)(﹣3,﹣2),(2)(1,﹣3),(3)16.【点评】本题考查了利用轴对称变换作图,平面直角坐标系的相关知识,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC 于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.【考点】切线的性质;圆周角定理;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】本题由已知DE是⊙O的切线,可联想到常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法.【解答】(1)证明:连接OD,(1分)∵DE切⊙O于点D,∴DE⊥OD,∴∠ODE=90°,(2分)又∵AD=DC,AO=OB,∴OD是中位线,∴OD∥BC,∴∠DEC=∠ODE=90°,∴DE⊥BC;(4分)(2)解:连接BD,(5分)∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,∴∠BDC=90°,又∵DE⊥BC,Rt△CDB∽Rt△CED,(7分)∴,∴BC=,(9分)又∵OD=BC,∴OD=,即⊙O的半径为.【点评】命题立意:此题主要考查圆的切线的性质、垂直的判定、圆周角的性质、三角形相似等知识.四、应用题21.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)【考点】列表法与树状图法.【专题】应用题.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式分别求出两个数字之和是奇数与是偶数的概率,根据概率的大小即可判断小明的选择是否合理.【解答】解:小明的选择不合理;列表得234635679578911810111214∴共出现12中等可能的结果,其中出现奇数的次数是7次,概率为,出现偶数的次数为5次,概率为,∵,即出现奇数的概率较大,∴小明的选择不合理.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.注意哪个概率大,选择哪个的可能性就大.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在一块如图所示的三角形余料上裁剪下一个正方形,如果△ABC为直角三角形,且∠ACB=90°,AC=4,BC=3,正方形的四个顶点D、E、F、G分别在三角形的三条边上.求正方形的边长.【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】作辅助线:作CH⊥AB于H,由四边形DEFG为正方形,可得CM⊥GF与求得AB、CH的值,还可证得△ABC∽△GFC,由相似三角形对应高的比等于相似比,即可求得正方形的边长.【解答】解:作CH⊥AB于H,∵四边形DEFG为正方形,∴CM⊥GF,由勾股定理可得:AB=5,根据三角形的面积不变性可求得CH=,设GD=x,∵GF∥AB,∴∠CGF=∠A,∠CFG=∠B,∴△ABC∽△GFC,∴,即,整理得:12﹣5x=x,解得:x=,答:正方形的边长为.【点评】此题考查了相似三角形的判定与性质与直角三角形、正方形的性质.注意相似三角形对应高的比等于相似比定理的应用与数形结合思想与方程思想的应用.五、解答题(本题12分)23.已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A 与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【考点】菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.【专题】压轴题;开放型;存在型.【分析】(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF 的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;(3)因为AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.【解答】(1)证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°(1分)∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF(ASA).∴OE=OF(2分)∴四边形AFCE是菱形.(2)解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴(x+y)2﹣2xy=100①又∵S△ABF=24,∴xy=24,则xy=48.②(5分)由①、②得:(x+y)2=196∴x+y=14,x+y=﹣14(不合题意舍去)∴△ABF的周长为x+y+AF=14+10=24.(7分)(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.(9分)证明:由作法,∠AEP=90°,由(1)得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP,∴=,则AE2=AO•AP∵四边形AFCE是菱形,∴AO=AC,AE2=AC•AP(11分)∴2AE2=AC•AP即P的位置是:过E作EP⊥AD交AC于P.【点评】本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.六、解答题(本题12分)24.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有15 人;(2)该公司的工资极差是20050 元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.【考点】中位数;加权平均数;众数;极差.【专题】压轴题;图表型.【分析】(1)高级技工人数=总数﹣各类员工人数;(2)根据极差=最大值﹣最小值计算即可;(3)先求出平均数,中位数和众数,再继续判断;(4)去掉最高工资的前五名,再去掉最低工资的后五名,再根据加权平均数的公式:计算即可.【解答】解:(1)50﹣1﹣4﹣2﹣3﹣22﹣3=15人(2分)(2)21000﹣950=20050元(4分)(3)员工的说法更合理些.这组数据的平均数是2606元,中位数是1700元,众数是1600元由于个别较大数据的影响,平均数不能准确地代表平近水平,此时中位数或众数可以较好的反映工资的平均水平,因此员工的说法更合理一些.(9分)(4)(元)这样计算更能代表员工的平均工资水平.【点评】本题为统计题,考查极差、平均数、众数与中位数的意义.极差是指一组数据中最大数据与最小数据的差.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.七、计算题(本题12分)25.某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)如果每套定价700元,软件公司售出多少套可以收回成本?(3)某承包商与软件开发公司签订合同,买下公司生产的全部软件,但700元的单价要打折,并且公司仍然要负责安装调试.如果公司总共可生产该软件1500套,并且公司希望从这个软件项目上获得不少于280000元的利润,最多可以打几折?【考点】一次函数的应用.【专题】销售问题.【分析】(1)由题意得;总费用=广告宣传费+x套安装调试费.可得出函数关系式;(2)根据每套定价700元,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元,即可得出等量关系,求出即可;(3)根据总利润以及打折运算,得出等式方程求出即可.【解答】解:(1)根据题意得:y=50000+200x.(2)设软件公司售出x套软件能收回成本,700x=50000+200x,解得:x=100,答:软件公司售出100套软件可以收回成本.(3)设该软件按m折销售时可获利280000元,由题意可得:(700×﹣200)×1500=280000+50000,解得:m=6,答:公司最多可以打6折.【点评】此题主要考查了一元一次方程的应用以及打折问题,利用已知条件得出等量关系是解决问题的关键.八、计算题(本题14分)26.如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于。
安徽省滁州市定远县民族中学2023届高三下学期第一次模拟数学试题(含答案解析)
安徽省滁州市定远县民族中学2023届高三下学期第一次模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}210A x x x =-->,2121x x B y y x x ⎧⎫--==>⎨⎬-⎩⎭,,则A B = ()A .()1+∞,B .()2+∞,C .12⎛⎫+∞ ⎪ ⎪⎝⎭D .⎫+∞⎪⎪⎝⎭2.已知复数1i z =+(i 是虚数单位),设2zzω=,则ω=()A B .2C .D .43.某研究员为研究某两个变量的相关性,随机抽取这两个变量样本数据如下表:i x 0.041 4.8410.24iy 1.12.12.33.34.2若依据表中数据画出散点图,则样本点(,)(1,2,3,4,5)i i x y i =都在曲线1y =附近波动.但由于某种原因表中一个x 值被污损,将方程1y +作为回归方程,则根据回归方程1y =和表中数据可求得被污损数据为()A . 4.32-B .1.69C .1.96D .4.324.已知向量)a =,()01b =- ,,(c k =,若()2//a b c - ,则实数k 的值为()A .1B .1-CD .5.设12log 3a =,0.323b ⎛⎫= ⎪⎝⎭,132c =,则a ,b ,c 的大小关系是()A .b a c <<B .c b a <<C .c<a<bD .a b c<<6.如图所示,已知点P 为菱形ABCD 所在平面外一点,且PA ⊥平面ABCD ,PA =AD =AC ,点F 为PC 中点,则平面CBF 与平面DBF 夹角的正切值为()A .6BC D 7.已知双曲线2221(0)y x b b-=>的左右焦点分别为1F ,2F ,点P 是双曲线右支上一点,点A 是线段12F F 上一点,且121223F PF F PA π∠=∠=,5PA =,则该双曲线的离心率为()A B .2C .3D 8.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为P ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还万元()A .10M B .()()1010111MP P P ++-C .()10110M P +D .()()99111MP P P ++-二、多选题9.已知函数()π24f x x ⎛⎫- ⎝=⎪⎭,则下列说法正确的是()A .函数()f x的图象可以由2y x =的图象向右平移3π8个长度单位得到B .()()122f x f x =-,则12minπx x -=C .5π8f x ⎛⎫+ ⎪⎝⎭是偶函数D .()f x 在区间π0,4⎛⎫⎪⎝⎭上单调递增10.如图,AE ⊥平面ABCD ,CF //AE ,AD //BC ,AD ⊥AB ,AE =BC =2,AB =AD =1,87CF =,则()A .BD ⊥ECB .BF //平面ADEC .二面角E -BD -F 的余弦值为13D .直线CE 与平面BDE 所成角的正弦值为5911.过平面内一点P 作曲线|ln |y x =两条互相垂直的切线12,l l ,切点为P 1、P 2(P 1、P 2不重合),设直线12,l l 分别与y 轴交于点A ,B ,则下列结论正确的是()A .P 1、P 2两点的横坐标之积为定值B .直线P 1P 2的斜率为定值C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(0,1]12.某省2021年美术联考约有5000名学生参加,现从考试的科目素描(满分100分)中随机抽取了500名考生的考试成绩,记录他们的分数后,将数据分成7组:[)[)20303040,,,,⋯,[]8090,,并整理得到如图所示的频率分布直方图.则下列说法不正确的是()A .由频率分布直方图可知,全省考生的该项科目分数均不高于90分B .用样本估计总体,全省该项科目分数小于70分的考生约为2000人C .若样本中分数小于40的考生有30人,则可估计总体中分数在区间[)4050,内约200人D .用样本估计总体,全省考生该项科目分数的中位数为75分三、填空题13.若62baxx⎛⎫-⎪⎝⎭的展开式中3x项的系数为-160,则22a b+的最小值为_______14.梵净山是云贵高原向湘西丘陵过渡斜坡上的第一高峰,是乌江与沅江的分水岭,也是横亘于贵州、重庆,湖南,湖北四省(市)的武陵山脉的最高主峰.某测量小组为测量该山最高的金顶P的海拔,选取了一块海拔为400米的平地,在平地上选取相距885米的两个观测点A与B,如图,在点A处测得P的仰角为60︒,在点B处测得P的仰角为45︒,则金顶P的海拔为________米.1.732 =)15.2022北京冬奥会期间,吉祥物冰墩墩成为顶流”,吸引了许多人购买,使一“墩难求甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为12,丙购买到冰墩墩的概率为15,则甲,乙,丙3人中至少有1人购买到冰墩墩的概率为_________.16.若2022220220122022(12)x a a x a x a x-=++++,则20221222022222aa a+++的值___________________.四、解答题17.在ABC中,222.b c a+-=(1)求cos A的值;(2)若2B A=,b,求a的值.18.已知数列{an}中,a1=1,其前n项和Sn,满足an+1=Sn+1(n∈N*).(1)求Sn;(2)记bn=11n nn nS SS S++-,求数列{bn}的前n项和Tn.19.旨在全面提高国民体质和健康水平,1995年国务院颁布了《全民健身计划纲要》,并在2009年将每年8月8日设置为“全民健身日”,倡导全民做到每天参加--次以上的体育健身活动,学会两种以上健身方法,每年进行一次体质测定.某小区为了调查居民的体育运动情况,从该小区随机抽取了100位成年人,记录了他们某天的锻炼时间,其频率分布直方图如下:(1)求a 的值,并求这100位居民锻炼时间的中位数;(2)若规定[]0,10为第一组,依次往下,现采用分层抽样的方法从第三组和第五组随机抽取6名成年人进行体质测定,再从这6人中随机抽取2人进行跟踪调查,求这2人中,两组各有1人的概率.20.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =4,E 为PB 的中点,F 为线段BC 上的点,且BF =14BC .(1)求证:平面AEF ⊥平面PBC ;(2)求点F 到平面PCD 的距离.21.已知椭圆C :2222x y a b+=1(a >b >0)过A (2,0),B (0,1)两点.(1)求椭圆C 的方程和离心率的大小;(2)设M ,N 是y 轴上不同的两点,若两点的纵坐标互为倒数,直线AM 与椭圆C 的另一个交点为P ,直线AN 与椭圆C 的另一个交点为Q ,判断直线PQ 与x 轴的位置关系,并证明你的结论.22.已知函数()ln ,af x x a x=+∈R .(1)当1a =时,求函数()f x 的单调区间;(2)当1x ≥时,若关于x 的不等式()2f x x a ≤-恒成立,试求a 的取值范围.参考答案:1.C【分析】解集合A 中的不等式,求集合B 中函数的值域,得到两个集合,再求交集.【详解】由210x x -->,解得A ⎛⎫=-∞+∞ ⎪ ⎪⎝⎭⎝⎭ ,又211211x x y x x x x --==->--,函数单调递增,则1y >,()1B ∴=+∞,,得A B ⎫=+∞⎪⎪⎝⎭故选:C 2.B【分析】根据共轭复数的定义及复数的除法运算求出ω,再根据复数的模的计算公式即可得解.【详解】解:由已知222(1i)2(1i)2i 1i (1i)(1i)z z ω--====-++-,所以2ω=.故选:B.3.C【解析】令i m =,根据线性回归中心点在回归直线上,求出y ,得出m ,即可求解.【详解】设缺失的数据为),1,2,3,4,5i x m i ==,则样本(),i i m y 数据如下表所示:im 0.21 2.23.2iy 1.12.12.33.34.2其回归直线方程为ˆ1ym =+,由表中数据可得,11.12.1 2.33.34.2 2.65y =++++=(),由线性回归方程ˆ1ym =+得, 1.6m =,即10.21 2.2 3.2 1.65+++=(),解得 1.96x =.故选:C .【点睛】本题考查线性回归方程的应用,换元是解题的关键,掌握回归中心点在线性回归直线上,考查计算求解能力,属于中档题.4.A【分析】由向量线性运算的坐标表示,向量共线的坐标公式,计算即可.【详解】根据题意,向量)a =,()01b =- ,,则)2a b -= ;若()2//a b c -,且(c k = ,则有3k =,解可得1k =;故选:A .5.D【分析】根据指数函数和对数函数的单调性求出,,a b c 的范围,即可解出.【详解】因为1122log 3log 10a =<=,0.3231203b ⎛⎫<= ⎛⎫<= ⎪⎪⎭⎝⎝⎭,103221c =>=,所以a b c <<.故选:D .6.D【分析】设AC ∩BD =O ,连接OF ,以O 为原点,OB ,OC ,OF 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,即可得出结果.【详解】设AC ∩BD =O ,连接OF ,以O 为原点,OB ,OC ,OF 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,设PA =AD =AC =1,则BD 11(0,0,),(0,,0),(22∴B F C D 1(00 )2OC ∴= ,,∴且OC为平面BDF 的一个法向量.由1(,0)22=-uu u r BC ,1()22=-uu r FB ,可得平面BCF 的一个法向量为n =cos ,,sin ,7∴<>=<>=r uuu rr uuu r n OC n OCtan ,3∴<>=r uuu r n OC .故选:D 7.B【分析】首先设11PF r =,22PF r =,利用双曲线的定义和余弦定理得到212443c r r -=,根据1212F PF F PA APF S S S =+△△△得到()1212r r r r PA =+⋅,化简整理即可得到2c =,再求离心率即可.【详解】设11PF r =,22PF r =,则1222r r a -==,如图所示:由余弦定理得22212121222cos 3F F PF PF PF PF π=+-,即()222212121212124343c r r r r r r r r r r =++=-+=+,所以212443c r r -=,从而12r r +=因为1212F PF F PA APF S S S =+△△△,所以1212111sin sin s 2in 223233r r r PA r PA πππ⋅⋅+⋅⋅=,整理得:()1212r r r r PA =+⋅,即2443c -=,整理得4252280c c -+=,解得24c =或225c =(舍去),所以2c =,1a =,2c e a==.故选:B【点睛】本题考查双曲线的几何性质,考查数形结合的数学思想以及运算求解能力,属于难题.8.B【分析】设出每年应还款的数额,分别求出10年还款的现金与利息和以及银行贷款10年后的本利和,列等式后求得每年应还款数.【详解】设每年应还x 万元,则有()()()()291011...11x x P x P x P M P +++++++=+,得()()()101011111x P M P P ⎡⎤-+⎣⎦=+-+,解得()()1010111MP P x P +=+-.故选:B .9.AD【分析】根据函数平移可判断A,根据最值点的与周期的关系可判断B,根据偶函数的特征可判断C,整体代入验证法可判断D.【详解】对于A,2y x =的图象向右平移38π个长度单位得到3ππ2244y x x ⎛⎫⎛⎫=-- ⎪⎝⎭⎝⎭,故A 正确,对于B ,因为()()max min f x f x ==()()122f x f x =-可知()()12f x f x ,为最值,又π,T =故12min π2x x -=,故B 错误,对于C,()5ππ2π2π25844x x x f x ⎛⎫+= ⎪⎝⎭⎛⎫+-=+=- ⎪⎝⎭为奇函数,故错误,对于D,ππππππ0,,2,,444422x x ⎛⎫⎛⎫⎛⎫∈∴-∈-⊆- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()f x 在区间π0,4⎛⎫ ⎪⎝⎭上单调递增,正确,故选:AD 10.BC【分析】建立空间直角坐标系,逐项验证,即可求解.【详解】以A 为原点,分别以,,AB AD AE的方向为x 轴,y 轴,z 轴正方向建立空间直角坐标系,可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2),F (1,2,87),BD =(-1,1,0),EC =(1,2,-2),10BD EC ⋅=≠ ,则BD ,EC 不垂直,则A 错误;AB =uu u r (1,0,0)是平面ADE 的法向量,又BF =(0,2,87),可得BF AB ⋅ =0,又因为直线BF ⊄平面ADE ,所以BF //平面ADE ,则B 正确;设m a b c =u r (,,)为平面BDF 的一个法向量,则0,0,m BD m BF ⎧⋅=⎨⋅=⎩ 即0,820,7a b b c -+=⎧⎪⎨+=⎪⎩令b =1,可得7(1,1,)4m =- ,.依题意,BD = =(-1,1,0),BE =(-1,0,2),CE =(-1.-2.2).设n x y z = (,,)为平面BDE 的法向量,则0,0,n BD n BE ⎧⋅=⎨⋅=⎩ 即0,20,x y x z -+=⎧⎨-+=⎩令z =1,可得(221)n = ,,.所以||1||||3m n cos m n m n ⋅== ,,.则C 正确;4cos ,9||||CE n CE n CE n ⋅〈〉==-,则D 错误.故选BC.11.ABC【分析】A.由条件可知两条直线的斜率存在时,斜率之积为-1,讨论12,P P 的位置,即可判断;B.由两点12,P P 的坐标,表示直线12PP 的斜率,即可判断;C.分别求切线方程,并表示点,A B 的坐标,即可求线段AB 的长度;D.根据切线方程,求交点P 的横坐标,因为AB 为定值,即转化为求点P 的横坐标的取值范围.【详解】因为ln ,01ln ln ,1x x y x x x -<<⎧==⎨≥⎩,所以,当01x <<时,1y x '=-;当1x ≥时,1y x'=,不妨设点1P ,2P 的横坐标分别为12,x x ,且12x x <,若1201x x <<≤时,直线1l ,2l 的斜率分别为111k x =-,221k x =-,此时121210k k x x =>,不合题意;若211x x >≥时,则直线1l ,2l 的斜率分别为111k x =,221k x =,此时121210k k x x =>,不合题意.所以1201x x <≤<或1201x x <<≤,则111k x =-,221k x =,由题意可得121211k k x x =-=-,可得121=x x ,若11x =,则21x =;若21x =,则11x =,不合题意,所以1201x x <<<,选项A 对;对于选项B ,易知点()111,ln P x x -,()222,ln P x x ,所以,直线12PP 的斜率为()1212212121ln ln ln 0P P x x x x k x x x x +===--,选项B 对;对于选项C ,直线1l 的方程为()1111ln y x x x x +=--,令0x =可得11ln y x =-,即点()10,1ln A x -,直线2l 的方程为()2221ln y x x x x -=-,令0x =可得21ln 1ln 1y x x =-=--,即点()10,ln 1B x --,所以,()()111ln 1ln 2AB x x =----=,选项C 对;对于选项D ,联立112211ln {1ln 1y x x x y x x x =-+-=+-可得1212121221P x x xx x x x ==++,令()221x f x x =+,其中()0,1∈x ,则()()()2222101x f x x -'=>+,所以,函数()f x 在()0,1上单调递增,则当()0,1∈x 时,()()0,1f x ∈,所以,()121210,121ABP P x S AB x x =⋅=∈+△,选项D 错.故选:ABC.12.AD【分析】由样本和总体的关系判断选项A ;利用样本频率计算总体中的频数判断选项BC ;利用频率分布直方图中位数的算法计算中位数判断选项D.【详解】由题意可知,在500个样本中,该项科目分数是均不高于90分,样本可以用来估计总体,但不能代替总体,在其余4500名考生中,该项科目分数中可能有高于90分的,故选项A 不正确;在样本中,分数不低于70分的频率为()0.040.02100.6+⨯=,则样本中分数小于70分的频率为10.60.4-=,若用样本估计总体,则全省该项科目分数小于70分的考生约为50000.42000⨯=人,故选项B 正确;在样本中,成绩低于50分的频率为()10.0420.020.01100.1-+⨯+⨯=,当分数小于40的考生有30人时,其频率为300.06500=,则分数在区间[)4050,内的频率为0.04,用样本估计总体,则全省考生中分数在区间[)4050,内约50000.04200⨯=人,故选项C 正确;用样本估计总体,通过频率分布直方图可知中位数即为将左右两边矩形面积等分所在位置,则该位置在区间[)7080,内,且等于1701072.54+⨯=分,故选项D 不正确.故选:AD .13.16【分析】求出62b ax x ⎛⎫- ⎪⎝⎭的展开式的通项公式,得到()3336C 160a b -=-,求出8ab =,再利用重要不等式,求出最小值.【详解】62b ax x ⎛⎫- ⎪⎝⎭展开式的通项公式为()()()6216123166C C r r r r r rr r T ax bx a b x ----+=-=-,令1233r -=,解得:3r =,故()333346C T a b x =-,所以()3336C 160a b -=-,解得:8ab =,所以22216a b ab +≥=,当且仅当a b ==故22a b +的最小值为16.故答案为:1614.2494【分析】先求出PD ,然后加上400米即可【详解】设AD x =米,依题意可得60,45PAD PBD ∠=︒∠=︒,则885PD BD x ==+.因为tan PDPADAD=∠=885x +=,则88512090.732x =≈,所以12098852094PD ≈+=米,故金顶P 的海拔为20944002494+=米.故答案为:249415.35##0.6【分析】先算出甲乙2人均购买不到冰墩墩的概率,然后算出丙购买不到冰墩墩的概率,进而算出甲乙丙3人都购买不到冰墩墩的概率,最后算出答案.【详解】因为甲乙2人中至少有1人购买到冰墩墩的概率为12,所以甲乙2人均购买不到冰墩墩的概率111=1=22P -.同理,丙购买不到冰墩墩的概率214=1=55P -.所以,甲乙丙3人都购买不到冰墩墩的概率312142==×=255P P P ⋅,于是甲乙丙3人中至少有1人购买到冰墩墩的概率33=1=5P P -.故答案为:35.16.1-【分析】根据赋值法分别令0x =、12x =,然后可得.【详解】令0x =,得01a =,令12x =,得2022120220220222a a a a ++++= ,所以202212220221222a a a +++=-故答案为:1-17.(1)cos 4A =;(2)2.【分析】(1)利用余弦定理可求得cos A 的值;(2)利用二倍角的正弦公式求出sin B 的值,然后利用正弦定理可求得a 的值.【详解】(1)因为在ABC中,222b c a +=+,所以,2224c 222os b c c a b A c b c =+=-=;(2)由(1)知,02A π<<,所以sin 4A ==因为2B A =,所以sin sin 22sin cos 2444B A A A ===⨯⨯=又因为B =,由正弦定理sin sin a bA B=,可得sin 2.sin b A a B ==18.(1)21n n S =-;(2)11121n n T +=--.【分析】(1)由数列的递推式和等比数列的定义、通项公式,可得所求;(2)求得1112121n n n b +=---,由数列的裂项相消求和,化简即可得到答案.【详解】(1)当2n ≥时,11n n a S -=+,又11n n a S +=+,所以11n n n n n a a S S a +--=-=,即12(2)n n a a n +=≥,在11n n a S +=+中,令1n =,可得211a a =+因为11a =,所以2122a a ==故{}n a 是首项为1,公比为2的等比数列,其通项公式为12n n a -=,所以1121nn n S a +=-=-.(2)因为11n n n n n S S b S S ++-==1111112121n n n n S S ++-=---所以111111(1)()()3372121n nn T +=-+-++---11121n +=--故n T 11121n +=--19.(1)0.030a =,中位数为30.87(2)815【分析】(1)根据频率和为1计算得到a 的值,再根据中位数定义解得答案.(2)根据分层抽样的比例关系得到第三组的人数为4,第五组的人数为2,再计算概率得到答案.【详解】(1)根据频率分布直方图,()0.0050.0120.0350.0150.003101a +++++⨯=,解得0.030a =.设中位数为x ,则()0.005100.012100.0310300.0350.5x ⨯+⨯+⨯+-⨯=,解得30.87x ≈.(2)第三组的人数为:2643⨯=,第五组的人数为:1623⨯=,故114226815C C p C ⨯==.20.(1)证明见解析;(2)2.【分析】(1)根据题意可得AE ⊥平面PBC ,进而可证明平面AEF ⊥平面PBC ;(2)利用等体积法求点到面的距离.【详解】(1)证明:因为PA ⊥底面ABCD ,BC ⊂底面ABCD ,所以PA BC ⊥,又因为底面ABCD 为正方形,所以AB BC ⊥,又因为AB ⊂平面PBC ,PA ⊂平面PBC ,且PA BA A = ,所以BC ⊥底面PAB ,又因为AE ⊂平面PBA ,所以BC AE ⊥,因为PA =AB ,E 为PB 的中点,所以PB AE ⊥,又因为PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC ,因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC ;(2)解:因为AD BC ∥,=AD BC ,所以B PCD A PCD V V --=,又=A PCD P ACD V V --,所以1132444323B PCD P ACD V V --==⨯⨯⨯=,因为142PCD S =⨯= ,设点B 到平面PCD 的距离为h ,所以3B PCDPCDV h S -==由BF =14BC ,知点F 到平面PCD的距离为34=.21.(1)2214x y +=;离心率e =2)直线PQ 与x 轴平行;证明见解析【解析】(1)依题意得a =2,b =1,写出椭圆C 的方程,求解离心率的大小即可.(2)设M ,N 坐标为(0,m ),(0,n ),则1n m=,m ≠0,n ≠0,由A (2,0),M (0,m )得直线AM 的方程为2m y x m =+-,联立22142x y m y x m⎧+=⎪⎪⎨⎪=+⎪-⎩,求出P 的纵坐标,Q 纵坐标,然后推出结果.解法二:设直线AM 的方程为x =ty +2(t ≠0),直线AN 的方程为x =sy +2(s ≠0)令x =0得tyM =﹣2,M 坐标为20t -⎛⎫ ⎪⎝⎭,,同理N 坐标为20s -⎛⎫⎪⎝⎭,,推出yP =yQ ≠0,直线PQ 与x 轴平行.解法三:设直线AM 的方程为y =k 1(x ﹣2),k 1≠0,直线AN 的方程为y =k 2(x ﹣2),k 2≠0,令x =0得M 坐标为(0,﹣2k 1),同理N 坐标为(0,﹣2k 2),得到4k 1k 2=1,代入椭圆方程求出P 的纵坐标,Q 的纵坐标,即可得到结果.【详解】(1)依题意得a =2,b =1,所以椭圆C 的方程为2214x y +=,c ==离心率的大小2c e a ==.(2)解法一、因为M ,N 是y 轴上不同的两点,两点的纵坐标互为倒数,设M ,N 坐标为(0,m ),(0,n ),则1n m=,m ≠0,n ≠0由A (2,0),M (0,m )得直线AM 的方程为2m y x m =+-,22142x y m y x m⎧+=⎪⎪⎨⎪=+⎪-⎩,整理得(m 2+1)y 2﹣2my =0或(m 2+1)x 2﹣4m 2x +4m 2﹣4=0,得交点P 的纵坐标为221P my m =+,同理交点Q 的纵坐标为22212221111Q n m m y n m m ⋅===++⎛⎫+ ⎪⎝⎭,所以yP =yQ ≠0,直线PQ 与x 轴平行.解法二:设直线AM 的方程为x =ty +2(t ≠0),直线AN 的方程为x =sy +2(s ≠0),令x =0得tyM =﹣2,M 坐标为20t -⎛⎫ ⎪⎝⎭,,同理N 坐标为20s -⎛⎫ ⎪⎝⎭,,因为M ,N 是y 轴上不同的两点,两点的纵坐标互为倒数,所以st =4,22142x y x ty ⎧+=⎪⎨⎪=+⎩,整理得(t 2+4)y 2+4ty =0或(t 2+4)x 2﹣16x +16﹣4t 2=0,得交点P 的纵坐标为244P ty t -=+,同理得22244444444Q s tty s t t -⋅--===++⎛⎫+ ⎪⎝⎭,所以yP =yQ ≠0,直线PQ 与x 轴平行.解法三:设直线AM 的方程为y =k 1(x ﹣2),k 1≠0,直线AN 的方程为y =k 2(x ﹣2),k 2≠0令x =0得M 坐标为(0,﹣2k 1),同理N 坐标为(0,﹣2k 2),因为M ,N 是y 轴上不同的两点,两点的纵坐标互为倒数,所以4k 1k 2=1,代入椭圆方程得()221142x y y k x ⎧+=⎪⎨⎪=-⎩,()222211141161640k x k x k +-+-=,或()222111211644140241P k k y k y x k -++==+所以21218241P k x k -=+,得交点P 的纵坐标为2111221182424141P k ky k k k ⎛⎫--=⋅-= ⎪++⎝⎭,同理得21122221114444141414()14Q k k k y k k k ---===+++,所以yP =yQ ≠0,直线PQ 与x 轴平行.【点睛】本题考查直线与椭圆的位置关系的综合应用,椭圆的方程以及简单性质的应用,还考查分析问题解决问题运算求解的能力,属于中档题.22.(1)()f x 的减区间为()0,1,增区间为()1,+∞(2)1,3⎛⎤-∞ ⎥⎝⎦【分析】(1)利用导数求得()f x 的单调区间.(2)利用分离参数法,结合构造函数法以及导数求得a 的取值范围.【详解】(1)当1a =时,()()1ln 0f x x x x=+>,()'22111x f x x x x-=-=,所以()f x 在区间()()()'0,1,0,f x f x <递减;在区间()()()'1,,0,f x f x +∞>递增.所以()f x 的减区间为()0,1,增区间为()1,+∞.(2)1,()2,ln 2a x f x x a x x a x ≥≤-+≤-,2ln 12x x xa x-≤+恒成立.构造函数()()2ln 112x g x x xx x -≥+=,()113g =,()()()2''22ln 11,1912x x g x g x --==+,构造函数()()22ln 11h x x x x =--≥,()()()2'212114140x x x h x x x x x+--=-==>,所以()h x 在[)1,+∞上递增,()110h =>,所以()'0g x >在[)1,+∞上成立,所以()()113g x g ≥=,所以13a ≤,即a 的取值范围是1,3⎛⎤-∞ ⎥⎝⎦.。
浙江省温州市温州中学2024届高三第一次模拟考试数学试题及答案
浙江省温州市温州中学2024届高三第一次模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .−iB .iC .0D .12.某校高一年级18个班参加艺术节合唱比赛,通过简单随机抽样,获得了10个班的比赛得分如下:91,89,90,92,94,87,93,96,91,85,则这组数据的80%分位数为( ) A .93B .93.5C .94D .94.53.已知直线l:y =2x +b 与圆C:(x +2)2+(y −3)2=5有公共点,则b 的取值范围为( ) A .[2,12] B .(−∞,2]∪[12,+∞) C .[−4,6]D .(−∞,−4]∪[6,+∞)4.三棱锥P −ABC 中,PA ⊥平面ABC ,△ABC 为等边三角形,且AB =3,PA =2,则该三棱锥外接球的表面积为( )5.已知等比数列{a n }的首项a 1>1,公比为q ,记T n =a 1a 2⋅⋅⋅a n (n ∈N ∗),则“0<q <1”是“数列{T n }为递减数列”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.在直角梯形ABCD ,AB⊥AD ,DC//AB ,AD=DC=1,AB=2,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示),若AP ⃗⃗⃗⃗⃗ =λED ⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ ,其中λ,μ∈R ,则2λ−μ的取值范围是( )8.已知a=10lg4,b=9lg5,c=8lg6,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>c>a D.c>b>a 二、多选题A.x<1B.log0.5x2>log0.5xC.3x2<3x D.|x(x−1)|=x(1−x)11.在三棱锥P−ABC中,AC⊥BC,AC=BC=4,D是棱AC的中点,E是棱AB上一点,PD=PE=2,AC⊥平面PDE,则()12.设F为抛物线C:y2=4x的焦点,直线l:2x−ay+2b=0(a≠0)与C的准线l1,交于点A.已知l与C相切,切点为B,直线BF与C的一个交点为D,则()A.点(a,b)在C上B.∠BAF<∠AFBC.以BF为直径的圆与l相离D.直线AD与C相切三、填空题15.直三棱柱ABC−A1B1C1的底面是直角三角形,AC⊥BC,AC=6,BC=8,AA1= 4.若平面α将该直三棱柱ABC−A1B1C1截成两部分,将两部分几何体组成一个平行六面体,且该平行六面体内接于球,则此外接球表面积的最大值为.16.对任意x∈(1,+∞),函数f(x)=a x lna−aln(x−1)≥0(a>1)恒成立,则a的取值范围为.四、解答题17.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+c2−b2=ac,a=√3,cosA=√53.(1)求角B及边b的值;(2)求sin(2A−B)的值.18.已知数列{a n}的前n项和为S n,且S n=2a n−n.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=a n+1a n a n+1,其前n项和为T n,求使得T n>20232024成立的n的最小值.19.如图,正三棱锥O−ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别.相交于A1、B1、C1,已知OA1=32(1)求证:B1C1⊥平面OAH;(2)求二面角O−A1B1−C1的大小.20.甲、乙、丙为完全相同的三个不透明盒子,盒内均装有除颜色外完全相同的球.甲盒装有4个白球,8个黑球,乙盒装有1个白球,5个黑球,丙盒装有3个白球,3个黑球.(1)随机抽取一个盒子,再从该盒子中随机摸出1个球,求摸出的球是黑球的概率;(2)已知(1)中摸出的球是黑球,求此球属于乙箱子的概率.21.设椭圆C:x29+y2b2=1(0<b<√6),P是C上一个动点,点A(1,0),PA长的最小值为√102.(1)求b的值:(2)设过点A且斜率不为0的直线l交C于B,D两点,E,F分别为C的左、右顶点,直线BE和直线DF的斜率分别为k1,k2,求证:k1k2为定值.22.已知f(x)=3lnx−k(x−1).(1)若过点(2,2)作曲线y=f(x)的切线,切线的斜率为2,求k的值;(2)当x∈[1,3]时,讨论函数g(x)=f(x)−2πcosπ2x的零点个数.参考答案:1.D【分析】利用复数的除法运算,得到复数的代数形式,由此求得复数的虚部.【详解】因为1+i1−i =(1+i)2(1+i)(1−i)=2i2=i,所以虚部为1.故选:D.2.B【分析】利用百分位数的定义即可得解.【详解】将比赛得分从小到大重新排列:85,87,89,90,91,91,92,93,94,96,因为10×80%=8,所以这组数据的80%分位数第8个数与第9个数的平均值,即93+942=93.5.故选:B.3.A【分析】由圆心到直线距离小于等于半径,得到不等式,求出答案.【详解】由题意得,圆心(−2,3)到直线l:y=2x+b的距离|−4−3+b|√1+4≤√5,解得2≤b≤12,故b的取值范围是[2,12].故选:A4.B【分析】首先作图构造外接球的球心,再根据几何关系求外接球的半径,最后代入三棱锥外接球的表面积公式.【详解】如图,点H为△ABC外接圆的圆心,过点H作平面ABC的垂线,点D为PA的中点,过点D作线段PA的垂线,所作两条垂线交于点O,则点O为三棱锥外接球的球心,因为PA⊥平面ABC,且△ABC为等边三角形,PA=2,AB=3,所以四边形AHOD为矩形,AH=√33AB=√3,OH=12PA=1,所以OA=√(√3)2+12=2,即三棱锥外接球的半径R=2,.则A (0,0),E (1,0),D (0,1),C (1,1则F (32,12),AP ⃗⃗⃗⃗⃗ =(cosα,sinα),ED ⃗⃗⃗⃗⃗ ∵AP⃗⃗⃗⃗⃗ =λED ⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ ,15.104π【分析】α可能是AC的中垂面,BC的中垂面,AA1的中垂面.截下的部分与剩余的部分组合成为长方体,用公式求出外接球直径进而求解.【详解】平行六面体内接于球,则平行六面体为直四棱柱,如图α有如下三种可能.截下的部分与剩余的部分组合成为长方体,则2R=√32+82+42=√89或2R=√62+42+42=√68或2R=√62+82+22=√104,所以S max=4πR2=104π.故答案为:104π16.[e1e,+∞)【分析】变形为a x−1lna x−1≥(x−1)ln(x−1),构造F(t)=tlnt,t>0,求导得到单调性进而a x−1>1恒成立,故F(a x−1)>0,分当x−1∈(0,1]和x−1>1两种情况,结合g(u)=lnuu单调性和最值,得到a≥e 1e,得到答案.【详解】由题意得a x−1lna≥ln(x−1),因为x∈(1,+∞),所以(x−1)a x−1lna≥(x−1)ln(x−1),即a x−1lna x−1≥(x−1)ln(x−1),令F(t)=tlnt,t>0,则F(a x−1)≥F(x−1)恒成立,因为F′(t)=1+lnt,令F′(t)>0得,t>e−1,F(t)=tlnt单调递增,令F′(t)<0得,0<t<e−1,F(t)=tlnt单调递减,且当0<t≤1时,F(t)≤0恒成立,当t>1时,F(t)>0恒成立,因为a>1,x>1,所以a x−1>1恒成立,故F(a x−1)>0,当x−1∈(0,1]时,F(x−1)≤0,此时满足F(a x−1)≥F(x−1)恒成立,因为E、F分别是AB、AC的中点,所以AE=12AB,AF=12AC,因为AB=AC,所以AE=AF,因为H是EF的中点,所以AH⊥EF,所以AH⊥B1C1.因为OA⊥OB,OA⊥OC,OB∩OC=O,所以OA⊥平面OBC,因为B1C1⊂平面OBC,所以OA⊥B1C1,因为OA∩AH=A因此B1C1⊥面OAH.(2)作ON⊥A1B1于N,连C1N.因为OC1⊥OA1,OC1⊥OB1,OA1∩OB1=O,因为OC1⊥平面OA1B1,因为A1B1⊂平面OA1B1,所以OC1⊥A1B1,因为ON∩OC1=O,所以A1B1⊥平面OC1N,因为C1N⊂平面OC1N,所以C1N⊥A1B1,所以∠ONC1就是二面角O−A1B1−C1的平面角.过E作EM⊥OB1于M,则EM∥OA,则M是OB的中点,则g(x)在[1,m)内单调递增,在(m,3]内单调递减,且g(1)=0,可知g(m)>g(1)=0,可知g(x)在[1,m)内有且仅有1个零点,且g(3)=3ln3−2k,ln3≤k<4时,则g(x)在(m,3]内有且仅有1个零点;①当g(3)=3ln3−2k≤0,即32②当g(3)=3ln3−2k>0,即0<k<3ln3时,则g(x)在(m,3]内没有零点;2ln3)∪[4,+∞)时,g(x)在[1,3]内有且仅有1个零点;综上所述:若k∈(−∞,32若k∈[3ln3,4)时,g(x)在[1,3]内有且仅有2个零点.2【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.答案第15页,共15页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年河北省对口招生考试模拟试题数学试卷说明:一. 本试卷共三道大题37道小题,共120分。
二. 答题前请仔细阅读答题卡上的“注意事项”,按照要求的规定答题。
选择题用2B 铅笔填涂在机读卡上,第二卷用黑色签字笔写在答题卡规定地方,在试卷和草稿纸上答题无效。
三. 做选择题时,如需改动,请用橡皮将原答案擦干净,再选涂其它答案。
考试结束后,将机读卡和答案卡一并交回。
第I 卷(选择题 共45分)一、选择题(本大题有15个小题,每小题3分,共45分。
在每小题所给出的四个选项中,只有一个符合题目要求)1.已知集合A={1,3,x},B={1,x 2},A ∪B={1,3,x},则满足条件的实数x 的不同值有 ( )A .3B .2C .1D .4 2.已知a>b,且ab>0,则有( )A . a 2>b 2B . a 2<b 2C .a 1>b 1 D . a 1<b13.|x-1|>2是|x|>3的 ( ) A . 充分但不必要条件 B .必要但不充分条件C .充分且必要条件D .既不充分也不必要条件4.如果奇函数F(x)在[2,5]上是增函数且最小值是3,那么F(x)在区间[-5,-2]上是( )A .增函数且最小值为-3B .增函数且最大值为-3C .减函数且最小值为-3D .减函数且最小值为-55.函数y=-ax-a 和y=ax 2在同一直角坐标系中的图像只能是 ( )A B C D 6.把函数y =sinx 的图像向左或向右平移2π个单位,得到的函数是( ) A. y=cosx B. y =-cosx C. y=|cosx| D. y=cosx 或y =-cosx 7.在等比数列{a n }中,若a 1,a 9是方程2x 2-5x+2=0的两根,则a 4a 6=( ) A .5 B . C .2 D .18.若向量a 与向量b 的长度分别为4和3,其夹角60,则|a- b |的值为 ( ) A .37 B .13 C.5 D.19.若sin(π-α)=log 4116,且∈α(-2π,0),则tan(2π-α)=( ) A .-33 B . 33C .-3D .3 10.直线2x+3y-6=0关于Y 轴对称的直线方程是( )A . 2x-3y-6=0B . 2x-3y+6=0C . 2x+3y+6=0D . 2x+3y-6=011.点M 在圆(x-5)2+(y-3)2=9上运动,则点M 到直线3x+4y-2=0的最短距离为( )A .2B .5C .8D .912.若抛物线y 2=4x 上一点P 到该抛物线焦点的距离为5,则经过点P 和原点的直线OP 的倾斜角等于 ( ) A.45B. 60C. 45或135 D. 60或12013.已知边长为a 的菱形ABCD,∠A=60,将菱形沿对角线BD 折成直二面角,则AC 的长为( ) A. 2a B.22a C.26a D.以上结论都不对 14.5个不同的球放入不同的4个盒子中,每个盒子中至少放一球,若甲球必须放入A盒,则不同的放法种数是( )A. 120B. 72C.60D. 3615.从1到9这9个自然数中任取两个数,取出的两个数之和是偶函数的概率为( ) A.94 B.61 C. 185 D. 31第Ⅱ卷(非选择题 共75分)二、填空题(本大题有15个小题,每小题2分,共30分。
请将正确答案填在题中的横线上,不填、少填、错填均不得分)16.若函数f(x)= ⎩⎨⎧≥<6,log 6,23x x x x ,则f(f(2)等于 .17.log 327+ (279)0+ (1251)31_+sin 3π + tan π49=________.18.函数y=log 2(|x-1|-2)+1621-x 定义域是________________ .19.在∆ABC 中,若sinA=2sinBcosC ,则∆ABC 是_____________三角形. 20.已知A(5,-2),B(-5,-1),且AP =21AB ,则P 点的坐标是__________. 21.在[-,]上,使sinx ≥21的x 的范围是22.已知等差数列{a n }中,a 4+a 6+a 15+a 17=30,求S 20= .23.方程k x -32+ky +22=1表示椭圆,则k 的取值范围是 .24.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为 . 25.不等式(51)82-x <5x 2-的解集是 . 26.正方体ABCD-A 1B 1C 1D 1中,AC 1与平面BB 1D 1D 所成的角的正切值为27.点P 是椭圆1002x +642y =1上的一点,F 1,F 2是其焦点,若∠ F 1P F 2=90゜,则∆F 1P F 2的面积为____________.28.在(3x-x2)n 的展开式中,第9项为常数项,则n=________.29.由数字1、2、3、4、5组成无重复数字且数字1与2不相邻的五位数的个数有 种.30.将3个不同的球随机放入3个盒子中,则恰有一个盒子空着的概率是_________.三、解答题(本大题共7个小题,共45分。
请在答题卡中对应题号下面指定的位置作答,要写出必要的文字说明、证明过程和演算步骤):31.(5分)设M={x|x 2-4x ≥0},N={x||x-1|<a},若M ∩N=Φ,求实数a 的取值范围.32.(6分)若数列{a n }满足:log 2a 1+n =1+log 2a n ,且a 1+a 2+…+a 5=62,求a 1033.(5分)已知tan(4π+θ)=2,求(1)tan θ的值;(2)sin2θ-2cos 2θ的值34.(7分)某产品生产厂家的月生产能力不超过一千件。
根据以往的生产销售经验得到下面有关生产销售的规律:每生产产品x (百件)其总成本为G(x)万元,其中固定成本2万元,并且每生产一百件产品的生产成本为1万元(总成本=固定成本+生产成本)。
而销售收入R(x)满足R(x)=-0.4x 2+4.2x-0.8,假定该产品的产销平衡,那么根据上述统计规律,求:(1)使工厂有盈利,产量应控制在什么范围?(2)生产多少件产品时,盈利最多?最多盈利是多少?35.(8分)设抛物线对称轴为坐标轴,顶点在原点,焦点在圆x 2+y 2-2x-3=0的圆心,过焦点作倾斜角为45゜的直线与抛物线交于A,B.(1)求直线和抛物线的方程。
(2)求∆OAB 的面积36.(8分)如图:已知四边形ABCD 为正方形,P 是平面ABCD 外一点,三角形PDC 为等边三角形,且平面PDC ⊥平面ABCD ,E 为PC 的中点.(1)求证:平面EDB ⊥平面PBC ;(2)求二面角B- DE - C 的平面角的正切值.37.(6分)一个袋中装有6个红球和4个白球,它们除了颜色外,其他地方没有差别,采用无放回的方式从袋中任取3个球,取到白球的数目用ξ表示.(1)求离散型随机变量ξ的概率分布. (2)求P(ξ≥2).22001133年年对对口口高高考考数数学学模模拟拟试试题题参参考考答答案案一一,,选择题(共15题,每小题3分,共45分)1.A 2.D 3.B 4.B 5.C 6.D 7.D 8.B 9.B 10.B 11.A 12.C 13.C 14.C 15.A 二.填空题(共15小题,每小题2分,共30分)16. 3 17. 10 18.(-∞,-1)∪(3,4) ∪(4,+ ∞) 19.等腰 20.(0,-23) 21.[6π,65π] 22. 150 23. (-2,21)∪(21,3) 24. -3或7 25. (-∞,-2)∪(4,+ ∞) 26.2 27. 64 28. 12 29. 72 30.32三.解答题(共7小题,共45分)解答应写出文字说明、演算步骤或推证过程。
31.(本小题满分5分) 解:M={x| x 2-4x ≥0}={x|x ≤0或x ≥4}. 当a ≤0时,得N=Φ,则M ∩N=Φ成立. 当a>0时,N={x||x-1|<a}={x|1-a<x<1+a},由M ∩N=Φ,可得⎪⎩⎪⎨⎧->+≤+≥-a a a a 114101,解得0<a ≤1.综上所述,实数a 的取值范围为a ≤1 32.(本小题满分6分)解: 因为log 2a 1+n =1+log 2a n ,即log 2a 1+n - log 2a n =1, log 2n n a a 1+=1,求得nn a a1+=2,所以{a n }是等比数列,公比为2. 又a 1+a 2+…+a 5=62,S 5=21)21(51--a =62,得a 1=2所以a 10= a 1q 9=2⨯29=102433.(本小题满分5分)解:(1)由tan(4π+θ)=2得,θθtan 1tan 1-+=2 解得tan θ=31(2)sin2θ-2cos 2θ=2sin θcos θ-2cos 2θ=θθθθθ222cos sin cos 2cos sin 2+-∙=1tan 2tan 22+-θθ=1)31(23122+-⨯=- 5634.(7分)解:(1)使工厂有盈利,则R(x)>G(x) 即-0.4x 2+4.2x-0.8> 2+x 整理得x 2- 8x+7< 0解得 1<x<7故 产量应该控制在大于100件而小于700件的范围内。
(2)设生产x 百件并销售后盈利为y,则 y=R(x)- G(x)=( -0.4x 2+4.2x-0.8)- (2+x)=-52x 2+516x-514=-52(x-4)2+518 当x=4时,y 取得最大值为518即 生产400件产品时,盈利最多为3.6万元35.(8分)解:圆的方程x 2+y 2-2x-3=0,即(x-1)2+ y 2=4.知圆心为(1,0),r=2. 抛物线的焦点坐标为F(1,0),p=2,抛物线方程为y 2=4x. 过焦点F(1,0)的直线的倾斜角为45゜,所以直线方程,y=x-1.(2)由⎩⎨⎧-==14y 2x y x得x 2-6x+1=0,x 1+x 2=6, x 1x 2=1,则|AB|=]4))[(k 1(212212x x x x -++=8, 圆心(0,0)到直线x-y-1=0的距离为d=21=22, 所以∆OAB 的面积S=21|AB|d=21⨯8⨯22=2236.(8分)(1)证明:因为四边形ABCD 为正方形所以DC ⊥BC因为平面PDC ⊥平面ABCD,交线为DC 所以BC ⊥面PDC ,而DE 在平面PDC 内, 所以BC ⊥DE因为三角形PDC 为等边三角形,E 为PC 的中点, 所以DE ⊥PC又PC ∩BC=C,PC 、BC 都在平面PBC 内 所以DE ⊥面PBC 又DE ⊆面EDB所以平面EDB ⊥平面PBC.(2)由(1)的证明可知:DE ⊥面PBC所以∠BEC 就是二面角B- DE - C 的平面角 因为BC ⊥面PDC,而PC 在面PDC 内 所以BC ⊥PC在R t ∆ECB 中,CE=21BC则tan ∠BEC=CEBC=2.37.(6分)解:(1)随机变量ξ的可能取值为0,1,2,3. 相应的概率依次为P(ξ=0)=31036C C =61 , P(ξ=1)= 3102614C C C =21P(ξ=2)= 3101624C C C =103, P(ξ=3)= 31034C C =301故随机变量ξ的概率分布为(2)P(ξ≥2)= P(ξ=2)+ P(ξ=3)= 103+301=31。