1第一章概率论基础知识-6

合集下载

概率论1-6

概率论1-6

此定义可以推广到任意有限多个事件的情形 :
一般, 个事件, 一般 设A1,A2,...,An(n≥2)个事件 如果对于其中 ≥ 个事件 任意2个 任意3个 任意n个事件的积事件的概 任意 个, 任意 个, ..., 任意 个事件的积事件的概 都等于各事件概率之积, 则称事件A 率, 都等于各事件概率之积 则称事件 1,A2,...,An 相互独立. 相互独立
2 1 2 1 1 P( A) = = , P(B) = = , P( AB) = , 4 2 4 2 4 1 P(B | A) = . 2
可知P(B|A)=P(B), 而P(AB)=P(A)P(B). 可知
是试验的两事件, 设A,B是试验的两事件,若P(A)>0,则可定义 是试验的两事件 ,则可定义P(B|A). 一般, 的发生对 发生的概率有影响 的发生对B发生的概率有影响时 一般,A的发生对 发生的概率有影响时, P(B|A) ≠P(B) 影响不存在时 影响不存在时,P(B|A)=P(B),此时有 , P(AB)=P(B|A)P(A)=P(B)P(A) 定义:若两事件 定义:若两事件A,B满足 P(AB)= P(A) P(B), 满足 , 则称A 相互独立, 独立. 则称 ,B相互独立,简称 ,B独立 相互独立 简称A 独立
§6独立性
首先我们考虑下面问题: 首先我们考虑下面问题: 个产品, "有放回抽样"的产品抽样问题,总共a个产品, 有放回抽样"的产品抽样问题,总共 个产品 其中有b个次品,若前后抽样两次,有放回抽样, 其中有b个次品,若前后抽样两次,有放回抽样, 则注意到第1次是否取得正品并不影响第2 则注意到第1次是否取得正品并不影响第2次取得 正品的概率,即假设Ai表示"第i次取得正品", 正品的概率,即假设A 表示" 次取得正品" i=1,2, i= ,则P(A2|A1)=P(A2), 此时乘法公式为P(A1A2)=P(A1)P(A2) 此时乘法公式为 这就是说,已知事件 发生 并不影响事件B发生的概 这就是说 已知事件A发生 并不影响事件 发生的概 已知事件 发生,并不影响事件 这时称事件A 独立. 率,这时称事件 ,B独立 这时称事件 独立

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121Y ΛY Y…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P Y 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P Y的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论第一章第六节

概率论第一章第六节

(2) P( A1 A2
An )
1 P(A1 A2
An )
1 P( A1 A2 An )
A1 A2 An独立
A1 A2 An独立
1 P( A1 )P( A2 ) P( An ).
9
例1 三人独立地去破译一份密码,已知各人能译出的 概率分别为1/5,1/3,1/4,问三人中至少有一人能将 密码译出的概率是多少?
2
2
P( AB) 0,P( A)P(B) 1 ,
4
由此可见两事件互斥但不独立.
二者之间没 有必然联系
B
AB
AS
B AS
若P( A) 0 , P(B) 0 , A,B相互独立与互不相容
不能同时成立.
20 返回
为p , p 1 2 . 问对甲而言, 采取三局二胜制有利,
还是五局三胜制有利. 设各局胜负相互独立. 解 采用三局二胜制 , 甲最终获胜 ,
胜局情况可能是 :
“甲甲”,“甲乙甲”;“乙甲甲”,
设Ai :“甲第i局胜”(i 1, 2, 3), 设A :“甲最终胜”,
则 A A1 A2 A1 A2 A3 A1 A2 A3
p pp
纯 纯纯
H1: 不纯 纯 纯
q pp
纯 纯纯
p 1 0.01 0.99,
q 1 0.95
H2:不纯 不纯 纯
q qp
纯 纯纯
H3: 不纯 不纯 不纯
q qq
纯 纯纯
0.05.
P(H0)
C936 , C3
100
P(H3 )
C43 C3
100
,
P( H1 )
C926C41 C3
100
,
P( H2 )

概率论第一章 概率论的基本概念

概率论第一章  概率论的基本概念

P( A1 A2 An ) = P( A1) P( A2) P( An ).
概率的有限可加性
证明 令 An1 = An2 = = , Ai Aj = , i j, i, j = 1,2,.
由概率的可列可加性得
P(A1
A2
An )
=
P(
Ak
)
=
P( Ak ) =
n
P( Ak ) 0
概率论
第一章 概率论的基本概念
第一节 随机试验 第二节 样本空间、随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性
概率论
第一节 随机试验
几个具体试验 随机试验 小结
概率论
上一讲中,我们了解到,随机现象有其偶 然性的一面,也有其必然性的一面,这种必然 性表现在大量重复试验或观察中呈现出的固有 规律性,称为随机现象的统计规律性.而概率 论正是研究随机现象统计规律性的一门学科.
nH
f
22 0.44
n = 500 nH f
251 0.502
15124
123 4 5 6 7
随3 n的增0.6大, 频率25 f 呈现0.5出0 稳定24性9 0.498
0.2 21 0.42 256 0.512
1.0
25 0.50 247 0.494
ห้องสมุดไป่ตู้
0.2
24 0.48 251 0.502
0.4
(3) 若 A1, A2, , Ak 是两两互不相容的事件,则 f ( A1 A2 Ak ) = fn( A1) fn( A2 ) fn( Ak ).
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做
7 遍, 观察正面出现的次数及频率.

概率论基础知识

概率论基础知识
几何性质:介于曲线y=f(x)与Ox轴之间的面积等于1。X落在区间(x1,x2]的概率P{x1<X≤x2}等于区间(x1,x2]上曲线y=f(x)之下的曲边梯形的面积。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。

第1章 概率论基础知识

第1章 概率论基础知识

1.1.2 条件概率与概率乘法公式
1 条件概率
例 1.1.1 一个包装箱里有6件产品。假设其中有4件是一级品, 2件为二级品。若随机实验E是“从包装箱中随机抽取1件产 品”,则明显地,抽到二级品的概率是1/3。 若事件A是“第一次抽取并抽到二级品”,事件B是“第二 次抽取并抽到二级品”,那么在事件A发生的条件下,再从 剩下的5件产品中抽取1件,事件B发生即“第二次抽到二级 品”的概率就是1/5。 我们称这样的概率为“事件A发生的条件下,事件B发生的 概率”,简称为“事件B的条件概率”,记为P{B|A}. 本例中P{B|A}=1/5。
2 基本事件
一次随机实验的可能结果,称为基本事件或基本随机事件。
3 样本空间
所有基本事件组成的集合,称为样本空间或基本空间。
4 随机事件
随机事件简称事件,是指基本事件的集合。
5 相容事件与不相容事件
在一次随机实验中不可能同时发生的事件,称为不相容事件, 反之称为相容事件。
6.概率(Probability)
为对比条件概率与非条件概率的区别,现在来看上例中P(B) 等于多少? 由于B指的是“第二次抽到二级品” 的事件,而这时A可能发 生,也可能不发生(即A的对立事件Ac发生)。这样事件B就 可以表示成:B=AB+AcB。注意到AB与AcB是互不相容的。 因此 2 1 4 2 1 c P( B) P( AB ) P( A B) 6 5 6 5 3 注意到事件A的概率也是P(A)=1/3. 于是有如下的表达式:
P{B | A} P( AB) P{ A | B}P( B) P( A) P( B) P( B) P( A) P( A) P( A)
2. 相互独立事件的概率乘法公式

《概率论》第1章§6独立性

《概率论》第1章§6独立性
第一章
两两独立 三三独立 ……
概率论的基本概念
§6 独立性
8/25
设每个人血清中含有肝炎病毒的概率为0.4%, 求混合100个人的血清中含有肝炎病毒的概率. 记 Ai { 第 i 个人血清含肝炎病毒 }, i 1, 2, ,100 则所求概率为
100 P ( Ai ) P Ai i 1 i 1
100
1 P ( Ai )
i 1
100
根据实际问题 判断事件独立性
1 0.996
100
0.33
第一章
概率论的基本概念
§6 独立性
9/25
P( AB) P( A) P( B) P( BC ) P( B) P(C ) P(CA) P(C ) P( A)
A, B, C 相互独立
时 , 两种赛制甲最终获胜的 1 2 .
制有利 .
概率是
相同的 , 都是
§6 独立性
19/25
甲、乙两坦克的首发命中率均为0.8,经修正后的第 二发命中率均为0.95,敌目标被一发炮弹击中而被击毁 的概率为0.2,被两发炮弹击中而击毁的概率为0.5,被三 发炮弹击中必定被击毁。在战斗中,甲、乙两坦克分别 向敌同一目标发射了两发炮弹,求敌目标被击毁的概率。
p n P ( Ai )
i 1 n
1 P ( Ai )
i 1
n
n 1 (1 p) 1 0.999 n
n pn
1000
2000
3000
4000
5000
0.632 0.865 0.950 0.982 0.993
可见即使 p 很小,但只要试验不断进 行下去,小概率事件几乎必然要发生

概率统计 第一章 概率论的基础知识

概率统计   第一章 概率论的基础知识

7 (1) P( A B) P( A) P( B) P( AB) 10 3 (2) P( A B) 1 P( A B) 10 2 (3) P( A B) P( A) P( AB) 5
条件概率
已知事件A发生的条件下,事件B发生 的概率称为A条件下B的条件概率,记 作P(B|A)
27! 3! 9! 9! 9! 50 P( A) N (S ) 203
7 10 10 3 C 27 C 20 C10 18 P( B) N (S ) 203
4、 随机取数问题
例4:从1,2,3,4,5诸数中,任取3个排成自左向右的次序, 求: (1)
A1 “所得三位数是偶数”的概率? (2) A2 “所得三位数不小于200”的概率?

任何事件均对应着样本空间的某个子集.
称事件A发生当且仅当试验的结果是子集A中的元素
例1
定义
E4: 掷一颗骰子,考察可能出现的点数。 S4={1,2,3,4,5,6}; A=“掷出偶数点” B=“掷出大于4的点 ” ={2,4,6} ={5,6} C=“掷出奇数点”={1,3,5}
样本空间的子集称为随机事件。

n n1 nm 2 ! nm 1 !n n1 nm 1 !
n! n1!....nm !
种取法.
1、抽球问题
例1:设盒中有3个白球,2个红球,现从盒中 任抽2个球,求取到一红一白的概率。
解:设事件A为取到一红一白
N (S ) C

2 5
N ( A) C C
一般地,设A、B是S中的两个事件,则
P( AB) P( B | A) P( A)
称为事件A发生的条件下事件B发生的条件概率

1概率论的基本概念

1概率论的基本概念
试验E5:记录电话台(某固定)一分钟内接到的呼叫次数. S5={0,1,2,…} 试验E6:在一批灯泡中任意抽取一只, 测试其寿命. S6={t | t≥0} (t表示灯泡的寿命)
[注样本空间是相对于某个随机试验而言,而其元 ]
素取决于试验的内容和目的.
二、随机事件
1.随机事件: 试验E的样本空间S的子集. 简称事件. 通常用字母A,B,C表示.
A的对立事件记作 A .
ASA
B A
A
[注]
(1) 事件之间的关系可用文氏图表示; (2) 对于任意事件A,显然
AA , A
A S,
A S A, A A
(3) 基本事件都是互不相容的; A与B-A也是互不相容的. (4) B A B A B AB
B
A
A U B A U ( B A )
S1={H, T}(H表示出现正面, T表示出现反面)
试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.
S2= {HHH,HHT,HTH,THH, HTT,THT,TTH,TTT}
试验E3:将一枚硬币抛掷三次,观察反面出现的次数. S3={0,1,2,3} 试验E4:抛掷一枚骰子, 观察出现的点数. S4={1,2,3,4,5,6}
第一章 概率论的基本概念
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 随机试验 样本空间、随机事件 频率与概率 等可能概型(古典概型) 条件概率 独立性
第一章 概率论的基本概念
引言:概率论是研究什么的?
研究和揭示随机现象的统计 在一定条件下必然发生的现象 确定现象 规律性的数学学科 例:向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; … … 例:抛一枚硬币,结果可能正(反)面朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;… …

概率论基础讲义全

概率论基础讲义全

概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。

例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。

每次试验都不可能发生的事情称为不可能事件,记为①。

例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。

例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。

在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。

例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。

试验中所有样本点构成的集合称为样本空间。

记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。

第一章概率论基础知识

第一章概率论基础知识
P {x1Xx2}PXx2PXx1 F x2F x1
P{x1Xx2}P{x1Xx2}P{Xx1} F(x2)F(x1)P{Xx1}
2020/12/26
■分布函数的性质
⑴ 单调不减性:若x1 x2,则 F(x1) F(x2)
⑵ 归一 性:对任意实数x, 0Fx1,且
F ( )lim F (x)0,F( )lim F(x)1 ;
解 由题意可知 RX{0,1,2,3},则 X 的分布律为
X0
1
2
3
p k p 3 C31(1p)p2 C32(1p)2p (1 p )3
2020/12/26
将 p 1/2带入可得 X 的分布律为
X0
1
2
3
pk 1
3
3
1
8
8
8
8
2020/12/26
2.常用的离散型随机变量
(1) (0—1)分布 定义1 如果随机变量X的分布律为
x
x
⑶ 右连续性:对任意实数 X F (x 0 ) lim F (t) F (x ).
t x
具有上述三个性质的实函数,必是某个随机变量的分 布函数。故该三个性质是分布函数的充分必要性质。
2020/12/26
例1 已知 F xA arcx tB a,n求 A,B。

FAB0
2
FAB1
A1
F'xfx
2020/12/26
例1 设X 的分布函数为 Fx1e2x, x0
0, x0
求 P X 2 ,P X 3 ,fx .
解 PX2F2 1e4
P X31PX31F3 e 6
fxFx
2e
2
x

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

第一章 概率论的基本理论

第一章  概率论的基本理论

第一章 概率论的基本理论前苏联数学家柯尔莫哥洛夫,1933年创立概率公理化体系。

⎧⎨⎩确定现象随机现象§1. 随机试验例:1E :抛一枚硬币,观察正反面出现情况; {}1,H T Ω=2E :将一枚硬币抛三次,观察正反面出现情况;{}2,,,,,,,HHH HHT HTH THH HTT THT TTH TTT Ω=3E :抛两颗色子,观察出现点数和; {}32,3,4,,12Ω=4E :在一批灯管中任取一只,测试它的寿命; {}40t t Ω=≥ 5E :将一尺之棰折成三段,观察各段长度;(){}5,,0,0,0,1x y z x y z x y z Ω=>>>++=特点:()()()123⎧⎪⎨⎪⎩试验可以在相同条件下重复进行;试验结果具有多种可能性,但能事先知道所有可能结果;进行试验前不能确定哪一结果出现。

满足上述特点的试验称之为随机试验,通过随机试验来研究随机现象。

§2. 样本空间 随机事件一、 样本空间随机试验E 的所有可能结果组成的集合,称为E 的样本空间。

样本空间通常用S 或Ω来表示。

(见上节)样本空间的元素——样本点。

二、 随机事件样本空间S 的子集——随机事件(事件),用,,A B C 表示;基本事件,必然事件,不可能事件。

事件A 发生⇔A 中有一样本点出现。

例1、 2E 2S1A :第一次出现H {}1,,,A H H H H H T H T H HT T = 2A :三个均出现T {}2A T T T =三、 事件间关系与事件的运算E S ,A B k A S ⊂1. A B ⊂ 事件B 包含事件A A 发生导致B 发生 A B =⇔A ⊂B 且B A ⊂。

2. A B ⋃1nk k A =1k k A ∞=3. A B A B ⋂1nk k A =1k k A ∞=4. A B A B -=5. A B ⋂=∅ ,A B 不相容,互斥6. A B S ⋃=且A B ⋂=∅——,A B 互逆,或对立事件 A B = A S A =- 算律同集合论例 设,,A B C 表示三个随机事件:○1 A 出现,,B C 都不出现 ABC ○2 ,A B 都出现,C 不出现 ABC ○3 三个事件均出现 ABC ○4 三个事件至少有一个出现 A B C ⋃⋃ ○5 三个事件均不出现 A B C ○6 不多于一个事件出现 ABC ABC ABC ABC 或AB BC AC○7 不多于两个事件出现 ABC ABC ABC ABC ABC ABC ABC or ABC ○8 三个事件至少有两个出现 ABC ABCABCABC○9 ,A B 至少有一个出现,C 不出现 ()A B C +⋅ ○10 ,,A B C 中恰好有两个出现 ABC ABC ABC§3. 频率与概率一、 排列、组合复习1. 不可重复排列(不放回) ()()()()!121!rn n A n n n n r n r =---+=-2. 可重复排列 (放回)n 个不同元素取r 个(未必不同)组成的排列种数 rn 3. 不可重复组合rnC n r ⎛⎫ ⎪⎝⎭4. 乘法原理、加法原理二、 频率1、E, n 次,A, A n()An n f A n=2、性质11121.0()12()13()()()()n n k n k n n n k f A f S A A f A A f A f A f A ≤≤⎧⎪=⎨⎪⎩=++……、、均不相容………… 例1, P8 例2, P9可见,n 逐渐增大-------()n f A 逐渐趋于一个常数-------------------频率稳定性-------- 统计规律性------- 概率(事件发生可能性的) -----------------概率定义三、 概率 Probability1. 定义: E S A E ⊂ 实数()P A 满足:()()()()()()()1210213,,,,,n i j P A P S A A A i j A A ⎧≥⎪⎪=⎨⎪≠⋅=∅⎪⎩非负性规范性设两两互不相容,即:时则()()()()1212nn P A A A P A P A P A =++++(可列可加性)则称P 为概率,()P A 为事件A 的概率。

概率论基础知识

概率论基础知识
6、互不相容:若事件 A 与事件 B 不能同时发生,即 AB=φ,则称 A 与 B 是互不相容的。 例如,观察某定义通路口在某时刻的红绿灯:若 A={红灯亮},B={绿灯亮},
则 A 与 B 便是互不相容的。
7、对立:称事件 A 不发生的事件为 A 的对立事件,记为 显然
,A∩ =φ
例如,从有 3 个次品,7 个正品的 10 个产品中任取 3 个,若令 A={取得的 3 个产品中至少有一个次品},则 ={取得的 3 个产品均为正品}。
第 4 页 共 73 页
而 P(B)=3P(A)=
概率论基础知识
定义 1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为 NΩ而事件 A 所 含的样本数,即有利于事件 A 发生的基本事件数为 NA,则事件 A 的概率便定义为:
例 1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用 H 表示正面,T 表示反面,则该试验的样本空间
若 A B,则 A∪ B=B, A∩ B=A A-B=A-AB= A
等等。
第 3 页 共 73 页
概率论基础知识
例 3,从一批产品中每次取一件进行检验,令 Ai={第 i 次取得合格品},i=1,2,3,试用事件的运算符号表示 下列事件。A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合 格品}D={三次中最多有一次取得合格品}
2048 4040 12000 24000 30000
概率论基础知识
1061 2148 6019 12012 14994
0.5180 0.5069 0.5016 0.5005 0.4998
定义 2:在相同条件下,将试验重复 n 次,如果随着重复试验次数 n 的增大,事件 A 的频率 fn(A)越来越 稳定地在某一常数 p 附近摆动,则称常数 p 为事件 A 的概率,即 P(A)=p 不难证明频率有以下基本性质:

概率论与数理统计 1-6

概率论与数理统计 1-6

第一章概率论的基本概念第一章概率论的基本概念第六节独立性一、事件的相互独立性二、几个重要定理三、例题讲解四、小结一、事件的相互独立性1.引例盒中有5个球(3绿2红),每次取出一个,有放回的取两次,记A:第一次抽取,取到绿球B:第二次抽取,取到绿球则有P(B|A)=P(B)他表示A的发生并不影响B发生的可能性大小,即)P(AB)=P(A)P(BP(B|A)=P(B⟺)2.定义设A,B是两事件,如果满足等式P AB=P A P B则称事件A,B相互独立,简称A,B独立.说明:事件A与事件B相互独立,是指事件A的发生与事件B发生的概率无关.两事件相互独立)P(AB)=P(A)P(B 两事件互斥AB =∅两事件相互独立与两事件互斥的关系.请同学们思考二者之间没有必然联系互斥独立AB例如由此可见两事件相互独立,但两事件不互斥.P(A)=12,P(B)=12,P(AB)=P(A)P(B).A BP A=12,P B=12则P(AB)=0,而P(A)P(B)=1 4 ,故P(AB)≠P(A)P(B).由此可见两事件互斥但不独立. AB3.三事件两两相互独立的概念定义:设A,B,C是三个事件,如果满足等式൞P(AB)=P(A)P(B), P(BC)=P(B)P(C), P(AC)=P(A)P(C),则称事件A,B,C两两相互独立4.三事件相互独立的概念定义:设A,B,C是三个事件,如果满足等式P AB=P A P B,P BC=P B P C,P AC=P A P C,P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立注意:三个事件相互独立→三个事件两两相互独立三个事件相互独立↚三个事件两两相互独立推广:设A1,A2,⋯,A n是n个事件,如果对于任意k(1<k≤n),任意1≤i1<i2<⋯<i k≤n,具有等式P(A i1A i2⋯A ik)=P(A i1)P(A i2)⋯P(A ik)则称A1,A2,⋯,A n为相互独立的事件n个事件相互独立→n个事件两两相互独立n个事件相互独立↚n个事件两两相互独立二、几个重要定理定理一:设A,B是两事件,且P(A)>0.若A,B相互独立,则P(B|A)=P(B),反之亦然.定理二:若A,B相互独立,则下列各对事件,ഥA与B,A与ഥB,ഥA与ഥB,也相互独立。

第一讲概率论基本知识

第一讲概率论基本知识

第一章 概率论基础知识概率论是随机过程的基础,在传统的概率论中,限于各种原因,往往借助于直观理解来说明一些基本概念,这对于简单随机现象似乎无懈可击,但对于一些复杂随机现象就难以令人信服了.随着随机数学理论的不断完善,随机过程越来越成为现代概率论的一个重要分支和发展方向. 为了更好地学习随机过程,我们必须对基础概率论的理论有一个比较深入和全面的了解.本章就是在此基础上系统介绍概率论基础知识,包括概率空间、随机变量及其分布、数学期望的若干性质、特征函数和母函数、随机变量列的收敛性及其相互关系、条件数学期望等.1.1 概率空间概率论是研究随机现象统计规律的一门数学分科,由于随机现象的普遍性,使得概率论具有极其广泛的应用.随机试验是概率论的基本概念之一,随机试验所有可能结果组成的集合称为这个试验的样本空间,记为Ω.Ω中的元素ω称为样本点,Ω中的子集A 称为随机事件,样本空间Ω也称为必然事件,空集Φ称为不可能事件.定义 1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合簇(collection )(或称集类),如果 (1)Ω∈F ;(2)若A ∈F ,则\A A =Ω∈F ;(取余集封闭) (3)若n A ∈F ,1,2,n = ,则1n n A ∞=∈ F ;(可列并封闭)则称F 为σ-代数(sigma algebra -)(B orel 域或事件域(field of events )),(,ΩF )称为可测空间(m easurable space ).由定义可以得到 (4)Φ∈F ;(5)若,A B ∈F ,则\A B ∈F ;(取差集封闭)(6)n A ∈F ,1,2,n = ,则1ni i A = ,1ni i A = ,1i i A ∞= ∈F (有限交,有限并,可列交封闭)定义1.2 设(,ΩF )为可测空间,()P ⋅是定义在F 上的实值函数,如果 (1)任意A ∈F ,0()1P A ≤≤;(非负性) (2)()1P Ω=;(正规性)(3)对两两互不相容事件12,,A A (当i j ≠时,i j A A =Φ ),有11()i ii i P A P A ∞∞==⎛⎫=⎪⎝⎭∑ (可列可加性). 则称P 是(,Ω F)上的概率(p r o b a b i l i ),(,ΩF ,P )称为概率空间(probability space ),()P A 为事件A 的概率. 由定义知(4),A B ∈F ,A B ⊂,则(\)()()P B A P B P A =- (可减性)一事件列{,1}n A n ≥称为单调增列,若1,1n n A A n +⊂≥;称为单调减列,若1,n n A A +⊃1n ≥. 显然,如果{,1}n A n ≥为单调增列,则1lim n in i A A∞→∞==;如果{,1}n A n ≥为单调减列,则1lim n in i A A∞→∞==.(5)(概率的连续性)若{,1}n A n ≥是递增或递减的事件列,则lim ()(lim )n n n n P A P A →∞→∞=定义1.3 设(,ΩF ,P )为概率空间,B ∈F ,且()0P B >,如果对任意A ∈F ,记()(|)()P AB P A B P B =则称(|)P A B 为事件B 发生条件下事件A 发生的条件概率(conditional probability ). 由条件概率的定义可得到: (1)乘法公式 设,A B ∈F ,则()()(|)P AB P B P A B =一般地,若i A ∈F ,1,2,,i n = ,且121()0n P A A A -> ,则121121312121()()(|)(|)(|)n n n P A A A P A P A A P A A A P A A A A --=(2) 全概率公式 设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,ni i i B P B ==Ω> ,则1()()(|)niii P A P B P A B ==∑(3) (Bayes 公式)设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,()0ni i i B P B P A ==Ω>> ,则1()(|)(|)()(|)i i i niii P B P A B P B A P B P A B ==∑一般地,若12,,,n A A A ∈ F ,有11()()nni ii i P A P A ===∏ , 则称F 为独立事件簇.1.2 随机变量及其分布随机变量是概率论的主要研究对象之一,随机变量的统计规律用分布函数来描述. 定义 1.4 设(,ΩF ,P )为概率空间,()X X ω=是定义在Ω上的实值函数,如果对于任意实数x ,有()1(,]Xx --∞={}:()X x ωω≤∈F ,则称()X ω为F上的随机变量(random variable ),简记为..r v X .随机变量实质上是(,ΩF )到(,R B ()R )上的可测映射(函数),记1(){()|X XB B σ-=∈B ()R }⊂F ,称()X σ为随机变量X 所生成的σ域.称{}()1()():()((,])(,]F x P X x P X xP X x P Xx ωω-=≤=≤=∈-∞=-∞为随机变量X 的分布函数(distribution function )(简记.d f ).由定义,分布函数有如下性质:(1)()F x 为不降函数:即当12x x <时,有12()()F x F x ≤; (2)()lim ()0,x F F x →-∞-∞==()lim ()1x F F x →+∞+∞==;(3)()F x 是右连续的,即()()F x F x ο+=可以证明,定义在R 上的实值函数()F x ,若满足上述三个性质,必能作为某个概率空间(,ΩF ,P )上某个随机变量的分布函数.推广到多维情形,类似可得到定义 1.5 设(,ΩF ,P )为概率空间,()12()(),(),,()n X X X X X ωωωω== 是定义在Ω上的n 维空间n R 中取值的向量实值函数.对于任意12(,,,)n n x x x x R =∈ ,有{}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤∈F ,则称()X X ω=为n 维随机变量,称12()(,,,)n F x F x x x P =⋅⋅⋅={}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤为()12()(),(),,()n X X X X X ωωωω==⋅⋅⋅的联合分布函数.随机变量有两种类型:离散型随机变量和连续型随机变量,离散型随机变量的概率分布用概率分布列来描述:(),1,2,k k p P X x k === ,其分布函数为()k k x xF x p ≤=∑;连续型随机变量的概率分布用概率密度函数()f x 来描述,其分布函数为()()x F x f t dt -∞=⎰.类似地可定义n 维随机变量12(,,,)n X X X X = 的联合分布列和联合分布函数如下: 对于离散型随机变量12(,,,)n X X X X = ,联合分布列为()121122,,,n x x x n n p P X x X x X x ====其中,i i i x I I ∈为离散集,1,2,,i = n ,X 的联合分布函数为: 1,12,,121,2,,(,,,)(,,,)n i i nn x x n x y i n F y y y p y y y R ≤==⋅⋅⋅∈∑对于连续型随机变量12(,,,)n X X X X = ,如果存在n R 上的非负函数12(,,,)n f x x x ,对于任意12(,,,)nn y y y R ∈ ,有12(,,,)n X X X X = 的联合分布函数12121212(,,,)...(,,,)n y y y n n n F y y y f x x x dx dx dx -∞-∞-∞⋅⋅⋅=⋅⋅⋅⋅⋅⋅⎰⎰⎰12(,,,)n f x x x 为X 的联合密度函数.1.3 数学期望及其性质设()X X =⋅是定义在概率空间(,ΩF ,P )上的.r v ,如果||X dP Ω<∞⎰,就称.r v .X的数学期望(expectation )或均值存在(或称.r v .X 是可积的),记为E X ,有下列定义:EX XdP Ω=⎰利用积分变换,也可写成()EX xdF x +∞-∞=⎰.设()g x 是1R 上的B orel 可测函数,如果.r v .()g X 的数学期望存在,即|()|E g X <∞,由积分变换可知()()()()Eg X g X dP g x dF x +∞Ω-∞==⎰⎰设k 是正整数,若.r v .k X 的数学期望存在,就称它的k 阶原点矩(k th -moment aboutthe origin ),记为k α,即()kkk EXx dF x α+∞-∞==⎰设k 是正整数,若.r v .||k X 的数学期望存在,就称它的k 阶绝对原点矩(k th - absolute m o m e n tabout the origin ),记为k β,即 ||||()kkk E X x dF x β+∞-∞==⎰类似地,X 的k 阶中心矩(k th - central moment )k μ和k 阶绝对中心矩(k th -absolutely central moment )k υ分别定义为1()()()kkk E X EX x dF x μα+∞-∞=-=-⎰1||||()kkk E X EX x dF x να+∞-∞=-=-⎰我们称二阶中心矩为方差(variance ),记为V a r X 或D X ,显然有22221VarX μναα===-关于数学期望,容易验证下列的性质:(1)若.r v .X ,Y 的期望E X 和E Y 存在,则对任意实数,αβ,()E X Y αβ+也存在,且()E X Y EX EY αβαβ+=+(2)设A ∈F ,用A I 表示集A 的示性函数,若E X 存在,则()A E XI 也存在,且()A AE XI XdP =⎰(3)若{}k A 是Ω的一个划分,即()i j A A i j =Φ≠ ,且i iA Ω= ,则iA i EX XdP XdP Ω==∑⎰⎰关于矩的存在性,有如下的必要条件和充分条件定理1.1 设对.r v X 存在0p >,使||pE X <∞,则有lim (||)0px x P X x →∞≥=定理1.2 设对.r v X 0(.)a s ≥,它的.d f 为()F x ,那么E X <∞的充要条件是(1())F x dx ∞-<∞⎰此时EX =(1())F x dx ∞-⎰推论1.1 ||E X <∞的充要条件是0()F x dx -∞⎰与0(1())F x dx +∞-⎰均有限,这时有EX =(1())F x dx ∞-⎰()F x dx -∞-⎰推论 1.2 对于0,||pp E X <<∞<∞的充要条件是11(||)p n P X n ∞=≥<∞∑,也等价于11(||)p n nP X n ∞-=≥<∞∑1.4 特征函数和母函数特征函数是研究随机变量分布又一个很重要的工具,用特征函数求分布律比直接求分布律容易得多,而且特征函数有良好的分析性质.定义 1.6 设X 是n 维随机变量(随机向量),分布函数为()F x ,称()F x 的Fourier Stieltjes -变换()()(),itXitxg t E ee dF x t ∞-∞==-∞<<∞⎰为X 的特征函数(characteristic function ).简记.c f从本质上看,特征函数是实变量t 的复值函数,随机变量的特征函数一定是存在的. 当X 是离散型随机变量,分布列(),1,2,k k p P X x k === ,则1()kitx k k g t ep ∞==∑当X 是连续型随机变量,概率密度函数为()f x ,则()(),itxg t ef x dx t ∞-∞=-∞<<∞⎰从定义,我们能够看出特征函数有如下性质: (1)(0)1;g =(2)(有界性)|()|1;g t ≤ (3)(共轭对称性)()();g t g t -=(4)(非负定性)对于任意正整数n 及任意实数12,,,n t t t 和复数12,,,n z z z ,有,1()0nk l k l k l g t t z z =-≥∑(5)(连续性)()g t 为n R 上一致连续函数;(6)有限多个独立随机变量和的特征函数等于各自特征函数的乘积,即随机变量12,,,n X X X 相互独立,12n X X X X =+++ 的特征函数为:12()()()()n g t g t g t g t =其中()i g t 为随机变量i X 的特征函数;(7)(特征函数与矩的关系)若随机变量X 的n 阶矩n EX 存在,则X 的特征函数()g t 可微分n 次,且当k n ≤时,有()(0)k k k g i EX =;(8)随机变量的分布函数由其特征函数唯一确定.定理1.3 (B ocher 定理) n R 上函数()g t 是某个随机变量特征函数当且仅当()g t 连续非负定且(0)1g =.定理1.4 (逆转公式) 设()F x 是随机变量X 的分布函数,相应的特征函数为()g t 若12,x x 为()F x 的连续点,则12211()()lim()2itx itx TT Tee F x F x g t dt itπ--→∞---=-⎰很显然,具有相同特征函数的两个分布函数是恒等的.由此还可推出一个事实:一个随机变量是对称的,当且仅当它的特征函数是实的. 事实上,由X 的对称性知X 和X -有相同的分布函数,根据定义()()()itX itXg t E e E eg t g t -===-=,也就是说()g t 是实的;反之,从()()()itX itXg t Ee g t g t Ee -===-=知X 和X -有相同的特征函数,因此,它们的分布函数相等,这说明X 是对称的.例1.1 设X 服从(,)B n p ,求X 的特征函数()g t 及2,,EX EX D X解 X 的分布列为{},1,0,1,2,,k k n kn P X k C p q q p k n -===-=()()()n nitxk k n kk it k n kit nnnk k g t eC p qCpe qpe q --=====+∑∑因此 0(0)()|itt d E X ig ipe qnp dt='=-=-+=22222202()(0)()()|it t d EXi g i pe q npq n p dt=''=-=-+=+故 22()D X EX EX npq =-= 例1.2 设~(0,1)X N ,求X 的特征函数()g t解 22()itx xg t edx ∞--∞=由于2222||||itx xxixe xe--=221||xx edx ∞--∞<∞⎰,可对上式两边求导,得2222()()itx xitx xg t ixedx e de∞∞---∞-∞'==-⎰2222()x x itx itx edx tg t ∞∞---∞-∞=--=-于是得到微分方程 ()()g t t g t '+=. 这是变量可分离型方程,有()()dg t tdt g t =-两边积分得 2l n ()2g t tc=-+,得方程的通解为 22()tcg t e -+=.由于(0)1g =,因此,0c =.于是X 的特征函数为22()tg t e -=例1.3 设,X Y 相互独立,~(,),~(,)X B n p Y m p ,证明:~(,)X Y n m p ++ 证明 ,X Y 的特征函数分别为()(),()(),1itnitmX Y g t q pe g t q pe q p =+=+=-X Y +的特征函数为()()()(),1it n mX Y X Y g t g t g t q pe q p ++==+=-即X Y +的特征函数是服从参数为,n m p +二项分布的特征函数,由唯一性定理~(,)X Y n m p ++附表一给出了常用分布的均值、方差和特征函数.在研究只取非负整数值的随机变量时,以母函数代替特征函数比较方便.定义1.7 设随机变量X 的分布列为(),0,1,2,k p P X k k === 其中01k k p ∞==∑,称()()kk k k P s E s p s ∞===∑为X 的母函数(或称概率生成函数)(p r o b a b i l i t y generating function ).母函数具有下列性质:(1)非负整数值随机变量的分布列由其母函数唯一确定; (2)(1)1P =,()P s 在||1s ≤绝对且一致收敛;(3)若随机变量X 的l 阶矩存在,则可以用母函数在1s =的导数值来表示,特别地, 有2(1),(1)(1)EX P EXP P ''''==+;(4)独立随机变量之和的母函数等于母函数的积.证明 (1)01(),0,1,2,nkkkk k k k k k n P s p s p s p s n ∞∞===+==+=∑∑∑两边对s 求n 阶导数,得到()1()!(1)(1)n k nn k k n Ps n p k k k n p s∞-=+=+--+∑令0s =,则()(0)!n n p n p =,因此()(0),0,1,!n n pp n n ==(3)由0()kk k P s p s ∞==∑,得到11()k kk P s kps∞-='=∑,令1s ↑,得到1(1)kk EX kpP ∞='==∑,类似可得到 2(1)(1)E X PP '''=+ 例1.4 从装有号码为1,2,3,4,5,6的小球的袋中,有放回地抽取5个球,求所得号码总和为15的概率.解 令i X 为第i 次取得的小球的号码,且i X 相互独立,125X X X X =+++ 为所取的球的号码的总和.i X 的母函数为261()()6i P s s s s =+++X 的母函数为 5265655551()()(1)(1)66s P s s s s s s -=+++=--所求概率为()P s 展开式的15s 的系数,因此,5651{15}6P X ==1.5 随机变量列的收敛性定义 1.8设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果存在集A ∈F ,()0P A =,当cA ω∈时,有lim ()()n n X X ωω→∞=,则称n X 几乎处处收敛(convergencealm ost everywhere )到X ,简称n X ..a s 收敛到X ,记为n X X → ..a s下面我们给出..a s 收敛的一个判别准则.定理1.5 n X X → ..a s 的充分必要条件是任一ε>0,有lim (||)0m n m n P X X ε∞→∞=⎧⎫-≥=⎨⎬⎩⎭下面给出定理1.3的一个应用.例1.5 设{}n X 是..r v 列,且11()()2n n n P X n P X n +===-=,1111122n n n P X P X n n ⎧⎫⎧⎫⎛⎫===-=-⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭对于给定的ε>0,考虑1n ε>,有 1(||)0,2m mm nm n P X n ε∞∞==⎧⎫≥≤→→∞⎨⎬⎩⎭∑,因此 0n X →,..a s定义1.9 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果对任一0ε>,{}lim ||0n n P X X ε→∞-≥=则称n X 依概率收敛(convergence in probability )到X ,简记Pn X X −−→. 由定义,n X 依概率收敛到X ,那么极限随机变量X ..a s 是唯一的.定义 1.10 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,若||rn E X (0r >)存在,且lim ||0rn n E X X →∞-=,则称 n X r 阶平均收敛(convergence in mean oforder r )到X ,特别地,当2r =时,称为均方收敛.定义1.11 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,其分布函数序列()n F x 满足lim ()()n n F x F x →∞=在每个()F x 连续点处成立,则称n X 依分布收敛(convergence indistribution )到X .简记dn X X −−→.这里()F x 为X 的分布函数.下面我们不加证明地给出几种收敛之间的关系.a sPn n X X X X −−→⇒−−→dn X X ⇒−−→⇓..k a s n X X −−→且11(||)2kn kk P X X ∞=-≥<∞∑⇑,r rn n X X X X '−−→⇒−−→ 0r r '<< 1.6 条件数学期望设,X Y 是离散型随机变量,对一切使{}0P Y y =>的y ,定义给定Y y =时,X 的条件概率为 {,}{|}{}P X x Y y P X x Y y P Y y ======;给定Y y =时,X 的条件分布函数为(|){|}F x y P X x Y y =≤=; 给定Y y =时,X 的条件期望为(|)(|){|}xE X Y y xdF x y xP Xx Y y =====∑⎰设,X Y 是连续型随机变量,其联合密度函数为(,)f x y ,对一切使()0Y f y ≥,给定Y y =时,X 的条件密度函数为(,)(|)()Y f x y f x y f y =;给定Y y =时,X 的条件分布函数(|){|}F x y P X x Y y =≤==(|)xf x y dx ⎰; 给定Y y =时,X 的条件期望定义为 (|)(|)(|)E X Y y x d F x y x f x y d x===⎰⎰由定义可以看出,条件概率具有无条件概率的所有性质.(|)E X Y y =是y 的函数,y 是Y 的一个可能值,若在Y 已知的条件下,全面考察X 的均值,需要用Y 替代y ,(|)E X Y y =是Y 的函数,显然,它也是随机变量,称为X 在Y 条件下的条件期望(conditional expectation ).条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们列举以下性质:设,,X Y Z 为随机变量,()g x 在R 上连续,且,,,[()]EX EY EZ E g Y Z ⋅都存在. (1) 当X 和Y 相互独立时,(|)E X Y EX =; (2) [(|)]EX E E X Y =;(3) [()|]()(|)E g Y X Y g Y E X Y ⋅=; (4) (|)E c Y c =,c 为常数;(5) (线性可加性)[()|](|)(|)E aX bY Z aE X Z bE Y Z +=+ (,a b 为常数); (6) 若0,X ≥则(|)0,..E X Y a s ≥ 下面只对(2)和(3)证明:证明 (2)离散型情况.设(,)X Y 的联合分布列为{,},,1,2,i j ij P X x Y y p i j ====则 [(|)](|){}jj j y E E X Y E XY y P Y y ===∑{|}{}ji i i j j y x x P X x Y y P Y y ⎡⎤====⎢⎥⎣⎦∑∑ {,}{}ji ii i j i y x x x P X x Y y P Xx EX ⎡⎤======⎢⎥⎣⎦∑∑∑由此可见,E X 是给定j Y y =时X 条件期望的一个加权平均值,每一项(|)j E X Y y =所加的权数是作为条件事件的概率,称(|){}jj j y EX E XY y P Y y ===∑为全期望公式.连续型情形:设(,)X Y 的联合密度函数为(,)f x y ,则[](|)(|)()(|)()Y Y E E X Y E X Y y f y dy xf x y dx f y dy ∞∞∞-∞-∞-∞⎡⎤===⎢⎥⎣⎦⎰⎰⎰(,)(,)x f x y d x d yx f x y dy d x∞∞∞∞-∞-∞-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰()X xf x dx EX ∞-∞==⎰(|)()Y EX E X Y y f y dy ∞-∞==⎰也称为全期望公式.全期望公式表明:条件期望的期望是无条件期望. (3)只需证明对任意使[]()|E g Y X Y y ⋅=存在的y 都有[]()|()(|)E g y X Y y g y E X Y y ⋅===因为[|](|)E X Y y xdF x y ∞-∞==⎰,因此,当y 固定时,[]()|()(|)()(|)E g y X Y y g y xdF x y g y xdF x y ∞∞-∞-∞⋅===⎰⎰()[|]g y E X Y y ==例1.6 设在某一天走进商店的人数是期望为1000的随机变量,又设这些顾客在该商店所花钱数都为期望为100元的相互独立的随机变量,并设一个顾客花钱数和进入该商店的总人数独立,问在给定的一天内,顾客们在该商店所花钱数的期望是多少?解 设N 表示这天进入该商店的总人数,i X 表示第i 个顾客所花的钱数,则N 个顾客所花的总数为1Ni i X =∑.由于 11|N N i i i i E X E E X N ==⎡⎤⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑而 1111||N n n i i i i i i E X N n E X N n E X nEX ===⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑因此 11|,N i i E X N N E X =⎡⎤=⎢⎥⎣⎦∑[]111N i i E X E N E X E N E X =⎡⎤=⋅=⎢⎥⎣⎦∑由题设 11000,100EN EX == 于是11000100100000Ni i X ==⨯=∑即该天顾客花费在该商店的钱数的期望为100000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/21
设有N 条外线。由题意有 P{XN}0.9
由德莫佛-拉普拉斯定理得
P{XN}P
Xnp np(1p)
Nnp np(1p)
2020/4/21
nN p(1n pp)N 3.0180.
查表 (1得 .2)80.9.0
故 N 应满足条件 N 10 1.28 3.08
即N1.3 9.4 取 N1,4 即至少 1要 条 4 安 外装 线
例1 某人要测量甲、乙两地之间的距离。 限于测量 工具,他分成 1200 段来测量。每段测量误差(单位: 厘米)服从于(-0.5, 0.5)上的均匀分布。求总距离误 差的绝对值超过20厘米的概率。
解 设第k 段的测量误差为 Xk k1,2,,12.00 且 X1,X2,,X120是0 独立同分布的随机变量。且
2020/4/21
例7 利用 ⑴ 契比雪夫不等式 ⑵ 中心极限定理
分别确定投掷一枚均匀硬币的次数,使得出现“正面 向上”的频率在0.4到0.6之间的概率不小于0.9。
解 设 X 表示正面出现的次数(n 次试验)
X~b(n,1/2)
⑴ 利用契比雪夫不等式 E(X)np1n 2
P0.4
X n
0.6 P 0 .4 n X 0 .6 n
(或几乎处X 处 随) 机收 X 变 , 敛 量 记 X 于 n作 a.sX.
四种收敛关系:
以概率1收敛或r-阶收敛 依概率收敛 依分布收敛
2020/4/21
大数定律
定义 设{Xn}为p 维随机向量序列,数学期望E(Xn)
存在
Xn
1 n
n i1
Xi
■若对于任意的 0,都有
ln iP m X n E X n 0
所以
1 n
lni m Pni1
Xi
1
2020/4/21
定理2(辛钦定律)
设随机变量序列X1 , X2 , … 独立同分布,
且具有相同的数学期望 E (X i),i1 ,2,L

1 n
lni m Pnk1Xk
1
辛钦
辛钦大数定律中,随机变量的方差可以不存在,只要 独立同分布就可以了。
2020/4/21
n 1 0 0 ,p 0 .8 ,n p 8 0 , n p q 1 6 4
P7 0X8686 48070 480
1 . 5 2 . 5 1 0 . 9 0 3 . 9 3 1 9 0 . 9 2 3 2 8
P X 8 0 1 P X 8 0 1 00.5
2020/4/21
例5 某单位有200台电话分机,每台分机有5%的时间
要使用外线通话。假定每台分机是否使用外线是相互独
立的,问该单位总机要安装多少条外线,才能以90%以
上的概率保证分机用外线时不等待?
解 设有X 部分机同时使用外线,则有 X~B(n,p),
其中 n 2 0 0 ,p 0 . 0 5 , n p 1 0 ,n p ( 1 - p ) 3 . 0 8 .
2020/4/21
P 0 .4 n1 2nX1 2n0 .6 n1 2n
PX12n
0.1n
0.9
由契比雪夫不等式
P X1 2n0.1n 1(0n .1 /n 4)2 0.9
所以 n250
2020/4/21
⑵ 利用中心极限定理 X~b(n,1/2) 由德莫佛-拉普拉斯定理得 X~N (n/2,n/4)
2.5 1.25
2020/4/21
0 . 9 9 1 8 0 .1 0 5 6 0 . 8 8 6 2
例4 有100台车床彼此独立地工作。每台车床的实
际工作时间占全部工作时间的80%,求下列事件的 概率。
(1)任一时刻有70-86台车床工作。
(2)任一时刻有80台以上车床工作。
解 设任一时刻工作的车床台数为X 。X~bn,p
2020/4/21
定理1 设 X1,X2,L,相X互n,L 独立同分布,
2 D X i 0 , i 1 ,2 , 记 Fnx 为 Xn n 1i n1Xi EXi的分布函数
su F n x p x 0 , n
x
其中 x为标准正态分布函数。
记为
2020/4/21
Xn L N0,1
2
P
Xk
k 1
0
1200 1 12
20
1200
1 12
1 2 2
222
2 0 . 0 2 2 8 0 . 0 4 5 6
2020/4/21
例2根据以往经验,某种电器元件的寿命服从均值为 100小时的指数分布. 现随机地取16只,设它们的寿命 是相互独立的. 求这16只元件的寿命的总和大于1920 小时的概率.
P 0 .4 n 0 .5 n X 0 .5 n 0 .6 n 0 .5 n 0 .9 n /2 n /2 n /2
2 0n.1/n210.9 0n.1/n20.95 0.2n1.645 n 6 7 .6 5 故取n68
2020/4/21
Thank you
Thank you
limP n np x x
1
t2
e 2 dt
n np(1 p) 2
x
2020/4/21
推论: 设随机变量
Yn ~B(n, p).
当n充分大时有:
P aY nb C k npkqn k a k b bnpnqpanpnqp
这个公式给出了n 较大时二项分布的概率计算方法。
2020/4/21

1
n
n i1
Xi
P
.
即对任意的ε> 0,
1 n lni mPnk1Xk
1
证明
E
1 n
n i 1
Xi
1n ni1
E(Xi)1nin1
2020/4/21
D
1 n
n i 1
X
i
n12 i n1D(Xi)n12 i n1
2
2 n
由切比雪夫不等式得
1
1 n Pnk1Xk
1n22
则称 X n 依概率收敛于a ,记为 Xn Pa.
2020/4/21
依分布收敛
定义F : n(x), 设 n1,2,,F(x)分别是随
Xn(n1,2,)及X的分布函数 连, 续若 x
ln i m Fn(x)F(x),
则{X 称 n}依分布 X, 收记 敛 Xn 为 L 于 X.
注:对于分布{收 Xn}敛 并, 不需要定义在共 概率空间。实际 敛上 的, 并收 不 {Xn是 },而是
解 设第i 只元件的寿命为Xi , i=1,2, …,16 则X1,X2,…,Xn相互独立, E( Xi ) =100, D( Xi ) =10000
16
16只元件的寿命的总和为 Y X k
k 1
E(Y )=1600, D(Y )=160000
由中心极限定理, Y 1600 近似服从正态分布N (0,1) 400
例3 报童沿街向行人兜售报纸,假设每位行人买报 的概率为0.2, 且他们是否买报是相互独立的。求报童 向100位行人兜售之后,卖掉15-30份报纸的概率。
解 设报童卖掉报纸的份数为X, X~bn,p
n 1 0 0 ,p 0 .2 ,n p 2 0 , n p q 1 6 4
P15X3030 42015 420
其部分和
X1,X2,K,Xn
n
Xi
i1
在什么条件下趋于什么分布。
2020/4/21
1. 大数定律
■切比雪夫Chebyshev不等式 ■几个常见的大数定律
2020/4/21
依概率收敛
定义1 设随机变量序列 X1,X2,K,Xn,如果存
在常数 a ,使得对于任意 0 有:
ln im P{X |na|}1
定理3(伯努利大数定律) 设nA是n重贝努里试验中事件A发生的次数, P是事件A发生的概率,则对任给的ε> 0,有
lni mPnnA
p
1
即 nA P p . n
证明 引入随机变量
Xi
1, 0,
第 第ii次 次试试验验中中AA发不生发,生,i1, 2, L
2020/4/21
显然
n A X 1 X 2 L X n
X k ~ U 0 .5 ,0 .5 ,k 1 ,2 ,L ,1 2 0 0 .
E(Xk)0, D (X k)1 1 20.5( 0.5 )21 1 2
2020/4/21
由独立同分布的中心极限定理可得
1200
P
1200 k 1
1 P
Xk1Leabharlann 00k 1Xk 10
20
0
更一般 EX 地 nr, ,EX 设 r,其中
r 0为常数,如果ln i m EXnXr 0, 则称 {Xn}r阶收敛 X,记 于X 作 n rX.
1-阶收敛又称为平均收敛,2-阶收敛即为均方收敛。
2020/4/21
以概率1收敛
定 义 若 P{:ln i m Xn()X()} 1, ( 简
P{ln i m XnX}1) ,则称随机{X 变 n}以 量概 序 1

E ( X ) i p , D ( X k ) p ( 1 p ) , k 1 , 2 , L , n
又由于各次试验相互独立,所以
X1,X2,L,Xn 独立同分布, 则由辛钦大数定律可得
lni mPnnA
p
1
2020/4/21
§5.2 中心极限定理
中心极限定理的客观背景: 在实际问题中,常常需要考虑许多随机 因素所产生的综合影响.
则称{Xn}服从大数定律,其中
n
x
x
2 i
相关文档
最新文档