matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数
matlab高斯噪声函数
matlab高斯噪声函数(原创版)目录1.Matlab 中生成高斯噪声的方法2.高斯噪声的特点和应用3.椒盐噪声与高斯噪声的区别4.如何在 Matlab 中生成椒盐噪声和高斯白噪声5.滤波器在噪声抑制中的应用正文在 Matlab 中,生成高斯噪声常用的函数是 randn。
该函数可以生成服从正态分布的随机数。
其使用方法为:y = randn(m,n),其中 m 和 n 分别为矩阵的大小。
生成的随机数矩阵 y 中,每个元素都服从均值为 0、方差为 1 的高斯分布。
高斯噪声的特点是其噪声幅度随机,且在图像中的位置固定。
这种噪声在图像处理中很常见,例如在图像传输过程中,信号可能受到高斯噪声的影响。
因此,研究如何生成和处理高斯噪声对于图像处理具有重要意义。
椒盐噪声是一种特殊的高斯噪声,其特点是在图像中的某些位置上噪声幅度较大,形成“椒盐”状。
椒盐噪声与高斯噪声的主要区别在于噪声的幅度分布,椒盐噪声的噪声幅度分布不是正态分布,而是具有较高的峰值和较低的谷值。
在 Matlab 中,可以通过 imnoise 函数生成椒盐噪声。
例如,使用imnoise(I, "salt", m, v) 可以生成椒盐噪声,其中 I 为要添加噪声的图像,m 和 v 分别表示噪声的强度和方差。
除了椒盐噪声,Matlab 中也可以生成高斯白噪声。
高斯白噪声是在频域上呈高斯分布的噪声,其能量分布均匀。
在 Matlab 中,可以使用awgn 函数生成高斯白噪声。
例如,使用 awgn(x, snr) 可以生成高斯白噪声,其中 x 为信号,snr 为信噪比。
在实际应用中,噪声抑制滤波器可以用于去除图像中的噪声。
常见的噪声抑制滤波器包括均值滤波器、中值滤波器和边界保持类滤波器。
均值滤波器的原理是在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。
将模板中的全体像素的均值来替代原来的像素值。
中值滤波器则通过取图像中每个像素邻域的中值来实现噪声抑制。
matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数
现代通信原理作业一姓名:张英伟学号:133320085208036 班级:13级理工部3班利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。
一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声 plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴 y5=abs(f4);plot(l2,y5);如有侵权请联系告知删除,感谢你们的配合!。
MATLAB中产生高斯白噪声的两个函数
MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。
POWERTYPE可以是'dBW', 'dBm'或'linear'。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE可以是'real'或'complex'。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。
y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。
POWERTYPE可以是'dB'或'linear'。
如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。
matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数(word文档良心出品)
现代通信原理作业一姓名:张英伟学号:133320085208036 班级:13级理工部3班利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。
一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);plot(l2,y5);。
随机信号及其自相关函数和功率谱密度的MATLAB实现(1)
随机信号分析专业:电子信息工程班级:电子111姓名:***学号:**********指导老师:***随机信号及其自相关函数和功率谱密度的MATLAB实现引言:现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。
它是数字信号处理的重要研究内容之一。
功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。
通过实验仿真可以直观地看出以下特性:(1)功率谱估计中的相关函数法和周期图法所得到的结果是一致的,其特点是离散性大,曲线粗糙,方差较大,但是分辨率较高。
(2)平均周期图法和平滑平均周期图法的收敛性较好,曲线平滑,估计的结果方差较小,但是功率谱主瓣较宽,分辨率低。
这是由于对随机序列的分段处理引起了长度有限所带来的Gibbs现象而造成的。
(3)平滑平均周期图法与平均周期图法相比,谱估值比较平滑,但是分辨率较差。
其原因是给每一段序列用适当的窗口函数加权后,在得到平滑的估计结果的同时,使功率谱的主瓣变宽,因此分辨率有所下降。
摘要:功率谱估计(PSD)的功率谱,来讲都是重要的,是数字信号处理的重要研究内容之一。
功率谱估计可以分为经典谱估计(非参数估计)和现代谱估计(参数估计)。
前者的主要方法有BTPSD 估计法和周期图法;后者的主要方法有最大熵谱分析法(AR 模型法)、Pisarenko 谐波分解法、Prony 提取极点法、其Prony 谱线分解法以及Capon 最大似然法。
中周期图法和AR 模型法是用得较多且最具代表性的方法。
Matlab 是目前极为流行的工程数学分析软件,在它的SignalProcessingToolbox 中也对这两个方法提供了相应的工具函数,这为我们进行工程设计分析、理论学习提供了相当便捷的途径。
关键词:随机信号 自相关系数 功率谱密度实验原理:随机信号X(t)是一个随时间变化的随机变量,将X (t )离散化,即以Ts 对X (t )进行等间隔抽样,得到随机序列X(nTs),简化为X(n)。
高斯白噪声 matlab
高斯白噪声matlab摘要:1.高斯白噪声的定义和特性2.MATLAB 中生成高斯白噪声的方法3.高斯白噪声在各个领域的应用正文:1.高斯白噪声的定义和特性高斯白噪声(Gaussian White Noise)是一种在各个频率上具有相同能量分布的随机信号,它是信号处理领域中常见的一种噪声模型。
高斯白噪声具有以下特性:- 它的概率密度函数服从正态分布(高斯分布),即均值为0,方差为常数σ的正态分布。
- 在各个频率上的能量分布是均匀的,即具有平坦的功率谱。
- 高斯白噪声是各态历经(ergodic)的,这意味着在一个长时间内,信号的任何一段样本都是可能出现的。
2.MATLAB 中生成高斯白噪声的方法在MATLAB 中,可以使用内置函数`wgn`来生成高斯白噪声。
以下是一个简单的示例:```matlab% 指定信号的长度= 1000;% 生成高斯白噪声oise = wgn(n, 1);% 显示噪声信号figure;plot(noise);title("高斯白噪声示例");```其中,`wgn`函数的第一个参数`n`表示信号的长度,第二个参数`1`表示信号的均值为1。
需要注意的是,`wgn`函数生成的高斯白噪声是在均值为0,标准差为1 的条件下生成的,因此在实际应用中,可能需要根据需要对信号进行缩放。
3.高斯白噪声在各个领域的应用高斯白噪声在许多领域都有广泛的应用,包括通信、信号处理、图像处理等。
例如,在通信系统中,高斯白噪声常常被用作信道噪声的模型,以研究信道对信号传输性能的影响;在图像处理中,高斯白噪声可以作为随机噪声加入到图像中,以生成具有自然随机纹理的效果。
matlab产生高斯白噪声
matlab产生高斯白噪声产生一个长度为L、均值为零、功率为N的复数高斯白噪声用这种方法:1,X = sqrt(N/2) * ( randn(1,L) + j * randn(1,L) );根据随机过程理论,功率包含直流功率和交流功率,方差就是交流功率,这里均值为零,也就是总功率等于方差所以保证X的方差为N就行了。
2,X = wgn( L,1,N,'linear','complex');产生长为L的复高斯白噪声,均值为0,功率为N(线性)MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。
POWERTYPE可以是'dBW', 'dBm'或'linear'。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE可以是'real'或'complex'。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
(word完整版)高斯白噪声的matlab实现
通信系统建模与仿真实验一、高斯白噪声的matlab 实现要求:样本点:100 1000标准差:0.2 2 10均值: 0 0.2白噪声如果噪声的功率谱密度在所有的频率上均为一常数,即)/(),(,)(0Hz W f n f P n +∞<<-∞=式中:0n 为常数,责成该噪声为白噪声,用)(t n 表示。
高斯白噪声的matlab实现1.样本点为1000、均值为0、标准差为0.2时,高斯白噪声分布为下图所示:程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i));endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft));plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:1000;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 0;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (0.2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (2) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)程序如下所示:% White background noisclear allf = 1:1:100;for i = 1:length(f)K = (10) * randn(1,1) - 10;P(i) = 10.^(K - 3.95*(10^-5)*f(i));A(i) = sqrt(2*P(i)); endxifft = ifft(A);realx = real(xifft);ti = [1:length(xifft)-1]/1000;realx2(1:length(xifft)-1) = realx(2:length(xifft)); plot(ti,realx2)。
MATLAB环境下的正弦信号及高斯白噪声仿真程序说明
姓名:朱奇峰 专业:电子与通信工程 方向:数字广播电视技术 学号:103320430109033MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明一、信号的产生及时域观察1、设定正选信号的频率为10HZ ,抽样频率为100HZ ;2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ;3、最后将噪声叠加到正弦信号上,观察其三者时域波形。
二、信号频谱及白噪声功率谱的求解与观察1、对原正弦信号直接进行FFT ,得出其频谱;2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为:1^01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^()()xx xx r m r m =- 01m N <<-对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。
三、仿真结果:附源程序代码:fs=100;fc=10;x=(0:1/fs:2);n=201;y1=sin(2*pi*fc*x); %原正弦信号,频率为10 a=0;b=0.5; %均值为a,方差为b^2subplot(3,2,1);plot(x,y1,'r');title('y=sin(20pi*x)');ylabel('y');xlabel('x/20pi');grid;y2=a+b*rand(1,n); %均匀白噪声subplot(3,2,2);plot(x,y2,'r');title('N(0,0.25)的均匀白噪声');ylabel('y');xlabel('x/20pi');grid;y=y1+y2; %加入噪声之后的信号subplot(3,2,3);plot(x,y,'r');title('叠加了均匀白噪声的sinx');ylabel('y');xlabel('x/20pi');grid;FY=fft(y); %傅里叶变换得出频谱函数FY1=fftshift(FY); %频谱校正f=(0:200)*fs/n-fs/2;subplot(3,2,4);plot(f,abs(FY1),'r');title('函数频谱图');ylabel('F(jw)');xlabel('w');grid;%求均匀白噪声的自相关函数m=50;i=-0.49:1/fs:0.49;for j=1:mR1(j)=sum(y2(1:n-j-1).*y2(j:199),2)/(n-j);%无偏自相关函数的估计R1x(49+j)=R1(j);R1x(51-j)=R1(j);endsubplot(3,2,5);plot(i,R1x,'r');%plot(leg*1/fs,R1x,'r');title('白噪声自相关函数图');ylabel('R1x');xlabel('x');grid;Fy2=fft(R1x); %傅里叶变换得出白噪声功率谱函数Fy21=fftshift(Fy2); %功率谱校正f=(0:98)*fs/99-fs/2;subplot(3,2,6);plot(f,abs(Fy21),'r');axis([-50 50 -0.5 6]);title('白噪声功率谱函数图');ylabel('F(R1x)');xlabel('w');grid;%求正弦波加均匀白噪声的自相关函数m=50;i=-0.49:1/fs:0.49;for j=1:mR2(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j);%无偏自相关函数的估计R2x(49+j)=R2(j);R2x(51-j)=R2(j);endsubplot(3,2,5);plot(i,R2x,'r');%plot(leg*1/fs,R2x,'r');title('正弦波加白噪声自相关函数图');ylabel('R2x');xlabel('x');grid;Fy2=fft(R2x); %傅里叶变换得出正弦波加白噪声功率谱函数Fy21=fftshift(Fy2); %功率谱校正f=(0:98)*fs/99-fs/2;subplot(3,2,6);plot(f,abs(Fy21),'r');axis([-50 50 -0.5 6]);title('白噪声功率谱函数图'); ylabel('F(R2x)');xlabel('w');grid;clc;clear all;close all;fs=100;%采样频率100hzN=1000;%采样点数t=(0:1:N-1)/fs;f=10;%正弦信号频率10hzs0=sin(2*pi*f*t);%正弦信号am=max(abs(s0));% % -------加噪方案1(由加噪后信噪比确定高斯白噪声)-----snr=5; %设定加入白噪声后的信噪比为5db(均值为0)Pv=(am/(10^(snr/20)))^2;%噪声方差% % --------------------------------------------------% % -------加噪方案2(由噪声方差确定高斯白噪声)--------% % Pv=3; %设定白噪声方差(均值为0)% % snr=20*log10(am/(sqrt(Pv))); %求信噪比% % % % ---------------------------------------------------% % % ---------加噪声-------------v=rand(1,N);v=v*sqrt(Pv);%白噪声s=s0+v;%信号加噪声% % ----------信号画图-------------figure(1)subplot(3,1,1),plot(s0);title('原始信号')subplot(3,1,2),plot(s);title(['加噪信号信噪比= ',num2str(snr),' dB. 噪声方差= ',num2str(Pv)])s1=detrend(s);%去趋势ffs=abs(fft(s1));ffs=ffs*2/N;%频谱%%ffs=ffs.^2;%功率谱subplot(3,1,3),plot(ffs(1:N/2));title('加噪信号FFT')。
随机实验报告
随机信号实验报告课程:随机信号实验题目:随机过程的模拟与特征估计学院:四川大学电子信息学院学生名称:实验目的:1.学会利用MATLAB模拟产生各类随即序列。
2.熟悉和掌握随机信号数字特征估计的基本方法。
实验内容:1.模拟产生各种随即序列,并画出信号和波形。
(1)白噪声<高斯分布,正弦分布)。
(2)随相正弦波。
(3)白噪声中的多个正弦分布。
(4)二元随机信号。
(5)自然信号:语音,图形<选做)。
2.随机信号数字特征的估计(1)估计上诉随机信号的均值,方差,自相关函数,功率谱密度,概率密度。
(2)各估计量性能分析<选做)实验仪器:PC机一台MATLAB软件实验原理:随机变量常用到的数字特征是数字期望值、方差、自相关函数等。
相应地,随机过程常用到的数字特征是数字期望值、方差、相关函数等。
它们是由随机变量的数字特征推广而来,但是一般不再是确定的数值,而是确定的时间函数。
b5E2RGbCAP均值:mx(t>=E[X(t>]=;式中,p(x,t>是X<t)的一维概率密度。
mx(t>是随机过程X<t)的所有样本函数在时刻t的函数值的均值。
在matlab中用mea(>函数求均值。
p1EanqFDPw方差:<t)=D[X(t>]=E[];<t)是t 的确定函数,它描述了随机过程诸样本函数围绕数学期望mx(t>的分散程度。
若X<t)表示噪声电压,则方差<t)则表示瞬时交流功率的统计平均值。
在matlab中用var(>函数求均值。
DXDiTa9E3d自相关函数:Rx(t1,t2>=E[X(t1>X(t2>];自相关函数就是用来描述随机过程任意两个不同时刻状态之间相关性的重要数字特征。
在matlab中用xcorr<)来求自相关函数。
RTCrpUDGiT在matlab中可用函数rand、randn、normr、random即可生成满足各种需要的近似的独立随机序列。
功率谱密度估计方法的MATLAB实现
功率谱密度估计方法的MATLAB 实现功率谱密度估计方法的MATLAB实现在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。
在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。
当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。
功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。
信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。
如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。
信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。
因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。
下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。
以下程序运行平台:Matlab R2015a (8.5.0.197613)一、周期图法谱估计程序1、源程序Fs=100000; %采样频率100kHzN=1024; %数据长度N=1024n=0:N-1;t=n/Fs;xn=sin(2000*2*pi*t); %正弦波,f=2000HzY=awgn(xn,10); %加入信噪比为10db的高斯白噪声subplot(2,1,1);plot(n,Y)二、修正周期图法(加窗)谱估计程序1、源程序Fs=100000; %采样频率100kHzN=512; %数据长度M=32; %汉明窗宽度n=0:N-1;t=n/Fs;xn=sin(2000*2*pi*t); %正弦波,f=2000HzY=awgn(xn,10); %加入信噪比为10db的高斯白噪声subplot(2,1,1);subplot(2,1,1);plot(n,Y)title('信号')xlabel('时间');ylabel('幅度');grid on;window=hamming(M); %汉明窗[Pxx f]=pwelch(Y,window,10,256,Fs); subplot(2,1,2);plot(f,10*log10(Pxx));grid on;title(['修正周期图法谱估计N=',int2str(N),' M=',int2str(M)]);xlabel('频率(Hz)');ylabel('功率谱密度'); 2、仿真结果三、最大熵法谱估计程序1、源程序fs=1; %设采样频率N=128; %数据长度改变数据长度会导致分辨率的变化;f1=0.2*fs; %第一个sin信号的频率,f1/fs=0.2f2=0.3*fs; %第二个sin信号的频率,f2/fs=0.2或者0.3P=10; %滤波器阶数n=1:N;s=sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs); %s为原始信号x=awgn(s,10); %x为观测信号,即对原始信号加入白噪声,信噪比10dBfigure(1); %画出原始信号和观测信号subplot(2,1,1);plot(s,'b'),xlabel('时间'),ylabel('幅度'),title('原始信号s');grid;subplot(2,1,2);plot(x,'r'),xlabel('时间'),ylabel('幅度'),title('观测信号x');[Pxx1,f]=pmem(x,P,N,fs); %最大熵谱估计figure(2);plot(f,10*log10(Pxx1));xlabel('频率(Hz) ');ylabel('功率谱(dB) ');title(['最大熵法谱估计模型阶数P=',int2str(P),' 数据长度N=',int2str(N)]);2、仿真结果四、L evinson递推法谱估计程序1、源程序fs=1; %设采样频率为1N=1000; %数据长度改变数据长度会导致分辨率的变化;f1=0.2*fs; %第一个sin信号的频率,f1/fs=0.2 f2=0.3*fs; %第二个sin信号的频率,f1/fs=0.2或者0.3M=16; %滤波器阶数的最大取值,超过则认为代价太大而放弃L=2*N; %有限长序列进行离散傅里叶变换前,序列补零的长度n=1:N;s=sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs);%s为原始信号x=awgn(s,10);%x为观测信号,即对原始信号加入白噪声,信噪比10dBfigure(1); %画出原始信号和观测信号subplot(2,1,1);plot(s,'b'),axis([0 100 -3 3]),xlabel('时间'),ylabel('幅度'),title('原始信号s');grid;subplot(2,1,2);plot(x,'r'),axis([0 100 -3 3]),xlabel('时间'),ylabel('幅度'),title('观测信号x');grid;%计算自相关函数rxx = xcorr(x,x,M,'biased');%计算有偏估计自相关函数,长度为-M到M,%共2M+1r0 = rxx(M+1); %r0为零点上的自相关函数,相对于-M,第M+1个点为零点R = rxx(M+2:2*M+1);% R为从1到第M个点的自相关函数矩阵%确定矩阵大小a = zeros(M,M);FPE = zeros(1,M);%FPE:最终预测误差,用来估计模型的阶次var = zeros(1,M);%求初值a(1,1) = -R(1)/r0;%一阶模型参数var(1) = (1-(abs(a(1,1)))^2)*r0;%一阶方差FPE(1) = var(1)*(M+2)/(M);%递推for p=2:Msum=0;for k=1:p-1%求a(p,p)sum=sum+a(p-1,k)*R(p-k);enda(p,p)=-(R(p)+sum)/var(p-1);for k=1:p-1 %求a(p,k)a(p,k)=a(p-1,k)+a(p,p)*a(p-1,p-k);endvar(p)=(1-a(p,p)^2)*var(p-1); %求方差FPE(p)=var(p)*(M+1+p)/(M+1-p);%求最终预测误差end%确定AR模型的最佳阶数min=FPE(1); %求出FPE最小时对应的阶数p = 1;for k=2:Mif FPE(k)<minmin=FPE(k);p=k;endend%功率谱估计W=0.01:0.01:pi; %功率谱以2*pi为周期,又信号为实信号,只需输出0到PI即可;he=ones(1,length(W)); %length()求向量的长度for k=1:phe=he+(a(p,k).*exp(-j*k*W));endPxx=var(p)./((abs(he)).^2); %功率谱函数;F=W*fs/(pi*2); %将角频率坐标换算成HZ坐标,便于观察;重要!figure;plot(F,abs(Pxx))xlabel('频率/Hz'),ylabel('功率谱P'),title([' AR模型的最佳阶数p=' int2str(p)] );grid;2、仿真结果五、B urg法谱估计程序1、源程序fs=1;%设采样频率为1N=900;%数据长度改变数据长度会导致分辨率的变化;f1=0.2*fs;%第一个sin信号的频率,f1/fs=0.2f2=0.3*fs;%第二个sin信号的频率,f1/fs=0.2或者0.3M=512;%滤波器阶数的最大取值,超过则认为代价太大而放弃n=1:N;s = sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs);%s为原始信号x = awgn(s,10);%x为观测信号,即对原始信号加入白噪声,信噪比10dB for i=1:Nef(1,i)=x(i);eb(1,i)=x(i);endsum=0;for i=1:Nsum=sum+x(i)*x(i);endr(1)=sum/N;% Burg递推for p=2:M% 求解第p个反射系数sum1=0;for n=p:Nsum1=sum1+ef(p-1,n)*eb(p-1,n-1);endsum1=-2*sum1;sum2=0;for n=p:Nsum2=sum2+ef(p-1,n)*ef(p-1,n)+eb(p-1,n-1)*eb(p-1,n-1); endk(p-1)=sum1/sum2;% 求解预测误差平均功率r(p)=(1-k(p-1)*k(p-1))*r(p-1);% 求解p阶白噪声方差q(p)=r(p);% 系数aif p>2for i=1:p-2a(p-1,i)=a(p-2,i)+k(p-1)*a(p-2,p-1-i); endenda(p-1,p-1)=k(p-1);% 求解前向预测误差for n=p+1:Nef(p,n)=ef(p-1,n)+k(p-1)*eb(p-1,n-1);end%求解后向预测误差for n=p:N-1eb(p,n)=eb(p-1,n-1)+k(p-1)*ef(p-1,n);endend% 计算功率谱for j=1:Nsum3=0;sum4=0;for i=1:p-1sum3=sum3+a(p-1,i)*cos(2*pi*i*j/N);endsum3=1+sum3;for i=1:p-1sum4=sum4+a(p-1,i)*sin(2*pi*i*j/N);endpxx=sqrt(sum3*sum3+sum4*sum4);pxx=q(M)/pxx;pxx=10*log10(pxx);pp(j)=pxx;end%画出功率谱ff=1:N;ff=ff/N;figure;plot(ff,pp),axis([0 0.5 -20 10]),xlabel('频率'),ylabel('幅度(dB)'),title('功率谱P');grid;2、仿真结果。
(1)MATLAB中白噪声的WGN和AWGN函数的使用
(1)MATLAB中白噪声的WGN和AWGN函数的使用MATLAB中白噪声的WGN和AWGN函数的使用如下:MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。
POWERTYPE可以是'dBW', 'dBm'或'linear'。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE可以是'real'或'complex'。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。
y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。
POWERTYPE可以是'dB'或'linear'。
如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。
高斯脉冲噪声 和高斯白噪声 matlab
高斯脉冲噪声和高斯白噪声是数字信号处理中常见的信号模型,它们在通信领域、图像处理领域以及其他多个领域都有着重要的应用。
而在MATLAB中,我们可以利用各种工具和函数来模拟和处理这两种噪声信号。
本文将就高斯脉冲噪声和高斯白噪声的特点、模拟方法和在MATLAB中的实现进行介绍和分析。
一、高斯脉冲噪声的特点1. 高斯脉冲噪声的产生高斯脉冲噪声是一种脉冲干扰的随机信号,在通信系统中常常会遇到。
它的产生过程可以通过高斯分布来描述,即每个脉冲的幅值服从高斯分布。
2. 高斯脉冲噪声的特点高斯脉冲噪声的特点在于其具有随机性和突发性,幅度分布服从高斯分布,且脉冲出现的位置和幅值都是随机的。
这使得高斯脉冲噪声在一定程度上对系统的性能产生影响,因此需要对其进行模拟和分析。
二、高斯脉冲噪声的模拟方法在MATLAB中,可以利用randn函数生成高斯分布的随机数序列,然后可以根据需要进行幅度调制和脉冲出现的位置的控制,从而生成高斯脉冲噪声信号。
以下是MATLAB代码示例:```matlab生成高斯脉冲噪声信号N = 1000; 信号长度mu = 0; 均值sigma = 1; 标准差noise = mu + sigma * randn(1, N); 产生高斯分布随机数序列```以上代码使用了randn函数生成了长度为N的高斯分布随机数序列,并通过设置均值和标准差来控制噪声信号的特点。
三、高斯脉冲噪声的处理与分析在实际系统中,需要对高斯脉冲噪声进行处理和分析,以评估系统的性能和稳定性。
MATLAB提供了丰富的信号处理工具和函数,能够方便地进行信号的滤波、频谱分析等操作。
在处理高斯脉冲噪声时,可以利用MATLAB中的滤波函数对噪声信号进行去噪,比如利用高斯滤波器进行平滑处理。
另外,还可以通过频谱分析函数对噪声信号进行频域特性的分析,以了解其频谱分布和功率谱密度等特性。
四、高斯白噪声的特点1. 高斯白噪声的产生高斯白噪声是一种具有均匀频谱分布的随机信号,其幅度也服从高斯分布。
matlab进行 互相关运算 计算功率谱密度 求相位噪声
matlab进行互相关运算计算功率谱密度求相位噪声在MATLAB中,您可以使用内置函数来执行互相关运算、计算功率谱密度(Power Spectral Density, PSD)以及求相位噪声。
以下是完成这些任务的步骤和示例代码。
互相关运算MATLAB中的xcorr函数可以用来计算两个信号的互相关。
以下是一个简单的例子:matlab% 定义两个信号x = randn(1, 1000); % 随机信号1y = filter([10.5], 1, x); % 随机信号2,经过一个简单的滤波器% 计算互相关[r, lags] = xcorr(x, y, 'biased'); % 'biased'表示使用有偏估计% 显示结果figure;stem(lags, r);title('互相关结果');xlabel('延迟');ylabel('互相关值');计算功率谱密度(PSD)pwelch函数可以用来计算功率谱密度。
以下是一个计算PSD的例子:matlab% 使用一个随机信号x = randn(1, 1000);% 计算功率谱密度[pxx, f] = pwelch(x);% 显示结果figure;plot(f, 10*log10(pxx));title('功率谱密度(dB/Hz)');xlabel('频率 (Hz)');ylabel('PSD (dB/Hz)');求相位噪声相位噪声通常用于描述振荡器或频率源的稳定性。
在MATLAB中,没有直接计算相位噪声的函数,但您可以通过测量信号频率的稳定性来间接计算相位噪声。
一种常见的方法是使用快速傅里叶变换(FFT)来分析信号的频谱,然后从中提取相位信息。
然后,您可以比较相邻频谱分量的相位差异来估计相位噪声。
以下是一个简单的例子,说明如何计算相位噪声:matlab% 假设我们有一个包含单一频率成分的信号Fs = 1e6; % 采样频率t = 0:1/Fs:1-1/Fs; % 时间向量f0 = 1e3; % 信号频率x = cos(2*pi*f0*t) + 0.1*randn(size(t)); % 带有噪声的信号% 使用FFT分析信号N = length(x);X = fft(x);f = (0:N-1)*(Fs/N); % 频率向量% 查找峰值频率[~, idx] = max(abs(X(1:N/2)));f_peak = f(idx);% 估计相位噪声% 这里我们假设相位噪声可以通过相邻FFT bin的相位差异来估计% 注意:这不是准确的方法,真实世界中的相位噪声通常更加复杂phase_diff = unwrap(angle(X(idx)) - angle(X(idx+1)));phase_noise = var(phase_diff); % 这里将相位差异的方差作为相位噪声的一个简单估计disp(['相位噪声的简单估计:', num2str(phase_noise)]);请注意,上面的相位噪声估计方法非常简化,并不适用于实际应用。
matlab白噪声函数
matlab白噪声函数
在线性系统设计及信号处理领域,白噪声是经常被使用的一种信号。
它具有完全均匀的频谱,因此有不同的特性。
Matlab具有专门用来生成白噪声信号的函数。
白噪声信号生成函数为wgn,它的参数有三个:
Power:定义着白噪声信号的功率大小,该参数是必需的。
Size:描述输出信号的尺寸,可以是1*1,1*N,N*1,M*N等不同形式,参数默认值为1*1,即单一的白噪声信号。
Seed:用于设置随机种子的参数,不输入会自动使用默认种子。
如果每次运行生成的白噪声信号不变,可以设置不同的种子。
例如可以使用以下Matlab命令来生成1*128的负载的-30dB的信号:
x = wgn(1, 128,-30);
另外,用户可以使用两个特殊的函数来生成具有正态分布的均匀能量的白噪声,这两个函数分别是randn和rand. randn函数是生成标准正态分布均匀能量白噪声,它的参数有2个:Size和Seed。
而rand函数则可以生成具有指定均值和方差的正态分布白噪声,它的第一个参数是Size,第二个参数为Seed,第三个参数为均值,第四个参数为方差。
下面是生成具有不同均值和方差的白噪声的Matlab代码:
% Generate Gaussian noise with mean 0, var 1
x1 = randn(1, 128);
% Generate gaussian noise with mean 2, var 4
x2 = randn(1, 128, 2, 4);。
高斯白噪声 matlab
高斯白噪声1. 什么是高斯白噪声?高斯白噪声是一种在时间和频率上都是均匀分布的随机信号,其特点是具有平坦的功率谱密度。
在频域上,高斯白噪声在所有频率上都具有相同的能量。
在时域上,它表现为一个平均值为零、方差为常数的随机过程。
高斯白噪声可以用数学模型来描述,即服从高斯分布(正态分布)且均值为0、方差为常数的随机变量序列。
由于其随机性质和均匀分布特点,高斯白噪声广泛应用于信号处理、通信系统、图像处理等领域。
2. 高斯白噪声模拟方法2.1 Box-Muller变换Box-Muller变换是一种常用的生成服从标准正态分布的随机数方法。
通过该方法,我们可以生成服从高斯分布(正态分布)的随机数。
Box-Muller变换基于极坐标转换原理,将两个独立且均匀分布在[0,1]区间上的随机数转换为符合高斯分布的随机数。
具体步骤如下: 1. 生成两个均匀分布在[0,1]区间上的随机数u1和u2。
2. 计算z0 = sqrt(-2 * ln(u1)) * cos(2 * pi * u2)和z1 = sqrt(-2 * ln(u1)) * sin(2 * pi * u2)。
3. z0和z1即为服从标准正态分布的随机数。
2.2 MATLAB实现在MATLAB中,可以使用randn函数生成服从标准正态分布的随机数。
通过乘以方差sigma和加上均值mu,可以得到服从指定均值和方差的高斯白噪声。
以下是MATLAB代码示例:% 生成高斯白噪声mu = 0; % 均值sigma = 1; % 方差n = 1000; % 生成1000个样本点noise = mu + sigma * randn(n, 1); % 生成服从指定均值和方差的高斯白噪声% 绘制高斯白噪声时域波形图t = (0:n-1)';figure;plot(t, noise);xlabel('Time');ylabel('Amplitude');title('Gaussian White Noise');% 绘制高斯白噪声频谱图Fs = 1000; % 采样率f = (-Fs/2):(Fs/n):(Fs/2-Fs/n);spectrum = abs(fftshift(fft(noise)));figure;plot(f, spectrum);xlabel('Frequency');ylabel('Magnitude');title('Frequency Spectrum of Gaussian White Noise');3. 高斯白噪声的应用高斯白噪声由于其随机性和均匀分布特点,在信号处理和通信系统中具有广泛的应用。
matlab-正弦波-高斯白噪声-均匀白噪声-功率谱密度-自相关函数
现代通信原理作业一利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。
一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);plot(l2,y5);。
matlab高斯噪声函数
matlab高斯噪声函数【实用版】目录1.Matlab 中的高斯噪声函数2.高斯噪声的特点和生成方法3.在 Matlab 中生成高斯噪声的实例4.高斯噪声在数字图像处理中的应用5.总结正文在 Matlab 中,噪声函数被广泛应用于信号处理、通信和数字图像处理等领域。
高斯噪声是一种常见的噪声类型,其特点是噪声幅度服从正态分布,且出现位置是随机的。
在 Matlab 中,可以使用不同的函数来生成高斯噪声。
首先,我们来了解高斯噪声的特点和生成方法。
高斯噪声的生成需要确定噪声的均值和标准差。
在 Matlab 中,可以使用 randn 函数来生成服从正态分布的随机数。
通过调整 randn 函数的参数,可以控制噪声的均值和标准差,从而生成不同特性的高斯噪声。
接下来,我们来看在 Matlab 中生成高斯噪声的实例。
假设我们要生成一个均值为 0,标准差为 1 的高斯噪声信号,可以使用以下代码:```matlab% 创建一个长度为 1000 的信号t = (0:999)"/1000;% 使用 randn 函数生成高斯噪声= randn(1000, 1);% 计算噪声信号s = t + n;```在这个例子中,我们首先创建了一个长度为 1000 的信号,然后使用randn 函数生成了一个均值为 0,标准差为 1 的高斯噪声信号。
最后,我们将信号和噪声相加,得到噪声信号。
高斯噪声在数字图像处理中的应用也非常广泛。
例如,在图像去噪中,可以使用高斯噪声来模拟图像中的噪声,然后设计相应的滤波器来去除噪声。
另外,在图像增强和图像复原等领域,高斯噪声也经常被用作先验噪声模型。
总之,在 Matlab 中,可以使用 randn 函数和其他相关函数来生成高斯噪声信号。
高斯噪声在信号处理、通信和数字图像处理等领域具有广泛的应用。
高斯白噪声的概率密度函数,功率谱密度函数
高斯白噪声的概率密度函数,功率谱密度函数高斯白噪声(Gaussian White Noise,GWN)是一种随机过程,它应用于计算机领域中处理非常复杂的信号。
这种信号通常具有随机性和动态变化,GWN具有立即响应的特性,可以应用于提取信号的特征,其中包括概率密度函数和功率谱密度函数。
一、概率密度函数
概率密度函数是用来衡量不同随机变量在给定时间的概率的函数。
概率密度函数描述了每一个表示映射过程中的值分布,这样用户就可以确定可能发生的预期结果。
高斯白噪声概率密度函数具有一定的高斯分布,平均值为0,特征值为1,累积概率密度函数以1/2为期望值。
其形式为:
f(x)= 1/√2π * exp(-x2)
其中f(x)为取值的概率,exp(-x2)为高斯函数。
二、功率谱密度函数
功率谱密度函数(PSD)是一种用来表示随机信号功率谱图的函数。
它是指在空间频率域中,将特定时间间隔内的幅度值转换为频率域上对应的功率谱值。
高斯白噪声的功率谱密度函数具有一定形式,可以定义零平均值,即每个取值的功率均相等,其形式如下:
F(f)=(1/2)2/π
其中f为信号的频率,F(f)为功率谱密度的值。
综上,高斯白噪声概率密度函数和功率谱密度函数分别有不同的形式,分别由具有一定的概率分布和频率值密度构成,各取不同的期望值。
这种信号模式可以用于提取信号的特征,从而可以更好地理解特定的
操作规则。
由此可以看出,GWN在探索信号特征中具有很强的实用性,同时也可以用于开发新技术,以实现更高效率的数据处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代通信原理作业一
姓名:张英伟学号:8036 班级:13级理工部3班
利用matlab完成:
●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦
波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波
形。
一、白噪声区别及产生方法
1、定义:
均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:
rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:
z2=a+(b-(a))*rand(m,n)............(公式1)
randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:
z1=a+b*randn(1,n).................(公式2)
可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系
1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:
由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)
二、源代码及仿真结果
1、正弦波
x=(0:0.01:2); %采样频率100Hz
y1=sin(10*pi*x); %产生频率5Hz的sin函数
plot(x,y1,'b');
2、高斯白噪声+正弦波
z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');
y2=y1+z1; %叠加高斯白噪声的正弦波
plot(x,y2,'b');
3、均匀白噪声+正弦波
z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');
y3=y1+z2; %叠加均匀白噪声的正弦波
plot(x,y3,'b');
4、高斯白噪声序列自相关函数及功率谱密度
z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计
plot(lags,r1);
f1=fft(r1);
f2=fftshift(f1); %频谱校正
l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴
y4=abs(f2);
plot(l1,y4);
5、均匀白噪声序列自相关函数及功率谱密度
z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计
plot(lags,r2);
f3=fft(r2);
f4=fftshift(f3); %频谱校正
l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);
plot(l2,y5);。