人教版《基本不等式》高三一轮复习公开课

合集下载

高考数学一轮复习第6章不等式6.3基本不等式课件理

高考数学一轮复习第6章不等式6.3基本不等式课件理

第二十七页,共61页。
2.(2018·广西三市调研)已知 m,n 为正实数,向量 a =(m,1),b=(1-n,1),若 a∥b,则m1 +2n的最小值为_3_+__2__2__.
第二十八页,共61页。
解析 ∵a∥b,∴m-(1-n)=0,即 m+n=1,又 m,
n






1 m

2 n

=fa+2 b,Q=f(
ab),R=f
a2+2 b2,则(
)
A.P<Q<R B.P<R<Q
C.R<Q<P D.R<P<Q
用导数法.
第三十页,共61页。
解析 f′(x)=x+1 1-1=x-+x1(x>-1),由 f′(x)>0 解 得-1<x<0,由 f′(x)<0 解得 x>0,所以 f(x)在(-1,0)上单调 递增,在(0,+∞)上单调递减.
∴存在 m=± 3使得△ABF1 的面积最大.
第四十页,共61页。
方法技巧 基本不等式的综合运用常见题型及求解策略
1.应用基本不等式判断不等式的成立性或比较大小, 有时也与其他知识进行综合命题,如角度 1 典例,结合函数 的单调性进行大小的比较.
根据题意得出三角形面积表达式,求最 值时,用基本不等式法.
第三十六页,共61页。
解 (1)易知直线 l:x=my+2 与 x 轴的交点坐标为 (2,0),∴椭圆 C:ax22+y2=1(a>0)的一个焦点坐标为(2,0),
∴c=2,∴a2=c2+1=4+1=5. 故椭圆 C 的方程为x52+y2=1. (2)存在. 将 x=my+2 代入x52+y2=1 并整理得(m2+5)y2+4my- 1=0, Δ=(4m)2-4(m2+5)×(-1)=20m2+20>0,

不等式的性质基本不等式课件高三数学一轮复习

不等式的性质基本不等式课件高三数学一轮复习
常用变形 ab≤(a+4b)2≤a2+2 b2
举题说法
不等式的性质
1 (1) (多选)已知a,b,c满足c<a<b,且ac<0,那么下列各式一
定成立的是
( BCD
)
A.ac(a-c)>0
B.c(b-a)<0
【解C析.】c因b2为<aa,b2b,c满足c<a<b,且Dac.<a0b,>所a以c c<0,a>0,b>0,a-c>0,b
3.已知 x>1,则 x+x-1 1的最小值为 ( C )
A.1 C.3
B.2 D.4
【解析】因为 x>1,所以 x-1>0,所以 x+x-1 1=(x-1)+x-1 1+1≥2 (x-1)·x-1 1 +1=3,当且仅当 x-1=x-1 1,即 x=2(x=0 舍去)时等号成立,此时 x+x-1 1取最小 值 3.
4.(多选)下列说法正确的是
()
A.若
x<1,则函数 2
y=2x+2x1-1的最小值为-1
B.若实数 a,b,c 满足 a>0,b>0,c>0,且 a+b+c=2,则a+4 1+b+1 c的最小值
是3
C.若实数 a,b 满足 a>0,b>0,且 2a+b+ab=6,则 2a+b 的最大值是 4
D.若实数 a,b 满足 a>0,b>0,且 a+b=2,则a+a21+b+b21的最小值是 1
【解析】设 2α-β=m(α+β)+n(αห้องสมุดไป่ตู้β),则mm+ -nn= =2-,1, 解得mn==3212,,
所以 2α-β
=12(α+β)+32(α-β).
因为 π<α+β<54π,-π<α-β<-π3,所以π2<12(α+β)<58π,-32π<32(α-β)<-π2,所
以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以 2α-β 的取值范围是-π,π8.

基本不等式公开课课件完整版

基本不等式公开课课件完整版
4
基本不等式的形式与特点
基本不等式的形式
包括一元一次不等式、一 元二次不等式、分式不等 式等。
2024/1/25
基本不等式的特点
具有普遍性、客观性、可 解性等。
基本不等式的应用
在解决数学问题时,经常 需要运用基本不等式进行 求解或证明。
5
基本不等式的几何意义
1 2
一元一次不等式的几何意义
表示平面直角坐标系中的一条直线将平面分成两 部分,其中一部分为满足不等式的区域。
应用
在证明不等式、求最值等问题中有广泛应用,如利用柯西-施瓦茨不 等式证明均值不等式。
2024/1/25
22
赫尔德不等式
2024/1/25
定义
对于非负实数序列 {a_i} 和正实数 p, q 满足 1/p + 1/q = 1,有 (∑a_i^p)^(1/p) * (∑a_i^q)^(1/q) ≥ ∑a_i,其中“∑”表示求和符号。
感谢观看
2024/1/25
31
26
常见误区与注意事项
2024/1/25
不等式性质理解的误区
学生常常对不等式的基本性质理解不透彻,如反向不等式的错误 使用等。
忽视定义域的问题
在解不等式时,学生有时会忽视定义域的限制,导致解集错误。
解法选择不当
针对不同类型的不等式,应选择适当的解法。学生有时会选择复杂 的解法,导致解题效率低下。
27
例题3
已知函数$f(x) = x^2 - 2ax + 3$在区间$(-infty, 2]$上是减函 数,求$a$的取值范围。
例题4
已知不等式$|x - a| < b$的解集 为${ x | -1 < x < 3 }$,求$a +

高三数学一轮复习公开课课件基本不等式多维探究共14张PPT.ppt

高三数学一轮复习公开课课件基本不等式多维探究共14张PPT.ppt

xy x y
xy
即a2 26a 25 ,0 解得
,1 当a且仅25当 等号成立y 6x
经检验:当x
5
,y 1时5 ,
当a; 25,
2
x 1时y, 3 10 5
a 1
函数f (x, y) 4x y的最大值为25,最小值为1.
【评注】本题我们是通过构造“两个整体”,即 将所求函数作为一个整体,结合题设条件再得一 个整体,通过把两个整体相乘和换元,由基本不等 式生成得到一个关于新元的不等式从而求解,体 现了整体处理的思想与构造的方法.
函数
是题设条件等式左边中某两项和,可
以运用整体处理的思想即通过换元来处理.
解答:设 4x
a(26 a)
y 则a
(4x y)(
1
1 x9 )
9 y
, 26 a 13 y
x
36x
0, y
13
0
2
,所以 y 36x 25
xy
xy
xy
a(26 a) (4x y)(1 9) 13 y 36x 13 2 y 36x 25
3、椭圆中的最值:
4
2
3
1
四、小结与课后思考
(当且仅当a b时等号成立)
1、 本 节 课 主 要 内 容
2、两个结论:(1)两个正数积为定值,和有最小值. (2)两个正数和为定值,积有最大值.
3、基本不等式的适用条件:一正二定三相等
思考题:若直线 ax by 1 0 平分圆 C:
x2 y2 2x 4y 1 0 的 周 长 且
探究:在右图中,AB是圆的直径,点C是AB上的一点,
AC=a,BC=b.过点C作垂直于AB的弦DE,连接AD、BD.

高考数学一轮复习第一章第五讲基本不等式及其应用课件

高考数学一轮复习第一章第五讲基本不等式及其应用课件

(a2+b2) 2
图 1-5-2
解析:∵△ACD∽△CBD,∴CADD=CBDD, 即 CD= AD·BD= ab. ∵OC=A2B=AD+2 BD=a+2 b, ∴ ab≤a+2 b.故选 B.
答案:B
考点二 利用基本不等式求最值 考向 1 通过配凑法求最值
[例 2]设 0<x<23,则函数 y=4x(3-2x)的最大值为________.
2-x x·2-x x+2=2,

当且仅当2-x x=2-x x,即 x=1 时取等号,所以 y 的最小值为
2.故选 B.
答案:B
2.(考向 2)(2023 年罗湖区校级期中)已知 x>0,y>0,且 2x+ y=xy,则 x+2y 的最小值为( )
A.8
B.8 2
C.9
D.9 2
解析:x>0,y>0,且 2x+y=xy,可得:1x+2y=1,则 x+2y
错误. (3)连续使用基本不等式求最值,要求每次等号成立的条件一
致. (4)若 a≥b>0,则 a≥ a2+2 b2≥a+2 b≥ ab≥a2+abb≥b.
考点一 基本不等式的证明 [ 例 1](1)(2023 年广西一模) 《几何原本》中的“几何代数 法”(以几何方法研究代数问题)是西方数学家处理问题的重要依 据,通过这一原理,很多代数的公理或定理都能够通过图形实现
【变式训练】
如图1-5-2所示,线段AB为半圆的直径,O为
圆心,点 C 为半圆弧上不与 A ,B 重合的点. 作 CD⊥AB于点D,设 AD=a,BD=b,则下列不等
式中可以直接表示 CD≤OC 的是( )
A.a2+abb≤ ab
B. ab≤a+2 b
C.a+2 b≤

高三数学一轮复习课件《基本不等式》

高三数学一轮复习课件《基本不等式》

方法二:令 t k 2 1 ,则 k 2 t 1.
4
400(1 k 2 )2 5k 2 5 4k
2
2
2
1600 81
.
所以
当S 2且仅当4400t52 k
(5t 1)(4t
21)5204t420k02tt2,1即k2
1
t2
410时0 , S
1 20 t
2
.
最小为
1600 81
.
所以当 1 1 ,即 k 2 1时, S 2 最小为 1600 .
2
2.能够使用基本不等式及公式的变形解决简单的最大(小)值问题. 3.在使用基本不等式求最大(小)值时注意“=”成立的条件.
4.应用基本不等式求较复杂的最大(小)值问题时,注意配凑、换元、消元、变形等方法的
使用.
【命题规律】
高考对基本不等式的考查,主要是利用基本不等式求最值,且常与 函数、数列、解析几何等知识结合考查,主要以选择题或填空题的形式 进行考查,但有时也在解答题中出现.
t2
81
知巩识固再型现题组
【归纳总结】
本组题目有什么特点?应该如何求解?
本组题目都是含有一个变量的函数的最值问题. 在解答时应从变量个数、次数、结构形式等角度观 察与分析“目标函数”,通过辨析,运用配凑、换 元等方法构造出基本不等式的结构特征,并确认 “一正、二定、三相等”是否同时成立?若成立, 则可以运用基本不等式求解;若不成立,则可以从 函数角度求解.
再现型题组
1.已知 ab 1, a2 b2 取得最小值时, a b 2 .
1
若 a2 b2 1,则 ab 的最大值是 2 .
2.如图所示, AB是圆 O 的直径, C 是圆上任意一点,a b

高考数学一轮复习课件6.3基本不等式

高考数学一轮复习课件6.3基本不等式

•1.“1”的代换是解决问题的关键,代换变 形后能使用基本不等式是代换的前提,不能 盲目变形.
•2.利用基本不等式证明不等式,关键是所 证不等式必须是有“和”式或“积”式,通 过将“和”式转化为“积”式或将“积”式 转化为“和”式,达到放缩的效果,必要时, 也需要运用“拆、拼、凑”的技巧,同时应 注意多次运用基本不等式时等号能否取到.
当且仅当
3y x

4x y
且x+y=1,即x=-3+2
3 ,y=4-
2 3时等号成立,
∴3x+4y的最小值是7+4 3. (2)由x2+y2+xy=1,得1=(x+y)2-xy, ∴(x+y)2=1+xy≤1+(x+4 y)2,
解得-2 3 3≤x+y≤2 3 3,
∴x+y的最大值为23
3 .
【答案】
b a
的最小值为( )
A.16 2
B.8 2
C.83 4
D.43 4
【解析】 由m=|log2x|,得xA=(12)m,xB=2m. 同理,xC=(12)2m8+1,xD=22m8+1.
∴a=|xA-xC|=(12)m-(12)2m8+1, 8
b=|xB-xD|=|2m-22m+1|.
∴ba=2-2mm--22-2m28+m8+1 1=
当且仅当5x=2-5x,即x=15时等号成立.
∴y=2x-5x2的最大值ymax=15.
(2)由x>0,y>0,且x+3y=5xy,得53x+51y=1. ∴3x+4y=(3x+4y)(53x+51y) =153+35xy+152xy≥153+2 35xy·152xy=5, 当且仅当x=2y=1时,等号成立. ∴3x+4y的最小值为5.
元的函数;
(2)该厂家2013年的促销费用投入多少万元时,厂家的

2017届高三数学一轮总复习(人教通用)课件:第6章 第四节 基本不等式

2017届高三数学一轮总复习(人教通用)课件:第6章 第四节 基本不等式

()
A.52
B.3
C.72
D.4
答案:B
第八页,编辑于星期六:一点 八分。
已知 x,y,z 是互不相等的正数,且 x+y+z=1,求证: 1x-11y-11z-1>8.
证明
第九页,编辑于星期六:一点 八分。
第十一页,编辑于星期六:一点 八分。
设a,b均为正实数,求证:a12+b12+ab≥2 2.
第十七页,编辑于星期六:一点 八分。
[变式2] 母题的条件和结论互换即:已知a>0,b>0,1a+1b =4,则a+b的最小值为________.
解析:由1a+1b=4,得41a+41b=1. ∴a+b=41a+41b(a+b)=12+4ba+4ab≥12+2 当且仅当a=b=12时取等号. 答案:1
第二十三页,编辑于星期六:一点 八分。
[变式6] 若母题变为:已知各项为正数的等比数列{an}满足 a7=a6+2a5,若存在两项am,an,使得 am·an=2 2a1, 则m1 +n4的最小值为________.
解析
第二十四页,编辑于星期六:一点 八分。
首届世界低碳经济大会在南昌召开,本届大会以“节能减排, 绿色生态”为主题.某单位在国家科研部门的支持下,进行 技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的 化工产品.已知该单位每月的处理量最少为 400 吨,最多为 600 吨,月处理成本 y(元)与月处理量 x(吨)之间的函数关系可 近似地表示为 y=12x2-200x+80 000,且每处理一吨二氧化碳 得到可利用的化工产品价值为 100 元.
第四节
基本不等式
a>0,b>0 a=b
第一页,编辑于星期六:一点 八分。
2ab 2

高考数学一轮复习选修4_5不等式选讲课件文新人教版

高考数学一轮复习选修4_5不等式选讲课件文新人教版
选修4—5
不等式选讲
-2知识梳理
双基自测
1
2
3
4
1.绝对值三角不等式
(1)定理1:若a,b是实数,则|a+b|≤
时,等号成立;
(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;
(3)定理2:若a,b,c是实数,则|a-c|≤
(a-b)(b-c)≥0
时,等号成立.
5
|a|+|b|
,当且仅当_______
-22考点1
考点2
考点3
考点4
考点5
对点训练2设函数f(x)=|x+1|-m|x-2|.
(1)若m=1,求函数f(x)的值域;
(2)若m=-1,求不等式f(x)>3x的解集.
解:(1)当m=1时,f(x)=|x+1|-|x-2|.
∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,
∴-3≤|x+1|-|x-2|≤3,即函数f(x)的值域为[-3,3].
(3)柯西不等式的向量情势:设α,β是两个向量,则|α||β|≥|α·β|,当且
仅当β是零向量或存在实数k,使α=kβ时,等号成立.
-6知识梳理
双基自测
1
2
3
4
5
5.不等式证明的方法
证明不等式常用的方法有比较法、综合法、分析法等.
-7知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“ ”,错误的打“×”.
所以|x|+|y|+|x-1|+|y-1|=2,即
|| + |-1| = 1,
|| + |-1| = 1.

基本不等式课件-2025届高三数学一轮复习

基本不等式课件-2025届高三数学一轮复习

解析:选B.任取其中两次加油,假设第一次的油价为元/升,第二次的油
+
+
价为元/升,第一种方案的均价:
=
≥ ;第二种方案的




均价: =
≤ .所以无论油价如何变化,第二种都更划算.故
+
+
��
选B.

2.设等差数列{ }的公差为,其前项和是 ,若 = =
+

− +
+
+
= + ,即 =
=

+
+




+
<<



+ − ≥ − = ,当
= 时,取等号,故 + 的最小值为2.
方法三:因为 + + = ,所以 + + = ,所以
+ 取得最小值

⑧_____.
记忆口诀:两正数的和定积最大,两正数的积定和最小.

1.



+ ≥ (,同号).
+

2. ≤
+
3.

4.

+

, ∈ .
+


+


, ∈ .
> , > .
1.函数 =

+

+ + ,
+ + − ≥ ,即
+ + + − ≥ ,解得 + ≥ ,

基本不等式课件——2025届高三数学一轮复习

基本不等式课件——2025届高三数学一轮复习

核心考点
课时分层作业
[跟进训练]
1.(1)(多选)(2024·河北沧州模拟)下列函数中,函数的最小值为4的是(
A.y=x(4-x)
1

C.y= +
B.y=
1
(0<x<1)
1−
)
2 +9
2 +5
D.y= +
4

(2)(2024·重庆巴蜀中学模拟)已知x>0,y>0,且xy+x-2y=4,则2x+y的最小
是(
)
2 +2
B.ab≤
2
2 + 2
+ 2
C.

2
2

A.


+ ≥2

BC

[当 <0时,A不成立;当ab<0时,D不成立.]

D.
2

+

4.(人教A版必修第一册P46例3(2)改编)一段长为30 m的篱笆围成一个一边靠墙的矩
形菜园,墙长18
15
15
m,当这个矩形的长为________m,宽为________m时,菜园面积
由x+y=xy得,(x-1)(y-1)=1,

2
1
2
1
于是得
+
=1+ +2+ =3+
−1
−1
−1
−1
−1
=3+2
1
2
2,当且仅当 = ,
−1 −1
2
2
即x=1+ ,y=1+ 2时取“=”,

2
+
的最小值为3+2
−1
−1

高考一轮复习基本不等式ppt课件

高考一轮复习基本不等式ppt课件

2.基本不等式的变形
(1)重要不等式:a2+b2≥___2_a_b__ (a,b∈R).当且仅当 a=b 时取等号.
(2)ab≤a+2 b2,(a,b∈R),当且仅当 a=b 时取等号.
(3)a+a1≥_2___(a>0),当且仅当 a=1 时取等号.
a+a1≤__-_2__(a<0),当且仅当 a=-1 时取等号.
a
4
b

8
2 8,如果不
(1)C
对,错
(2)9




考向二 利用基本不等式证明不等式
【例 2】►已知 a>0,b>0,c>0, 求证:bac+cba+acb≥a+b+c.
【审题视点 】 先局部运用基本不 等式,再利用不等式
正明 ∵a>0,b>0,c>0, ∴bac+cba≥2 bac·cba=2c;
).
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.已知 a,b∈(0,1),且 a≠b,下列各式中最大的是( ).
A.a2+b2 B.2 ab C.2ab D.a+b
3.若 lg x+lg y=2,则1x+1y的最小值是( ).A.210 B.15 C.12 D.2
4.(2012·福建)下列不等式一定成立的是( ).
进行恒等变形,如构 造“1”的代换等.
≥2 x-2×x-1 2+2=4,当且仅当 x-2=x-1 2(x>2),(式3),若但可等用号基不本成不立等,
即 x=3 时取等号,即当 f(x)取得最小值时,x=3,则 一 般 是 利 用 函 数
即 a=3.
单调性求解.
【考训练向1一】利(2用01基3·福本州不模等拟式)已求知最f值(x)=x+1x-2(x<0),则 f(x)有(

2025版高考数学全程一轮复习第一章集合与常用逻辑用语不等式第四节基本不等式课件

2025版高考数学全程一轮复习第一章集合与常用逻辑用语不等式第四节基本不等式课件
∴a的最小值为4.
题后师说
(1)对于不等式恒成立问题可利用分离参数法,把问题转化为利用基 本不等式求最值;
(2)利用基本不等式确定等号成立的条件,也可得到参数的值或范 围.
巩固训练4
(1)当x>a时, 2x+x−8a的最小值为10,则a=( )
A.1 B. 2 C.2 2 D.4
答案:A
解析:当x>a时,2x+x−8a=2(x-a)+x−8a+2a≥2 2 x − a × x−8a+2a=8+2a, 即8+2a=10,故a=1.
又-x
5,
∴y=2+x+5x=2-(-x-5x)≤2-2 5, 当且仅当-x=-5x,且x<0,即x=- 5时等号成立.
课堂互动探究案
1.掌握基本不等式 ab ≤ a+2b(a>0,b>0). 2.结合具体实例,能用基本不等式解决简单的最大值或最小值问 题.
问题思考·夯实技能
关键能力·题型剖析
题型一 利用基本不等式求最值
角度一 配凑法求最值
例 1 (1)函数y=3x+x−11(x>1)的最小值是(
)
A.4 B.2 3-3
C.2 3 D.2 3+3
答案:D
解析:因为x>1,所以y=3(x-1)+x−11+3≥2
且仅当3(x-1)=x−11,即x=1+
3时等号成立.
3
所以函数y=3x+x−11(x>1)的最小值是2 3+3.
2.(教材改编)已知0<x<1,则x(3-3x)取得最大值时x的值为( )
A.13 C.34
B.12 D.23
答案:B
解析:因为0<x<1,所以x(3-3x)=3x(1-x)≤3[x+

2023版高考数学一轮总复习第一章集合与常用逻辑用语不等式1.5基本不等式课件

2023版高考数学一轮总复习第一章集合与常用逻辑用语不等式1.5基本不等式课件

(4)a1+2 b1≤ ab≤a+2 b≤
a2+2 b2(a>0,b>0).
即有:正数 a,b 的调和平均数≤几何平均数≤算术平均数≤平方平均数.
5. 三元均值不等式
(1)a+3b+c≥ 3 abc. (2)a3+b33+c3≥abc. 以上两个不等式中 a,b,c∈R,当且仅当 a=b=c 时等号成立. 6. 二维形式柯西不等式:若 a,b,c,d 都是实数,则(a2+b2)(c2+d2)≥(ac +bd)2,当且仅当 ad=bc 时,等号成立.
考点一 利用基本不等式求最值
命题角度 1 直接求最值 已知 a>0,b>0,且 4a+b=1,则 ab 的最大值为__________.
解法一:因为 a>0,b>0,4a+b=1,所以 1=4a+b≥2 4ab=4 ab,当且仅当 4a=b=12,即 a=18,b=12时,等号成立. 所以 ab≤14,ab≤116,则 ab 的最大值 为116.
2 P(简记为:积定和最小). (2)设 x,y 为正数,若和 x+y 等于定值 S,那么当 x=y 时,积 xy 有最大值14S2(简
记为:和定积最大).
【常用结论】
4. 常用推论
(1)(a+b)2≤2(a2+b2).
(2)a2+b2+c2≥ab+bc+ac.
(3)|2ab|≤a2+b2⇔-(a2+b2)≤2ab≤a2+b2.
所以a+1 1+2b=16[2(a+1)+b]a+1 1+2b =162+a+b 1+4(ab+1)+2 ≥162 a+b 1·4(ab+1)+4=16×(4+4)=43,
当且仅当a+b 1=4(a+b 1),即 a=12,b=3 时取等号, 所以a+1 1+2b的最小值是43. 故选 B.

高三一轮复习基本不等式(公开课)

高三一轮复习基本不等式(公开课)

§1.6 基本不等式(第一课时)课程标准1.掌握基本不等式: ab ≤a +b 2(a >0,b >0) 2.能用基本不等式解决简单的最大值或最小值问题.1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:_________. (2)等号成立的条件:当且仅当________时取等号.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥_____(a ,b ∈R ). (2)b a +a b≥__(a ,b 同号). (3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值已知x >0,y >0,则(1) 如果积xy 是定值p ,那么当且仅当_____时,和x +y 有最___值2p . (简记:积定和最小)(2) 如果和x +y 是定值p ,那么当且仅当______时,积xy 有最___值p 24. (简记:和定积最大)注意:利用基本不等式求最值应满足三个条件:“一正,二定,三相等”.[练小题巩固基础]一、准确理解概念(判断正误)(1)不等式a 2+b 2≥2ab 与a +b 2≥ab 成立的条件是相同的.( )(2)函数y =x +1x 的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为4.( )(4)“x >0且y >0”是“x y +y x ≥2”的充要条件.( )二、练牢教材小题1.(人教B 版必修①P73例1改编)若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-22.(人教A 版必修①P46例3改编)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是________.3.(北师大版必修①P28T4改编)已知x >2,则x +1x -2的最小值是________.考法(一) 配凑法例1(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________;(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________;(3)已知 ,则[方法技巧]配凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.配凑法的实质在于代数式的灵活变形,配系数、凑常数是关键.考法(二)常数代换法求最值[例2] 已知a>0,b>0,a+b=1,则 + 的最小值为________.[方法技巧] 1.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式;(4)利用基本不等式求解最值.2.常数代换法求解最值应注意的问题(1)条件的灵活变形,确定或分离出常数是基础;(2)已知等式化成“1”的表达式,是代数式等价变形的关键;(3)利用基本不等式求最值时注意基本不等式的前提条件.变式1:已知a>0,b>0,3a+2b=2,则 + 的最小值为________.2.已知a>0,b>0,3a+b=2ab,则a+b的最小值为________.ab的最大值为________________考法(三)消元法求最值[例3] 已知a>0,b>0,3a+b+ab=9,则a+b的最小值为________.[方法技巧] 利用消元法求最值的技巧消元法,即先根据条件建立两个量之间的函数关系,然后代入代数式,再进行最值的求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解,但应注意各个元的范围.变式:(2020·天津高考)已知a>0,b>0,且ab=1,则12a+12b+8a+b的最小值为________.。

基本不等式课件-2025届高三数学一轮复习

基本不等式课件-2025届高三数学一轮复习
+


+


所以
<


+



<


< <
<

+




<+ Nhomakorabea红旗中学2025届高三一轮复习课件
<
+

基本不等式应用
和定积大,积定和小。
技巧一:凑定和


( − ) 的最大值


( − ) 的最大值
取等号条件?
红旗中学2025届高三一轮复习课件

重要结论
柯西不等式:
+ + ≥ +

当且仅当 = 时,等号成立.
变式.设, 均为正数,且 + + + = , 则 + + 的最大值为
平方和
解:令 = , , =
红旗中学2025届高三一轮复习课件
基本不等式应用
技巧三:凑形式
例5:已知, 为正实数,且 + + = ,求函数 + 的最小值.
例6.已知, 为正实数,且 + + = ,求函数
① 消元法
② 数形结合法


的最小值.
③ 基本不等式法
例7.已知正实数, 满足 + + = ,求 + 的最大值.
变式3.已知 > , > ,且 + =

+


,求

1.4+基本不等式及其应用+课件——2025届高三数学一轮复习

1.4+基本不等式及其应用+课件——2025届高三数学一轮复习

即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
-1=3,当且仅当
x=2
时,取等号;当
x<0
时,-x+
-4 x
≥2
-x×
-4 x
=4,当且
仅当
x=-2
时,取等号,所以 f(x)=-
-x+
-4 x
-1≤-4-1=-5.综上,函数
f(x)=
x2-x+4的值域是(-∞,-5]∪[3,+∞). x
6.若 x>1,则 x+x-4 1的最小值为___5_____.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
(2)由题意得 Sm=ma+12m(m-1)×(-4)=36,即 a=3m6+2m-2≥12 2-2,当且仅当 m2=18 时,等号成立.因为 m∈N*,所以 a>12 2-2.当 m=5 时,a=756;当 m=4 时,a =15<756,所以实数 a 的最小值为 15.
x=y 时,x+y 有最 小 值 2 p(简记:
积定和最小). (2)如果和 x+y 是定值 p,那么当且仅当
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式及其应用(专题复习课)
目标导航:
1、熟记重要不等式、基本不等式及其变形式;
2、理解应用基本不等式的条件,会用基本不等式解决与最值有关的问题.
一、知识要点:
1、重要不等式:
2、基本不等式:
3、应用基本不等式求最值:
已知00>>y x ,,则
(1)若xy 是定值p ,那么当且仅当y x =时,y x +有最小值p 2.(简记:积定和最小)
(2)若y x +是定值s ,那么当且仅当y x =时,xy 有最大值4
2
s .(简记:和定积最大) 二、小题快练:
1、若0>x ,则x
x 1+的最小值是 2、对于任意两个正数a 、b ,且18=+b a ,则ab 的最大值是
3、下列式子中,最小值是4的是( )
A 、x x 4+
B 、x
x 42+,0>x C 、x x e e 4+ D 、x x sin 4sin +,),(πo x ∈
三、典型示例:
1、“配凑型”基本不等式
例1(1)若35>
x ,求函数5343-+=x x y 的最小值;
(2)若35<
x ,求函数5343-+=x x y 的最大值;
(3)若3
50<
<x ,求函数)35(x x y -=的最大值.
2、“条件型”基本不等式
例2、(1)若00>>y x ,,且
111=+y
x ,求y x +的最小值;
(2)已知0,0>>y x ,822=++xy y x ,求y x 2+的最小值.
变式:设y x ,为实数,若1422=++xy y x ,求y x +2的最大值.。

相关文档
最新文档