分组分解法进行因式分解

合集下载

分组分解法因式分解

分组分解法因式分解
1.超过三项,分成几组; 2.每一组先进行分解; 3.两组之间再分解。
1、计算
(1)(x +1) ( x + 2 ) = x2 + ( 1 + 2 )x + 1×2
(2)(x -1) ( x + 2 )= x2 +[(-1) + 2]x + (-1)×2
(3)(x + a) ( x + b )= x2 + ( a + b )x + a b
②交叉相乘,和相加; 竖分常数交叉验,
③检验确定,横写因式. 横写因式不能乱. 符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
当q<0时,a、b异号,且绝对值较大的因数与p的符 号相同.
例2 分解因式 3x2-10x+3
解:3x 2-10x+3
x
-3
=(x-3)(3x-1) 3x
= (6x 2+x-5) (12x 2+2x-1 )
解1:原式= (mx+my)-(nx+ny) =m(x+y)-n(x+y) =(x+y)(m-n)
①③,②④两组,得(mx-nx)+(my-ny) 解2:原式= (mx-nx)+(my-ny)
=x(m-n)+y(m-n) = (m-n) (x+y)
注 意
(1)分组时小组内能提公因式要保证组与组 之间还有公因式可以提.
=(x+1)(x+2)
分析:(2)二次项系数为1,常数项6=1×6 =(-1)×(-6) =2×3
=(-2) ×(-3),
一次项系数-7 =(-1)+(-6) ≠2+3 ≠(-2) +(-3)

分组分解法因式分解课件

分组分解法因式分解课件
详细描述
在分组后,需要对每个组内的项式进行因式分解。常用的因式分解技巧包括提公 因式法、十字相乘法、公式法等。根据不同组内项式的特征,选择合适的因式分 解技巧,并灵活运用,以获得最佳的分解结果。
问题三:如何确定分组分解法的正确性?
总结词
确定分组分解法的正确性是确保因式分解结果准确无误的重要步骤。
详细描述
03
原理概述
分组分解法是一种将多项 式分组,然后对每组进行 因式分解的方法。
分组依据
分组依据是多项式的项数 和各项系数的特征,通常 是将系数相近或具有某种 关系的项分为一组。
分解步骤
分组后,对每组进行因式 分解,最后将各组的因式 结果组合起来。
原理应用示例
示例1
将多项式$2x^2 + 3x - 5$分组为$(2x^2 - 5) + 3x$,然后 分别对$2x^2 - 5$和$3x$进行因式分解,得到结果$(2x + 5)(x - 1) + 3x = 2x^2 + x - 5$。
特点
分组分解法适用于多项式的因式 分解,尤其在处理复杂的多项式 时具有高效性和实用性。
分组分解法的应用场景
多项式的因式分解
适用于任何可以分组提取公因式的多 项式,如二次、三次、四次多项式等 。
代数方程的求解
数学竞赛和数学教育
分组分解法是数学竞赛和中学数学教 育中的重要内容,用于提高学生的数 学思维和解题能力。
06 分组分解法的总结与展望
总结
定义
分组分解法是一种将多项式分 组并提取公因式进行因式分解
的方法。
适用范围
适用于具有明显分组特征的多 项式,如三项一组、二项一组 等。
步骤
首先观察多项式的项数和系数 特点,然后选择合适的分组方 式,提取公因式进行因式分解 。

分组分解法因式分解

分组分解法因式分解

因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。

这种分解因式的方法叫做分组分解法。

二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。

分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。

分组分解法并不是一种独立的因式分解的方法。

通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b (3)4x2-9y2-24yz-16z2(4)x3-x2-x+1 分析:首先注意前两项的公因式2x和后两项的公因式-3,此题也可以考虑含有y的项分在一组。

解法1:解法2:说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。

这也是分组中必须遵循的规律之一。

(2)分析:若将此题按上题中法2分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组,即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。

可先将a2-b2一组应用平方差公式,再提出因式。

解:(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。

观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。

解:(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。

解法1:解法2:原式=例2、分解因式:(1)m2+n2-2mn+n-m分析:此题还是一个五项式,其中m2-2mn +n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用三项、二项分组。

因式分解之四大基本解法

因式分解之四大基本解法

因式分解之四大基本解法知识锦囊经典例题【必会考点1】提取公因式1.因式分解:2281012x y xy --【解答】解:原式222(456)x y xy =--2(43)(2)xy xy =+-.2.因式分解:324824m m m -+-.【解答】解:32248244(26)m m m m m m -+-=--+.3.因式分解:325()10()x y y x -+-.【解答】解:325()10()x y y x -+-325()10()x y x y =-+-25()[()2]x y x y =--+25()(2)x y x y =--+.4.因式分解:3()3()a x y b y x ---.【解答】解:3()3()a x y b y x ---3()3()a x y b x y =-+-3()()x y a b =-+.【必会考点2】公式法1.因式分解:(1)22169x y - (2)22222()4x y x y +-. 【解答】解:(1)原式22(4)(3)(43)(43)x y x y x y =-=+-;(2)原式222222(2)(2)()()x y xy x y xy x y x y =+++-=+-.2.分解因式:22(23)m m -+.【解答】解:原式(23)(23)m m m m =++--(33)(3)m m =+--3(1)(3)m m =-++.3.因式分解:2()6()9x y y x -+-+【解答】解:2()6()9x y y x -+-+2()6()9x y x y =---+2(3)x y =--.【必会考点3】提取公因式与公式法综合1.因式分解:(1)2x xy -; (2)329189x x x -+; 【解答】解:(1)22(1)(1)(1)x xy x y x y y -=-=+-;(2)322291899(21)9(1)x x x x x x x x -+=-+=-;2.因式分解:(1)244am am a -+; (2)22()()a x y b y x -+-. 【解答】解:(1)22242(44)(2)am am a a m m a m -+=-+=-;(2)2222()()()()()()()a x y b y x x y a b x y a b a b -+-=--=-+-.【必会考点3】分组分解法1.因式分解:2m my mx yx -+- 【解答】解:(3)2m my mx yx -+-2()()m my mx yx =-+-()()m m y x m y =-+-()()m y m x =-+.2.因式分解:2221b bc c -+-【解答】解:2221b bc c -+-2()1b c =--(1)(1)b c b c =-+--.【必会考点4】十字相乘法1.因式分解:(1)256x x +- (2)2234a ab b -- 【解答】解:(1)256(1)(6)x x x x +-=-+(2)2234a ab b --(4)()a b a b =-+.2.分解因式:2231x x -+【解答】解:2231(1)(21)x x x x -+=--.巩固练习1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.2.分解因式:(1)()()x x a y a x -+- (2)321025x y x y xy -+3.因式分解:53242357a b c a b c a bc +-4.分解因式:222(4)16m m +-.5.分解因式(1)222(1)4a a +- (2)229()25()a b a b +--.6.因式分解:22436x xy x y -+-7.因式分解:22144a ab b -+-8.分解因式(1)2249x y - (2)2221x y y -+-9.分解因式:22221x y x y -+-.10.分解因式①226x x -- ②332x x -+11.分解因式:2228x xy y --.12.十字相乘法因式分解:(1)256x x ++ (2)256x x --(3)2231x x -+ (4)2656x x +-.13.因式分解:(1)23a b b -; (2)1n m mn -+-;(3)2221x x y -+-; (4)2()()()x y x y x y -++-14.把下列各式分解因式:(1)225x -; (2)2816a a -+;(3)2()9()x x y x y +-+; (4)3222a a b ab -+-.15.因式分解:(1)236x xy x -+; (2)3241628m m m -+-;(3)2318()12()a b b a ---.巩固练习解析1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.【解答】解:(1)2()3()m a b n b a --- 2()3()m a b n a b =-+- ()(23)a b m n =-+;(2)2282()x x y --222[4()]x x y =-- 2(3)()x y x y =-+.2.(1)分解因式()()x x a y a x -+- (2)分解因式321025x y x y xy -+ 【解答】(1)解:()()x x a y a x -+- (x =x a -)(y -x a -) (=x a -)(x y -);(2)解:321025x y x y xy -+ (xy =21025)x x -+ (xy =25)x -.3.因式分解:53242357a b c a b c a bc +- 【解答】解:原式322(57)a bc a b c ab =+-; 4.分解因式:222(4)16m m +-. 【解答】解:222(4)16m m +-22(44)(44)m m m m =+++- 22(2)(2)m m =+-.5.分解因式 (1)222(1)4a a +- (2)229()25()a b a b +--. 【解答】解:(1)222(1)4a a +-22(12)(12)a a a a =+++- 2(1)a =+2(1)a -; (2)229()25()a b a b +--[3()5()][3()5()]a b a b a b a b +=+--+- .4(4)(4)a b b a =--.6.因式分解:22436x xy x y -+- 【解答】解:原式2(2)3(2)x x y x y =-+- (2)(23)x y x =-+.7.22144a ab b -+-【解答】解:22144a ab b -+-221(44)a ab b =--+ 21(2)a b =--(12)(12)a b a b =+--+.8.分解因式 (1)2249x y - (2)2221x y y -+-【解答】解:(1)原式(23)(23)x y x y =-+; (2)原式22(21)x y y =--+22(1)x y =--(1)(1)x y x y =+--+.9.分解因式:22221x y x y -+-.【解答】解:原式222222(1)1(1)(1)(1)(1)(1)x y y y x y y x =-+-=-+=+-+. 10.分解因式 ①226x x -- ②332x x -+【解答】解:①226(23)(2)x x x x --=+-; ②332x x -+ 342x x x =-++ (2)(2)(2)x x x x =+-++2(2)(21)x x x =+-+ 2(2)(1)x x =+-.11.分解因式:2228x xy y --. 【解答】解:2228x xy y -- (4)(2)x y x y =-+.12.十字相乘法因式分解: (1)256x x ++ (2)256x x -- (3)2231x x -+ (4)2656x x +-.【解答】解:(1)原式(2)(3)x x =++; (2)原式(6)(1)x x =-+; (3)原式(21)(1)x x =--; (4)原式(23)(32)x x =+-. 13.因式分解: (1)23a b b -; (2)1n m mn -+-; (3)2221x x y -+-;(4)2()()()x y x y x y -++-【解答】解:(1)原式22()()()b a b b a b a b =-=-+;(2)原式(1)()(1)(1)(1)(1)n m mn n m n m n =-+-=-+-=+-;(3)原式2222(21)(1)(1)(1)x x y x y x y x y =-+-=--=---+;(4)原式()()2()x y x y x y x x y =--++=-.14.把下列各式分解因式:(1)225x -;(2)2816a a -+;(3)2()9()x x y x y +-+;(4)3222a a b ab -+-.【解答】解:(1)原式(5)(5)x x =+-;(2)原式2(4)a =-;(3)原式2()(9)x y x =+-()(3)(3)x y x x =++-;(4)原式22(2)a a ab b =--+2()a a b =--.15.因式分解:(1)236x xy x -+;(2)3241628m m m -+-;(3)2318()12()a b b a ---.【解答】解:(1)236(361)x xy x x x y -+=-+;(2)322416284(47)m m m m m m -+-=--+;(3)23218()12()6()(322)a b b a a b a b ---=-+-.。

几种常见的因式分解方法

几种常见的因式分解方法

几种常见的因式分解方法因式分解是一种将一个多项式表达式表示为若干个因式的乘积的方法。

在代数学中非常重要,它是解多项式方程、简化代数式和求最大公因数的基本技巧之一、在这篇文章中,我将介绍几种常见的因式分解方法。

一、公因式提取法公因式提取法是最简单也是最常见的因式分解方法。

它的原理是将多项式的每一项提取出一个公因式,然后将剩余的部分合并起来。

例如,对于多项式3x^2-6x+9,可以提取出公因式3,得到3(x^2-2x+3)。

这种方法在解决一元多项式方程或简化代数式时非常有用。

二、配方法配方法是一种将一个二次三项式如ax^2 + bx + c转化为一个完全平方三项式的方法。

其基本思想是通过添加一个恰当的常数项,使得原来的多项式可以写成一个平方的形式。

例如,对于多项式x^2 + 5x + 6,可以通过添加1来转化为完全平方的形式(x + 2)(x + 3)。

三、和差平方根公式和差平方根公式是一种将一个二次二项式转化为一个平方根的形式的方法。

根据该公式,对于任意实数a和b,有a^2 + 2ab + b^2 = (a + b)^2,以及 a^2 - 2ab + b^2 = (a - b)^2、这个方法在处理二次方程或将一个完全平方差分解为两个一次因式时非常有用。

例如,对于多项式x^2 - 4,可以应用和差平方根公式得到(x + 2)(x - 2)。

四、分组法分组法是一种将一个多项式分成两组,并在每组中提取出一个公因式,然后再进行因式分解的方法。

它适用于多项式中有公共因式但不易通过公因式提取法处理的情况。

例如,对于多项式x^3-x^2+2x-2,可以将其分为两组,得到x^2(x-1)+2(x-1),然后提取出公因式(x-1),得到(x-1)(x^2+2)。

五、差的平方公式差的平方公式是一种将一个二次差的形式转化为一个平方形式的方法。

根据该公式,对于任意实数a和b,有a^2-b^2=(a+b)(a-b)。

这个方法在处理二次差或将一个差分解为两个一次因式时非常有用。

因式分解之分组分解法及添拆项法

因式分解之分组分解法及添拆项法

分组分解法及添拆项法【知识要点】1.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式,即可达到分解因式的目的,即22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,这种利用分组来分解因式的方法叫分组分解法。

(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。

(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。

例 把多项式am+bn+an+bm 分解因式。

解法一:原式=(am+an )+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm )+(bn+an)=m(a+b)+n(a+b)= (a+b)(m+n)(4)对于四项式,在分解时并不一定“二二”分组,有的需要“一三”分组, 例如:2221xy x y --+,在分组分解时,前三项为一组,最后一项为一组。

2221xy x y --+=2221(2)1()(1)(1)x xy y x y x y x y --+=--=+--+【典型例题】例1 分解因式(1)22x ax y ay --+ (2)432416x x x -+-(3)22244x xy y a -+- (4)27321a b ab a -+-(5)xy y y x x 2)1()1(-++-(6) )()(2222b a cd d c ab +++例2 分组后能直接运用公式的因式分解。

(1)22194m mn n +-+(2)2242x x y y --+例3 添拆项后再分组。

(1)44a +(2)4224a a b b ++(3)51a a ++ (4)1724+-x x(5)22222+++--+y x y x xy y x (6)22412a ax x x -+++例4 已知7,10x y xy +==,求(1)22x y +(2)44x y +的值。

因式分解的12种方法

因式分解的12种方法

3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x -x -6x -x+2解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ , x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6解:令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6解:令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

因式分解(分组分解法)

因式分解(分组分解法)

因式分解 (分组分解法)【知识要点】1、定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。

再提公因式,即可达到分解因式的目的。

例如:22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。

2、原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。

3、有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。

【典型例题】例1 把下列各式分解因式(1)2914x x ++= (2)212x x --=(3)2812x x ++= (4)2710x x -+=(5)228x x --= (6)2922x x --=(7)2295x x +-= (8)2376x x --=(9)28103x x ++= (10)210275x x ++= 例2 把下列各式分解因式(1)bc ac ab a -+-2 (2)bx by ay ax -+-5102(3)n mn m m 552+-- (4)bx ay by ax 3443+++(5)22144a ab b --- (6)223443ax ay bx cy cx by +-++- 例3 把下列各式分解因式(1)22421x xy y --; (2)()()267a b a b +-+-; (3)()()22524x x -+-+ (4)()()()()22310a b a b a b a b -+-+-+;(5)()()2224221x y x y y y +-+- (6)222()14()24x x x x +-++ 例4 把下列各式分解因式(1)()()z y y z x x +-+ (2)()()b a x ab x 34322-+- (3)()()cd b a dc ab 2222--- (4)()()y a bx by b y ax 2233+++ 【思考题】分解因式()()()()2222d b d c c a b a +-+-+++。

因式分解(分组分解法)

因式分解(分组分解法)
43;ac)-(ab+bc)
=(2ax-bx)+(5by-10ay)
=a(a+c)-b(a+c)
=(2ax-bx)+(-10ay +5by)
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
分组规律: 在有公因式的前提下,按对应项系数成
比例分组,或按对应项的次数成比例分组。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
例1,例3种还有没有其他分组的方法;如果有, 因式分解的结果是不是一样。
例1解(2):a2-ab+ac-bc 例2解(2): 2ax-10ay+5by-bx
先提公因式;
2. 如果各项没有公因式,那么可以尝试运用 公式来分解;
3.如果用上述方法不能分解,那么可以尝试 用分组来分解;
4.分解因式,必须进行到每一个多项式都不 能再分解为止. 口诀: 一提 二套 三分 四彻底
教学重点:掌握分组分解法的 分组规律和步骤。 主要内容:
学习分组分解法的概念,用分组分解法分 组之后,可以用提公因式的多项式进行因式分 解。
例2把多项式 a2-2ab+b2-c2 分解因式.
【分析】观察多项式,前 三项符合完全平方公式.
例3把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四项按前两项与后两项分成
两组,并使两组的项都按x的降幂排列,然后从两
组分别提出公因式2a与-b,这时,另一个因式正好

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

分组分解法因式分解经典例题

分组分解法因式分解经典例题

分组分解法因式分解经典例题《分组分解法因式分解经典例题》一、引言在代数学中,因式分解是一个非常重要的概念,它在解方程、化简分式等问题中有着广泛的应用。

而分组分解法是因式分解中的一种常见方法,它通过合理地分组,将原式中的各项进行适当的组合,从而达到因式分解的目的。

本文将通过经典的例题来介绍分组分解法的应用和技巧,希望能帮助读者更好地理解和掌握这一方法。

二、基本概念分组分解法是指在进行因式分解时,通过巧妙地对原式中的各项进行分组,并进行适当的变形,最终达到可以进行公因式提取的目的。

其基本思想是将原式中的各项进行合理的组合,使得每一组的相加或相乘具有公因式或特定形式。

这样一来,就可以利用公因式提取的方法,将原式进行因式分解。

下面通过具体的例题来说明分组分解法的应用。

三、分组分解法例题例题:将二次三项式$x^2+5x+6$进行因式分解。

解析:首先我们根据分组分解的思想,对原式中的$x^2+5x+6$进行分组,即进行合理的拆分和组合。

我们可以将5x拆分为2x+3x,于是原式可以重写为$x^2+2x+3x+6$。

然后我们对前两项进行因式分解,将$x^2+2x$可以提取出公因式$x(x+2)$,对后两项进行因式分解,将$3x+6$可以提取出公因式$3(x+2)$。

这样一来,我们可以得到原式的因式分解形式为$(x+2)(x+3)$。

通过这个例题,我们可以看到分组分解法对于因式分解的应用是非常有效的。

四、总结回顾通过上面的例题,我们可以总结出分组分解法的基本步骤和技巧:1. 将原式中的各项进行合理的拆分和组合,使得每一组的相加或相乘具有公因式或特定形式。

2. 进行适当的变形,将原式化简并提取公因式。

3. 最终将原式进行因式分解,得到最终的结果。

对于分组分解法的掌握,需要多做练习,熟练掌握基本的技巧和方法。

通过不断的练习和思考,我们可以更好地理解和掌握这一方法,从而在代数学的学习和解题中能够灵活应用。

五、个人观点在学习因式分解的过程中,我发现分组分解法是一种非常实用和灵活的方法。

因式分解方法大全

因式分解方法大全

因式分解方法大全因式分解是将一个多项式或一个整式写成若干个因子相乘的形式的运算。

因式分解方法主要分为以下几种:1.公因式提取法:对于一个多项式,如果其中各项都有一个公因式,则可以将这个公因式提取出来,然后再将剩下的部分进行因式分解。

例如,对于多项式4x^2+2x,可以提取出公因式2x,得到2x(2x+1)。

2.分组分解法:当多项式中的各项无公因式,但可以进行分组后,使得每组的各项有一个公因式时,可以采用分组分解法。

例如,对于多项式x^3+x^2+x+1,可以将其分组为(x^3+x)+(x^2+1),然后再对每组进行公因式提取,得到x(x^2+1)+1(x^2+1),最终得到(x+1)(x^2+1)。

3.平方差公式:平方差公式是一种特殊的因式分解形式。

如果一个多项式形如a^2-b^2,则可以使用平方差公式进行因式分解,即a^2-b^2=(a+b)(a-b)。

例如,对于多项式x^2-4,可以进行因式分解为(x+2)(x-2)。

4. 完全平方公式:如果一个多项式形如a^2 + 2ab + b^2,则可以使用完全平方公式进行因式分解,即a^2 + 2ab + b^2 = (a + b)^2、例如,对于多项式x^2 + 4x + 4,可以进行因式分解为(x + 2)^25. 三项完全平方差公式:如果一个多项式形如a^3 + b^3,则可以使用三项完全平方差公式进行因式分解,即a^3 + b^3 = (a + b)(a^2 - ab + b^2)。

例如,对于多项式x^3 + 8,可以进行因式分解为(x +2)(x^2 - 2x + 4)。

6.因式定理:因式定理是一种常见的因式分解方法,根据因式定理,如果多项式P(x)中存在一个因子x-a,则P(a)=0。

利用因式定理,可以通过寻找多项式的零点来进行因式分解。

例如,对于多项式x^2+3x+2,我们希望找到一个数a,使得P(a)=0,即(a^2+3a+2)=0,在解方程a^2+3a+2=0时,可以得到两个解a=-1和a=-2,从而可以进行因式分解为(x+1)(x+2)。

用分组分解法进行因式分解

用分组分解法进行因式分解

用分组分解法进行因式分解1.分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy2.分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。

使用这种方法的关键在于分组适当,而在分组时,必须有预见性。

分组分解法(2)

分组分解法(2)

分组分解法(二)教学目的:1. 使学生掌握分组分解法中,分组后运用公式把多项式分解因式。

2. 通过一题多解,培养学生探索和创新能力。

教学重点:熟练掌握把四项式进行适当分组,并运用公式法分解因式。

教学难点:掌握分组的原则,使其能够在组内或在组与组之间用公式法分解因式。

教学过程:一、复习提问:1. 通过讲评作业,复习运用分组分解法进行因式分解。

2. 强调:我们在利用分组分解时,在分组时要预先观察和想到分组后两组各有的公因式,而且两组之间还能继续提取公因式。

分组不是最后的目的,而是通过分组后把问题转化到两组之间还可以再分解因式,这样选择分组方法是分组分解法的关键。

二、讲解新课:1. 例1:把ay ax y x ++-22分解因式。

分析:引导学生观察分析,如果把前两两项分成一组,虽然没有公因式,但可以运用平方差公式分解因式,其中有一个因式是)(y x +,后两项分成一组,通过提取公因式,也有一个因式是)(y x +,这样两组之间可再通过提取公因式进行因式分解。

这就是分组后能直接运用公式进行因式分解。

解: ay ax y x ++-22)()(22ay ax y x ++-=)())((y x a y x y x ++-+=]))[((a y x y x +-+=))((a y x y x +-+=2. 例2:把3223y xy y x x --+分解因式。

分析:引导学生观察分析,用两种方法进行因式分解。

总结出解题思路:无论采取哪一种分组的方法,最后两组之间一定要能再分解才行。

最后相同因式相乘要写成乘方的形式。

解法一: 3223y xy y x x --+)()(3223y xy y x x --++=)()(22y x y y x x +-+=))((22y x y x -+=))()((y x y x y x -++=)()(2y x y x -+=解法二: 3223y xy y x x --+)()(3223y y x xy x -+-=)()(2222y x y y x x -+-=))((22y x y x +-=))()((y x y x y x +-+=)()(2y x y x -+=3. 练习:P30练习1,2,4。

用分组分解法进行因式分解(含答案)

用分组分解法进行因式分解(含答案)

用分组分解法进行因式分解(含答案)知识精读】分组分解法是一种因式分解的方法,其原则是分组后可以直接提公因式,或者可以直接运用公式。

分组分解法的关键在于分组适当,而在分组时,必须有预见性,能预见到下一步能继续分解。

因此,细致的观察和分析多项式的特点是非常重要的。

分组分解法不仅可以用于因式分解,还可以在代数式的化简、求值以及一元二次方程和函数的研究中发挥重要作用。

分类解析】1.在数学计算、化简、证明题中的应用例 1.将多项式2a(a2+a+1)+a4+a2+1分解因式。

先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。

解:原式=2a((a2+a+1)+a4+a2+1)=a4+2a3+3a2+2a+1=(a4+2a3+a2)+(2a2+2a)+1=(a+a)2+2(a+a)+1=(a2+a+1)2,因此选择C。

例2.分解因式x5-x4+x3-x2+x-1.此题可将x5-x4+x3和-x2+x-1分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;或者将x5-x4、x3-x2和x-1分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。

解法1:原式=(x5-x4+x3)-(x2-x+1)=(x3-1)(x2-x+1)=(x-1)(x2+x+1)(x2-x+1)解法2:原式=x4(x-1)+x2(x-1)+(x-1)=(x-1)(x4+x2+1)=(x-1)[(x4+2x2+1)-x2]=(x-1)(x2+x+1)(x2-x+1)2.在几何学中的应用例:已知三条线段长分别为a、b、c,且满足a>b,a2+c2<b2+2ac。

证明:以a、b、c为三边能构成三角形。

构成三角形的条件是“两边之和大于第三边,两边之差小于第三边”。

证明:a2+c2-b2-2aca-c-b,因此a-c-b<0,即a<b+c,因此以a、b、c为三边能构成三角形。

1.分解因式:$a^2-3a-b^2+3b=$解:原式$=(a^2-3a)+(3b-b^2)=(a-3)(a+b-3)$。

因式分解的分组分解方法

因式分解的分组分解方法

因式分解的分组分解方法因式分解的分组分解方法简介因式分解是一项基础而重要的数学技巧,用于将一个多项式拆解成更简单的乘法形式。

在因式分解中,分组分解方法是一种常用的策略。

本文将详细介绍这种方法以及其各种变体。

方法一:二项式公式•对于形如ax2+bx+c的二次多项式,我们可以使用二项式公式来进行分组分解。

•具体步骤如下:1.将二次项的系数a提取出来:ax2+bx+c=a(x2+bax)+c2.将x2+bax进行配方得到一个完全平方的二次多项式:x2+ba x=(x+b2a)2−b24a23.将两个部分相乘:a(x+b2a )2−a b24a2+c4.将最后一项与前一项合并为一个常数项:a(x+b2a )2 +(c−b24a)方法二:分组分解•对于形如ax3+bx2+cx+d的三次多项式,我们可以使用分组分解的方法。

•具体步骤如下:1.将多项式分为两组,每组包含两项:ax3+bx2和cx+d2.将每一组的公因式提取出来:ax3+bx2=x2(ax+b)和cx+d=x(c+dx)3.将两组的公因式相乘:x2(ax+b)(c+dx)4.最后将得到的乘积进行化简和合并方法三:巧妙的分组•在某些情况下,我们可以使用巧妙的分组方法进行因式分解,例如对于差平方的形式。

•具体步骤如下:1.将多项式写成两个相加或相减的平方形式:a2−b2=(a+b)(a−b)2.将多项式看作一个整体,拆分成两个括号的乘积3.对每个括号继续进行分解,直到无法再进行因式分解为止方法四:特殊因式分解•在某些特殊的情况下,我们可以直接应用特殊因式分解公式来进行分解,例如平方差、立方差等。

•具体公式和方法可以参考相关的数学课本和教材。

结论因式分解的分组分解方法是解决多项式因式分解问题的一种重要策略。

通过不同的分组方式和技巧,可以将复杂的多项式拆解成更简单的乘法形式,便于进一步的计算和推导。

熟练掌握各种分组分解方法,对于数学学习和问题解决都具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分组分解法进行因式分解
【知识精读】
分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。

使用这种方法的关键在于分组适当,而在分组时,必须有预见性。

能预见到下一步能继续分解。

而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。

应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。

下面我们就来学习用分组分解法进行因式分解。

【分类解析】
1. 在数学计算、化简、证明题中的应用
例1. 把多项式分解因式,所得的结果为()
分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。

例2. 分解因式
分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。

2. 在几何学中的应用
例:已知三条线段长分别为a、b、c,且满足
证明:以a、b、c为三边能构成三角形
分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”
证明:
3. 在方程中的应用
例:求方程的整数解
分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解
4、中考点拨
例1.分解因式:_____________。

说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。

例2.分解因式:____________
说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。

例3. 分解因式:____________
说明:分组的目的是能够继续分解。

5、题型展示:
例1. 分解因式:
说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。

例2. 已知:,求ab+cd的值。

说明:首先要充分利用已知条件中的1(任何数乘以1,其值不变),其次利用分解因式将式子变形成含有ac+bd 因式乘积的形式,由ac+bd=0可算出结果。

例3. 分解因式:
分析:此题无法用常规思路分解,需拆添项。

观察多项式发现当x=1时,它的值为0,这就意味着
的一个因式,因此变形的目的是凑这个因式。

解一(拆项):
解二(添项):
说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?
4. 已知:
,试求A 的表达式。

5. 证明:
6. 分解因式:15++a a。

相关文档
最新文档