最新北师大版七年级数学下册期末考试试卷

合集下载

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。

北师大版数学七年级下册期末考试试题附答案

北师大版数学七年级下册期末考试试题附答案

北师大版数学七年级下册期末考试试卷本试卷满分120分,考试时间90分钟,试题共25题,选择12道、填空6道、解答7道.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定2.下列计算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(2b2)3=6b6D.(﹣a+b)(﹣b﹣a)=a2﹣b23.下列微信表情图标属于轴对称图形的是()A.B.C.D.4.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定∠ACB与∠DFE 全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E5.如图,在∠ABC中,AB=AC,∠A=30°,直线a∠b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.40° B.45° C.50° D.35°6.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A .B .C .D .7.下列计算正确的是( )A .(﹣2y +1)(﹣2y ﹣1)=1﹣4y 2B .(12x +1)2=14x 2+1+xC .(x ﹣2y )2=(x +2y )2﹣6xyD .(x +3)(2x ﹣5)=2x 2﹣x ﹣158.如图,已知AB =AC ,AB =5,BC =3,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则∠BDC 的周长为( )A .8B .10C .11D .139.如图,在Rt∠ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N .再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =12,则∠ABD 的面积是( )A .12B .24C .36D .4810.如图,AB =AC ,BE ∠AC 于E ,CF ∠AB 于F ,BE ,CF 交于D ,则以下结论:∠∠ABE ∠∠ACF ;∠∠BDF ∠∠CDE ;∠点D 在∠BAC 的平分线上.正确的是( )A .∠B .∠C .∠∠D .∠∠∠11.小虎和小丽一起玩一种转盘游戏.转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示,固定指针转动转盘,任其自由停止.若指针所指的数字为奇数,小虎获胜;否则小丽获胜.则在该游戏中小虎获胜的概率是( )A .12B .49C .59D .2312.如图,有A ,B ,C 三个地点,且AB ∠BC ,从A 地测得B 地的方位角是北偏东43°,那么从C 地测B 地的方位角是( )A .南偏东47°B .南偏西43°C .北偏东43°D .北偏西47° 二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上 13.计算:﹣12016﹣(−13)﹣2+(π+1)0= ;(34)2007×(﹣113)2008= .14.等腰三角形的一个角为40°,则它的顶角为 . 15.计算:2019×2021﹣20202= .16.如图,在∠ABC 中,AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 的直线GH 与DE 平行,若∠C =40°,则∠GAD 的度数为 .17.如图,从以下给出的四个条件中选取一个: (1)∠1=∠2;(2)∠3=∠4;(3)∠A=∠DCE;(4)∠A+∠ABD=180°.恰能判断AB∠CD的概率是.18.如图,这是用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成…按照这样的规律排列下去,则第6个图案中共有个白子.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤),只有一项是符合题目要求的.19.(1)(2x2y﹣3xy2)﹣(6x2y﹣3xy2)(2)(−32ax4y3)÷(−65ax2y2)⋅8a2y(3)(ab+1)2﹣(ab﹣1)2(4)20153﹣2014×2015×2016(5)(4y+3x﹣5z)(3x+5z﹣4y)(6)(34a4b7−12a3b8+19a2b6)÷(13ab3)2,其中a=12,b=﹣4.20.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图1中涂黑一块小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图2中涂黑一块小正方形,使涂黑的四个小正方形组成一个中心对称图形.21.如图,是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向绿色扇形的概率;(2)指针指向红色扇形的概率大,还是绿色扇形概率大?为什么?22.如图,在∠ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∠BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.23.如图,已知AB=DC,AB∠CD,E、F是AC上两点,且AF=CE.(1)求证:∠ABE∠∠CDF;(2)连接BC,若∠CFD=100°,∠BCE=30°,求∠CBE的度数.24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.25.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)答案一、选择题1.C .2.D .3.C .4.D .5.A .6.C .7.B .8.A .9.B .10.D .11.D .12.A . 二、填空题 13.:﹣9,43.14.:40°或100°. 15.:﹣1. 16.:55°. 17.:12.18.54. 三、解答题19.【解析】(1)原式=2x 2y ﹣3xy 2﹣6x 2y +3xy 2=﹣4x 2y ; (2)原式=10x 2y 2;(3)原式=(ab +1+ab ﹣1)(ab +1﹣ab +1)=4ab ;(4)原式=20153﹣(2015﹣1)×2015×(2015+1)=20153﹣(20152﹣1)×2015=20153﹣(20153﹣2015)=20153﹣20153+2015=2015;(5)原式=9x 2﹣(4y ﹣5z )2=9x 2﹣16y 2+40yz ﹣25z 2; (6)原式=(34a 4b 7−12a 3b 8+19a 2b 6)÷19a 2b 6=274a 2b −92ab 2+1,当a =12,b =﹣4时,原式=−274−36+1=﹣4134. 20.【解析】(1)如图1所示:∠、∠、∠、∠处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图2所示:∠、∠使涂黑的四个小正方形组成一个中心对称图形..21.【解析】按颜色把8个扇形分为2红、3绿、3黄,所有可能结果的总数为8,(1)指针指向绿色的结果有3个, ∠P (指针指向绿色)=38; (2)指针指向红色的结果有2个, 则P (指针指向红色)=28=14, 由(1)得:指针指向绿色扇形的概率大. 22.【解析】(1)∠AB =AC , ∠∠C =∠ABC , ∠∠C =36°, ∠∠ABC =36°, ∠D 为BC 的中点, ∠AD ∠BC ,∠∠BAD =90°﹣∠ABC =90°﹣36°=54°. (2)∠BE 平分∠ABC , ∠∠ABE =∠EBC , 又∠EF ∠BC , ∠∠EBC =∠BEF , ∠∠EBF =∠FEB , ∠BF =EF .23.【解答】(1)证明:∠AB ∠CD , ∠∠A =∠DCF , ∠AF =CE , ∠AE =CF ,在∠ABE 和∠CDF 中, {AB =CD∠A =∠DCF AE =CF, ∠∠ABE ∠∠CDF (SAS ).(2)∠∠ABE ∠∠CDF , ∠∠AEB =∠CFD =100°, ∠∠BEC =180°﹣100°=80°, ∠∠CBE =180°﹣80°﹣30°=70°.24.【解析】(1)∠乌龟是一直跑的而兔子中间有休息的时刻, ∠折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的全过程为1500米; 故答案为:兔子,1500; (2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米). (3)700÷30=703(分钟), 所以乌龟用了703分钟追上了正在睡觉的兔子.(4)∠兔子跑了700米停下睡觉,用了2分钟, ∠剩余800米,所用的时间为:800÷400=2(分钟), ∠兔子睡觉用了:50.5﹣2﹣2=46.5(分钟). 所以兔子中间停下睡觉用了46.5分钟.25.【解析】(1)方法1:大正方形的面积为(a +b )2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b )2=a 2+2ab +b 2, 故答案为:(a +b )2=a 2+2ab +b 2. (2)如图,(3)设DG 长为x .∠S 1=a [x ﹣(a +2b )]=ax ﹣a 2﹣2ab ,S 2=2b (x ﹣a )=2bx ﹣2ab , ∠S =S 2﹣S 1=(2bx ﹣2ab )﹣(ax ﹣a 2﹣2ab )=(2b ﹣a )x +a 2, 由题意得,若S 为定值,则S 将不随x 的变化而变化, 可知当2b ﹣a =0时,即a =2b 时,S =a 2为定值, 故答案为:a =2b ,a 2.。

北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试题含答案

北师大版七年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A.a+b=ab B.(x+1)2 =x2+1C.a10÷ a5=a2D.(﹣a3)2=a62.某种细胞直径是0.00000095米,将0.00000095用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣6D.95×10﹣83.以每组数为线段的长度,可以构成三角形三边的是()A.5,6,10B.5,6,11C.3,4,8D.4,4,84.下列图形是轴对称图形的是()A.B.C.D.5.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻6.如果∠A=50°,那么∠A的余角是()A.30°B.40°C.90°D.130°7.如图,把一副三角板放在桌面上,当AB∠DC时,∠CAE等于()A.10°B.15°C.20°D.25°8.一个长方体的长、宽、高分别是3m-4,2m和m,则它的体积是()A.3m3-4m2B.3m2-4m3C.6m3-8m2D.6m2-8m39.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b] [(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)] [a+(b﹣c)]D.[a﹣(b﹣c)] [a+(b﹣c)]10.如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()∠体育场离张强家3.5千米∠张强在体育场锻炼了15分钟∠体育场离早餐店1.5千米∠张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个二、填空题11.计算:(﹣a)2•a3=_______.12.若a x=2,a y=3,则a x-y=______.13.如图所示,在∠ABC中,AB=AC,∠B=50°,则∠A=________.14.有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的概率为_____.15.已知等腰三角形的两边长为3和6,则它的周长为_____.16.三角形的底边长为8,高是x,那么三角形的面积y与高x之间的关系式是______.17.如图,已知∠ACB=90°,BC=6,AC=8,AB=10,点D在线段AB上运动,线段CD的最短距离是_____.三、解答题)﹣2+(﹣1)202018.﹣32+50﹣(1219.先化简再求值:[(x﹣y)2﹣(y﹣x)(y+x)]÷2x,其中x=2021,y=1.20.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?21.如图,AB=CD,AF=CE,∠A=∠C,那么BE=DF吗?请说明理由.22.三水区响应“绿色环保”号召,鼓励市民节约用电,对电费采用分段收费标准,若某户居民每月应交电费y(元)与用电量x(度)之间关系的图象如图所示:(1)当用电量不超过50度时,每度收费多少元?超过50度时,超过的部分每度收费多少元?(2)若某户居民某月交电费120元,该户居民用电多少度?23.如图,在∠ABC中,∠C=60°,∠A=40°.用尺规作图作边AB的垂直平分线,交AC于点D,交AB于点E(要求:不写作法,保留作图痕迹).24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1)观察图2,写出所表示的数学等式:_________________________=____________________________.(2)观察图3,写出所表示的数学等式:_________________________=____________________________.(3)已知(2)的等式中的三个字母可以取任何数,若a=7x-5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37.请利用(2)中的结论求ab+bc+ac的值.25.如图(1),AB=7cm,AC∠AB,BD∠AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,∠ACP与∠BPQ全等,此时PC∠PQ吗?请说明理由.(2)将图(1)中的“AC∠AB,BD∠AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有∠ACP与∠BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)参考答案1.D【分析】根据合并同类项法则、完全平方公式、同底数幂的的除法的运算法则、幂的乘方的运算法则进行计算后判断即可.【详解】解:A、a与b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(x+1)2=x2+2x+1,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、(-a3)2=a6,原计算正确,故此选项符合题意;故选:D.2.A【解析】【分析】用科学记数法表示较小数时的形式为10n a -⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,n 等于该数从左起第一个不为0的数字前所有0的个数.【详解】易知9.5a =,从左起第一个不为0的数字前面有7个0,所以7n =∠70.000000959.510-=⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.A【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A 、5+6=11>10,能组成三角形;B 、5+6=11,不能够组成三角形;C 、3+4=7<8,不能组成三角形;D 、4+4=8,不能组成三角形.故选:A .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.D【解析】【分析】一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、B、C不符合轴对称图形的定义,D符合轴对称图形的定义,故选D.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.5.C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】解:A.内错角相等,是随机事件,不合题意;B.掷两枚硬币,必有一个正面朝上,一个反面朝上,是随机事件,不合题意;C.13人中至少有两个人的生肖相同,是必然事件,符合题意;D.打开电视,一定能看到三水新闻,是随机事件,不合题意;故选:C.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.6.B【解析】【分析】和为90°的两个角是互为余角,∠A的余角为(90°-∠A),代入计算即可.【详解】解:90°-∠A=90°-50°=40°,故选:B.【点睛】本题主要考查余角的意义和计算方法,关键是掌握如果两个角的和为90°,那么这两个角互为余角.7.B【解析】【分析】根据三角形的内角和定理和平行线的性质定理可得结果.解:∠AB∠DC,∠∠EAB=∠AED=45°,∠∠BAC=30°,∠∠CAE=∠EAB-∠BAC=45°-30°=15°,故选:B.【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握性质定理.8.C【解析】【分析】根据长方体体积的计算方法,列出算式进行计算即可.【详解】解:根据长方体体积的计算公式得,(3m-4)•2m•m=6m3-8m2,故选:C.【点睛】本题考查单项式乘以多项式的计算方法,掌握计算方法是正确计算的前提.9.D【解析】【分析】由于平方差公式是把多项式分解为两个数的和与两个数的差的积的形式,所以根据这个特点即可判定选择项.【详解】解:(a-b+c)(a+b-c)=[a-(b-c)][a+(b-c)].选项A,B,C不符合平方差公式的结构特征,只有选项D是正确的,故选:D.【点睛】此题主要考查了因式分解的平方差公式的特点:两个数的和乘以两个数的差,此题解题关键是分别找出两个括号的符号相同的和符号不同的项,然后变形就比较简单.10.A【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】解:∠由纵坐标看出,体育场离张强家3.5千米,故∠正确;∠由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故∠正确;∠由纵坐标看出,3.5-2.0=1.5千米,体育场离早餐店1.5千米,故∠正确;∠由纵坐标看出早餐店离家2千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小=4千米/小时,故∠错误;时,2÷12故选:A.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.11.a5【解析】【分析】先计算积的乘方,再根据“同底数幂相乘,底数不变,指数相加”进行计算即可.【详解】解:(﹣a)2•a3= a2•a3=a5,故答案是:a5.【点睛】本题考查了积的乘方、同底数幂的乘法,解题的关键是注意符号的确定..12.23【解析】【详解】试题解析:∠a x=2,a y=3,.∠a x-y=a x÷a y=2÷3=23考点:同底数幂的除法.13.80°【解析】略【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数解:∠在∠ABC中,AB=AC,∠B=50°∠∠C=50°∠∠A=180°﹣50°﹣50°=80°故答案为80°.【点睛】略14.3 5【解析】【分析】直接利用概率公式得出答案.【详解】解:有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的是2,4,6,故抽出标有数字为偶数的概率为:35.故答案为:35.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.15.15【解析】【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【详解】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,∠3+3=6,∠3,3,6不能组成三角形,综上所述,等腰三角形的三边长为3,3,6,周长为15;故答案为:15.【点睛】本题考查了等腰三角形的定义以及三角形的三边关系定理,是基础知识,要熟练掌握.注意分类讨论思想的应用.16.y=4x【解析】【分析】根据三角形的面积计算方法可得函数关系式.【详解】解:y=12×8x=4x ,故答案为:y=4x .【点睛】本题考查用函数关系式表示变量之间的关系,掌握三角形面积的计算方法是得出关系式的前提.17.4.8【解析】【分析】当CD∠AB 时,线段CD 的长度最短,依据三角形的面积即可得到CD 的长.【详解】解:∠点D 在线段AB 上运动,∠当CD∠AB 时,线段CD 的长度最短,又∠∠ACB=90°,BC=6,AC=8,AB=10, ∠12AC×BC=12AB×CD ,86 4.810AC BC CD AB ⨯⨯∴===, 故答案为:4.8.【点睛】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.18.-11【解析】【分析】先分别化简乘方,零指数幂,负整数指数幂,然后进行有理数的混合运算.【详解】解:原式=-9+1-4+1=-11.【点睛】本题考查乘方,零指数幂,负整数指数幂及有理数的混合运算,掌握法则和运算顺序正确计算是解题关键.19.x-y;2020【解析】【分析】原式中括号中利用完全平方公式,以及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:[(x-y)2-(y-x)(y+x)]÷2x=(x2-2xy+y2-y2+x2)÷2x=(2x2-2xy)÷2x=x-y,当x=2021,y=1时,原式=2021-1=2020.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)34;(2)125【解析】【分析】根据题意求出概率,进行简单计算即可求解.【详解】解:(1)指针指向1,2,3,5,6,8都获奖,∠获奖概率P=68=3,4(2)获得一等奖的概率为18, 100018⨯=125(人),∠获得一等奖的人数可能是125人.【点睛】本题考查了概率的简单应用,概率的求法,属于简单题,熟悉概率的实际含义是解题关键.21.见解析【解析】【分析】由“SAS”可证∠ABF∠∠CDE ,可得BF=DE ,可得BE=DF .【详解】解:BE=DF .理由如下:在∠ABF 和∠CDE 中,AB CDA CAF CE=⎧⎪∠=∠⎨⎪=⎩∠∠ABF∠∠CDE (SAS ),∠BF=DE ,∠BF -EF=DE -EF ,∠BE=DF .【点睛】本题考查了全等三角形的判定和性质,证明∠ABF∠∠CDE 是本题的关键.22.(1)0.6元;1元 (2)140度【解析】【分析】(1)根据图象上点的坐标进行列式计算即可;(2)根据(1)的结论求出超过50度部分的用电量即可求解.【详解】解:(1)不超过50度时每度收费:30÷50=0.6(元),超过50度时,超过的部分每度收费:(60-30)÷(80-50)=1(元);答:当用电量不超过50度时,每度收费0.6元,超过50度时,超过的部分每度收费1元.(2)120-0.6×50=90(元),90÷1=90(度),50+90=140(度).答:该户居民用电140度.【点睛】本题主要考查一次函数的应用,关键学会读懂图象信息,学会构建一次函数解决问题.23.作图见解析【解析】【分析】AB长为半径画弧,两弧交于点M,N,作直线MN交AC于分别以A.B为圆心,大于12D,交AB于E.【详解】解:如图,直线DE即为所求.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)(a+2b)(a+b);a2+3ab+2b2;(2)(a+b+c)2;a2+b2+c2+2ab+2ac+2bc;(3)-18【解析】【分析】(1)根据大矩形的面积=各矩形的面积之和求解即可;(2)根据正方形的面积=各矩形的面积之和求解即可;(3)先求出(a+b+c)2的值,再根据(2)中关系式求得结果.【详解】解:(1)大矩形的面积=(a+2b)(a+b),各部分面积和=a2+3ab+2b2,∠(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b);a2+3ab+2b2;(2)正方形的面积可表示为=(a+b+c)2;各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∠(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(3)由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∠(a+b+c)2=(7x-5-4x+2-3x+4)2=1,∠1=a2+b2+c2+2ab+2ac+2bc,∠a2+b2+c2=37,∠1=37+2(ab+bc+ac),∠2(ab+bc+ac)=-36,∠ab+bc+ac=-18.【点睛】本题考查了因式分解的应用,完全平方公式的几何背景,以及完全平方公式在几何图形相关计算中的应用,本题具有一定的综合性,难度中等略大.25.(1)PC∠PQ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【解析】【分析】(1)利用SAS证得∠ACP∠∠BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由∠ACP∠∠BPQ,分两种情况:∠AC=BP,AP=BQ,∠AC=BQ,AP=BP,建立方程组求得答案即可;(3)根据题意得P、Q两点的运动速度为2,得到BP=AC,根据全等三角形的性质得到∠C=∠BPQ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∠AC∠AB,BD∠AB,∠∠A=∠B=90°在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS),∠ACP BPQ∠=∠,∠90APC BPQ APC ACP∠+∠=∠+∠=∠∠CPQ=90°,即线段PC与线段PQ垂直;(2)∠若∠ACP∠∠BPQ,则AC=BP,AP=BQ,7-2t=5,2t=xt,解得t=1,x=2,∠存在t=1,x=2,使得∠ACP与∠BPQ全等,∠若∠ACP∠∠BQP,则AC=BQ,AP=BP,5=xt,2t=7 2解得t=74,x=207,∠存在t=74,x=207,使得∠ACP与∠BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得∠ACP与∠BPQ全等(3)∠∠A=∠B=60°∠P、Q两点的运动速度相同,∠P、Q两点的运动速度为2,∠t=1,∠AP=BQ=2,∠BP=5,∠BP=AC,在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS);∠∠C=∠BPQ,∠∠C+∠APC=120°,∠∠APC+∠BPQ=120°,∠∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.。

2023-2024学年北师大版七年级数学下册期末试题

2023-2024学年北师大版七年级数学下册期末试题

2023-2024学年北师大版七年级数学下册期末试题一、单选题1.小华抛一枚硬币,连续3次正面朝上,第四次()A.一定正面朝上B.一定反面朝上C.可能正面(也可能反面)朝上2.下列四个图案中,不是轴对称图形的是()A.B.C.D.3.如图,下面图象表示小红从家里出发去散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,请根据图象,确定下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回C.从家里出发,一直散步(没有停留),然后回家了D.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了4.若等腰三角形的一个内角是50︒,则这个三角形最大的内角的度数是()A.65︒B.80︒C.50︒D.65︒或80︒5.以7和3及另一边组成的边长都是整数的三角形共有( )A .2个B .3个C .4个D .5个6.甲、乙两名同学在一次用频率估计概率的实验中,统计了某一个结果出现的频率,绘制了如下的表格,则符合这一结果的实验可能是( )A .抛一枚质地均匀的硬币,出现正面的概率B .从一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率C .掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率D .从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率7.如图所示,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是( )A .ASAB .SAS 或AASC .HLD .SSS8.下列运算中,正确的是( )A .326326x x x ⋅=B .224()-=x y x yC .236(2)6x x =D .54122x x x ÷= 9.下列说法正确的个数( )①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形. A .1个 B .2个 C .3个 D .4个10.广东省和计划生育委员会6月6日通报,广东新增一例输入性寨卡病毒病例,截至目前,广东省今年共报告13例寨卡病毒病例,寨卡病毒是一种通过蚊虫叮咬进行传播的虫蝶病毒,典型的症状包括急性起病的地热、斑丘疹、关节疼痛(主要累及手、足小关节),其他症状包括肌痛、头痛、眼眶痛及无力,易导致新生儿小头症,其直径为20纳米(1米=1000000000纳米),用科学记数法表示为( )A .7210⨯米B .8210⨯米C .7210-⨯米D .8210-⨯米二、填空题11.如图,Rt ABC △中,90ACB ∠=︒,50A ∠=︒,将其折叠,使点A 落在边CB 上A '处,折痕为CD ,则A DB '∠=.12.如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=54°,则∠2=°.13.(1)已知正n 边形的一个外角是45︒,则n =;(2)如图,在ABC V 中,10BC =,AB 的垂直平分线交BC 于D ,AC 的垂直平分线交BC 与E ,则ADE V 的周长等于;(3)如图所示,在ABC V 中,已知点D ,E ,F 分别为BC ,AD ,BE 的中点.且28cm ABC S =V ,则图中CEF △的面积=;(4)ABC V 中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为厘米/秒.14.若多项式225x mx ++是一个完全平方式,则m = .三、单选题15.下列计算中,()(1)()b x y bx by -=-;(2)()b xy bxby =;(3)x y x y b b b -=-;(4)443216(6)=;(5)212122n n n x y xy ---=A .只有(1)与(2)正确B .只有(1)与(3)正确C .只有(1)与(4)正确D .只有(2)与(3)正确四、填空题16.计算:(4×105)×(5×104)=. 17.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是.18.有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论是(填序号).19.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC V 和正CDE V ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ;以下四个结论:①AD BE =;②PQ AE ∥;③100AOE ∠=︒;④PA QE PD QB +=+;其中正确的的结论是(填序号).20.已知ABC DEF ≌△△,ABC V 的三边长分别为4、m 、n ,DEF V 的三边长分别为5、p 、q .若ABC V 的三边长均为整数,则m n p q +++的最大值为.五、解答题21.计算:()130411*******π-⎛⎫⎛⎫+⋅-- ⎪ ⎪⎝⎭⎝⎭. 22.已知:如图,AB AC =,D 是AB 上一点,DE BC ⊥于点E ,ED 的延长线交CA 的延长线于点F .求证:ADF △是等腰三角形.23.如图,已知ABC V 是等边三角形,D 为边AC 的中点,,AE EC BD EC ⊥=.(1)求证:≌BDC CEA V V .(2)请判断ADE V 是什么三角形,并说明理由.24.先化简,再求值:()()()2()2x y x y x y y x y +-+-+-,其中x =1,y =−1.25.如图,在四边形ABCD 中,=AB BC ,BF 是ABC ∠的平分线,//AF DC ,连接AC CF ,,求证:CA 是DCF ∠的平分线.。

北师大版七年级数学下册期末测试题及参考答案

北师大版七年级数学下册期末测试题及参考答案

北师大版七年级数学下册期末测试题) 1. 下列事件是必然事件的是( )A. 小梅的数学考试将得99分B. 抛出去的铅笔将着地C. 明天会是晴天D. 2018年有370天 2. 下列计算正确的是( )A. a4·a4=a16B. (a3)4=a7C. 12a6b4÷3a2b -2=4a4b2D. (-a3b)2=a6b23.如图, 在△ABC 中, AB =AC, DE ∥BC, ∠ADE =48°, 则下列结论中不正确的是( )A. ∠B =48°B. ∠AED =66°C. ∠A =84°D. ∠B +∠C =96° 4.已知xy =9, x -y =-3, 则x2+3xy +y2的值为( ) A. 27 B. 9 C. 54 D. 185.为应对越来越严峻的交通形势, 某市对其主干道进行拓宽改造.工程队在工作了一段时间后, 因雨被迫停工几天, 随后工程队加快了施工进度, 按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是( )6. 如图, 在△ABC 中, D 是AB 上一点, DF 交AC 于点E, AE =EC, DE =EF, 则下列说法中: ①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF, 正确说法的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 满分18分)7. 在不借助任何工具的情况下, 人的眼睛可以看到的最小物体的大小约为0.00003米, 将0.00003用科学记数法表示为____________.8. 汽车由吉安驶往相距220km的南昌,它的平均速度为100km/h,则汽车距南昌的路程s(km)与行驶的时间t(h)的关系式为__________________.9.四张质地、大小相同的卡片上, 分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张, 则抽取的卡片是轴对称图形的概率为________.10. 如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线分别交AC, AD, AB于点E, O, F, 则图中全等的三角形共有________对.第10题图第11题图11. 如图, 有一块边长为4的正方形塑料模板ABCD, 将一块足够大的直角三角板的直角顶点落在A点, 两条直角边分别与CD交于点F, 与CB的延长线交于点E, 则四边形AECF 的面积是________.12. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”. 如果等腰三角形的“内角正度值”为45°, 那么该等腰三角形的顶角度数为________.三、解答题(本大题共5小题, 每小题6分, 满分30分)13. (1)计算:43×0.259;(2)如图, 直线AB, CD相交于点O, OM⊥AB.若∠COB=135°, 求∠MOD的度数.14. 先化简, 再求值: 2a(a+2b)-(a+2b)2, 其中a=2, b=-1.15. 如图, ∠A=65°, ∠ABD=∠DCE=30°, 且CE平分∠ACB, 求∠DBC的度数.16. 如图, 在等边△ABC中, D是BC上一点, ∠BAD=40°, E是AC上一点, AD=AE,求∠AED的度数.17. 如图是由一个长方形和一个等腰三角形组成的轴对称图形, 请你用两种方法作出它的对称轴(要求: 只能用没有刻度的直尺, 可不写作法, 但要保留作图痕迹).四、(本大题共3小题, 每小题8分, 共24分)18.如图, 已知AB ∥CD, DA 平分∠BDC, ∠A =∠C. (1)试说明: CE ∥AD ;(2)若∠C =30°, 求∠B 的度数.19. 有四根小木棒长度分别是1, 3, 5, 7, 若从中任意抽出三根木棒组成三角形. (1)下列说法正确的序号是________; ①第一根抽出木棒长度是3的可能性是14;②抽出的三根木棒能组成三角形是必然事件; ③抽出的三根木棒能组成三角形是随机事件; ④抽出的三根木棒能组成三角形是不可能事件.(2)求抽出的三根木棒能组成三角形的概率.20. 对于任意有理数a, b, c, d, 我们规定符号(a, b)□(c, d)=ad-bc.例如: (1, 3)□(2, 4)=1×4-2×3=-2.(1)(-2, 3)□(4, 5)=________;(2)求(3a+1, a-2)□(a+2, a-3)的值, 其中a2-4a+1=0.五、(本大题共2小题, 每小题9分, 共18分)21. 如图, 在△ABC中, AB=AC, D, E, F分别在三边上, 且BE=CD, BD=CF, G为EF 的中点.(1)若∠A=40°, 求∠B的度数;(2)试说明: DG垂直平分EF.22. 一水果零售商在批发市场按每千克1.8元批发了若干千克西瓜进城出售, 为了方便, 他带了一些零钱备用. 他先按市场价售出一些后, 又降价出售. 售出西瓜的质量x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图所示, 结合图象回答下列问题:(1)零售商自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完, 这时他手中的钱(含备用的钱)是450元, 问他一共批发了多少千克的西瓜?(4)这位水果零售商一共赚了多少钱?六、(本大题共12分)23. 如图①, 在△ABC中, ∠BAC=90°, AB=AC, 直线MN过点A, 且MN∥BC, 点D是直线MN上一点, 不与点A重合.(1)若点E是图①中线段AB上一点, 且DE=DA, 请判断线段DE与DA的位置关系, 并说明理由;(2)请在下面的A, B两题中任选一题解答.A: 如图②, 在(1)的条件下, 连接BD, 过点D作DP⊥DB交线段AC于点P, 请判断线段DB与DP的数量关系, 并说明理由;B:如图③, 在图①的基础上, 改变点D的位置后, 连接BD, 过点D作DP⊥DB交线段CA的延长线于点P, 请判断线段DB与DP的数量关系, 并说明理由.我选择: ________.参考答案与解析1. B2.D3.B4.C5.D6.A7. 3×10-58.s=220-100t9.10.411. 16解析: 根据题意可知∠BAE=∠DAF=90°-∠BAF, AB=AD, ∠ABE=∠ADF=90°, ∴△AEB≌△AFD(ASA), ∴S四边形AECF=S正方形ABCD=42=16.12.30°或90°解析: 设最小角的度数为x, 则最大角的度数为x+45°.当最小角是顶角时, 则x+x+45°+x+45°=180°, 解得x=30°, 此时三角形顶角的度数为30°.当最大角为顶角时, 则x+x+45°+x=180°, 解得x=45°, 此时三角形顶角的度数为90°.综上所述, 等腰三角形的顶角为30°或90°.13. 解: (1)43×0.259=43×0.253×0.256=(4×0.25)3×0.256=1×0.256=0.256.(3分)(2)∵∠COB=135°, ∴∠AOD=135°.∵OM⊥AB, ∴∠AOM=90°, ∴∠MOD=∠AOD-∠AOM=135°-90°=45°.(6分)14. 解: 原式=2a2+4ab-a2-4ab-4b2=a2-4b2.(3分)当a=2, b=-1时, 原式=4-4=0.(6分)15. 解: ∵∠DCE=30°, CE平分∠ACB, ∴∠ACB=2∠DCE=60°.(2分)∵∠A=65°, ∴∠ABC=180°-∠ACB-∠A=55°.(4分)∵∠ABD=30°, ∴∠DBC=∠ABC-∠ABD=25°.(6分)16. 解:∵△ABC是等边三角形, ∴∠BAC=60°.(2分)∵∠BAD=40°, ∴∠CAD=∠BAC-∠BAD=20°.(4分)∵AD=AE, ∴∠AED=(180°-∠CAD)=80°.(6分)17.解:如图所示, 直线AB即为所求.(6分)18. 解: (1)∵AB∥CD, ∴∠A=∠ADC.(1分)又∵∠A=∠C, ∴∠ADC=∠C, ∴CE∥AD.(3分)(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC, ∴∠CDB=2∠ADC=60°.(5分)∵AB∥DC, ∴∠B+∠CDB=180°, ∴∠B=180°-∠CDB=120°.(8分)19. 解: (1)①③(3分)(2)从1, 3, 5, 7中任意抽出三根木棒有1, 3, 5;1, 3, 7;3, 5, 7;1, 5, 7, 共四种情况, 而能组成三角形的只有3, 5, 7一种情况, (6分)∴抽出的三根木棒恰好能组成三角形的概率为.(8分)20. 解: (1)-22(2分)(2)原式=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1.(5分)∵a2-4a+1=0, ∴a2=4a-1, ∴原式=2(4a-1)-8a+1=-1.(821. 解: (1)∵AB=AC, ∴∠C=∠B.∵∠A=40°, ∴∠B==70°.(3分)(2)连接DE, DF.在△BDE与△CFD中, ∴△BDE≌△CFD(SAS), ∴DE=DF.(7分)∵G 为EF的中点, ∴DG⊥EF, ∴DG垂直平分EF.(9分)22. 解: (1)零售商自带的零钱为50元. (2分)(2)(330-50)÷80=280÷80=3.5(元).答: 降价前他每千克西瓜出售的价格是3.5元. (4分)(3)(450-330)÷(3.5-0.5)=120÷3=40(千克), 80+40=120(千克).答: 他一共批发了120千克西瓜. (7分)(4)450-120×1.8-50=184(元).答: 这位水果零售商一共赚了184元. (9分)23. 解:(1)DE⊥DA.(1分)理由如下:∵∠BAC=90°, AB=AC, ∴∠B=∠C=45°.(2分)∵MN∥BC, ∴∠DAE=∠B=45°.(3分)∵DA=DE, ∴∠DEA=∠DAE=45°, ∴∠ADE=180°-∠DEA-∠DAE=90°, 即DE⊥DA.(5分)(2)选A DB=DP.(6分)理由如下:∵DP⊥DB, ∴∠BDE+∠EDP=90°.(7分)由(1)知DE⊥DA, ∴∠ADP+∠EDP=90°, ∴∠BDE=∠ADP.(9分)∵∠DEA=∠DAE=45°, ∴∠BED=∠DAE+∠BAC=135°, ∠DAP=∠DAE+∠BAC=135°, ∴∠BED=∠DAP.(10分)在△DEB和△DAP中, ∴△DEB≌△DAP(ASA), ∴DB=DP.(12分)或选B DB=DP.(6分)理由如下: 如图, 延长AB至F, 连接DF, 使DF=DA.(7分)同(1)得∠DFB=∠DAF=45°, ∴∠ADF=90°.∵DP⊥DB, ∴∠FDB=∠ADP.(9分)∵∠BAC=90°, ∠DAF=45°, ∴∠PAD=45°, ∴∠BFD=∠PAD.(10分)在△DFB和△DAP中, ∴△DFB≌△DAP(ASA),∴DB=DP.(12分)。

北师大七年级下册数学期末试卷

北师大七年级下册数学期末试卷

一、细心填一填(每小题2分,共计20) 1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x2++是一个完全平方式,那么k的值是 .3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农” 万元,这个数据用科学记数法可表示为 万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,是 . 8.现在“b=如(2﹡3)(2◎3)= (22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)9.10. 所示, 的选项,每小题3分,共计30分)11.下列图形中不是..正方体的展开图的是( ) A BC D12. 下列运算正确..的是( ) A .55a a +C .a aa =÷-113. A .若,b a ≠则22b a , b a >>则C .若b a ,b a 22±==则 D .若b1a1, b a >>则 14. 如图,在△ABC 中,D 、E 分别是AC 、BC上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( )A .15°B .20°C .25°D .30°15. 由四舍五入得到近似数3.00万( )1个有效数字 B . ) 122b a b a -=-22b -()222b a b a +=+D.()222b 2ab a b a +-=+18. 如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( ) A .1月至3月每月产量逐月增加,4、5两月产量逐月 减小B .1月至3月每月产量逐月增加,4、5两月产量与3月 持平C .1月至3月每月产量逐月增加,4、5两月产量均停止生产D . 1月至3止生产19.下列图形中,不.( )A .等腰三角形钝角 D .20. 长度分别为3cm ,5cm,A .1 B .2 C . 3D .4三、精心算一算(21题3分,22题5分,共计8分)21.()()3426y y 2-;22.先化简()()()()1x 5x13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、认真画一画(23题4分,24题4分,共计8分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)25. 26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中2米,你认为谁的设计符合(第27小题4分,第289分)2001~2006年的养鸡统(1)从图中你能得到什么信息.(2)各年养鸡多少万只?(3)所得(2)的数据都是准确数吗?(428.某种产品的商标如图所示,O 是线段的交点,并且AC =BD ,AB =CD .在△ABO 和△DCO 中你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.分,(1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3).(4① )2)(2(p n m p n m +--+八、信息阅读题(6分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示,结合图像回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少? (3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?一、细心填一填(每题2分,共计20)1. 5x ;2a .2.±×1075.83 6.26或22㎝7. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D )8.-20 9. 45 10.B6395二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分) 共计8分)21.解:=1212y 2y -=12y……3分22.解:=5x5x 19x 14x 4x 222-++-+-=29x +- …3分当x=0时,原=2 ……5分24题4理由是: 垂线段最短 . ……2分 作图……2分 24.解1分26小题6分,共计10分)25.解:不会同意.……2分因为转盘中有两个3,一个2,这说明小丽去的 根据小赵的设计可以设宽为x 米,根据题意得2x +(x +2)=35 解得x=11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分)27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3(4可)28.解确 ⎪⎩⎪⎨⎧ 第3029. (1(2)∠ (3线平行.30.(1(a +(a +(4 31.(1元; (2 (3)()()千克,千克453015154.02026=+=- (2)答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.则=n a 。

北师大版七年级数学下学期期末达标测试卷

北师大版七年级数学下学期期末达标测试卷

北师大版七年级数学下学期期末达标测试卷一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形且对称轴最多的是( )A.B.C.D.2.下列运算正确的是( )A.5ab﹣ab=4B.a4﹣a=a3C.a6÷a2=a4D.(a2b)3=a5b33.某新型冠状病毒直径为0.000&nbsp;000&nbsp;178米,那么该新型冠状病毒的直径约为( )米.A.1.78×10﹣7B.1.78×10﹣11C.0.178×10﹣8D.178×10﹣94.一个不透明的袋子里装有8个形状大小完全相同的球,其中4个红球,1个黄球( )A.B.C.D.5.下列可以运用平方差公式运算的有()(a+b)(−b+a)(−a+b)(a−b)(a+b)(−a−b)(a−b)(−a−b)①;②;③;④A.1个B.2个C.3个D.4个6.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是( )A. B. C. D.7.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是( )A.SSS B.ASA C.AAS D.SAS8.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180° B.∠1+∠2-∠3=90°C.∠1-∠2+∠3=90° D.∠2+∠3-∠1=180°9.如图,,,于点,于点,,,则的长为()A.B.C.D.10.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45° C.45°或60° D.30°或60°11.如图,△ABC中,D、E两点分别在BC、AD上,若∠ABE=∠C,AE:ED=2:1( )A.16:45B.1:9C.2:9D.1:312.如图,点F,C在BE上,BF=EC,AB=DE,则与2∠DFE相等的是( )A .∠A +∠DB .3∠BC .180°﹣∠FGCD .∠ACE +∠B二.填空题(共6小题,满分24分,每小题4分)1. 若,则________,________.(x +m)(x +2)=x 2−6x +n m =n =2.已知三角形的两边长分别为3cm 和9cm ,则第三边的取值范围 .3.当,时,代数式________.a 2−b 2=16a−b =13a +b =4.如图,在中,分别以点和点为圆心,大于为半径画弧,两弧相交于点、,作直线,△ABC A B 12AB M N MN 交于点,的周长为,,则的周长为________.BC D △ADC 15AB =7△ABC5.已知等腰三角形的两边长分别为6cm 、8cm ,那么它的周长为 cm .6.A 、B 两地相距80km ,甲、乙两人沿同一条路从A 地到B 地.l 1,l 2分别表示甲、乙两人离开A 地的距离s (m )与时间t (h )之同的关系.当甲车出发1小时时 km .三.解答题(共8小题,满分78分)1.计算:; .(1)(x 2y )4÷(x 2y)+(x 2y )3(2)(−14)−1+(−2)2×50−(12)−22.阅读并完成下列推理过程,在括号内填写理由.已知∠ABC =∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,F 是BC 延长线上一点,且∠DBC =∠F .求证:∠CED +∠EDF =180°.证明:∵BD 平分∠ABC ,CE 平分∠ACB (已知)∴∠DBC =∠ABC ,∠BCE =∠ACB (______)1212∴∠DBC =______(等式的性质)∵∠DBC =∠F (已知)∴∠F =_______(等量代换)∴(_______)CE DF ∥∴∠CED +∠EDF =180°(_______)3.如图,在中,,分别是边上的中线和高,,.求和的△ABC AD AE BC AE =3cm S △ABC =12cm 2BC DC 长.4.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图像.根据图像回答下列问题∶(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?5.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.40.32b1(1)频数、频率分布表中a=______ ,b=____ ;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是_____ .6.如图,在正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应)(2)△ABC的面积为 .(3)在直线l上找一点P,使得PA+PC的和最小.AM△ABC D AM A DE//AB AC F CE//AM7.如图,是的中线,是射线上一点(不与点重合).交于点,连接AE BD,.(1)D M AE=BD如图①,当点与点重合时,易证(不需要证明);(2)D M AE BD如图②、图③,当点不与点重合时,线段,又有怎样的关系呢?选择一个图形证明你的结论.8已知:如图,AB=AC,AD=AE,BE与AC、CD分别相交于点N、M.(1)求证:BE=CD;(2)求∠BMC的大小.(用α表示).。

七年级下册北师大版数学期末试卷【含答案】

七年级下册北师大版数学期末试卷【含答案】

七年级下册北师大版数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 26厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个等差数列的前三项分别是2,5,8,那么这个数列的第四项是多少?A. 7B. 10C. 11D. 125. 下列哪个图形是中心对称图形?A. 正方形B. 长方形C. 三角形D. 梯形二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

()2. 一个三角形的内角和一定是180度。

()3. 任何两个等边三角形都是全等的。

()4. 一个等差数列的相邻两项之差是常数。

()5. 任何两个等腰三角形都是相似的。

()三、填空题(每题1分,共5分)1. 一个数的因数是______和______。

2. 一个等腰三角形的底角是______度,顶角是______度。

3. 一个正方形的对角线长是______厘米,它的面积是______平方厘米。

4. 一个等差数列的公差是______,它的第10项是______。

5. 一个平行四边形的对角线互相______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述等腰三角形的性质。

3. 简述轴对称图形的定义。

4. 简述中心对称图形的定义。

5. 简述勾股定理的定义。

五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

3. 一个正方形的对角线长是10厘米,求这个正方形的面积。

4. 一个平行四边形的对角线互相垂直,其中一条对角线长是12厘米,另一条对角线长是16厘米,求这个平行四边形的面积。

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案北师大版七年级下册数学期末考试试卷一、单选题1.下面的图案中,不是轴对称图形的是()A。

B。

C。

D。

2.下列运算正确的是()A。

a^2*a^3=a^6B。

a^8/a^4=a^2C。

5a-3a=2D。

(-ab^2)/a^2b^43.绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为688纳米,1纳米=0.xxxxxxxx1米,则每个光量子的波长可用科学记数法表示为()米A。

6.88×10^-11B。

6.88×10^-7C。

0.688×10^-3D。

0.688×10^-64.下列说法正确的是()A。

“守株待兔”是必然事件B。

“概率为0.0001的事件”是不可能事件C。

“在一个只装有5个红球的袋中随机摸出1个球是红球”是必然事件D。

任意掷一枚质地均匀的硬币20次,正面向上的次数一定是10次5.变量x与y之间的关系是y=2x+1,当x=5时,函数值y 的值是()A。

2B。

3C。

11D。

126.若长度分别为a,3,5的三条线段能组成一个三角形,则a 的值可以是()A。

1B。

2C。

3D。

87.如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,那么AD为所作,则说明∠CAD=∠BAD的依据是()A。

SSSB。

SASC。

ASAD。

AAS8.如图,直线a//b,直线l与直线a相交于点O,与直线b相交于点P,OM⊥l于点O.若∠1=55°,则∠2=()A。

35°B。

45°C。

55°D。

65°9.某班共有45名同学,其中有3名同研究惯用左手写字,其余同学都惯用右手写字,老师随机请1名同学解答问题,惯用左手写字的同学被选中的概率是()A。

1/3B。

1/15C。

北师大版七年级下册数学《期末考试试题》(带答案解析)

北师大版七年级下册数学《期末考试试题》(带答案解析)

2020年北师大版数学七年级下册期末测试学校 _________ 班级 ____________一、选择题(每小题3分,共30分)1•下列世界博览会会徽图案中是轴对称图形的是(2•下列计算正确的是()551032A. a + a = aB. a • a = a4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()意翻开一张是汉字“信”的概率是 ()7•下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;行于同一条直线的两条直线也互相平行;④同位角相等•其中正确的个数有(8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是(1 = Z 2,那么下列结论正确的是()| ----- p3•如图所示,已知/A. AB //BC B. AB // CD C. / C=ZD D. / 3=Z4A. 5 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45如图①所示,有6张写有汉字的卡片,它们的背面都相同, 现将它们背面朝上洗匀后如图 2摆放,从中任1A.- 26.利用基本作图,作出唯一三角形的是(□ □ U□ □ □ 阳2B. 13C.A.已知三边B .C.已知两角及其夹边D. 已知两边及其夹角 已知两边及其中一边1D.-6对角B. 2个C. 3个D. 4个姓名 _________成绩 ________76C. a 十 a = 3、2八 6D. ( — a ) = —②垂线段最短;③在同一平面内平C. DBro二、填空题(每小题3分,共15分)11.0.000 000 087 用科学记数法可表示为 _____ . 12.如图,已知 AB// CD, / 1 = 120 °,则/ C =13.一棵树高h (m )与生长时间n (年)之间满足一定的关系,请你根据下表中的数写出h (m )与n (年)之间的关A. (a b)(a b) a 2b 2B. (a b)2 a 22ab b 2 2C. 2a(a b) 2a 2abD. (a b)22a 2abb 29•如图,等腰△ABC 中, AB=AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点 D ,交 AC 于点 E ,贝U ABECB. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y 之的周长为()间的关系用图像描述大致是(系式:h= _____ .h(m)2.63.2 3.84.45.014.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在 10%和15%,则箱子里蓝色球的个数很可能是15.如图,△ ABE^A ABC 分别沿着 AB, AC 边翻折 180 ° 形成的•若/ BAC = 145。

七年级下册数学北师大版期末试卷【含答案】

七年级下册数学北师大版期末试卷【含答案】

七年级下册数学北师大版期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为12厘米,则该三角形的周长是?A. 22厘米B. 32厘米C. 42厘米D. 52厘米3. 有理数-3,0,5,-2中,最大的数是?A. -3B. 0C. 5D. -24. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 钝角三角形5. 如果a=3,那么2a+5的值是?A. 6B. 11C. 16D. 21二、判断题(每题1分,共5分)1. 0是自然数。

()2. 任何一个三角形都有外接圆。

()3. 两条平行线的斜率相等。

()4. 乘积为正数的两个数一定是同号的。

()5. 一个数的平方和它的平方根相等。

()三、填空题(每题1分,共5分)1. 4的平方根是______。

2. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是______。

3. 一个等边三角形的周长是______。

4. 如果a=2,那么3a-4的值是______。

5. 两个负数相乘的结果是______。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请解释等边三角形的性质。

3. 请解释有理数的乘法法则。

4. 请解释平行线的性质。

5. 请解释如何计算一个数的平方根。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求它的面积。

2. 如果一个三角形的两边长分别是6厘米和8厘米,求第三边的长度。

3. 如果a=4,求2a+3的值。

4. 如果一个数的平方是36,求这个数的平方根。

5. 如果两个数的乘积是-30,其中一个数是5,求另一个数。

六、分析题(每题5分,共10分)1. 请分析并解释平行四边形的性质。

2. 请分析并解释勾股定理的应用。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作出一个等边三角形。

2022年北师大版七年级下册第二学期数学期末考试试题(含答案)

2022年北师大版七年级下册第二学期数学期末考试试题(含答案)

七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。

(共10小题,每小题4分,共40分)4.把20本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入a本,第二个抽屉放入b 本,则下列判断错误的是()A.20是变量B.a是变量C.b是变量D.20是常量5.如图,长方形ABCD沿线段EF折叠到EB’C’F’的位置,若∠EFC’=100°,则∠DFC’的度数是()A.20°B.30°C.40°D.50°(第5题图)(第6题图)(第8题图)6.如图,在△ABC中,AC=6,中线AD=10,则边AB的长可能是()A.30B.22C.14D.67.等腰三角形的周长是15cm,其中一边长为4cm,则该等腰三角形的底边长为()A.7cmB.4cmC.4cm或7cmD.5.5cm或4cmA.1:3B.2:3C.5:1D.1:5A.20分钟B.24分钟C.26分钟D.28分钟(第9题图)(第10题图)二.填空题。

(共6小题,每小题4分,共24分)11.如果(x2-a)x+x的展开式中只含有x3这一项,则a的值为.12.如图,AB∥EG,CD∥EF,BC∥DE,若x=50°,y=30°,则z的度数为.(第12题图)(第14题图)(第15题图)13.若x2+(m-2)x+16是一个完全平方式,则m的值是.14.把一转盘分成两个半圆,再把其中一个半圆等份三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.15.小明从家门口骑车去图书馆,先走平路到达A,再走上坡路到达B,最后走下坡到达图书馆,所用的时间与路程的关系如图所示,回家时,如果他沿原路返回,且走平路,上坡路和下坡路的速度分别保持和去上班时一致,他从图书馆到家需要的时间是分钟. 16.如图,在△ABC中,BD,BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H,DE=DG,下列结论:①∠DBE=∠F;②∠BEF=1(∠BAF+∠2C);③∠F=1(∠BAC+∠C);④2DE+2BGEF,其中正确的是(只填序号).2三.解答题。

【最新】北师大版数学七年级下册《期末测试题》含答案解析

【最新】北师大版数学七年级下册《期末测试题》含答案解析

北师大版七年级下学期期末测试数学试卷学校 班级 姓名 成绩、选择题(每题3分,共30分)1.下列计算正确的是()A .、「.衣’B.二1之二‘K :;C .⑥1”2rD. :-;/'= 9,广2.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是A. 2B. 4C. 6D. 84.如图,直线 a//b, Z 1= 120 °, /2=40°,则/ 3 等于( )C. 80 °D. 90 °5.下列说法错误的是( )A.等腰三角形底边上的高所在的直线是它的对称轴B. Z^BC^A DEF ,则9BC 与4DEF 一定关于某条直线对称C.连接轴对称图形的对应点的线段必被对称轴垂直平分D.线段和角都是轴对称图形 1 A. B.C. D. 13.如果一个三角形的两边长分别为 2和4,则第三边长可能是(A. 60 °B.706.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A. 3个B. 不足3个C.4个D. 5个或5个以上7.下列各组条件中,能判定AABCZ^DEF的是()A.AB=DE, BC=EF, / A= / DB./A=/D, ZC=ZF, AC=EFC.AB=DE, BC=EF, 那BC的周长= ADEF的周长D./A=/D, /B=/E, /C=/F8.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()D.9.如图,在AABC 中,D 是AB 上一点,DF 交AC 于点E, AE=EC, DE = EF, 则下列结论中:①/ ADE=/EFC;②/ ADE+/ECF+ ZFEC=180°;③/ B+/BCF=180°;④S AABC=S四边形DBCF,正确A.4个B. 3个C.2个D.1个10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A- A E- F- G^B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则9BP的面积S随着时间t变化的函数图象大致是()11.用科学记数法把0.000 009 405表示成9.405 10n,则n =.12.已知am+1a2m 1=a9,则m =.13.图书馆现有200本图书供学生借阅,如果每个学生一次借4本,则剩下的书y(本)和借书学生人数x(人)之间的关系式是.14.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是 .15.如图是小李绘制的某大桥断裂的现场草图,若/ 1=38。

北师大七年级下册数学期末试卷【含答案】

北师大七年级下册数学期末试卷【含答案】

北师大七年级下册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少厘米?A. 32厘米B. 36厘米C. 42厘米D. 46厘米3. 下列哪个图形是正方形?A. 四边相等的四边形B. 四个角都是直角的四边形C. 对角线互相垂直的四边形D. 四边相等且四个角都是直角的四边形4. 一个数加上6后乘以4,得到的结果是64,那么这个数是多少?A. 10B. 12C. 14D. 165. 下列哪个数是合数?A. 31B. 37C. 41D. 43二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个等边三角形的三个角都是60度。

()3. 任何两个负数相乘的结果都是正数。

()4. 一个数的立方根只有一个。

()5. 对角线相等的四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 两个质数相乘,其积一定是______。

2. 一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是______厘米。

3. 下列各数中,______是最小的质数。

4. 一个数的平方是36,那么这个数的立方是______。

5. 下列各数中,______是最大的合数。

四、简答题(每题2分,共10分)1. 请简要说明什么是等边三角形。

2. 请简要说明什么是质数。

3. 请简要说明什么是立方根。

4. 请简要说明什么是等腰三角形。

5. 请简要说明什么是负数。

五、应用题(每题2分,共10分)1. 一个长方形的周长是34厘米,长是12厘米,求宽。

2. 一个等腰三角形的底边长是10厘米,高是12厘米,求面积。

3. 一个数的平方是49,求这个数的立方。

4. 一个正方形的对角线长是10厘米,求边长。

5. 一个数的立方是64,求这个数的平方。

六、分析题(每题5分,共10分)1. 请分析并说明如何判断一个数是质数还是合数。

北师大版数学七年级下册第二学期期末 达标测试卷(含答案)

北师大版数学七年级下册第二学期期末 达标测试卷(含答案)

第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。

最新北师大版初一下册数学期末试题带答案

最新北师大版初一下册数学期末试题带答案

2021年七年级下册期末考试数学试题亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算3﹣3的值是()A.﹣3 B.﹣9 C.D.2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.1个氧原子的直径大约为0.000000000148m,将数据0.000000000148用科学记数法表示为()A.1.48×10﹣11B.1.48×10﹣10C.1.48×10﹣9D.1.48×10﹣84.下列事件中,属于随机事件的是()A.小明跑步的速度是100米/秒B.向空中抛掷石块,石块终将落下C.抛掷一枚硬币,正面朝上D.两个正数相加,和为正数5.下列长度的三条线段,能构成三角形的是()A.8,8,15 B.4,5,9 C.5,5,11 D.3,6,96.在如图所示的图中任意画一个点,落在黑色区域的概率是()A.B.πC.D.7.下列说法中正确的是()A.锐角小于它的余角B.同位角不相等,两直线不平行C.一个角的补角大于这个角D.同旁内角互余,两直线平行8.若a4=3,则(1﹣a)(1+a)(1+a2)的值为()A.4 B.2 C.0 D.﹣29.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg):x0246810y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量为5kg时,弹簧长度增加了1.25cmD.所挂物体质量为9kg时,弹簧长度增加到11.25cm10.如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为()A.3 B.4 C.5 D.6二、填空题(共4小题,每小题3分,计12分)11.若(a+4)2=a2+(m﹣3)a+16,则m的值为.12.如图,直线AB,CD被两条直线所截,若∠1=64°,∠2=64°,∠3=110°,则∠4的度数为.13.有30张背面完全一样的卡片,其中9张印有咸阳湖,8张印有沙河古桥,13张印有城堡酒庄,把这些卡片的背面朝上,搅匀后从中随机抽出一张卡片,抽到正面是咸阳湖的卡片的概率是.14.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=6,BC=4,DE=2,则△ABC的面积为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)化简:[(m+n)(m﹣n)+n(n﹣m)]÷m.16.(5分)如图,已知△ABC,用尺规作图法作∠ABC的平分线BD,交AC于点D.(保留作图痕迹,不写作法)17.(5分)如图,△ABC中,∠C=90°,DE垂直平分AB,若∠B=25°,求∠CAE的度数.18.(5分)请在网格中完成下列问题:(1)如图1,网格中的△ABC与△DEF为轴对称图形,请用所学轴对称的知识作出△ABC与△DEF的对称轴直线PQ;(2)如图2,请在图中作出△ABC关于直线MN对称的△A'B'C'.19.(7分)一辆汽车在笔直的公路上行驶,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系如图所示,根据图象回答下列问题:(1)汽车在行驶途中停留了多长时间?(2)汽车到达离出发地最远的地方用了多长时间?(3)汽车共行驶了多少千米?20.(7分)如图,∠BAC与∠GCA互补,点D在GC的延长线上,∠1=∠2,试说明∠E=∠F.21.(7分)如图,某小区规划在长(3x+4y)米,宽(2x+3y)米的长方形的场地上,修建1横2纵三条宽为x米的甬道,其余部分为绿地,求:(1)甬道的面积;(2)绿地的面积(结果化简)22.(7分)如图,小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他从D点走了80步到达E处.如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.23.(8分)如图,现有一个圆形转盘被平均分成6等份,分别标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字,求:(1)转到数字1是;(从“随机事件”、“必然事件”、“不可能事件”选一个填入)(2)转动转盘一次,转出的数字大于3的概率是多少?(3)现有两张分别写有2和3的卡片,随机转动转盘一次,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度(长度单位均是厘米).这三条线段能构成三角形的概率是多少?24.(10分)如图,锐角△ABC的两条高BD与CE相交于点O,且OB=OC.(1)试说明∠ABC=∠ACB;(2)连接AO并延长,交BC于F,若∠BOE=50°,求∠DBC和∠BAF的度数.25.(12分)如图,△ABC中,AB=AC,点D是△ABC外一点,且BD=DC,CD⊥AC,点M、N分别在AB、AC上,∠MDN=∠BDC,在AC的延长线上截取了CP=BM,并连接DP.(1)△MBD≌△PCD吗?请说明理由;(2)试说明MN=NP.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算3﹣3的值是()A.﹣3 B.﹣9 C.D.【分析】根据负整数指数幂计算即可.【解答】解:3﹣3==,故选:D.2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的概念可得答案.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不符合题意;故选:A.3.1个氧原子的直径大约为0.000000000148m,将数据0.000000000148用科学记数法表示为()A.1.48×10﹣11B.1.48×10﹣10C.1.48×10﹣9D.1.48×10﹣8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答】解:0.000000000148=1.48×10﹣10.故选:B.4.下列事件中,属于随机事件的是()A.小明跑步的速度是100米/秒B.向空中抛掷石块,石块终将落下C.抛掷一枚硬币,正面朝上D.两个正数相加,和为正数【分析】根据事件发生的可能性大小判断即可.【解答】解:A、小明跑步的速度是100米/秒,是不可能事件,不符合题意;B、向空中抛掷石块,石块终将落下,是必然事件,不符合题意;C、抛掷一枚硬币,正面朝上,是随机事件,符合题意;D、两个正数相加,和为正数,是必然事件,不符合题意;故选:C.5.下列长度的三条线段,能构成三角形的是()A.8,8,15 B.4,5,9 C.5,5,11 D.3,6,9【分析】根据三角形的三边关系计算,判断即可.【解答】解:A、∵15﹣8<8<15+8,∴三条线段8,8,15能构成三角形,本选项符合题意;B、∵4+5<9,∴三条线段4,5,9不能构成三角形,本选项不符合题意;C、∵5+5<11,∴三条线段5,5,11不能构成三角形,本选项不符合题意;D、∵3+6=9,∴三条线段3,6,9不能构成三角形,本选项不符合题意;故选:A.6.在如图所示的图中任意画一个点,落在黑色区域的概率是()A.B.πC.D.【分析】根据黑色区域的面积占了整个图形面积的,再根据概率公式即可得出答案.【解答】解:∵黑色区域的面积占了整个图形面积的,∴落在黑色区域的概率是;故选:C.7.下列说法中正确的是()A.锐角小于它的余角B.同位角不相等,两直线不平行C.一个角的补角大于这个角D.同旁内角互余,两直线平行【分析】根据余角和补角,平行线的判定对各选项进行分析即可.【解答】解:A、当这个锐角大于或等于45°时,则其余角小于或等于这个锐角,故A不符合题意;B、同位角相等,两直线平行,如果同位角不相等,则两直线不平行,故B符合题意;C、当这个角大于或等于90°,则其补角小于或等于这个角,故C不符合题意;D、同旁内角互补,两直线平行,故D不符合题意.故选:B.8.若a4=3,则(1﹣a)(1+a)(1+a2)的值为()A.4 B.2 C.0 D.﹣2【分析】利用平方差公式先将(1﹣a)(1+a)(1+a2)化简为1﹣a4,再整体代入计算即可.【解答】解:原式=(1﹣a2)(1+a2)=1﹣a4=1﹣3=﹣2,故选:D.9.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg):x0246810y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量为5kg时,弹簧长度增加了1.25cmD.所挂物体质量为9kg时,弹簧长度增加到11.25cm【分析】根据给出的表格中的数据进行分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.【解答】解:A.x与y都是变量,且x是自变量,y是因变量,故A不符合题意;B.弹簧不挂重物时的长度为10cm,故B不符合题意;C.所挂物体质量为5kg时,弹簧长度增加了0.25cm,故C不符合题意;D.所挂物体质量为9kg时,弹簧长度增加到11.25cm,故D符合题意.故选:D.10.如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为()A.3 B.4 C.5 D.6【分析】证明△MQP≌△NQH,由全等三角形的性质可得PQ=QH=5,根据MQ=NQ=9,即可解决问题.【解答】解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NQH中,,∴△MQP≌△NQH(ASA),∴PQ=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故选:B.二、填空题(共4小题,每小题3分,计12分)11.若(a+4)2=a2+(m﹣3)a+16,则m的值为11.【分析】根据完全平方公式展开后,对比系数即可求出答案.【解答】解:∵(a+4)2=a2+8a+16,∴a2+8a+16=a2+(m﹣3)a+16,∴m﹣3=8,∴m=11.故答案为:11.12.如图,直线AB,CD被两条直线所截,若∠1=64°,∠2=64°,∠3=110°,则∠4的度数为70°.【分析】根据∠1=∠2,可得AB∥CD,得∠3+∠5=180°,再根据对顶角相等即可求出∠4的度数.【解答】解:如图,∵∠1=64°,∠2=64°,∴∠1=∠2,∴AB∥CD,∴∠3+∠5=180°,∵∠3=110°,∴∠5=70°,∴∠4=∠5=70°.故答案为:70°.13.有30张背面完全一样的卡片,其中9张印有咸阳湖,8张印有沙河古桥,13张印有城堡酒庄,把这些卡片的背面朝上,搅匀后从中随机抽出一张卡片,抽到正面是咸阳湖的卡片的概率是.【分析】直接根据概率公式进行解答即可.【解答】解:∵一共有30张背面完全一样的卡片,其中9张印有咸阳湖,∴随机抽出一张卡片,抽到正面是咸阳湖的卡片的概率是=.故答案为:.14.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=6,BC=4,DE=2,则△ABC的面积为10.【分析】过D点作DH⊥BC于H,如图,根据角平分线的性质得到DH=DE=2,然后根据三角形的面积公式计算.【解答】解:过D点作DH⊥BC于H,如图,∵BD是△ABC的角平分线,DE⊥AB,DH⊥BC,∴DH=DE=2,∴S△ABC=S△ABD+S△BCD=×6×2+×4×2=10.故答案为10.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)化简:[(m+n)(m﹣n)+n(n﹣m)]÷m.【分析】原式中括号里利用平方差公式,以及单项式乘多项式法则计算,去括号合并后利用多项式除以单项式法则计算即可得到结果.【解答】解:原式=(m2﹣n2+n2﹣mn)÷m=(m2﹣mn)÷m=m﹣n.16.(5分)如图,已知△ABC,用尺规作图法作∠ABC的平分线BD,交AC于点D.(保留作图痕迹,不写作法)【分析】利用基本作图作∠ABC的平分线即可.【解答】解:如图,BD为所作.17.(5分)如图,△ABC中,∠C=90°,DE垂直平分AB,若∠B=25°,求∠CAE的度数.【分析】根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EAB=∠B=25°,根据直角三角形的性质计算,得到答案.【解答】解:∵DE垂直平分AB,∴EA=EB,∵∠B=25°,∴∠EAB=∠B=25°,∵∠C=90°,∴∠CAB=65°,∴∠CAE=65°﹣25°=40°.18.(5分)请在网格中完成下列问题:(1)如图1,网格中的△ABC与△DEF为轴对称图形,请用所学轴对称的知识作出△ABC与△DEF的对称轴直线PQ;(2)如图2,请在图中作出△ABC关于直线MN对称的△A'B'C'.【分析】(1)利用网格特点作AD、CF的垂直平分线即可;(2)利用网格特点,分别作A、B、C关于直线MN的对称点即可.【解答】解:(1)如图,直线PQ为所作;(2)如图,△A'B'C'为所作.19.(7分)一辆汽车在笔直的公路上行驶,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系如图所示,根据图象回答下列问题:(1)汽车在行驶途中停留了多长时间?(2)汽车到达离出发地最远的地方用了多长时间?(3)汽车共行驶了多少千米?【分析】(1)观察函数图象,可得平行于t轴的线段;(2)观察函数图象的横坐标,可得汽车行驶的时间;(3)观察函数图象的纵坐标,汽车共行驶的路程.【解答】解:(1)汽车在行驶途中停留了:2﹣1.5=0.5(小时);(2)从图象可以看出,汽车到达离出发地最远的地方用了3小时;(3)从图象可以看出,汽车共行驶了:120×2=240(千米).20.(7分)如图,∠BAC与∠GCA互补,点D在GC的延长线上,∠1=∠2,试说明∠E=∠F.【分析】由∠BAC与∠GCA互补得出AB∥DG,即可得到∠BAC=∠ACD,根据角的和差得到∠EAC =∠FCA,由此判定AE∥CF,再根据平行线的性质即可得解.【解答】证明:∵∠BAC与∠GCA互补,∴AB∥DG,∴∠BAC=∠ACD,∵∠1=∠2,∴∠BAC﹣∠1=∠ACD﹣∠2,即∠EAC=∠FCA,∴AE∥CF,∴∠E=∠F.21.(7分)如图,某小区规划在长(3x+4y)米,宽(2x+3y)米的长方形的场地上,修建1横2纵三条宽为x米的甬道,其余部分为绿地,求:(1)甬道的面积;(2)绿地的面积(结果化简)【分析】(1)直接利用长方形面积求法得出甬道的面积;(2))直接利用矩形面积﹣甬道面积进而得出答案.【解答】解:(1)甬道的面积为:2x(2x+3y)+x(3x+4y)﹣2x2=5x2+10xy;(2)绿地的面积为:(3x+4y)(2x+3y)﹣(5x2+10xy)=6x2+17xy+12y2﹣5x2﹣10xy=x2+7xy+12y2.22.(7分)如图,小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他从D点走了80步到达E处.如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】根据AAS可得出△ABC≌△DEC,由该全等三角形的性质AB=DE.【解答】解:在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴AB=DE,又∵小刚走完DE用来80步,一步大约50厘米,∴DE=80×0.5=40(米).答:小刚在点A处时他与电线塔的距离为40米.23.(8分)如图,现有一个圆形转盘被平均分成6等份,分别标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字,求:(1)转到数字1是不可能事件;(从“随机事件”、“必然事件”、“不可能事件”选一个填入)(2)转动转盘一次,转出的数字大于3的概率是多少?(3)现有两张分别写有2和3的卡片,随机转动转盘一次,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度(长度单位均是厘米).这三条线段能构成三角形的概率是多少?【分析】(1)根据题意和转盘中的数字,可知转到数字1是不可能事件,从而可以解答本题;(2)根据题意,可以得到转动转盘,转出的数字大于3的概率;(3)根据题意,可以计算出这三条线段能构成三角形的概率.【解答】解:(1)由题意可得,转到数字1是不可能事件,故答案为:不可能事件;(2)转动转盘,转出的数字大于3的是4,5,6,7四种可能性,一共有六种可能性,故转动转盘,转出的数字大于3的概率是=;(3)由题意可得,可以构成三角形的三条线段是:2、3、2或2、3、3或2、3、4三种可能性,出现的可能性一共6种,故这三条线段能构成三角形的概率是=,即这三条线段能构成三角形的概率是.24.(10分)如图,锐角△ABC的两条高BD与CE相交于点O,且OB=OC.(1)试说明∠ABC=∠ACB;(2)连接AO并延长,交BC于F,若∠BOE=50°,求∠DBC和∠BAF的度数.【分析】(1)根据已知条件证明△BDC≌△CEB,根据全等三角形的性质即可得解;(2)根据直角三角形的两锐角互余得出∠EBO=40°,∠DBC=∠ECB=25°,再根据三角形的三条高所在直线相交于一点得到AF⊥BC,最后根据直角三角形的两锐角互余即可得解.【解答】(1)证明:∵OB=OC,∴∠OBC=∠OCB,即∠DBC=∠ECB,∵BE、CD是两条高,∴∠BDC=∠CEB=90°,在△DBC和△ECB中,,∴△DBC≌△ECB(AAS),∴∠ABC=∠ACB;(2)解:在△BOE中,CE⊥AB,∠BOE=50°,∴∠EBO=90°﹣∠BOE=40°,在△BCE中,CE⊥AB,∴∠EBC+∠ECB=90°,即∠EBO+∠DBC+∠ECB=90°,∵∠DBC=∠ECB,∴∠DBC=∠ECB=25°,∴∠ABC=∠EBO+∠DBC=65°,∵三角形的三条高所在直线相交于一点,∴AF⊥BC,∴∠BAF=90°﹣∠ABC=90°﹣65°=25°.25.(12分)如图,△ABC中,AB=AC,点D是△ABC外一点,且BD=DC,CD⊥AC,点M、N分别在AB、AC上,∠MDN=∠BDC,在AC的延长线上截取了CP=BM,并连接DP.(1)△MBD≌△PCD吗?请说明理由;(2)试说明MN=NP.【分析】(1)由等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠DCB,再根据角的和差得到∠ABD =∠ACD=∠DCP=90°,即可根据SAS判定△MBD≌△PCD;(2)由(1)知,△MBD≌△PCD,即可得到MD=PD,∠MDB=∠PDC,再根据角的和差得到∠MDN =∠NDP,即可根据SAS判定△MDN≌△PDN,根据全等三角形的性质即可得解.【解答】证明:(1))△MBD≌△PCD,理由如下:∵AB=AC,BD=DC,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABC+∠DBC=∠ACB+∠DCB,即∠ABD=∠ACD,∵CD⊥AC,∴∠ABD=∠ACD=∠DCP=90°,在△MBD和△PCD中,,∴△MBD≌△PCD(SAS);(2)由(1)知,△MBD≌△PCD,∴MD=PD,∠MDB=∠PDC,∵∠MDN=∠BDC,∴∠BDM+∠NDC=∠PDC+∠NDC=∠NDP=∠BDC,∴∠MDN=∠NDP,在△MDN和△PDN中,,∴△MDN≌△PDN(SAS),∴MN=NP.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学下册期末试卷一、选择题(共12小题,每小题2分,满分24分)1.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A.2×10﹣5 B.5×10﹣6C.5×10﹣5D.2×10﹣63.下列计算正确的是()A.a2+a3=a5 B.(2a)2=4a C.a2•a3=a5 D.(a2)3=a54.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D .5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°6.一个均匀的正方体木块,每个面上都是分别标有1、3、5、7、9、11,任意掷出正方体木块,朝上的数字为偶数的可能性是()A.很可能B.不可能C.不太可能D.可能7.如图,点P在∠BAC的角平分线上,PD⊥AB,PE⊥AC,垂足分别为D、E,则△APD与△APE全等的理由是()A.SAS B.AAS C .SSS D.HL8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.多项式4a2+ma+25是完全平方式,那么m的值是()A.10 B.20 C.±10 D.±2010.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b211.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.掷一枚质地均匀的硬币,正面朝上的概率B.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率C.从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D.任意买一张电影票,座位号是2的倍数的概率12.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是()A.只有①②④B.只有①②③C.只有②③④D.只有①③④二、填空(每小题3分,共24分)13.水的质量0.00204kg,用科学记数法表示为.14.如图,若AB∥CD,∠C=50°,则∠A+∠E=.15.若x+y=3,xy=2,则x2+y2=.16.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.17.如图,l是四边形ABCD的对称轴,如果AD∥BC,有下列结论:(1)AB∥CD;(2)AB=CD;(3)AB⊥BC;(4)AO=OC其中正确的结论是(把你认为正确的结论的序号都填上).18.小刚向盒中放了8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球.19.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.20.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是.三、解答题(本题共7小题,共52分.)21.(12分)计算:(1)﹣3(x﹣2y)2(2)(﹣2x2)3+x2•x4+(﹣3x3)2.(3)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中:x=﹣2.22.(6分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.23.(6分)某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油升;(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目的地还有400km,车速为60km/h,要到达目的地,油箱中的油是否够用?请说明理由.24.(6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共30只,某小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000…摸到白球的次数m5896116295484601…摸到白球的频率0.580.640.580.590.6050.601…(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?25.(6分)已知:如图,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.26.(6分)在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E 重合),且FD⊥BC于D;(1)如图1,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合)时,如图2,∠EFD与∠C﹣∠B有怎样的数量关系?请说明理由.27.(10分)如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒.(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)在图2中,当点P从点B开始运动,点Q从点C出发,以vcm/秒的速度沿CD 向点D运动,当点P到达C点或点Q到达D点时,P、Q运动停止,问是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.北师大版七年级数学下册期末试卷一、选择题(本题共12个小题,每小题2分,共24分)1.下列运算正确的是( )A 、532a a a =⋅ B 、1836a a a =⋅ C 、()523a a = D 、1055a a a =+2.下面有4个汽车标志图案,其中••是不轴对称图形的是( )3.0.000043米用科学记数法表示,正确的是( )A 、4103.4-⨯ B 、5103.4-⨯ C 、6103.4-⨯ D 、51043-⨯ 4.若(x 2+mx +1)(x ﹣2)的积中x 的二次项系数为零,则m 的值是( )A .1B .﹣1C .﹣2D .25.如图2,已知B 、E 、C 、F 在同一直线上,BE=CF ,AB ∥DE ,则下列条件中,••能不判断△ABC ≌△DEF 是的( )A 、AB=DEB 、∠A=∠DC 、AC ∥DFD 、AC=DF 6.下列各幅图像中,可以大致反映成熟的苹果从树上掉下来的过程中(即落地前),速度随时间变化情况的是( )7.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图3所示的统计图,则符合这一结果的实验可能是( ) A .掷一枚质地均匀的硬币,正面朝上的概率B .从一个装有2个白球和1个红球(球除了颜色外,完全相同)的不透明袋子中任意摸出一球,摸到红球的概率C .从一幅去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D .任意买一张电影票,座位号是2的倍数的概率 8.下列各题中,适合用平方差公式计算的是( ) A .()()a b b a -+33 B .⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+131131a a C .()()b a b a +-- D .()()b a b a +---9.以下所给线段长为三边,能构成三角形的是( )A 、1cm ,2cm ,3cmB 、3cm ,4cm ,6cmC 、1cm ,1cm ,3cmD 、2cm ,3cm ,7cm 10.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )11.一只小狗在如图5的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .154 B .31 C .51 D .15212.如图4,边长为(a+2)的正方形纸片剪出一个边长为a 的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则另一边长是( )A .2B .2a+4C .2a+2D .4a+4 二、填空题(每小题3分,共15分.). 13.计算()()a b a b -++= ;14.若小球在如图6所示的地面上自由滚动,并随即停留在某块方砖上,那么它最终停留在黑色区域的概率是______________。

15.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4= 度.16.如图7,在△ABC 中,已知边AC 的垂直平分线DE 交BC 于点D ,连接AD ,若BC=5,AB=3,则△ABD 的周长为______________。

17.如图8,在△ABE 中,已知AB=BE ,过E 作EF ⊥AB 于F ,且△BEF 的三条角平分线交于点G ,连接AG ,则∠AGB=____________度。

三、解答题(共61分)18.计算(6分)()()214.3311)1(012017----⎪⎭⎫ ⎝⎛+--π. )(4)2)(2)(2(b a a b a b a ---+19.(5分)先化简,再求值:[(x ﹣2y )2﹣(x +y )(3x ﹣y )﹣5y 2]÷(2x ),其中x=﹣2,y=1.20.(5分)经测定声音在空气中传播的速度(简称声速)y (m/s )和气温x (℃)的关系式为y=x +331,如果气温为22℃时,某人看到烟花燃放5秒后才听到响声,那么此人与燃放烟花所在地大约相距多远?21.(5分)如图,已知线段a 和h .求作:△ABC ,使得AB=AC ,BC=a ,且BC 边上的高AD=h .要求:尺规作图,不写作法,保留作图痕迹.22.(6分)如图,在△ABC 中,∠C=90º,DB ⊥BC 于点B ,分别以点D 和点B 为圆心,以大于21DB 的长为半径作弧,两弧相交于点E 和点F ,作直线EF ,延长AB 交EF 于点G ,连接DG 。

相关文档
最新文档