大孔吸附树脂的应用
ab8大孔吸附树脂原理
ab8大孔吸附树脂原理大孔吸附树脂是一种具有大孔结构的高分子吸附剂,主要用于有机物的分离、纯化和富集。
AB8大孔吸附树脂是其中的一种,其原理主要包括以下几个方面:1. 分子筛作用:大孔吸附树脂具有较大的孔径和孔隙率,这使得它能够根据分子的大小进行选择性吸附。
当待分离物质通过树脂柱时,较小的分子可以进入树脂的大孔内部,而较大的分子则被排斥在外。
这种基于分子大小的差异实现分离的过程被称为分子筛作用。
2. 物理吸附:AB8大孔吸附树脂主要通过物理吸附的方式实现对有机物的吸附。
物理吸附是指吸附剂与吸附质之间通过范德华力、静电引力等非化学键作用力形成的吸附。
这种吸附力较弱,容易受温度、压力等外界条件的影响,因此可以通过改变这些条件来实现对吸附和解吸的控制。
3. 化学吸附:在某些情况下,AB8大孔吸附树脂还可以通过化学吸附的方式实现对有机物的吸附。
化学吸附是指吸附剂与吸附质之间通过化学键作用力形成的吸附。
这种吸附力较强,不易受外界条件的影响,因此可以实现对吸附物的高选择性和高稳定性。
4. 动态平衡:在AB8大孔吸附树脂的吸附过程中,吸附和解吸是同时进行的。
当溶液中的有机物浓度较低时,吸附速率大于解吸速率,树脂上的吸附量逐渐增加;当溶液中的有机物浓度较高时,解吸速率大于吸附速率,树脂上的吸附量逐渐减少。
当达到动态平衡时,树脂上的吸附量不再发生变化,此时溶液中的有机物浓度称为平衡浓度。
5. 洗脱:为了实现对有机物的分离和纯化,需要将已经吸附在AB8大孔吸附树脂上的有机物从树脂上洗脱下来。
洗脱的方法主要有以下几种:a) 增加溶液中的有机溶剂浓度:通过增加溶液中的有机溶剂浓度,降低溶液的极性,从而减弱有机物与树脂之间的范德华力和静电引力,实现对有机物的洗脱。
b) 改变溶液的pH值:通过改变溶液的pH值,影响有机物的离子化程度,从而改变有机物与树脂之间的相互作用力,实现对有机物的洗脱。
c) 使用盐析剂:通过添加盐析剂,改变溶液的离子强度,从而影响有机物与树脂之间的相互作用力,实现对有机物的洗脱。
大孔吸附树脂的选择及应用
大孔吸附树脂的选择及应用大孔吸附树脂是一种常用于生物工艺领域的分离纯化树脂,其结构特点是具有大孔径,高比表面积和优异的吸附性能。
在选择和应用大孔吸附树脂时,需要考虑以下几个因素。
一、吸附性能大孔吸附树脂具有很好的吸附性能,可以用于分离和浓缩目标分子,但由于树脂结构和吸附性质的不同,选择树脂时需要考虑目标分子的特性。
例如,对于分子量较大的蛋白质或DNA,可选择孔径较大、分子量较大的树脂,如BioRad的Macro-Prep High Q。
而对于低分子量物质的分离,则需要选择适合小分子的树脂,如BioRad的Macro-Prep High S和Amersham的Pharmacia Q Sepharose Fast Flow。
二、树脂稳定性大孔吸附树脂在使用过程中需要经受许多稀释、吸附和洗脱等过程,因此,有关树脂的稳定性也是选择树脂时需要考虑的因素。
一般来说,具有更高化学稳定性的树脂会更加耐用,因此,可以选择或研究树脂的稳定性、耐用性等性质作为选择标准。
三、机械稳定性在使用大孔吸附树脂时,机械稳定性也是需要考虑的因素。
该树脂在使用过程中会经受许多摇床、旋转、搅拌等操作,因此需要选择具有足够机械稳定性的树脂。
通常来说,树脂颗粒大小越大、颗粒分布越均匀,其机械稳定性越好。
四、重复性和可重复性大孔吸附树脂在多次使用过程中需要具有足够的重复性和可重复性,并保持其性能不降低。
基于这个原则,可以选择那些具有较高重复性和可重复性的树脂。
同时,可以研究树脂的温度、PH值等因素,了解这些因素对树脂吸附性能的影响,从而更好地控制和调节使用条件。
五、价格和市场供应树脂选择时,价格和市场供应也是一个重要的考虑因素。
一般来说,价格越高的树脂往往具有更好的吸附性能和更高的机械稳定性,但选择树脂时需要平衡价格和性能。
此外,不同品牌和供应商的树脂性能也可能有所不同,因此选择供应商时需要进行充分的比较和评估。
综上所述,选择和应用大孔吸附树脂需要考虑多个因素,包括树脂的吸附性能、稳定性、机械稳定性、重复性和可重复性、价格和市场供应等因素。
大孔吸附树脂的种类及用途
1. D101大孔吸附树脂大孔吸附树脂是一种具有多孔海绵状结构人工合成的聚合物吸附剂,依靠树脂骨架和被吸附的分子(吸附质)之间的范德华力,通过树脂巨大的比表面积进行物理吸附而达到从水溶液中分离提取水溶性较差的有机大分子的目的。
采用大孔吸附树脂提取中草药有效成分如皂甙类、黄酮类、生物碱类,具有操作简便、成本较低、树脂可反复使用等优点,适于工业化规模生产。
D101树脂是一种非极性吸附剂,比表面积为480~530m2/g。
用途:绞股蓝皂甙、三七皂甙、喜树碱等皂甙和生物碱提取。
2. D101B大孔吸附树脂弱极性吸附剂,比表面积450~500 m2/g。
是D101树脂的补充和改进,虽然比表面积略小于D101,但由于树脂内部孔表面带有弱极性基团,对于水溶性差从水相扩散到树脂相阻力较大的黄酮类有机物吸附速度快,吸附量大。
用途:银杏黄酮、茶多酚、黄芪甙等的提取。
3. XDA-1大孔吸附树脂铁塔牌XDA-1大孔吸附树脂是一种高交联度、高比表面积、不带有官能团的非极性聚合物吸附剂。
其连续的聚合物相和连续的孔结构赋予其优异的吸附性能。
XDA-1的聚合物结构使其具有优良的物理、化学和热稳定性。
根据被吸附介质的不同性质,XDA-1可用丙酮、甲醇、或稀碱溶液再生,反复使用于循环的工业过程中。
用途:XDA-1主要用苯酚生产企业、染化中间体生产企业、和其它化工、医药、农药生产企业。
还可以从含有大量无机盐的水溶液中分离除去苯胺类、氯化苄、苄醇、氯代苯、山梨酸、卤代烃类等有机化合物,也可用于其它极性溶剂中非极性介质的富集。
4. XDA-1B大孔吸附树脂带有弱极性基团的吸附剂,比表面积500~600 m2/g。
是XDA-1树脂的补充和改进,虽然比表面积小于XDA-1,但由于树脂内部孔表面带有弱极性基团,对于水溶性差从水相扩散到树脂相阻力较大的有机物吸附速度快,吸附量大。
5. XDA-7均孔脱色树脂采用特定交联剂和工艺合成的XDA-7均孔脱色专用树脂,是带有季胺基团的强碱性树脂。
大孔树脂吸附原理及应用
解吸效果的评价:根据洗脱曲线,选择洗脱峰最集中的条件,如喜 树碱的不同洗脱剂的洗脱曲线见图。
利用吸附剂对液体或气体某一组分选择性吸附的能力, 使其富集在吸附剂表面的过程。
待分离料液与 吸面
吸附质 解吸回
料液流 出
物理吸附:吸附作用力为分子间引力。无选择性、无须高活化 能、吸附层可为多层或单层,吸附和解吸速度较快。
化学吸附:吸附作用力为化学键合力。需要高活化能、只能以 单层吸附、选择性强、吸附和解吸速度慢。
4、 树脂的解吸
解吸时,通常先用水,继而以醇—水洗脱,逐步加大醇的 浓度,同时配合适当理化反应和薄层层析(如硅胶薄层层析、 纸层析、聚酰胺薄层层析及HLPC等)作指导,洗脱液的选择 及其浓度、用量对解吸效果有着显著影响。如在赤芍总苷生 产工艺条件研究时发现,在用大孔吸附树脂进行分离、解析 时,先用水洗脱至还原糖反应显阴性(Molish反应检测),改 用10%、20%、30%、50%、95%浓度的乙醇梯度洗脱,结 合高效液相色谱法检测,发现10%、20%乙醇洗脱液中均含 有芍药苷,而30%以上浓度的乙醇中未检出,故选用30%乙 醇洗脱,即可将柱上的芍药苷全部解吸。
• 大孔树脂的吸附力是由于范德华力或产生氢键的结果。其 中,范德华力是一种分子间作用力,包括定向力、色散力、 诱导力等。同时由于树脂的多孔性结构使其对分子大小不 同的物质具有筛选作用。因此,有机化合物根据吸附力的 不同及分子量的大小,在树脂的吸附机理和筛分原理作用 下实现分离。
4 大孔树脂的性质及类型 大孔树脂按其极性大小和所选用的单体分子结构不同,可分为非
• 方法:吸附树脂的预处理应在树脂柱中进行。一般 是将树脂装至柱高的2/3处,用水进行反洗,使树 脂层松散、展开,将树脂的微细粉末及一些机械杂 质洗去。然后放出水,至水面略高于树脂的层面。 接着,用酒精以适当的流速淋洗,至流出的酒精中 无油溶性杂质为止。最后用水洗出酒精即可使用。 这样可洗出小分子有机物。
大孔吸附树脂应用的原理
大孔吸附树脂应用的原理1. 简述大孔吸附树脂的概念大孔吸附树脂,又称大孔吸附剂,是一种具有特殊孔径大小和分布的吸附材料。
与传统的小孔吸附树脂相比,大孔吸附树脂具有更大的孔径,提供更高的表面积和更快的吸附速度。
大孔吸附树脂在吸附分离、催化反应、脱色和脱盐等方面具有广泛的应用。
2. 大孔吸附树脂的基本结构大孔吸附树脂的基本结构由树脂颗粒和孔道组成。
树脂颗粒是吸附树脂的主体,具有良好的化学稳定性和物理强度。
孔道分布于树脂颗粒内部,形成一种网状结构。
孔道的大小和分布对树脂的吸附性能具有重要影响。
3. 大孔吸附树脂的应用原理大孔吸附树脂的应用原理基于其孔径和表面积的特点。
树脂颗粒的大孔径提供了较大的表面积,使其能够吸附更多的目标物质。
同时,孔道的分布和连通性使得目标物质可以进入树脂颗粒内部,并在内部表面上发生吸附作用。
大孔吸附树脂的应用可以通过以下几个方面来解释其原理:3.1 吸附分离大孔吸附树脂可以对液态或气态的目标物质进行吸附分离。
当目标物质进入树脂颗粒的孔道中时,会与树脂表面上的吸附位点发生相互作用,形成吸附层。
吸附层的形成使得目标物质与溶液或气体分离,从而实现了吸附分离的效果。
3.2 催化反应大孔吸附树脂可以作为催化剂的载体,用于催化反应。
在催化反应中,树脂颗粒的大孔径可以提供更多的催化活性位点,并增加反应物的接触面积。
同时,孔道的连通性使得反应物可以在树脂内部扩散,提高反应效率和选择性。
3.3 脱色和脱盐大孔吸附树脂可以通过吸附色素或离子的方式实现脱色和脱盐。
树脂颗粒的大孔径可以容纳大分子的目标物质,并与之发生吸附作用。
吸附后,目标物质会从溶液中被树脂吸附,实现脱色和脱盐的效果。
4. 大孔吸附树脂的优势和应用领域大孔吸附树脂相较于传统的小孔吸附树脂具有以下优势:•更高的吸附速度:大孔吸附树脂具有更大的孔径,提供更大的表面积,使得吸附速度更快。
•更好的化学稳定性:大孔吸附树脂通常采用高分子材料制备,具有较好的化学稳定性。
大孔树脂吸附树脂的特点和应用
大孔树脂吸附树脂的特点和应用大孔树脂是一种具有大孔径的吸附树脂。
其主要特点和应用如下:一、特点:1.大孔径:相比于传统的吸附树脂,大孔树脂具有更大的孔径,能够较好地吸附大分子物质和悬浮物质,并且能够减小树脂表面积,减少吸附速度较慢的小分子物质的吸附。
2.高吸附容量:由于大孔树脂具有更大的孔径和较低的表面积,其吸附容量通常要高于传统吸附树脂。
3.耐酸碱性能好:大孔树脂由于采用了特殊的树脂骨架和功能基团,能够耐受较强酸碱介质的腐蚀,具有较好的稳定性。
4.耐温性能好:大孔树脂通常能够耐受较高的温度,一般可达到100°C以上,甚至高达200°C以上。
这使得其在高温环境下也能稳定地进行吸附。
二、应用:1.脱硫:大孔树脂适用于煤气、石油和化工等行业的燃气脱硫,可以吸附硫化氢、二硫化碳等有害物质,达到净化燃气的目的。
2.脱色:大孔树脂对一些有色物质有着较好的吸附性能,可以用于食品工业、化工工业等领域的脱色处理,去除有色杂质,提高产品质量。
3.脱水:大孔树脂可以吸附水分,对于一些需要低含水量的产品,如化工原料、粉料等,可以通过大孔树脂吸附脱水来达到要求的含水量。
4.分离:大孔树脂在催化剂和分离介质中有广泛应用。
其具有较大的吸附容量和选择性,可以用于分离目标物质和废液中的杂质。
5.精制:大孔树脂可以用于精制工艺中的催化剂的制备,如对一些金属离子和有机物的分离、纯化,并用于催化剂的再生。
总结起来,大孔树脂具有较大的孔径、高吸附容量、耐酸碱性能好、耐温性能好等特点,在脱硫、脱色、脱水、分离、精制等多个领域都有广泛的应用。
同时,随着科技的不断进步,大孔树脂的材料和制备工艺也在不断的改进和创新,使其应用范围得到了进一步的扩展和提升。
第五章:大孔吸附树脂
目前主要应用于
1.天然植物中活性成份的提取分离 如:皂苷、黄酮、内酯、鞣质、生物碱 2.中药复方药物提取及质量标准制定 如:生脉注射液、六味地黄颗粒、舒肝止痛片 3.生物化学制品的净化、分离、回收 4.工业废水、废液的处理
合成方法(以聚苯乙烯系列为例)
苯乙烯
+
二 乙 烯苯 +
甲苯 二甲苯
悬 浮 共聚
流份(序号) 75 90 110
峰面积S 1019.507 2141.09 2898.4314
111
120 125 130 140
26298.84
25466.47 34935.99 29823.14 31768.29
上柱工艺条件的筛选
1、上样溶液的pH值
根据化合物结构特点,灵活改变溶液PH 值,可使提 纯工作达到理想效果 大孔树脂对中药有效成份的吸附应遵循类似物容易 吸附类似物的原则,即一般情况下,酸性化合物在适当 酸性溶液中充分被吸附,碱性化合物则在适当碱性条件 下较好地被吸附,中性化合物可在大约中性的条件下被 吸附。
③药液浓度 大孔树脂的吸附量与药液浓度符合 Frendlich 经典吸附式和 Langmuir 经典吸附式,即药液浓度增加,吸附量增加。但药液 浓度增加有一定限度,即不能超过树脂的吸附容量。 ④溶剂 一种物质在某种溶剂中溶解度越大,树脂对该物质的吸附力 就越小。 ⑤上柱药液的温度 上柱药液的温度升高,树脂的比上柱量下降,说明中药成 分在树脂上的吸附过程为-放热反应。低温有利于树脂吸附容量 的提高,温度太高会影响吸附效果。 实践证明,室温对试验几乎无影响,超过 50℃时,吸附量 明显下降,而在一定的温度范围内,上柱药液的温度越高,洗 脱效果越好,故应注意上柱药液温度
⑥盐浓度
大孔吸附树脂的种类及用途解析
1. D101大孔吸附树脂大孔吸附树脂是一种具有多孔海绵状结构人工合成的聚合物吸附剂,依靠树脂骨架和被吸附的分子(吸附质)之间的范德华力,通过树脂巨大的比表面积进行物理吸附而达到从水溶液中分离提取水溶性较差的有机大分子的目的。
采用大孔吸附树脂提取中草药有效成分如皂甙类、黄酮类、生物碱类,具有操作简便、成本较低、树脂可反复使用等优点,适于工业化规模生产。
D101树脂是一种非极性吸附剂,比表面积为480~530m2/g。
用途:绞股蓝皂甙、三七皂甙、喜树碱等皂甙和生物碱提取。
2. D101B大孔吸附树脂弱极性吸附剂,比表面积450~500 m2/g。
是D101树脂的补充和改进,虽然比表面积略小于D101,但由于树脂内部孔表面带有弱极性基团,对于水溶性差从水相扩散到树脂相阻力较大的黄酮类有机物吸附速度快,吸附量大。
用途:银杏黄酮、茶多酚、黄芪甙等的提取。
3. XDA-1大孔吸附树脂铁塔牌XDA-1大孔吸附树脂是一种高交联度、高比表面积、不带有官能团的非极性聚合物吸附剂。
其连续的聚合物相和连续的孔结构赋予其优异的吸附性能。
XDA-1的聚合物结构使其具有优良的物理、化学和热稳定性。
根据被吸附介质的不同性质,XDA-1可用丙酮、甲醇、或稀碱溶液再生,反复使用于循环的工业过程中。
用途:XDA-1主要用苯酚生产企业、染化中间体生产企业、和其它化工、医药、农药生产企业。
还可以从含有大量无机盐的水溶液中分离除去苯胺类、氯化苄、苄醇、氯代苯、山梨酸、卤代烃类等有机化合物,也可用于其它极性溶剂中非极性介质的富集。
4. XDA-1B大孔吸附树脂带有弱极性基团的吸附剂,比表面积500~600 m2/g。
是XDA-1树脂的补充和改进,虽然比表面积小于XDA-1,但由于树脂内部孔表面带有弱极性基团,对于水溶性差从水相扩散到树脂相阻力较大的有机物吸附速度快,吸附量大。
5. XDA-7均孔脱色树脂采用特定交联剂和工艺合成的XDA-7均孔脱色专用树脂,是带有季胺基团的强碱性树脂。
大孔吸附树脂技术简介
大孔吸附树脂技术简介大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型树脂,是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。
在实际应用中对一些与其骨架结构相近的分子如芳香族环状化合物尤具很强的吸附能力。
大孔吸附树脂广泛应用于制药及天然植物中活性成分如皂甙、黄酮、内脂、生物碱等大分子化合物的提取分离。
对人参皂甙、三七皂甙、绞股兰皂甙、薯蓣皂甙、甜菊皂甙、甘草甜素、银杏黄酮内脂,山楂黄酮、黄芪皂甙、橙皮甙、淫羊藿黄酮、大豆异黄酮、茶多酚、洋地黄强心甙、麻黄精粉、柚甙、毛冬青黄酮甙、红豆杉生物碱、多种天然色素、中药复方药物提取等以及生物化学制品的净化、分离、回收都有良好的效果。
并在抗生素、维生素、氨基酸、蛋白质提纯,生化制药方面有很广泛的应用。
大孔树脂吸附分离工艺是对中药提取工艺影响大、带动面最广的技术之一。
该工艺操作简便,成本较低,树脂可反复使用,适合工业生产。
按日投产3吨生药计算,增加固定资产的投资15万元,而每年因此节约的能耗、辅料、包装材料、储藏、运输费用至少在百万以上。
因此,它具有很强的推广应用价值,将对中药提取技术的跳跃式进步起到促进作用。
同时,大孔吸附树脂对工业废水,废液的处理也有着广泛的应用。
如废水中含苯、硝基苯、氯苯、氟苯、苯酚、硝基酚、氨基苯酚、双酚A、对甲酚、奈酚、苯胺、邻苯二胺、对苯二胺、水杨酸、2,3酸、奈磺酸等有机物均具有很好的吸附、回收净化作用。
且对废液中有害物质的浓度含量适应性强,并可作到一次性达标。
可实现工业生产中有害物质回收再用、化害为利、变废为宝的目的。
1.大孔吸附树脂产品介绍相应标准号:GB/T601-88,GB/T602-88,GB/T603-88,GB/T642-86,GB/T6679-86,Q/CBN01-2000包装 20KG/桶国内外型号主要用途对应牌号天然植物提取,化工分离。
大孔吸附树脂应用的原理
大孔吸附树脂应用的原理首先,大孔吸附树脂的的孔结构是其能发挥吸附性能的关键。
这种树脂具有开放的大孔结构,孔径通常在50~1000Å之间,使得其具有很大的表面积和孔容量。
这样的孔结构使得大孔吸附树脂能够接触到更多的目标物质,有助于增加吸附效果。
其次,大孔吸附树脂的吸附原理主要包括物理吸附和化学吸附两个方面。
物理吸附是指吸附树脂与目标物质之间由于分子间力吸引而形成的吸附作用。
这种吸附是一个可逆的过程,吸附物质可以通过改变实验条件如温度、压力等来解吸。
物理吸附主要通过分子间的范德华力、静电力等相互作用来实现吸附。
在大孔吸附树脂中,由于其较大的孔径和表面积,有助于增加吸附物质与树脂之间的接触面积和接触概率,从而增加吸附效果。
化学吸附是指吸附树脂与目标物质之间发生化学反应而形成的吸附作用。
这种吸附是一个不可逆的过程,吸附物质与树脂发生了化学键的形成,需要通过特定的条件如pH、温度等来解吸。
化学吸附主要基于目标物质与树脂之间的化学键结合,这种结合是极其稳定的,可以经受高温、酸碱等极端条件的影响。
大孔吸附树脂通常具有很高的比表面积和孔容量,提供了足够多的活性位点,有利于化学吸附的发生。
在实际应用中,大孔吸附树脂的选择需要考虑目标物质的特性和工艺要求。
例如,如果目标物质为中性有机物,物理吸附可能会是主要的吸附方式;而如果目标物质为离子化合物,静电相互作用可能会成为主要的吸附机制。
此外,吸附树脂的选择还需要考虑树脂的选择性、稳定性、机械强度等因素。
总之,大孔吸附树脂应用的原理主要基于树脂的大孔结构和物理、化学吸附的相互作用。
了解吸附树脂的特点和目标物质的性质,选择适合的大孔吸附树脂,在实际工艺中进行调整和优化,可以实现高效的吸附分离、纯化、浓缩等过程。
大孔吸附树脂的作用
大孔吸附树脂的作用大孔吸附树脂啊,就像是微观世界里的超级海绵宝宝。
你看啊,它静静地待在那儿,就等着各种物质“自投罗网”呢。
这东西的作用可不得了。
它就像是一个挑剔的美食家在众多食材里挑选自己想要的美味。
在化学的大杂烩里,大孔吸附树脂专挑那些它感兴趣的分子,其他的就只能在旁边干瞪眼。
如果把溶液比作一个熙熙攘攘的城市,那大孔吸附树脂就是最精明的警察,精准地把那些“坏蛋”分子给抓住。
它在制药领域就像是一个秘密武器。
想象一下,药物就像一群调皮的小精灵,在各种原料里藏着掖着。
大孔吸附树脂就像一个拥有魔法口袋的哆啦A梦,轻松地把那些有用的小精灵吸附出来,把杂质什么的统统挡在外面。
这时候的大孔吸附树脂就像是一个超级保镖,只让好的药物成分通过。
在废水处理方面,大孔吸附树脂简直是个环保卫士里的超级英雄。
废水里的污染物就像是一群张牙舞爪的小怪兽,而大孔吸附树脂呢,就像奥特曼一样挺身而出。
它张开那密密麻麻的大孔,像一张张大口,把那些污染物小怪兽都吞进去,然后让干净的水可以欢快地流走,就像重获自由的小鸟。
对于天然产物的提取,大孔吸附树脂就是一个寻宝大师。
天然产物就像隐藏在深山老林里的宝藏,大孔吸附树脂就像是那个拿着藏宝图的探险家。
它在复杂的混合物中翻找,不放过任何一个可能的宝藏分子,然后把那些珍贵的东西牢牢吸附,就像把宝贝紧紧抱在怀里一样。
要是把大孔吸附树脂比作一个人的话,那它一定是一个极其自律的人。
它不会被周围的干扰所影响,只按照自己的吸附规则来办事。
就像一个铁面无私的法官,不管是大分子还是小分子,只要不符合它的要求,就别想通过它的大孔。
而且大孔吸附树脂还有点像一个智能分拣员。
在一堆杂乱无章的货物(分子)里,它能够快速地把不同类型的货物分拣出来,该吸附的吸附,不该吸附的就放在一边。
这种能力简直比最熟练的仓库管理员还要厉害。
它又像是一个微观世界里的魔法师,能把复杂的混合物变得简单。
原本像一团乱麻的溶液,经过大孔吸附树脂的魔法之手,一下子就变得条理清晰,有用的成分被吸附,无用的成分被去除,就像把一团乱毛线变成了漂亮的围巾。
大孔树脂吸附原理及应用
利用吸附剂对液体或气体某一组分选择性吸附的能力, 使其富集在吸附剂表面的过程。
A
2
待分离料液与 吸附剂混合
吸附过程
吸附质被吸附 剂吸附到表面
吸附质 解吸回
料液流 出
物理吸附:吸附作用力为分子间引力。无选择性、无须高活化 能、吸附层可为多层或单层,吸附和解吸速度较快。 化学吸附:吸附作用力为化学键合力。需要高活化能、只能以 单层吸附、选择性强、吸附和解吸速度慢。
A
10
• 方法:吸附树脂的预处理应在树脂柱中进行。一般 是将树脂装至柱高的2/3处,用水进行反洗,使树 脂层松散、展开,将树脂的微细粉末及一些机械杂 质洗去。然后放出水,至水面略高于树脂的层面。 接着,用酒精以适当的流速淋洗,至流出的酒精中 无油溶性杂质为止。最后用水洗出酒精即可使用。 这样可洗出小分子有机物。
A
12
A
13
• (2)固定床吸附装置
• 该装置实际上是一种常规的离子交换柱,常用的为 几百升至几百立方米的不锈钢或搪瓷柱,下部或上、 下部装有80目的滤网(实验室则常用玻璃柱)。
• 这种吸附树脂是固定的,溶液是流动的,因而被称 为动态吸附。固定床因装填的不均匀性、气泡、壁 效应或沟流的存在,吸附饱和层面的下移常是不整 齐的,即存在所谓“偏流”现象。并且当吸附过程 临近结束,部分吸附质从柱子随溶剂漏出时,柱子 底部的树脂层尚未达到吸附平衡,因而柱式吸附时 树脂的负载量可能会有些变化。
聚合 单体
交联 剂
致孔剂
各成分主要作用
苯乙烯
二乙烯苯
明胶溶液 致孔剂
原料A组成
6
A
7
• 3. 树脂的特性及分离原理
• 大孔吸附树脂是通过物理吸附从溶液中有选择地吸附有 机物质,从而达到分离提纯的目的。
大孔吸附树脂色谱分离原理是
大孔吸附树脂色谱分离原理是
大孔吸附树脂色谱分离是一种基于吸附作用的分离技术,其原理如下:
1. 吸附作用:大孔吸附树脂具有丰富的微孔和大孔结构,能够吸附目标物质。
在色谱分离过程中,待分离混合物通过树脂柱时,目标物质会与树脂表面的活性位点相互作用而被吸附。
2. 选择性:大孔吸附树脂对不同物质具有不同的吸附能力,这取决于物质的化学性质、分子量、极性等因素。
通过选择合适的树脂和洗脱条件,可以实现对混合物中不同成分的选择性分离。
3. 洗脱过程:当混合物通过树脂柱后,使用适当的洗脱剂(通常是有机溶剂或水溶液)进行洗脱。
洗脱剂会与被吸附的物质竞争活性位点,从而将目标物质从树脂上解吸下来。
4. 分离效果:由于不同物质在树脂上的吸附能力不同,洗脱过程中它们会以不同的速度从树脂上解吸下来,从而实现分离。
通过控制洗脱条件(如洗脱剂的种类、浓度、流速等),可以优化分离效果。
大孔吸附树脂色谱分离具有操作简便、分离效率高、选择性好等优点,广泛应用于生物大分子、天然产物、药物等领域的分离和纯化。
第五章:大孔吸附树脂
2.装柱与药液的上柱吸附
药液上柱前的预处理: 为避免大孔树脂被污染堵塞,药液上柱前一般需经过滤处 理,除去较多的悬浮颗粒杂质,保证树脂的使用完全顺利。 (1) 泄漏曲线与吸附容量的考察 树脂吸附容量 = 泄漏点前上柱样品体积( ml)× 样品浓度( mg.L-1 ) 有人用大孔树脂D1300精制当归煎液时,对其泄漏曲线做了如 下考察研究:
三菱化学树脂性能表征
类型 品名 聚苯乙烯二乙烯基苯类 DIAION HP系列 HP20 水含量% 56 HP50 49 SEPABEDS SP系列 SP825 58 SP700 SP70 SP207 50 聚甲基丙烯酸酯类 DIAION HP系列 HP2MG 61
比表面㎡/g
孔体积ml/g 频度孔半径Å 比重 外观密度G/L 溶胀
流份(序号) 75 90 110
峰面积S 1019.507 2141.09 2898.4314
111
120 125 130 140
26298.84
25466.47 34935.99 29823.14 31768.29
上柱工艺条件的筛选
1、上样溶液的pH值
根据化合物结构特点,灵活改变溶液PH 值,可使提 纯工作达到理想效果 大孔树脂对中药有效成份的吸附应遵循类似物容易 吸附类似物的原则,即一般情况下,酸性化合物在适当 酸性溶液中充分被吸附,碱性化合物则在适当碱性条件 下较好地被吸附,中性化合物可在大约中性的条件下被 吸附。
大孔吸附树脂分离技术
湖南农业大学 中药资源与开发系
大孔树脂(macroporous resin)是一种具有 多孔立体结构,人工合成的有机高分子聚合物。 由于大孔吸附树脂能吸附液体中的物质,故 又称为大孔吸附树脂 (macroporous absorbing resin )。
大孔吸附树脂
生产厂家
型号
树脂 结构
极性
比表面 积m2/g
孔径 孔度 nm %
孔容 ml/g
D-101
天津农药股 D-101-I 份有限公司 DA-201 江苏水处理 工程集团 DA201-B 有限公司 DA201-C 西安蓝深交 换吸附材料 有限责任 公司 山东鲁抗医 药集团股份 有限公司 天津正天成 澄清技术 LSA-10 LSA-20 DA201-A
极性大孔吸附树脂是指 含酰胺基、氰基、酚羟基等 含氮、氧、硫极性功能基的 吸附树脂,它们通过静电相 互作用吸附极性物质,如丙 烯酰胺。
丙烯酰胺大孔树 脂
按其孔径孔隙大小不同可分为
:
大孔 R(半径)>50nm 过度孔 50nm > R > 5nm 微孔
R < 5nm
国外主要大孔吸附树脂性能表
生产厂家 (品牌) 型号 树脂 结构 极性 比表面积 孔径 孔度 孔容 交联剂 m2/g nm % ml/g
有很大的比表 面积、一定的 孔径、吸附容 量,有较强的 机械强度,含 水分40一75%。
优点与缺点:
1,优点:它具有吸附快,解吸率高、吸附容量大、洗脱率 高、树脂再生简便等优点。
2,缺点:价格高,吸附效果容易受到流速和浓度的影响, 品种有限,操作复杂,技术要求高,造成有毒物质。
(二)大孔吸附树脂的分类
500-550
9-10
极性
250-300
45-50 1.50-1.65
(三)分离纯化操作步骤
1)树脂的预处理
预处理的目的:为了保证制剂最后用药安全。树脂中含有残 留的未聚合单体,致孔剂,分散剂和防腐剂对人体有害。 预处理的方法:乙醇浸泡24h→用乙醇洗至流出液与水1:5 不浑浊→用水洗至无醇味→5%HCl通过树脂柱,浸泡2-4h→ 水洗至中性→2%NaOH通过树脂柱,浸泡2-4h→水洗至中性, 备用。
大孔树脂吸附原理及应用
大孔树脂吸附原理及应用大孔树脂是一种具有高吸附性能的材料,它的吸附原理以及应用广泛。
本文将从大孔树脂的基本特点出发,详细介绍大孔树脂的吸附原理及其应用。
大孔树脂主要特点:1.喉道直径较大:大孔树脂的喉道直径通常在1-100纳米之间,相比于微孔树脂的喉道直径通常在2纳米以下,大孔树脂的孔径更大,具有更高的吸附性能。
2.孔容量较大:由于大孔树脂拥有更多的孔隙结构,使得其孔容量较大,能够吸附更多的目标物质。
3.吸附速度快:由于大孔树脂的孔径较大,使得目标物质能够更快地进入树脂的内部,从而提高了吸附速度。
大孔树脂的吸附原理:大孔树脂的吸附原理主要包括静电吸附、化学吸附以及物理吸附。
静电吸附是大孔树脂的主要吸附形式,它是由于树脂中的电荷与目标物质的电荷之间的相互作用而产生的。
当目标物质通过树脂孔隙时,树脂表面带有电荷的官能团与目标物质之间发生静电吸附。
化学吸附是指大孔树脂与目标物质之间发生化学反应,从而形成化学键而实现吸附。
物理吸附是指大孔树脂与目标物质之间的范德华力作用,从而实现吸附。
这三种吸附形式可能同时存在,各有各的特点。
大孔树脂的应用:1.分离纯化:大孔树脂可以用于分离纯化目标物质,例如生物制药领域中的蛋白质纯化,通过大孔树脂的吸附作用,可以有效地分离目标蛋白质。
2.废水处理:大孔树脂可以用于废水处理中的吸附去除,例如吸附去除有机物、重金属离子等。
它具有较高的吸附容量和吸附速度,可以有效地去除废水中的污染物。
3.气体吸附:大孔树脂可以用于气体的吸附,例如二氧化碳的吸附分离和储存。
由于大孔树脂具有较大的孔径和孔容量,可以有效地吸附二氧化碳,并实现其分离和储存。
4.药物传递系统:大孔树脂可以用于制备药物传递系统,例如制备药物缓释控制器,通过药物在大孔树脂中的吸附和释放,实现药物的缓慢释放和控制释放。
5.萃取分离:大孔树脂可以用于分离和富集目标物质,例如在环境监测中,用大孔树脂吸附土壤或水中的污染物,然后进行分析检测。
大孔吸附树脂-
大孔吸附树脂的分类 大孔树脂的吸附特性主要取决于吸附材 料的表面性质、比表面积和孔径。通过选择 各种单体、致孔剂和交联剂,可以对孔结构 进行调制;还可以通过表面的化学修饰改变 树脂的表面性质,因此同常规的吸附材料相 比品种更多,性能也更为优异。如按照树脂 的表面性质来分,大致可以分为以下四类:
中极性吸附树脂:系指含酯基的吸附 树脂。如丙稀酸酯或甲基丙稀酸酯与 双甲基丙稀酸乙二醇酯等交联的一类 共聚物,其表面疏水性部分和亲水性 部分共存。因此,即可由极性溶剂中 吸附非极性物质,又可用于由非极性 溶剂中吸附极性物质;
大孔吸附树脂 它是一种具有大孔结构的有机高分子共 聚体,是一类人工合成的有机高聚物吸附剂。 因其具多孔性结构而具筛选性,又通过表面 吸附、表面电性或形成氢键而具吸附性。一 般球状颗粒状,粒度多为20-60目。大孔树脂 有非极性(D101,LX-60,LX-60)弱极性 (AB-8,LX-21,XDA-6)、极性(LX38/LX-17)之分。大孔吸附树脂理化性稳定, 一般不溶于酸碱及有机溶液,在水和有机溶 剂中可以吸收溶剂而膨胀。
大孔吸附树脂
报 告 人:王阳 指导老师:高冷
一、原理及特性
目 录
二、操作流程
三、前景及应用 四、致谢
一、原理及特性
大孔吸附树脂技术 以大孔吸附树脂 为吸附剂,利用 其对不同成分的 选择性吸附和筛 选作用,通过选 用适宜的吸附和 解吸条件借以分 离、提纯某一或 某一类有机化合 物的技术。
该技术多用于工业废 水的处理、维生素和 抗生素的提纯、化学 制品的脱色、医院临 床化验和中草药化学 成分的研究。它具有 吸附快、吸附率高、 吸附容量大、洗脱率 高、树脂再生简便等 优点。
吸附原理 根据类似物吸附类似物的原则,一般非极 大孔树脂-分离原理 性树脂宜于从极性溶剂中吸附非极性有机物质 大孔吸附树脂为吸附性和筛选性原理相 ,相反强极性树脂宜于从非极性溶剂中吸附极 结合的分离材料。大孔吸附树脂的吸附实质 性溶剂,而中等极性树脂,不但能从非水介质 为一种物质高度分散或表面分子受作用力不 中吸附极性物质,也能从极性溶液中吸附非极 均等而产生的表面吸附现象,这种吸附性能 性物质。 是由于范德华引力或生成氢键的结果。同时 由于大孔吸附树脂的多孔结构使其对分子大 小不同的物质具有筛选作用。通过上诉这种 吸附和筛选的原理,有机化合物根据吸附力 的不同及分子量的大小,在大孔吸附树脂上 经一定溶剂洗脱而达到分离、纯化、除杂、 浓缩等不同目的。
大孔树脂吸附原理及应用
4、 树脂的解吸 解吸时,通常先用水,继而以醇—水洗脱,逐步加大醇的浓度,同时配合适当理化反应和薄层层析 如硅胶薄层层析、纸层析、聚酰胺薄层层析及HLPC等 作指导,洗脱液的选择及其浓度、用量对解吸效果有着显著影响。如在赤芍总苷生产工艺条件研究时发现,在用大孔吸附树脂进行分离、解析时,先用水洗脱至还原糖反应显阴性 Molish反应检测 ,改用10%、20%、30%、50%、95%浓度的乙醇梯度洗脱,结合高效液相色谱法检测,发现10%、20%乙醇洗脱液中均含有芍药苷,而30%以上浓度的乙醇中未检出,故选用30%乙醇洗脱,即可将柱上的芍药苷全部解吸。
1. 结构 大孔吸附树脂是近20余年发展起来的,它是一种新型非离子型高分子聚合物吸附剂,一般为白色球形颗粒,粒度为20~60目。 大孔树脂的宏观小球系由许多彼此间存在孔穴的微观小球组成。如果把一个宏观小球比做远看的一簇葡萄,那么每一个微观小球就相当于近看的一颗小葡萄,小葡萄间存在孔穴的总体积与一簇葡萄体积之比,称为孔度,小葡萄之间的距离称孔径。所有小葡萄的面积之和就是一簇葡萄的表面积,亦即树脂的表面积。如果以单位质量计算,将此表面积除以一簇葡萄的质量,即得比表面积 m2/g 。
一、大孔树脂的结构、组成、原理、类型
大孔吸附树脂及其应用
于酸、 碱及有机溶剂 ; 对有机物选 择性较好 , 有浓缩 、 分 离作用 , 且不受无机 盐类及强离子低分 子化合物存在的影响; 机械 强度 高、 抗污 染能力强、 热稳 定性好, 在水溶液和非水溶液中都能使用。正是 由于其本身独特的性能, 并
1 . 2溶 剂 的影 响
一
被吸附的化合物在溶剂 中的溶解度对吸附性 能也有 一定的影响。通常 种物质在某种溶剂中的溶解度大 , 树脂对此物质的吸附力就弱。 如有机酸
盐或生物碱盐在水中的溶解度很大 , 树脂对其吸附能力就弱 。 1 . 3被吸 附的化合物结构 的影响 被吸附化合物的分子量大小不同,要选择适 当孔径的树脂 以达到有效 分 离的 目的。 在同一种树脂 中, 树脂对分子量大的化合物吸附作用较大。化 合物 的极性增加时, 树脂对其吸附力也随之增加 若树脂和化合物之间产生 氢键作用, 吸附作用也将增加。 1 4洗脱剂 的影响 根据 极性“ 相似相溶 ” 的原理, 对非极性大孔吸附树脂来说 , 洗脱剂极性 越小 , 其洗脱能力越 强, 而对于中极性大孔吸附树脂和极性较大化合物, 则 用极性较大 的溶剂较为合适. 。 此外, 上柱液浓度、 p H值及外界温度也是影响其吸 附性能的重要 因素。 2在中草药有效成分的分离、 富集中的应用 2 . 1在皂苷类化合物分离 、 富集中的应用 董文惠等人在磷脂存在下测定人参皂苷的含量 时,首先用大孔吸附树 脂法分出磷 脂, 再将人参 皂苷从柱上洗脱进行含量测定 。 将蒺藜的提取液上 D一 1 0 1 型大孔吸 附树脂柱 , 用水洗至流 出液无色后 , 用8 0 0 m L・ L 乙醇洗脱 至薄层检查无蒺藜总皂苷为止 ,这样制得的蒺藜总皂苷可有效 去除糖类等 水 溶 性 杂 质及 大 部 分 脂溶 性 杂 质 , 皂苷 的得 率 也 明显 优 于 传统 方法 。 2 . 2在黄酮类化合物分离、 富集 中的应用 崔成九等用大孔树脂分离葛根 中的总黄酮,将葛根 的7 0 %乙醇提取 的 浓 缩液加到大孔树脂柱上, 先用水洗脱, 再用7 0 %乙醇洗 脱至TL C检查无葛 根 素斑 点为止 。这样制得 的葛根总黄酮 的收率为9 . 9 2 %,高于正 丁醇法 的 5 . 4 2 %, 2 种方法的主要成分基本一致。 用大孔树脂法分离葛根总黄 酮具有收 率高 , 成本低, 操作简便等优 点, 可供大生产选 用。 阎文枚等在对心叶淫羊藿 的黄酮类化学成分进行时, 用A B 一 8 型大孔吸附树脂成功地富集 了黄酮类化 合物 , 去除大部分杂质, 使接下去的分离工作顺利进行。 2 . 3在酚性和酸性化合物的分离、 富集 中的应用 张英华等在用双波长扫描法测定 氏冬心颐 口服液中绿原酸的含量时 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.大孔树脂规格的选择 2.影响树脂纯化效果的因素及工艺条件 3.纯化条件的规范 4.评价指标与方法的建立 5.树脂稳定性考察
下面将详细介绍
1.大孔树脂规格的选择
首先要确定处方或天然植物的有效成分或组分; 通过文献资料查阅了解和掌握需分离化合物或组 分的类别(如多糖类、皂苷类、黄酮、有机酸、 生物碱等)、分子体积的大小、酸碱性的强弱、 溶解性能等参数,获得所选用的适当孔径的大孔 树脂; 最后通过试验研究筛选树脂的种类、型号及其树 脂分离纯化的工艺条件。
80 % 乙 醇洗脱
0.0664
再
碱水洗 脱 0.0109
生
95 % 乙 醇洗脱 0.0121
13.40
2.20
2.44
0.3347 0.0224 0.0161
85.00
5.68
4.09
4.评价指标与方法的建立
4.1 树脂的质量评价指标与方法
4.2 树脂纯化工艺合理性评价指标与方法4.2.1 纯化效 果的数量评价 ①沉降速度(sedimentation density)
2.影响树脂纯化效果的因素及工艺条件
①树脂性质
树脂的理化性质对吸附效果的影响很大,一般要求树脂的 吸附容量大、吸附速度快和机械强度好。
一般地对分子量小的物质,选择比表面积高及孔径较小的 吸附剂。
②药液PH值
PH值影响某些药物的解离度,亦即影响该化合物与溶剂的 亲和力,从而影响到被大孔树脂吸附的难易程度。一般情 况下,酸性物质应在酸性溶液中吸附,碱性物质在碱性溶 液中吸附。
③药液浓度 大孔树脂的吸附量与药液浓度符合Frendich经典吸附式和Angmur经典吸附式,即药液 浓度增加,吸附量增加。但药液浓度增加有一定限度,即不能超过树脂的吸附容量。 ④溶剂 一种物质在某种溶剂中溶解度越大,树脂对该物质的吸附力就越小。 ⑤上柱药液的温度
上柱药液的温度升高,树脂的比上柱量下降,说明中药成分在树脂上的吸附过程为一 放热反应。低温有利于树脂吸附容量的提高,温度太高会影响吸附效果。
HP50
49 400 1.0 >500 1.01
SP82 5 58 1050 1.6 57
1.01 690
SP70 0 1260 2.3 93
1.01 690
SP70 880 1.7 81 1.01
SP20 7 50 630 1.1 105
1.18 780
聚甲基丙烯酸酯类
DIAION HP系列
HP2MG 61 470 1.2 170 1.09 720
1.32 1.28 1.29 1.30 38
1.34 1.29 1.30 1.30 25
皂甙、黄酮、萜类 天然色素、内酯
1.20
-
-
1.18
1.19
-
-
1.15
1.18
-
-
1.15
1.20
-
-
1.18
76
-
-
101
酚性甙、黄酮、弱极性生物碱、皂甙、内 酯
1.04 1.05 1.06 1.06
生物碱、酚性甙、 黄酮、低聚糖
实践证明,室温对试验几乎无影响,超过50℃时,吸附量明显下降,而在一定的温度 范围内,上柱药液的温度越高,洗脱效果越好,故应注意上柱药液温度
⑥盐浓度 无机盐的加入降低了吸附质在介质的溶解度,从而有利于大孔树脂的吸附。 ⑦树脂柱径高比 合适的径高比可为分离提供较高的柱效,从而更有利于大孔树脂的吸附与分离 ⑧树脂柱的清洗 ⑨洗脱液的选择及解吸 常用的方法是用低级醇、酮或其水溶液解吸。 对弱酸性物质可用碱来解吸,对弱碱性物质则宜在酸性溶液中解吸 吸附若在高浓度盐类溶液中进行时,则常常仅用水洗就能解吸。 对于易挥发溶质可用热水或蒸汽解决。
类型
品名
水含量% 比表面㎡/g 孔体积ml/g 频度孔半径Å 比重 外观密度G/L 溶胀 甲苯 甲醇 丙酮 乙酸丁酯 吸附量g/l 头孢菌素 适宜分离 成分群
三菱化学树脂性能表征
聚苯乙烯二乙烯基苯类
DIAION HP系列
SEPABEDS SP系列
HP20
56 600 1.3 260 1.01 680
⑤保留率(reservatior ratio) R=M洗脱/M浸出×100% ⑥纯度(purity) P=M成分/M总固体数×100% R、P是评价树脂的效果、范围、质量及效益的重要参 数
ρ =W/V
W为干树脂的质量;V为水中沉降后的体积
ρ是用于体积一质量的换算参数,可准确评价树脂上
柱、吸附、洗脱的效果
②比上柱量(saturation ratio) S=(M上-m残)/W M上为柱液含量,系 药液体积×浓度,即药材量 M残为过柱流出液含量,等于流出液体积×浓度 S是评价树脂吸附、承载能力的重要指标
③比吸附量(absorption ratio) A=M上-M残-M水洗 M水洗为水洗液含量 A是评价树脂真实吸附能力的指标,同时也是选择树脂 种类,评价树脂再生效果的参数
④比洗脱量(eluation ratio)
E=M洗脱/W M洗脱为洗脱液含量,等于洗脱液体积×浓度 E是评价树脂的解吸能力与洗脱溶剂的洗脱能力、选择 树脂种类及洗脱溶剂的参数。
3.2 药液的上柱吸附分离 3.2.1 上柱终点的判断 泄漏曲线的考察 3.2.2 水洗终点的判断 TLC检视、理化检视及洗脱成分的测定 3.2.3 解吸终点的判断 3.2.4 复方比上柱量的确定
复方与单方中小檗碱在LD605树脂中比上柱量和比吸附量的比较
小檗碱
比上柱量/mg.g-
1
比吸附量/mg.g-
3.纯化条件的规范
3.1 树脂前处理与树脂再生的合理方法和标准 3.1.1 树脂的前处理及检查方法 有机物限量的检查 残留物限量的检查 3.1.2 树脂再生合格的检测指标 可用比吸附量、比洗脱量或吸附容量的稳定性作为衡量和控制指标。纯化同一品种的 树脂,当其吸附分量下降30%以上时,则应视为不宜使用。 3.1.3 树脂的污染 树脂污染的几种情况 原水中有机物和胶体硅 重金属污染 树脂运行中高分子的裂解造成破碎或交换容量下降
1复方中 0.887 源自.807单方中 21.12 19.66
3.2.5 不同解吸部位的考察
未上柱和上柱不同解吸部分的干膏含量和生物碱含量测定结果
名称
未上柱
干膏质 量/g
干膏质 量比/%
总碱含 量 /mg.g-1 总碱含 量比/%
04958 100.0 0.3938 100.0
水洗脱
0.4064 87.97 0.0206 5.23