人教版2020秋七年级数学上册 第2章 整式的加减 单元复习题

合集下载

人教版数学七年级上册第二章整式的加减单元检测卷(含答案)

人教版数学七年级上册第二章整式的加减单元检测卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b2.去括号后结果错误的是( )A (a+2b)=a+2b B. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-14.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n5.若多项式32281x x x-+-与多项式323253x mx x+-+的差不含二次项,则m等于()A 2 B. -2 C. 4 D. -46.若多项式11x5+16x2-1与多项式3x3+4mx2-15x+13的和不含二次项,则m等于( )A 2 B. -2 C. 4 D. -47.一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是()A 3x2y-4xy2 B. x2y-4xy2 C. x2y+2xy2 D. -x2y-2xy28.单项式2x4-m y与6xy2的次数相同,则m的值为()A. 1B. 2C. 3D. 4二、填空题9.单项式−32πab c3的系数是_____,次数是_____.10.系数为-5,只含字母m、n的三次单项式有_____个,它们是______.11.单项式−22x y3的系数与次数之积为___________.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.13.化简:-[-(a+b)]-[-(a-b)]=_____.14.已知单项式6x2y4与-3a2b m+2的次数相同,则m2-2m的值为_____.15.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是_____.16.化简:3(a-13b)-2(a+12b)=_____.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?答案与解析一、选择题1.有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A. 2aB. -2bC. -2aD. 2b【答案】A【解析】试题分析:根据有理数a、b在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a-b<0则=(a+b)+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值2.去括号后结果错误的是( )A. (a+2b)=a+2bB. -(x-y+z)=-x+y-zC. 2(3m-n)=6m-2nD. -(a-b)=-a-b【答案】D【解析】【分析】根据去括号法则判断:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】A.(a+2b)=a+2b,故本选项正确;B.-(x-y+z)=-x+y-z,故本选项正确;C.2(3m-n)=6m-2n,故本选项正确;D.-(a-b)=-a+b,故本选项错误;故选D.【点睛】本题考查了去括号的法则,解题的关键是牢记法则,并能熟练运用,去括号时特别要注意符号的变化.3.若单项式-12x2a-1y4与2xy4是同类项,则式子(1-a)2015等于()A. 0B. 1C. -1D. 1或-1 【答案】A【解析】试题分析:利用同类项的定义求解即可.解:∵单项式﹣x 2a ﹣1y 4与2xy 4是同类项,∴2a ﹣1=1,解得a=1,∴(1﹣a)2015=0,故选A .考点:同类项.4.在去括号时,下列各式错误的是( )A. -[-(m+n)+m]=nB. m-(2m+3n)=-m-3nC. -[(4m-n)+2n]=-4m-nD. m-(m-n)=-n 【答案】D【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A 、原式=(m+n )-m=n ,计算正确,故本选项错误;B 、原式=m-2m-3n=-m-3n ,计算正确,故本选项错误;C 、原式=-(4m-n )-2n=-4m+n-2n=-4m-n ,计算正确,故本选项错误;D 、原式=m-m+n=n ,计算错误,故本选项正确;故选D .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A. 2B. -2C. 4D. -4 【答案】D【解析】【分析】用减法列式,即()32281x x x -+--()323253x mx x +-+,去括号合并同类项后,令二次项的系数等于0,即可求出m 的值.【详解】()32281x x x -+--(323253)x mx x +-+ =32322813253x x x x mx x -+---+-=()328264x m x x -+--+- ∵差不含二次项,∴820m --=,∴m =-4.故选D.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中与字母x 的取值无关的意思,与哪一项无关,就是合并同类项后令其系数等于0.6.若多项式11x 5+16x 2-1与多项式3x 3+4mx 2-15x+13的和不含二次项,则m 等于( )A. 2B. -2C. 4D. -4【答案】D【解析】【分析】不含二次项,说明二次项的系数为0.【详解】(11x 5+16x 2-1)+(3x 3+4mx 2-15x+13)= 11x 5+16x 2-1+3x 3+4mx 2-15x+13= 11x 5+3x 3+(16+4m )x 2-15x+13,因为上式不含二次项,所以16+4m=0,解得m=-4,故选D .【点睛】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m 的方程是解答此题的关键.7.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )A. 3x 2y-4xy 2B. x 2y-4xy 2C. x 2y+2xy 2D. -x 2y-2xy 2 【答案】C【解析】试题分析:列代数式(2x 2y-xy 2)-(x 2y-3xy 2),然后去括号、合并同类项即可化简.即(2x 2y-xy 2)-(x 2y-3xy 2)=2x 2y-xy 2-x 2y+3xy 2=x 2y+2xy 2.故选C .考点:去括号,合并同类项8.单项式2x 4-m y 与6xy 2的次数相同,则m 的值为( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据两单项式的次数相同列出关于m 的方程,求出m 的值即可.【详解】∵单项式2x 4−m y 与6xy 2的次数相同,∴4−m=1,∴m=3,故答案选C.【点睛】本题考查了单项式,解题的关键是熟练的掌握单项式的相关知识点. 二、填空题9.单项式−32πab c 3的系数是_____,次数是_____. 【答案】3π-,6. 【解析】试题分析:∵单项式323ab c π-数字因数是3π-,所有字母指数的和=1+3+2=6,∴此单项式的系数是3π-,次数是6.故答案为3π-,6. 考点:单项式.10.系数为-5,只含字母m 、n 的三次单项式有_____个,它们是______.【答案】两个;-5m 2n 或-5mn 2.【解析】试题分析:单项式中前面的数字因数是单项式的系数 ,单项式中所有字母的指数和是单项式的次数,因此系数为-5,只含字母m 、n 的三次单项式可以是-5m 2n 或-5mn 2.共有两个.考点:单项式的系数与次数.11.单项式−22x y3的系数与次数之积为___________.【答案】-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3;其系数与次数之积为﹣23×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.有理数a、b、c在数轴上的对应点如图,化简代数式:|a-b|+|a+b|-2|c-a|=____.【答案】-2c【解析】【分析】根据数轴得出a<b<0<c,去掉绝对值符号,最后合并即可.【详解】∵从数轴可知:a<b<0<c,∴|a-b|+|a+b|-2|c-a|=b-a-a-b-2(c-a)=b-a-a-b-2c+2a=-2c.故答案为-2c.【点睛】本题考查了整式的加减,绝对值,数轴的应用,解此题的关键是能正确去掉绝对值符号.13.化简:-[-(a+b)]-[-(a-b)]=_____.【答案】2a【解析】【分析】先去小括号,再去中括号,最后合并整式中的同类项即可.【详解】-[-(a+b)]-[-(a-b)]=-[-a-b]-[- a+b]=a+b+a-b=2a.故答案为2a【点睛】本题考查了整式的加减、去括号法则,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.也考查了数轴与绝对值.14.已知单项式6x 2y 4与-3a 2b m+2次数相同,则m 2-2m 的值为_____.【答案】0【解析】分析】根据两个单项式的次数相同可得2+4=2+m+2,再解即可得到m 的值,进而可得答案.【详解】由题意得:2+4=2+m+2,解得:m=2,则m 2-2m=0.故答案为0.【点睛】此题主要考查了单项式,关键是掌握一个单项式中所有字母的指数的和叫做单项式的次数. 15.观察下列单项式:3a 2、5a 5、7a 10、9a 17、11a 26…它们是按一定规律排列的,那么这列式子的第n 个单项式是_____.【答案】(2n+1)21na + 【解析】【分析】先找出前3项的规律,然后通过后面的几项进行验证,找到规律得到答案即可.【详解】3a 2=(2×1+1)211a +, 5a 5=(2×2+1)221a +,7a 10=(2×3+1)231a +,… 第n 个单项式是:(2n+1)21na +, 故答案为(2n+1)21n a +.【点睛】本题考查了规律题——数字的变化类,根据前几项发现规律,通过观察发现每一项的系数与次数都与该项的序数有关是解题的关键.16.化简:3(a-13b)-2(a+12b)=_____. 【答案】a-2b【解析】【分析】先去括号,再合并同类项即可.【详解】原式=3a-b-2a-b= a-2b.故答案为a-2b【点睛】此题考查了整式的加减,即去括号,合并同类项,注意去括号时各项符号的变化.三、解答题17.已知多项式-5x2a+1y2-14x3y3+13x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.【答案】(1)各项的系数分别为:-5,14-,13;各项的指数分别为:21a+, ,;(2)2a=.【解析】试题分析:(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.试题解析:解:(1)-5x2a+l y2的系数是-5,次数是2a+3;14-x3y3的系数是14-,次数是6;13x4y的系数是13,次数是5;(2)因为多项式的次数是7次,可知-5x2a+1y2的次数是7, 即2a+1+2=7,解这个方程,得a=2.考点:多项式.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示) 【答案】乙旅行社收费比甲旅行社贵0.2a元.【解析】【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴3230 aba⎧⎪-⎨⎪-≠⎩==,解得:32 ab-⎧⎨-⎩==,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键.20.求k为多少时,代数式2x2+kxy-3y2-3xy-8中不含xy项.【答案】k=3.【解析】【分析】先合并同类项得2x2+(k-3)xy-3y2-8,再根据题意得到k-3=0,然后解方程即可.【详解】合并同类项得2x2+(k-3)xy-3y2-8,因代数式2x2+kxy-3y2-3xy-8不含xy项,所以k-3=0,所以k=3.【点睛】本题考查了合并同类项:合并同类项就是把同类项的系数相加减,字母和字母的指数不变.21.已知:A=2x2+3ax-2x-1,B=x2-x+1,若3A-6B的值与x的取值无关,求a的值.【答案】a=0.【解析】【分析】根据题意得出3A-6B的表达式,再令x的系数为0即可.【详解】3A-6B=3(2x2+3ax-2x-1)-6(x2-x+1)=6x2+9ax-6x-3-6x2+6x-6=9ax-9,因为3A-6B的值与x取值无关,所以9a=0,所以a=0.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【解析】试题分析:(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.试题解析:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【点睛】本题考查的是单项式,根据题意找出各式子的规律是解答此题的关键.23.若5a|x|b2与(y-2)a3b|y|是同类项,求x,y的值.【答案】x=±3,y=-2.【解析】【分析】直接利用同类项法则得出|x|=3,|y|=2,y-2≠0,求出即可.【详解】因为5a|x|b2与(y-2)a3b|y|是同类项,所以|x|=3,|y|=2,y-2≠0,所以x=±3,y=-2.【点睛】此题主要考查了同类项,正确把握定义是解题关键.24.十月二十日实验中学七年级师生准备到滨州农业培训基地接受培训.已知租一辆60座的大客车的租金为150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x辆60座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出实验中学七年级师生共有多少人吗?需付多少元的租车费用?【答案】共有(105x-45)人,需付(276x-126)元的租车费用.【解析】【分析】需租用x辆60座的大客车,再租用比大客车少1辆的小客车,所以共有60x+45(x-1)人,再由大客车的租金为 150元,租一辆45座的小客车的租金为126元可得出租车费用.【详解】由题意得60x+45(x-1)=(105x-45)人;150x+126(x-1)=(276x-126)(元).答:实验中学七年级师生共有(105x-45)人,需付(276x-126)元的租车费用.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)一、单选题1.单项式32πx yz -的系数和次数分别是( )A .-2,6B . -2π,5C .-2,7D .-2π ,62.多项式233321x y x y --是( )A .二次三项式B .三次二项式C .四次三项式D .五次三项式3.下列语句错误的是( )A .数字0也是单项式B .单项式a -的系数与次数都是1C .12xy 是二次单项式 D .25m n 与22nm -是同类项4.下列化简结果正确的是( )A .-4a-a=-3aB .6x 2-2x 2=4C .6x 2y-6yx 2=0D .3x 2+2x 2=5x 45.下列说法正确的是( )A .25xy 的系数是5-B .单项式a 的系数为1、次数是0C .2325a b 的次数是6D .1xy x +-是二次三项式6.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( )A .0B .-2C .2D .-17.关于多项式3x 2﹣y ﹣3xy 3+x 5﹣1,下列说法错误的是( )A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣18.下列各组中的两项,属于同类项的是( )A .32x -与2x -B .12ab -与18baC .2x y 与2xy -D .4m 与4mn9.若一个多项式减去223a b -等于222a b +,则这个多项式是( )A .222a b -+B .222a b -C .222a b -D .222a b --二、填空题10.3227x y -的系数是 .11.若2m a b 与323n a b --是同类项,则m n +的值为 . 12.多项式233223xy x x y -+-的次数为 .13.一个多项式与2210x x --+的和是32x -,则这个多项式为 .三、解答题14.已知关于x 的多项式32322325mx x x x x nx -+-+-不含三次项和一次项,求n m 的值. 15.先化简,再求值:223252372x x x x ⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦,其中2x =-. 四、综合题16.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式﹣2x 2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式-12x 2y 4的次数为c. (1)a = ,b = ,c = . (2)请你画出数轴,并把点A ,B ,C 表示在数轴上; (3)请你通过计算说明线段AB 与AC 之间的数量关系.17.已知整式 ()()3123a x x a ---+ .(1)若它是关于 x 的一次式,求 a 的值并写出常数项; (2)若它是关于 x 的三次二项式,求 a 的值并写出最高次项.18.计算:一个整式A 与多项式x2-x-1的和是多项式-2x2-3x+4.(1)请你求出整式A ; (2)当x=2时求整式A 的值19.已知多项式-3x m+1y 3+x 3y-3x 4-1是五次四项式,单项式3x 3n y 2的次数与这个多项式的次数相同.(1)求m ,n 的值.(2)把这个多项式按x 降幂排列.参考答案与解析1.【答案】B【解析】【解答】解:单项式32πx yz -的数字因数是2π-,所有字母的指数的和为3115++=所以该单项式的系数和次数分别是:2π-和5. 故答案为:B .【分析】根据单项式的系数和次数的定义逐项判断即可。

人教版 七年级数学上册 第2章 整式的加减 复习题及答案

人教版 七年级数学上册 第2章 整式的加减 复习题及答案

人教版七年级数学上册第2章整式的加减复习题一、选择题1. 下列式子:7x,3,0,4a2+a-5,1x-1,x2y3,12ab+1中,是单项式的有()A.3个B.4个C.5个D.6个2. 下列式子中,不是整式的是()A. B.+b C. D.4y3. 已知M=4x2-3x-2,N=6x2-3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能4. 某校组织若干名师生进行社会实践活动.若学校租用45座的客车x辆,则余下15人无座位;若租用60座的客车,则可少租用1辆,且最后一辆还没坐满,那么乘坐最后一辆60座客车的人数是() A.75-15x B.135-15xC.75+15x D.135-60x5. 观察如图所示的图形,则第n个图形中三角形的个数是()A.2n+2B.4n+4C.4nD.4n-46. 按图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=-4,y=-2C.x=2,y=4 D.x=4,y=27. 用一根长为a cm的铁丝,首尾相接围成一个正方形,现要将这个正方形按图K-26-1所示的方式向外等距扩1 cm得到新的正方形,则这根铁丝的长度需增加()图K-26-1A.4 cm B.8 cm C.(a+4)cm D.(a+8)cm8. 观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出第10个单项式是()A.-29x10B.29x10C.-29x9D.29x99. 在一列数:a1,a2,a3,…a n中,a1=7,a2=1,从第三个数开始,每一个数都等于它前面两个数之积的个位数字,则这个数中的第2020个数是()A.1 B.3 C.7 D.910. 如图,在2020年10月份的月历表上,任意圈出一个正方形,则下列等式中错误的是()A.a+d=b+cB.a-c=b-dC.a-b=c-dD.d-a=c-b二、填空题11. 式子axy2-12x与14x-bxy2的和是单项式,则a,b的关系是________.12. 某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台的进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.13. 如图,将长和宽分别是a,b的长方形纸片的四个角各剪去一个边长为x的小正方形.用含a,b,x的式子表示长方形纸片剩余部分的面积为__________.14. 我校七年级学生在今年植树节栽了m棵树,若八年级学生比七年级学生多栽n棵树,则两个年级共栽树________棵.15. 如图是一个数表,现用一个长方形在数表中任意框出4个数,若右上角的数字用a来表示,则这4个数的和为________.三、解答题16. 计算:(1)3-(1-x)+(1-x+x2);(2)(-6x2+5xy)-12xy-(2x2-9xy);(3)2x2y+{2xy-[3x2y-2(-3x2y+2xy)]-4xy2}.17. 已知多项式-a12+a11b-a10b2+…+ab11-b12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?18. 如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C 区是边长为b m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.答案一、选择题1. 【答案】B [解析] 单项式有7x ,3,0,x 2y 3,共4个.2. 【答案】C [解析] +b 是多项式,是整式;4y 是单项式,是整式;只有不是整式.3. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.4. 【答案】B [解析] 总人数为45x +15,则乘坐最后一辆60座客车的人数为45x +15-60(x -2)=135-15x.故选B.5. 【答案】C [解析] 根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律:第n 个图形中三角形的个数是4n .6. 【答案】C [解析] 将四个选项分别按运算程序进行计算.A .当x =3,y =3时,输出结果为32+2×3=15,不符合题意;B .当x =-4,y =-2时,输出结果为(-4)2-2×(-2)=20,不符合题意;C .当x =2,y =4时,输出结果为22+2×4=12,符合题意;D .当x =4,y =2时,输出结果为42+2×2=20,不符合题意.故选C.7. 【答案】B [解析] 因为原正方形的周长为a cm ,所以原正方形的边长为a 4 cm.因为将该正方形按图中所示的方式向外等距扩1 cm ,所以新正方形的边长为(a 4+2)cm.所以新正方形的周长为4(a 4+2)=(a +8)cm.所以需要增加的铁丝长度为a +8-a =8(cm).故选B.8. 【答案】B9. 【答案】C [解析] 依题意得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,周期为6,2020÷6=336……4,所以a2020=a4=7.故选C.10. 【答案】D二、填空题11. 【答案】a=b[解析] axy2-12x+14x-bxy2=-14x+(a-b)xy2.因为axy2-12x与14x-bxy2的和是单项式,所以a-b=0,即a=b.12. 【答案】1.08a[解析] 由题意可得,该型号洗衣机的零售价为a(1+20%)×0.9=1.08a(元).故答案为1.08a.13. 【答案】ab-4x214. 【答案】(2m+n)[解析] 因为七年级学生在今年植树节栽了m棵树,八年级学生比七年级学生多栽n棵树,所以八年级学生栽树(m+n)棵,所以两个年级共栽树m+m+n=(2m+n)棵.15. 【答案】4a+8[解析] 由图可知,右上角的数为a,则左上角的数为a-1,右下角的数为a+5,左下角的数为a+4,所以这4个数的和为a+(a-1)+(a+4)+(a+5)=4a+8.三、解答题16. 【答案】解:(1)原式=3+x2.(2)原式=-6x2+5xy-12xy-2x2+9xy=-8x2+2xy.(3)原式=2x2y+[2xy-(3x2y+6x2y-4xy)-4xy2]=2x2y+(2xy-3x2y-6x2y+4xy-4xy2)=2x2y+2xy-3x2y-6x2y+4xy-4xy2=-7x2y-4xy2+6xy.17. 【答案】[解析] 观察所给条件,a的指数逐次减1,b的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a8b4,它的系数为-1,次数为12.(2)十二次十三项式.18. 【答案】解:(1)2[(a+b)+(a-b)]=2(a+b+a-b)=4a(m).(2)2[(a+a+b)+(a+a-b)]=2(a+a+b+a+a-b)=8a(m).(3)当a=20,b=10时,整个长方形运动场的长=a+a+b=50(m),整个长方形运动场的宽=a+a-b=30(m),所以整个长方形运动场的面积=50×30=1500(m2).。

【数学】人教版初中数学七年级上册第2章《整式加减》单元测试卷(及答案).doc

【数学】人教版初中数学七年级上册第2章《整式加减》单元测试卷(及答案).doc

人教版初中数学七年级上册第2章《整式加减》单元测试卷(及答案)一.选择题1.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b 与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定2.单项式﹣5ab的系数是()A.5B.﹣5C.2D.﹣23.多项式3x2+xy﹣xy2的次数是()A.2B.1C.3D.44.下列多项式是五次多项式的是()A.x3+y2B.x2y3+xy+4C.x5y﹣l D.x5﹣y6+15.与2ab2是同类项的是()A.4a2b B.2a2bC.5ab2D.﹣ab6.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣47.在下列整式中,次数为4的单项式是()A.mn2B.a3﹣b3C.x3y D.5st8.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a29.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x310.已知:a2+2a=1,则代数式2a2+4a﹣1的值为()A.1B.0C.﹣1D.﹣211.按如图所示的运算程序,能使运算输出结果为﹣5的是()A.x=1,y=﹣2B.x=1,y=2C.x=﹣1,y=2D.x=﹣1,y=﹣212.在式子a2+2,,ab2,,﹣8x,0中,整式有()A.3个B.4个C.5个D.6个13.下列说法中正确的是()A.xy﹣x+y﹣4的项是xy,x,y,4B.单项式m的系数为0,次数为0C.单项式2a2b的系数是2,次数是2D.1是单项式14.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定15.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5二.填空题16.若5a m b2n与﹣9a5b6是同类项,则m+n的值是.17.已知m2+m=﹣2,则2m2+2m+2023=.18.已知多项式x2﹣(3k﹣1)xy﹣3y2+3mxy﹣8中不含xy项,则8k+1×4÷23m+2的值为.19.班主任老师的想法:七年级我班50名同学,想参加元旦长跑活动的同学就举手,当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动.请思考:老师的想法(填“参加”或“不参加”).20.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.21.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.三.解答题22.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.23.计算:﹣3[b﹣(3a2﹣3ab)]﹣[b+2(4a2﹣4ab)]24.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.25.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1).(1)化简此多项式;(2)若x,y互为倒数,且恰好计算得多项式的值等于0,求x的值.26.已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.参考答案一.选择题1.A;2.B;3.C;4.B;5.C;6.C;7.C;8.A;9.C;10.A;11.C;12.C;13.D;14.C;15.C;二.填空题16.8;17.2019;18.16;19.参加;20.﹣2;21.﹣或;三.解答题22.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.23.解:原式=-3b+9a2-9ab-b-8a2+8ab=a2-4b-ab24.解:(1)2A-B=2(x2+xy-2y)-(2x2-2xy+x-1)=2x2+2xy-4y-2x2+2xy-x+1=4xy-x-4y+1;(2)∵2A-B=4xy-x-4y+1=(4y-1)x-4y+1,且其值与x无关,∴4y-1=0,解得y=25. 解:(1)原式=3x 2+6(y 2+xy-2)-3x 2-6y 2-4xy+4x+4 =3x 2+6y 2+6xy-12-3x 2-6y 2-4xy+4x+4 =2xy+4x-8;(2)∵x ,y 互为倒数, ∴xy=1,则2xy+4x-8=2+4x-8=4x-6, 由题意知4x-6=0, 解得:x=26.解:∵A=2x 2-xy+my-8,B=-nx 2+xy+y+7,∴A-2B=2x 2-xy+my-8+2nx 2-2xy-2y-14=(2+2n )x 2-3xy+(m-2)y-22,由结果不含有x 2项和y 项,得到2+2n人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( ) A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版初中数学七年级上册第2章《整式加减》 单元测试卷及答案 一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1 B .a 2b C.πa +b D.x -y 32.多项式-5-2x 23-y 中,二次项的系数是( )A .2B .-2C .-23 D.23 3.下列各组单项式中,是同类项的是( )A.a 2b3与a 2b B .3x 2y 与3xy 2 C .a 与1 D .2bc 与2abc 4.下面运算正确的是( )A .3a +6b =9abB .3a 2b -3ba 2=0 C .8a 4-6a 3=2a D.12y 2-13y 2=165.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a -10%)(a +15%)万元B .a (1-10%)(1+15%)万元C .(a -10%+15%)万元D .a (1-10%+15%)万元 6.下列各式去括号正确的是( )A .x 2-(x -y +2z )=x 2-x +y +2zB .x -(-2x +3y -1)=x +2x -3y +1C .3x -[5x -(x -1)]=3x -5x -x +1D .(x -1)-(x 2-2)=x -1-x 2-2 7.已知a -b =1,则式子-3a +3b -11的值是( )A .-14B .1C .-8D .58.x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .29.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的结果为xy -2yz +3xz ,则正确结果是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz 10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )(第10题)A .4m cmB .4n cmC .2(m +n )cmD .4(m -n )cm 二、填空题(每题3分,共24分)11.-π3a 3b 2的系数是________,次数是________.12.一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b ,用式子表示这个三位数是____________.13.请你任意写出一个三次单项式:____________,一个二次三项式:__________________.14.若2x 3y 2n 与-5x m y 4是同类项,则m -n =________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.如图,阴影部分的面积是__________.(第16题) (第17题)(第18题)17.有理数a,b在数轴上对应点的位置如图所示,则|a+b|-2|a-b|的结果为__________.18.如图是用围棋棋子摆成的一列具有一定规律的“山”字,则第n个“山”字中的棋子个数是________.三、解答题(19题16分,20,24题每题12分,21题6分,其余每题10分,共66分) 19.计算:(1)x 2y -3xy 2+2yx 2-y 2x ;(2)14a 2b -0.4ab 2-12a 2b +25ab 2;(3)2(x 2-2x +5)-3(2x 2-5);(4)5(a 2b -3ab 2)-2(a 2b -7ab 2).20.先化简,再求值:(1)(4a +3a 2-3+3a 3)-(-a +4a 3),其中a =-2;(2)(2x 2y -2xy 2)-[](-3x 2y 2+3x 2y )+(3x 2y 2-3xy 2),其中x =-1,y =2.21.若多项式3x 3-2x 2+3x -1与多项式x 2-2mx 3+2x +3的和为二次三项式,求m 的值.22.按如图所示的程序计算.(第22题)(1)填写表内空格:(2)你发现的规律是__________________________;(3)用简要过程说明你发现的规律的正确性.23.先阅读下面的文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太烦琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算、提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×________=________.(1)补全例题的解题过程;(2)计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.该市自来水收费价格见如图所示的价目表.(1)若某户居民2月份用水4 m3,则应交水费________元;(2)若某户居民3月份用水a m3(其中6<a<10),则应交水费多少元(用含a的整式表示并化简)?(3)若某户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元(用含x的整式表示并化简).(第24题)答案一、1.B 2.C 3.A 4.B 5.B 6.B7.A8.A9.B10.B点拨:设小长方形卡片的长为x cm,宽为y cm,则x+2y=m,故两块阴影部分的周长和为2(n-x)+2(n-2y)+2m=4n-2(x+2y)+2m=4n.二、11.-π3;512. 300+b13.x2y;x2-x+1(答案不唯一)14.115.416.112xy17.-3a+b18.5n+2三、19.解:(1)原式=3x2y-4xy2;(2)原式=-14a2b;(3)原式=2x2-4x+10-6x2+15=-4x2-4x+25;(4)原式=5a2b-15ab2-2a2b+14ab2=3a2b-ab2.20.解:(1)原式=4a+3a2-3+3a3+a-4a3=-a3+3a2+5a-3.当a=-2时,原式=-(-2)3+3×(-2)2+5×(-2)-3=-(-8)+3×4+5×(-2)-3=8+12-10-3=7.(2)原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2.当x=-1,y=2时,人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式3.某企业今年月份产值为万元,月份比月份增加了,月份比月份减少了,则月份的产值为()A.万元B.万元C.万元D.万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式 的系数是 ,次数=2+1+3=6. 故选:C .2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷=C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误; 故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 , a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式 D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误; B 、P−Q人教版七年级上册第二章《整式的加减》单元过关测试卷一、选择题(每小题3分,共18分)1. 下面的正确结论的是 ( )A. 0不是单项式B. 52abc 是五次单项式C. -4和4是同类项D. 3m 2n 3-3m 3n 2=02. 下面运算正确的是 ( )A. ab b a 963=+B. 03333=-ba b aC. a a a 26834=-D.61312122=-y y 3. 下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A. xy 7-B. xy 7+C. xy -D. xy +4. 下列各组代数式中互为相反数的有 ( ) (1)a -b 与-a -b ;(2)a +b 与-a -b ;(3)a +1与1-a ;(4)-a +b 与a -b .A.(1)(2)(4)B.(2)与(4)C.(1)(3)(4)D.(3)与(4) 5. 把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应是( )A. -4(x -3)2+(x -3)B. 4(x -3)2-x (x -3)C. 4(x -3)2-(x -3)D. -4(x -3)2-(x -3)6.已知单项式2362y x y x n m 与-的和仍为一个单项式,那么( ) A 、m=-3,n=2 B 、m=-3,n=-2 C 、m=2,n=3 D m=3,n=2二、填空题(每小题2分,共24分)7.单项式853ab -的系数是 ,次数是 .8.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____. 9.单项式25x y 、223x y 、24xy -的和为 ; 10.当2x =-时,代数式651x x+-的值是 ; 11.计算:22224(2)(2)a b ab a b ab --+= ; 12.若12351+k y x 与8337y x -是同类项,则k = .13.a 、b 两数的平方和减去a b 与乘积的2倍的差用代数式表示是 ; 14.规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“>”、“=”或“>”).15.根据生活经验,对代数式a b +作出解释: ; 16.下面是一组数值转换机,写出(1)的输出结果(写在横线上),找出(2)的转换步骤(填写在框内).2⨯-3 输入x输出输入x输出23+x17.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费 元.18.观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,……,按此规律写出第13个单项式是______。

人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

人教版数学七年级上册:第2章 整式的加减  单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章整式的加减》单元测试卷-含参考答案一、选择题1.下列多项式中,是二次三项式的是()A.-x2-y3B.x3-y3C.x2+2xy+y2D.x+y+72.下列各式:−15a2b2,12x−1,−25,1x,x−y2,a2−2ab,其中单项式的个数有()A.1个B.2个C.3个D.4个3.下列各组式子中,是同类项的为()A.2a与2b B.a2b与2ab2C.2ab与−3ba D.3a2b与a2bc 4.下列说法正确的是()A.4a3b的次数是3 B.多项式x2−1是二次三项式C.2a+b−1的各项分别为2a,b,1 D.−3ab2的系数是−35.下列各组中的两个项不属于...同类项的是()A.3x2y和−2x2y B.−xy和2yx C.-1和114D.a2和326.多项式x2−3kxy−3y2+13xy−8合并同类项后不含xy项,则k的值是()A.13B.16C.19D.07.下列计算正确的是()A.3a+2b=5ab B.5y2−2y=3yC.a+6a=6a2D.m2n−2nm2=−nm28.若2x2−3xy−1−(−x2−7xy+2)=Ax2−Bxy+C,则A,B,C的值分别为()A.3,4,3 B.1,10,1 C.3,4,-3 D.3,-4二、填空题9.若单项式−3ab的次数是.10.多项式3x2+x−22中的常数项是.11.计算-x2+ 2x2的结果是.12.若2x3y2和−x m y2是同类项,则m的值是.13.多项式2x3−5x2+x−1与多项式3x3+(2m−1)x2−5x+3的和不含x2项,则m=.三、解答题14.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值.2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.小丽放学回家后准备完成下面的题目:化简,发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简;(2)她妈妈说:你猜错了,我看到该题的标准答案是6.请通过计算说明题中“□”是几.参考答案1.C2.B3.C4.D5.D6.C7.D8.D9.210.-111.x212.313.314.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.15.解:∵关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是3,∴m+1=2,﹣n=2,解得:m=1,n=﹣2,∴m2+n3=1﹣8=﹣7.16.解:原式=2x3−4y2−x+2y−x+4y2−2x3=−2x+2y当x=−2,y=3时,原式=−2×(−2)+2×3=4+6=10.17.(1)解:(2)解:把,代入得:18.(1)解:;(2)解:设“□”是a∵标准答案是6∴.解得.∴题中“□”是5。

【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc

【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc

人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

人教版七年级数学上册第二章《整式的加减》单元测试卷含答案

人教版七年级数学上册第二章《整式的加减》单元测试卷含答案

人教版七年级数学上册第二章《整式的加减》单元测试卷一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个2、在下列运算正确的是()A、2a+3b=5abB、2a﹣3b=﹣1C、2a2b﹣2ab2=0D、2ab﹣2ab=03、若代数式是五次二项式,则a的值为()A、2B、±2C、3D、±34、下列各组代数式中,是同类项的是()A、5x2y与xyB、﹣5x2y与yx2C、5ax2与yx2D、83与x35、下列各组中的两个单项式能合并的是()A、4和4xB、3x2y3和﹣y2x3C、2ab2和100ab2cD、6、某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A、先涨价m%,再降价n%B、先涨价n%,再降价m%C、行涨价%,再降价%D、先涨价%,再降价%二、填空题(共8小题,每小题4分,满分32分)7、﹣πx2y的系数是.8、去括号填空:3x﹣(a﹣b+c)=.9、多项式A:4xy2﹣5x3y4+(m﹣5)x5y3﹣2与多项式B:﹣2x n y4+6xy﹣3x﹣7的次数相同,且最高次项的系数也相同,则5m﹣2n=.10、一个长方形的一边为3a+4b,另一边为a+b,那么这个长方形的周长为.11、任写一个与是同类项的单项式:.12、设a﹣3b=5,则2(a﹣3b)2+3b﹣a﹣15的值是.13、已知a是正数,则3|a|﹣7a=.14、给出下列算式:32﹣12=8=8×1,52﹣32=16=8×2,72﹣52=24=8×3,92﹣72=32=8×4,…观察上面一系列等式,你能发现什么规律?设n(n≥1)表示自然数,用关于n的等式表示这个规律为:.三、解答题(共5小题,满分44分)15、化简:①(a+b+c)+(b﹣c﹣a)+(c+a﹣b);②(2x2﹣+3x)﹣4(x﹣x2+);③3a2﹣[8a﹣(4a﹣7)﹣2a2];④3x2﹣[7x﹣(﹣3+4x)﹣2x2].16、有一个两位数,它的十位数字是个位数字的8倍,则这个两位数一定是9的倍数,试说明理由.17、先化简,再求值:,其中,.18、(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.19、一艘轮船顺水航行3小时,逆水航行2小时,(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个考点:单项式。

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷题号一二三 总分 19 2021 22 23 24分数一.选择题(每题3分,共30分) 1.下列关于多项式﹣3a 2b +ab ﹣2的说法中,正确的是( ) A .最高次数是5 B .最高次项是﹣3a 2b C .是二次三项式D .二次项系数是02.下列说法中,不正确的是( ) A .﹣ab 2c 的系数是﹣1,次数是4 B .﹣1是整式C .6x 2﹣3x +1的项是6x 2、﹣3x ,1D .2πR +πR 2是三次二项式3.如果单项式3a m b 2c 是6次单项式,那么m 的值是( ) A .2B .3C .4D .54.若代数式2x |m |﹣(m +3)x +7是关于x 的三次二项式,那么m 的值为( ) A .﹣3B .3C .±3D .05、已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值为( ) A 、1 B 、-1 C 、-5 D 、56、多项式1+2xy ﹣3xy 2的次数及最高次项的系数分别是( ) A 、3,﹣3 B 、2,﹣3 C 、5,﹣3 D 、2,37.当2x =时,多项式35ax bx -+的值是4,求当2x =-时,多项式35ax bx -+的是为( ) A .4-B .6C .5D .98.已知:||3a =,||4b =,则a b -的值是( ) A .1-B .1-或7-C .1±或7±D .1或79.设237M x x =++,234N x x =-+-,那么M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .无法确定10.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131(3)(4)2222x xy y x xy y x -+---+-=-2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( ) A .7xy -B .7xy +C .xy -D .xy +二、 填空题(每题3分,共24分) 11.若与是同类项,则a 的值是______.12.若多项式是关于x ,y 的三次多项式,则______.13.已知﹣5x 3y |a |﹣(a ﹣5)x ﹣6是关于x 、y 的八次三项式,则a 的值为 . 14.多项式3﹣2xy 2+4x 2yz 的次数是 .15.如果单项式2x m ﹣1y 2与﹣3x 2y n +1是同类项,那么m +n = . 16.计算:2a 2﹣(a 2+2)= . 17.多项式中不含xy 项,则常数k 的值是 .18.如图所示的运算程序中,如果开始输入的x 值为,我们发现第1次输出的结果为,第2次输出的结果为,,第2021次输出的结果为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.化简:(1)(5a 2+2a ﹣1)﹣4[3﹣2(4a +a 2)]. (2)3x 2﹣[7x ﹣(4x ﹣3)﹣2x 2].20.先化简,再求值:2ab +6(a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.。

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

【人教版】数学七年级上册第二章整式的加减《单元测试题》含答案

第二章整式的加减综合测试一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5)D. 2(a+5)2.计算a +(-a )的结果是 ( ) A. 2aB. 0C. -a 2D. -2a3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5D. 3x 2的系数是34.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=5.下列各组中,不是同类项的是( ) A. 5225与B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6B. 5C. 4D. 37.若m=-1,则整式m 2-2m-1的值是( ) A 4B. 2C. -1D. -48.按某种标准把多项式进行分类时,3x 3﹣4和a 2b +ab 2+1属于同一类,则下列哪一个多项式也属于此类( ) A. abc ﹣1B. x 2﹣2C. 3x 2+2xy 4D. m 2+2mn +n 29.某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为( ) A. a 元B. 0.8a 元C. 0.92a 元D. 1.04a 元10.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是( )A -2c B. 2a+2b C. -2a-2c D. 2a-b二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x 3-x 2y 2-3xy+x-1是__________次_________项式. 12.若单项式3a 5b m+1与-2a n b 2是同类项,则m-n=__________. 13.若2x ﹣3y ﹣1=0,则5﹣4x+6y 的值为 .14.若多项式3x 2+kx-2x+1(k 为常数)中不含有x 的一次项,则k=__________.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 18.计算: (1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.21.如图所示,某长方形广场四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).22.已知图所示的计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.用式子表示a 与5的差的2倍,下列正确的是( ) A. a-(-5)×2 B. a+(-5)×2 C. 2(a-5) D. 2(a+5)【答案】C 【解析】 【分析】根据题目中语句可以用代数式表示出来,本题得以解决. 【详解】a 与5的差的2倍可以表示为:2(a−5), 故选C.【点睛】本题考查的是列代数式,熟练掌握这一点是解题的关键. 2.计算a +(-a )的结果是 ( ) A. 2a B. 0C. -a 2D. -2a【答案】B 【解析】 【分析】根据加一个负数等于减去这个数进行计算即可. 【详解】a +(-a )=a -a =0 故选B.【点睛】本题考查的是整式计算方法,熟练掌握这一点是解题的关键. 3.下面说法正确的是( ) A.213x π的系数是13B.212xy 的系数是12x C. ﹣5x 2的系数是5 D. 3x 2的系数是3【答案】D 【解析】 【详解】A .13π2x 的系数是13π,错误 B .122xy 系数为12错误C .-52x 的系数是-5,错误D .32x 的系数是3,正确,故选D. 4.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C .考点:合并同类项.【此处有视频,请去附件查看】5.下列各组中,不是同类项的是( ) A. 5225与 B. ab ba -与C. 2210.25a b a b -与 D. 2332a b a b -与【答案】D 【解析】:根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断. 试题解析:A .B .C .是同类项;D .所含字母相同,但相同字母的质数不同,不是同类项. 故选D . 考点:同类项.【此处有视频,请去附件查看】6.在式子0,-3x ,n-m ,3x ,-1,t 2,a2中,单项式的个数是p ,多项式的个数是q ,则p+q 的值为( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】试题分析:在这些代数式中,单项式有0,﹣3x ,﹣1,2t ,2a共五个,所以p=5,多项式有n ﹣m 共一个,所以q=1,所以p+q=5+1=6,故选A.考点:1.多项式;2.单项式.7.若m=-1,则整式m2-2m-1的值是()A. 4B. 2C. -1D. -4【答案】B【解析】【分析】把m=-1代入代数式m2-2m-1,即可得到结论.【详解】m2-2m-1=(-1)2-2(-1)-1=2;故选B.【点睛】本题考查的是代数式的求值,熟练掌握方法是解题的关键.8.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A. abc﹣1B. x2﹣2C. 3x2+2xy4D. m2+2mn+n2【答案】A【解析】从多项式的次数考虑求解.解:3x3﹣4和a2b+ab2+1属于同一类,都是3次多项式,A、abc﹣1是3次多项式,故本选项正确;B、x2﹣2是2次多项式,故本选项错误;C、3x2+2xy4是5次多项式,故本选项错误;D、m2+2mn+n2是2次多项式,故本选项错误.故选A.9.某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A. a元B. 0.8a元C. 0.92a元D. 1.04a元【答案】D【解析】【分析】先算出提价后的售价,再算打折后的售价.【详解】价格提升30%后,售价为1.3a,后又打八折销售,故售价变为0.8 1.3a=1.04a,所以选D选项. 【点睛】正确理解题意是解题的关键.10.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a+b|-|c-b|的结果是()A. -2cB. 2a+2bC. -2a-2cD. 2a-b【答案】B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a+b<0,c-b>0,∴原式=a+c+a+b-c+b=2a+2b.故选B.【点睛】本题考查的是数轴和绝对值的综合运用,熟练掌握这两点是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.多项式2x3-x2y2-3xy+x-1是__________次_________项式.【答案】(1). 四(2). 五【解析】【分析】根据多项式的次数和项数的定义直接进行解答即可.【详解】多项式2x3﹣x2y2﹣3xy+x﹣1是四次五项式.故答案为四,五.12.若单项式3a5b m+1与-2a n b2是同类项,则m-n=__________.【答案】-4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数相同即可得出答案.【详解】∵单项式3a5b m+1与-2a n b2是同类项;∴n=5,m+1=2,∴n=5,m=1;∴m-n=-4.【点睛】本题考查的是同类项定义,熟练掌握这一点是解题的关键.13.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【答案】3.【解析】试题分析:由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.考点:代数式求值.14.若多项式3x2+kx-2x+1(k为常数)中不含有x的一次项,则k=__________.【答案】2【解析】【分析】不含x这一项,利用x的系数为0求解.【详解】∵多项式3x2+kx−2x+1中不含有x的一次项,∴k−2=0,即k=2.故答案为2.【点睛】本题考查的是多项式,熟练掌握多项式是解题的关键.15.小明在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个一次二项式,如图所示,所捂的一次二项式为___________.【答案】-m+2【解析】【分析】根据整式减法的运算方法,用m2-2m减去m2-m-2,求出所捂的一次二项式即可.【详解】所捂的一次二项式与m2−m−2的和是m2−2m,(m2−2m)−(m2−m−2)=m2−2m−m2+m+2=2−m∴所捂的一次二项式为2−m.故答案为2−m.【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键. 16.在图所示的运算流程中,若输出的数y=3,则输入的数x=______.【答案】5或6 【解析】试题解析:根据所给的图可知,若x 为偶数,则x=2y ,若x 不是偶数,则x=2y-1, 故:当x 是偶数时,有x=2×3=6, 当x 是奇数时,有x=2×3-1=5. 三、解答题(本大题共6小题,共52分)17.先简化,再求值:(4a 2﹣3a)﹣(2a+a ﹣1)+(2﹣a 2﹣4a),其中a =﹣2. 【答案】3a 2﹣10a+3;35. 【解析】 【分析】先去括号,然后合并同类项,最后把数值代入进行计算即可. 【详解】原式=4a 2﹣3a ﹣2a ﹣a+1+2﹣a 2﹣4a , =3a 2﹣10a+3,当a =﹣2时,原式=3×(﹣2)2﹣10×(﹣2)+3 =3×4+20+3, =35.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则及合并同类项法则是解题的关键. 18.计算:(1)-4a -(12a -2); (2)3(2x 2-y 2)-2(3y 2-2x 2). 【答案】(1)-92a +2;(2)10x 2-9y 2.【解析】【分析】(1)先去括号,进行加减运算; (2)先去括号,再合并同类项. 【详解】(1)原式=-4a -12a +2= -92a +2; (2)原式=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2【点睛】本题考查的是整式的加减,熟练掌握方法是解题的关键. 19.2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同()1求m ,n 的值()2求多项式的常数项以及各项的系数和.【答案】(1)3m =,2n =;(2)系数和为:513613-+--=- 【解析】 【分析】根据多项式的概念即可求出n 与m 的值,然后根据多项式即可判断常数项与各项系数. 【详解】解:()1由题意可知:该多项式时六次多项式, ∴216m ++=, ∴3m =, ∵253nmx y-的次数也是六次,∴256n m +-=, ∴2n =∴3m =,()22n =该多项式为:2423536x y xy x -+--常数项6-,各项系数为:5-,1,3-,6-, 故系数和为:513613-+--=-【点睛】本题考查了多项式与单项式,解题的关键是熟练的掌握多项式与单项式的定义.20.小黄做一道题:“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案.【答案】A -B =7x 2-8x +11.【解析】【分析】先根据题意求出A,再计算A-B 即可.【详解】解:由题意,得:A =(A +B )-B=(2927x x -+)-(x 2+3x-2)=9x 2-2x +7-x 2-3x +2=8x 2-5x +9∴A -B =(8x 2-5x +9)-(232x x +-)=8x 2-5x +9-x 2-3x +2=7x 2-8x +11【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.21.如图所示,某长方形广场的四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).【答案】(1)ab -πr 2;(2)60 000-100π.【解析】【分析】(1)草地面积=144⨯圆形面积;空地的面积=长方形面积-草地面积; (2)把a =300米,b =200米,圆形的半径=10米代入(1)中式子即可.【详解】(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.【点睛】本题考查的是列代数式和代数式求值,熟练掌握这两点是解题的关键.22.已知图所示计算程序.根据计算程序回答下列问题:(1)填写表内空格:输入x 3 2 -2 13…输出答案0 …(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.【答案】(1)从左到右依次填0,0,0;(2)输入任何数的结果都为0;(3)详见解析.【解析】【分析】(1)根据题目提供的运算程序,把已知数据代入进行运算,进而将所得的结果填入表格即可;(2)接下来观察表格中数据特征总结出规律;(3)根据程序可写出关于x的方程式,此方程式的值为0,所以无论x取任何值,结果都为0. 【详解】(1)从左到右依次填0,0,0.(2)输入任何数的结果都为0(3)2x2x-12x2-12x=12x2+12x-12x2-12x=0.所以无论x取任何值,结果都为0,即结果与字母x的取值无关.【点睛】本题考查的是整式的混合运算和规律的总结,熟练掌握这两点是解题的关键. 附加题(共20分,不计入总分)23.如果x-2y=3,m+2n=2,则(x+m)-2(y-n)的值是_________.【答案】5【解析】【分析】原式去括号变形后,将已知等式代入计算即可求出值.【详解】∵x-2y=3,m+2n=2,∴(x+m)-2(y-n)=x+m-2y+n=x-2y+ m+2n=5.【点睛】本题考查的整式的加减,熟练掌握这一点是解题的关键.24.一般情况下a2323b a b++=+不成立,但有些数可以使得它成立,例如a=b=0.我们称使得a2323b a b++=+成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)若(m,n)是“相伴数对”,求整式26m+4n-2(4m-2n)+5的值.【答案】(1)b=-94;(2)5.【解析】【分析】(1)结合题中所给的定义将(1,b)代入式子求解即可;(2)将(m,n)代入a2323b a b++=+,然后对代数式进行化简求解即可.【详解】(1)将a=1,代入a2323b a b++=+中,得112323b b++=+,化简求得b=-94.(2)将a=m,b=n,代入a2323b a b++=+中,得9m+4n=0.26m+4n-2(4m-2n)+5=26m+4n-8m+4n+5=18m+8n+5=2(9m+4n)+5=0+5=5. 【点睛】本题考查的是整式的加减,熟练掌握这一点是解题的关键.。

秋人教版七年级上《第2章整式的加减》单元测试题含答案解析

秋人教版七年级上《第2章整式的加减》单元测试题含答案解析

秋人教版七年级上册数学《第2章整式的加减》单元测试题一.选择题(共10小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式﹣x2y的系数与次数分别是()A.,3 B.,4 C.π,3 D.π,43.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于()A.32B.64C.81D.1254.下列各组单项式中,同类项一组的是()A.x3y与xy3B.2a2b与﹣3a2bC.a2与b2D.﹣2xy与3y5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A.7(x﹣y)2B.﹣3(x﹣y)2C.﹣3(x+y)2+6(x﹣y)D.(y﹣x)26.与a﹣b﹣c的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是()A.a2﹣7a+4B.a2﹣3a+2C.a2﹣7a+2D.a2﹣3a+48.下列运算正确的是()A.2a2﹣3a2=﹣a2B.4m﹣m=3C.a2b﹣ab2=0D.x﹣(y﹣x)=﹣y9.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab 的结果为()A.6a2b+ab B.﹣4a2b+7ab C.4a2b﹣7ab D.6a2b﹣ab10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2二.填空题(共8小题)11.单项式πx2yz的系数是.12.已知一列按规律排列的代数式:a2,3a4,5a6,7a8,…,则第9个代数式是.13.若(k﹣5)x|k﹣2|y是关于x,y的六次单项式,则k=.14.多项式﹣xy2+y的次数是.15.若关于x的多项式(a﹣4)x3﹣x2+x﹣2是二次三项式,则a=.16.化简﹣5ab+4ab的结果是.17.如果3x2m﹣2y n与﹣5x m y3是同类项,则m n的值为.18.若关于a、b的多项式(a2+2a2b﹣b)﹣(ma2b﹣2a2﹣b)中不含a2b项,则m=三.解答题(共7小题)19.化简:(1)a2﹣3a+8﹣3a2+4a﹣6;(2)a+(2a﹣5b)﹣2(a﹣2b).20.先化简,再求值:3a2+b3﹣2(21﹣5b3)﹣(3﹣a2﹣2b3),其中a=﹣3,b=﹣2.21.某同学在一次测验中计算A+B时,不小心看成A﹣B,结果为2xy+6yz﹣4xz.已知A=5xy﹣3yz+2xz,试求出原题目的正确答案.22.如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求2m﹣3n 的值.23.若多项式(a+2)x6+x b y+8是四次二项式,求a2+b2的值.24.已知A=2x2﹣1,B=3﹣2x2,求A﹣2B的值.25.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”①直接判断123是不是“友好数”?②直接写出共有个“和平数”③通过列方程的方法求出既是“和平数”又是“友好数”的数.秋人教版七年级上册数学《第2章整式的加减》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.2.单项式﹣x2y的系数与次数分别是()A.,3 B.,4 C.π,3 D.π,4【分析】根据单项式的概念即可求出答案.【解答】解:系数为:,次数为:3,故选:C.【点评】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.3.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于()A.32B.64C.81D.125【分析】根据多项式是齐次多项式,先判断该多项式的次数,再求出m、n的值,代入计算即可.【解答】解:∵x m y+3x3y2+5x2y n+y5是齐次多项式,∴它是齐五次多项式,所以m+1=5,2+n=5,解得m=4,n=3.所以m n=43=64.故选:B.【点评】本题考查了多项式的次数、乘方运算,解决本题的关键是理解齐次多项式的定义.4.下列各组单项式中,同类项一组的是()A.x3y与xy3B.2a2b与﹣3a2bC.a2与b2D.﹣2xy与3y【分析】根据同类项的定义即可求出答案.【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:B.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A.7(x﹣y)2B.﹣3(x﹣y)2C.﹣3(x+y)2+6(x﹣y)D.(y﹣x)2【分析】把x﹣y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【解答】解:2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x),=[2(x﹣y)2+5(y﹣x)2]+[3(y﹣x)+3(x﹣y)],=7(x﹣y)2.故选:A.【点评】本题考查了合并同类项的法则,是基础知识比较简单.6.与a﹣b﹣c的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)【分析】根据去括号方法逐一计算即可.【解答】解:A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选:A.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是()A.a2﹣7a+4B.a2﹣3a+2C.a2﹣7a+2D.a2﹣3a+4【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选:A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.下列运算正确的是()A.2a2﹣3a2=﹣a2B.4m﹣m=3C.a2b﹣ab2=0D.x﹣(y﹣x)=﹣y【分析】根据整式的加减运算法则即可求出答案.【解答】解:(B)原式=3m,故B错误;(C)原式=a2b﹣ab2,故C错误;(D)原式=x﹣y+x=2x﹣y,故D错误;故选:A.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab 的结果为()A.6a2b+ab B.﹣4a2b+7ab C.4a2b﹣7ab D.6a2b﹣ab【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=a2b+3ab+5a2b﹣4ab=6a2b﹣ab,故选:D.【点评】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2【分析】原式去括号合并得到最简结果,根据结果与x的值无关,即可确定出a与b的值,进而求出﹣a+b的值.【解答】解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.二.填空题(共8小题)11.单项式πx2yz的系数是π.【分析】根据单项式的系数的概念即可求出答案.【解答】解:该单项式为π,故答案为:.【点评】本题考查单项式的系数,解题的关键是正确理解单项式的系数,本题属于基础题型.12.已知一列按规律排列的代数式:a2,3a4,5a6,7a8,…,则第9个代数式是17a18.【分析】根据单项式的系数与次数的规律即可求出答案.【解答】解:系数的规律为:1、3、5、7……、2n﹣1,次数的规律为:2、4、6、8……、2n,∴第9个代数式为:17a18,故答案为:17a18.【点评】本题考查数字规律,解题的关键是找出题意给出的规律,本题属于基础题型.13.若(k﹣5)x|k﹣2|y是关于x,y的六次单项式,则k=﹣3或7.【分析】利用一个单项式中所有字母的指数的和叫做单项式的次数求解即可.【解答】解:∵(k﹣5)x|k﹣2|y是关于x,y的六次单项式,∴|k﹣2|=5,k﹣5≠0解得k=﹣3,k=7,∴k=﹣3或7.故答案为:﹣3或7.【点评】本题主要考查了单项式,解题的关键是熟记单项式的次数定义.14.多项式﹣xy2+y的次数是4.【分析】利用多项式的次数的定义求出即可.【解答】解:多项式﹣xy2+y的次数是4,故答案为:4.【点评】此题主要考查了多项式的有关定义,正确把握相关定义是解题关键.15.若关于x的多项式(a﹣4)x3﹣x2+x﹣2是二次三项式,则a=4.【分析】根据多项式的项和次数的定义来解题.要先找到题中的等量关系,然后列出方程.【解答】解:因为关于x的多项式(a﹣4)x3﹣x2+x﹣2是二次三项式,可得:a﹣4=0,解得:a=4,故答案为:4【点评】本题考查了多项式.解此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数;(3)多项式中不含字母的项叫常数项.16.化简﹣5ab+4ab的结果是﹣ab.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故答案是:﹣ab.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.17.如果3x2m﹣2y n与﹣5x m y3是同类项,则m n的值为8.【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:2m﹣2=m,n=3,∴m=2,n=3,∴原式=23=8,故答案为:8.【点评】本题考查同类项的定义,解题的关键是熟练运用同类项的定义,本题属于基础题型.18.若关于a、b的多项式(a2+2a2b﹣b)﹣(ma2b﹣2a2﹣b)中不含a2b项,则m=2【分析】原式去括号合并得到最简结果,根据结果不含a2b项,求出m的值即可.【解答】解:原式=a2+2a2b﹣b﹣ma2b+2a2+b=3a2+(2﹣m)a2b,由结果不含a2b项,得到2﹣m=0,解得:m=2.故答案为2.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.三.解答题(共7小题)19.化简:(1)a2﹣3a+8﹣3a2+4a﹣6;(2)a+(2a﹣5b)﹣2(a﹣2b).【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣2a2+a+2;(2)原式=a+2a﹣5b﹣2a+4b=a﹣b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.先化简,再求值:3a2+b3﹣2(21﹣5b3)﹣(3﹣a2﹣2b3),其中a=﹣3,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=3a2+b3﹣42+10b3﹣3+a2+2b3=4a2+13b3﹣45,当a=﹣3,b=﹣2时,原式=36﹣104﹣45=﹣113.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某同学在一次测验中计算A+B时,不小心看成A﹣B,结果为2xy+6yz﹣4xz.已知A=5xy﹣3yz+2xz,试求出原题目的正确答案.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:A+B=2(5xy﹣3yz+2xz)﹣(2xy+6yz﹣4xz)=10xy﹣6yz+4xz﹣2xy﹣6yz+4xz=8xy﹣12yz+8xz.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求2m﹣3n 的值.【分析】先把多项式进行合并同类项得(n﹣3)x2+(m﹣1)x+3,由于关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x无关,即不含x的项,所以n﹣3=0,m﹣1=0,然后解出m、n计算它们的和即可.【解答】解:合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以2m﹣3n=2﹣9=﹣7.【点评】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.23.若多项式(a+2)x6+x b y+8是四次二项式,求a2+b2的值.【分析】由(a+2)x6+x b y+8是四次二项式,得出a+2=0,b=3进一步代入求得答案即可.【解答】解:依题意得:a+2=0,b=3解得a=﹣2,b=3,所以a2+b2=(﹣2)2+32=13.【点评】此题考查多项式,代数式求值,掌握多项式的意义是解决问题的关键.24.已知A=2x2﹣1,B=3﹣2x2,求A﹣2B的值.【分析】根据A、B的值,可以求得A﹣2B的值.【解答】解:A=2x2﹣1,B=3﹣2x2,∴A﹣2B=(2x2﹣1)﹣2(3﹣2x2)=2x2﹣1﹣6+4x2=6x2﹣7.【点评】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.25.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为10a+b(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被11整除,这两个两位数的差一定能被9整除(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”①直接判断123是不是“友好数”?②直接写出共有32个“和平数”③通过列方程的方法求出既是“和平数”又是“友好数”的数.【分析】(1)分别求出两数的和与两数的差即可得到结论;(2)①根据“友好数”的定义判断即可;②根据“和平数”的定义列举出所有的“和平数”即可;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x﹣21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.【解答】解:(1)这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9;(2)①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【点评】本题考查了整式的加减的实际运用,学生的阅读理解能力以及知识的迁移能力,解题的关键是理解“友好数”与“和平数”的定义.。

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题一.选择题1.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个2.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3 B.﹣2 C.0 D.73.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2 B.3,﹣2 C.2,﹣2 D.4,﹣24.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列说法正确的是()A.单项式3ab的次数是1B.3a﹣2a2b+2ab是三次三项式C.单项式的系数是2D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项6.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元7.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a28.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.69.已知A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,则3A﹣B为()A.3x2+y2﹣3xy B.﹣x2+4y2﹣7xyC.x2+10y2﹣17xy D.5x2+8y2﹣13xy10.一个代数式加上﹣5+3x﹣6x2得到4x2﹣5x,则这个代数式是()A.10x2﹣8x+5 B.8x2﹣8x﹣5 C.2x2﹣8x+5 D.10x2﹣8x﹣5 11.下列去括号运算正确的是()A.﹣(x﹣y+z)=﹣x﹣y﹣zB.x﹣(y﹣z)=x﹣y﹣zC.x﹣2(x+y)=x﹣2x+2yD.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d12.一个多项式加上12y+7x+z2等于5y+3x﹣15z2,则这个多项式是()A.﹣7y﹣4x﹣16z2B.7y+4x+16z2C.17y+10x﹣14z2D.7y+4x﹣16z2二.填空题13.若a﹣2b=3,则4b﹣2a=.14.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.a的3倍与b的倒数的差,用代数式表示为.17.若代数式x2+x+3的值的值为7,则代数式的值为.18.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.19.已知三角形的周长为3m﹣n,其中两边的和为2m,则此三角形第三边的长为.20.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.三.解答题21.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).23.已知A=3a2b﹣2ab2+abc,小明错将“C=2A﹣B”看成“C=2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)求正确的结果的表达式;(2)小芳说(1)中结果的大小与c的取值无关,对吗?若a=2,b=,求(1)中代数式的值.24.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.25.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.2.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.3.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:A、单项式3ab的次数是2,故此选项错误;B、3a﹣2a2b+2ab是三次三项式,故此选项正确;C、单项式的系数是,故此选项错误;D、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,故此选项错误;故选:B.6.解:∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.故选:D.7.解:A、3a和4b不能合并,故本选项不符合题意;B、3a﹣2a=a,故本选项不符合题意;C、3a2b和﹣2ab2不能合并,故本选项不符合题意;D、2a2+3a2=5a2,故本选项符合题意;故选:D.8.解:根据题意可得:,解得:,所以a+b=3+0=3,故选:C.9.解:∵A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,∴3A﹣B=3(x2+3y2﹣5xy)﹣(2xy+2x2﹣y2)=3x2+9y2﹣15xy﹣2xy﹣2x2+y2=x2+10y2﹣17xy.故选:C.10.解:由题意得:这个代数式=(4x2﹣5x)﹣(﹣5+3x﹣6x2)=4x2﹣5x+5﹣3x+6x2=10x2﹣8x+5.故选:A.11.解:A、原式=﹣x+y﹣z,不符合题意;B、原式=x﹣y+z,不符合题意;C、原式=x﹣2x﹣2y=﹣x﹣2y,不符合题意;D、原式=﹣a+b+c+d,符合题意,故选:D.12.解:根据题意得:(5y+3x﹣15z2)﹣(12y+7x+z2)=5y+3x﹣15z2﹣12y﹣7x﹣z2=﹣7y ﹣4x﹣16z2,故选:A.13.解:∵a﹣2b=3.4b﹣2a=2(2b﹣a)=2×(﹣3)=﹣6.故答案为:﹣6.14.解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).15.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.解:由题意可得:3a﹣.故答案为:3a﹣.17.解:∵x2+x+3=7,∴x2+x=4,∴原式=(x2+x)﹣5=×4﹣5=1﹣5=﹣4,故答案为:﹣418.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.19.解:由题意可知:3m﹣n﹣2m=m﹣n.故答案为:m﹣n.20.解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.21.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.解:(1)花坛的周长l=2a+2πr,(2)花坛的面积S=2ra+πr2,(3)l=2a+2πr=16+10π=47.4(米),S=2ra+πr2=2×5×8+3.14×25=158.5(平方米).23.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;∴2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(2)小芳说的对,与c无关,将a=2,b=代入,得:8a2b﹣5ab2==6.24.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.25.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题测试范围:§2.1 整式 参考时间:60分钟(答案附卷后)一、选择题(每小题3分,共30分) 1.单项式-4a 的系数是( )A. 4B. -4C. 1D. a 2.单项式43a 2b 4的次数是( )A. 9B. 8C. 7D. 6 3.用代数式表示“a 的5倍与b 的差”,正确的是( )A. 5a -bB. 5a +bC. a -5bD. 5(a -b) 4.若多项式x 2-5x -2与3x 2+4x -n 的常数项相同,则n -1n的值是( )A. 0B. 1.5C.-2D. 25.多项式21145x -的最高次项的系数为( )A. 2B. 15C. -15D. -120 6. 某商品打七折后价格为a 元,则原价为( )A. 0.7a 元B. 107a 元 C. 1.2a 元 D. (a +0.2)元7.某种股票原价为a 元,连续两天上涨,每次涨幅为10%,则该股票两天后的价格为( )A. 1.21a 元B. 1.1a 元C.1.2a 元D. (a +0.2)元 8.已知代数式3x 2-4x +6的值为15,则9x 2-12x -7的值是( )A. 10B. 15C. 18D. 20 9.多项式3x |m |y 3+(m -3)x -1是关于x 、y 的六次三项式,则m 的值为( )A. -3B. 3C. ±3D. ±110. 一列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,若第n 个单项式的系数为b , 则下列算式结果为1的是( )A. |b |-2nB. 2n -|b |C. 3n -|b |D. 以上都不对二、填空题(每小题3分,共18分) 11.下列各式:①3xy ; ②-4; ③5x; ④26x +; ⑤23m n+; ⑥x 2-y 2-1. 其中单项式有_________, 多项式有___________,整式有_______________. (填序号)12. 为了帮助洪水灾区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中6名教师人均 捐款a 元,则该班学生共捐款_______________元(用含a 的代数式表示). 13. 任意写出一个含有字母x 、y 的四次三项式,其中最高次项的系数为-2, 一次项系数为1,常数项为-5,你写出的多项式是________________. 14. 按下面程序计算:输入x =-4,则输出的结果是____________.15. 已知当x =-1时,ax 3+bx +1的值为5,则当x =1时,ax 3+bx -1的值为__________. 16. 如图,两个正方形面积分别为9和4. 两个阴影部分面积分别为S 1、S 2(S 1>S 2),则S 1-S 2的值为__________.第16题三、解答题(共8题,共72分)17.(8分)关于x 的多项式x 4+(a +2)x 3+5x 2-(b +4)x -1不含x 3项和x 项,求a -b 的值.18. (8分)若多项式(a -2b )x 3-x 2+x -b 是关于x 的二次三项式,常数项为3,求a 2-b 2的值.19.(8分)若332|b |a x y --是关于x 、y 的单项式,且系数是5,次数是5,求a 、b 的值.20. (8分)已知(m +3)2+|n -1|=0,求式子5m 2n 3+4(m -n )2的值.21.(8分)已知整式A =10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1. (1)当x =1时,求整式A 的值; (2)当x =-1时,求整式A 的值;(3)小明同学做此题第(2)题时,由于将整式中某一项前的“+”号看成“-”号,误求得 整式的值为7,问小明同学看错了哪一项前的符号?22. (10分)甲、乙两家文具店出售同样的毛笔和宣纸,毛笔每支18元,宣纸每张2元. 甲店优惠方法为:买一支毛笔送两张宜纸;乙店优惠方法为:按总价的九折优惠. 小丽想购买5支毛笔,宣纸x 张(x ≥10). (1) 若到甲店购买,应付______________元(用代数式表示);(2) 若到乙店购买,应付______________元(用代数式表示); (3) 若小丽要买宣纸10张,应选择那家商店? 若买100张呢?23. (10分)某人买了50元的乘车公交卡,若此人乘车的次数用m表示,则记录他每次乘车后的余额如下表:(1) 写出此人乘车的次数m表示余额的式子;(2)若m为多项式2x3y4z+32x3y4-5的次数,计算乘了m次后还剩下多少元?24. (12分)观察下列三行数:-3,9,-27,81,-243,……①-6,6,-30,78,-246,……②-1,3,-9,27,-81,……③(1) 第一行数按什么规律排列?(2) 第二行、第三行的数与第一行数分别有什么关系?(3) 设x、y、z分别是这①②③行的第n、n-1、n-2个数,若x+y-az与n无关,求a的值.答 案一、选择题(每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案BDABCBADAB第10题:b =(-1)n (2n -1),|b |=2n -1,故选B .二、填空题(每小题3分,共18分)11. ①②,⑤⑥,①②⑤⑥; 12. (3200-6a ); 13. -2x 3y +x -5(不唯一); 14. -30; 15. -5; 16. 5.三、解答题(共8题,共72分) 17. a =-2,b =-4,a -b =2. 18. a =-6,b =-3,a 2-b 2=27. 19. a =-10,b =5或1.20. m =-3,n =1,原式=109.21. (1)当x =1时,A =10+9+8+7+6+5+4+3+2+1=55;(2)当x =-1时,A =-10+9-8+7-6+5-4+3-2+1=-5;(3) ∵7-(-5)=12,12÷2=6,系数为6,故看错了5次项前的符号. 22. (1)5×18+2(x -10)=2x +70,填(2x +70);(2)0.9(5×18+2x )=1.8x +81,填(1.8x +81);(3)当x =10时,甲店费用为2x +70=90(元),乙店费用为1.8x +81=99(元),应选甲店; 当x =100时,甲店费用为2x +70=270(元),乙店费用为1.8x +81=261(元),应选乙店. 23. (1)(50-0.8m )(元);(2)当m =8时,50-0.8m =43.6(元). 24. (1)第一行的第n 个数为:(-3)n ;(2)第二行的数为第一行的相应数减去3,即第二行的第n 个数为:(-3)n -3; 第三行的数为第一行的相应数除以3,即第三行的第n 个数为:13×(-3)n ; (3)由题设得:x =(-3)n ,y =(-3)n -1-3,z =13×(-3)n -2, ∴x +y -az =(-3)n +[(-3)n -1-3]-13a (-3)n -2=(-3)n -2[(-3)2+(-3)-13a ]-3=(-3)n -2(6-13a )-3, 令6-13a =0,得a =18.。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

人教新版七年级数学上学期 第2章 整式的加减 单元练习卷 含解析

人教新版七年级数学上学期 第2章 整式的加减 单元练习卷  含解析

第2章整式的加减一.选择题(共11小题)1.下列各式﹣xy,0,,2x+1,中,整式有()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.2a2﹣a2=1 B.5a2b﹣3ba2=2a2bC.5a+a=6a2D.3a+3b=8ab3.单项式﹣5x2y的次数和系数分别是()A.3,5 B.3,﹣5 C.2,5 D.2,﹣5 4.下列代数式是同类项的是()A.与x2y B.2x2y与3xy2C.xy与﹣xyz D.x+y与2x+2y5.下列判断错误的是()A.1﹣a﹣2ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.是多项式D.πa2的系数是π6.如果单项式﹣2x a+2y3与5x4y b是同类项,那么a b的值是()A.8 B.5 C.6 D.9 7.下列说法中正确的是()A.2x2+3x3是五次二项式B.﹣πx2yz的系数是﹣1C.﹣23x2y2的次数是6 D.是多项式8.已知﹣4x a y+x2y b=﹣3x2y,则a2﹣b的值为()A.1 B.2 C.3 D.4 9.若代数式x2﹣2kxy+y2﹣6xy+9不含xy项,则k的值为()A.3 B.﹣C.0 D.﹣3 10.若2个单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,则ab的值为()A.0 B.3 C.﹣3 D.211.如果多项式3x m﹣(n﹣1)x+1是关于x的二次二项式,则()A.m=0,n=0 B.m=2,n=0 C.m=2,n=1 D.m=0,n=1 二.填空题(共6小题)12.将a﹣(b﹣c)去括号得.13.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.14.去括号合并:3(a﹣b)﹣(2a+3b)=.15.a2﹣ab+b2=a2﹣(),2x﹣3(y﹣z)=.16.如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是.17.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.三.解答题(共5小题)18.去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).19.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.20.已知:A=x2﹣2xy+y2,B=x2+2xy+y2(1)求A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?21.已知A=2a2﹣a,B=﹣5a+1(1)化简:3A+2B﹣3;(2)当a=﹣时,求3A+2B﹣3的值.22.已知a,b,c所表示的数在数轴上的位置如图所示:(1)化简:|a﹣1|﹣|c+b|+|b﹣1|;(2)若a+b+c=0,且b与﹣1的距离和c与﹣1的距离相等,求:﹣a2+2b﹣c﹣(a﹣4c ﹣b)的值.参考答案与试题解析一.选择题(共11小题)1.下列各式﹣xy,0,,2x+1,中,整式有()A.1个B.2个C.3个D.4个【分析】直接利用整式的定义分析得出答案.【解答】解:﹣xy,0,,2x+1,中,整式有﹣xy,0,2x+1,共4个.故选:D.2.下列运算正确的是()A.2a2﹣a2=1 B.5a2b﹣3ba2=2a2bC.5a+a=6a2D.3a+3b=8ab【分析】根据合并同类项的法则逐一判断即可.【解答】解:A.2a2﹣a2=a2,故本选项不合题意;B.5a2b﹣3ba2=2a2b,正确,故本选项符合题意;C.5a+a=6a,故本选项不合题意;D.3a与3b不是同类项,所以不能合并,故本选项不合题意.故选:B.3.单项式﹣5x2y的次数和系数分别是()A.3,5 B.3,﹣5 C.2,5 D.2,﹣5【分析】直接利用单项式的次数与系数的定义分析得出答案.【解答】解:单项式﹣5x2y的次数是3,系数是:﹣5.故选:B.4.下列代数式是同类项的是()A.与x2y B.2x2y与3xy2C.xy与﹣xyz D.x+y与2x+2y【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A.与x2y,所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确;B.2x2y与3xy2,所含字母相同,但相同字母的指数不同,不是同类项,故本选项错误;C.xy与﹣xyz,所含字母不尽相同,不是同类项,故本选项错误;D.x+y与2x+2y是多项式,不是同类项,故本选项错误.故选:A.5.下列判断错误的是()A.1﹣a﹣2ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.是多项式D.πa2的系数是π【分析】分别根据多项式的定义,同类项的定义以及单项式的定义逐一判断即可.【解答】解:A.1﹣a﹣2ab是二次三项式,结论正确,故本选项不合题意;B.﹣a2b2c与2ca2b2是同类项,结论正确,故本选项不合题意;C.是分式,不是多项式,故原结论错误,故本选项符合题意;D.的系数是π,结论正确,故本选项不合题意.故选:C.6.如果单项式﹣2x a+2y3与5x4y b是同类项,那么a b的值是()A.8 B.5 C.6 D.9【分析】根据同类项的定义中相同字母的指数也相同,可先列出关于a和b的两个等式,通过解等式求出它们的值,最后代入所求代数式求值即可.【解答】解:∵单项式﹣2x a+2y3与5x4y b是同类项,∴a+2=4,b=3,解得a=2,b=3,∴a b=23=8.故选:A.7.下列说法中正确的是()A.2x2+3x3是五次二项式B.﹣πx2yz的系数是﹣1C.﹣23x2y2的次数是6 D.是多项式【分析】直接利用多项式的项数与次数和单项式的系数与次数确定方法分别分析得出答案.【解答】解:A、2x2+3x3是三次二项式,故此选项错误;B、﹣πx2yz的系数是﹣π,故此选项错误;C、﹣23x2y2的次数是4,故此选项错误;D、是多项式,正确.故选:D.8.已知﹣4x a y+x2y b=﹣3x2y,则a2﹣b的值为()A.1 B.2 C.3 D.4【分析】由﹣4x a y+x2y b=﹣3x2y,可得﹣4x a y与x2y b是同类项,再根据同类项的定义求出a,b的值,然后代入所求式子即可.【解答】解:∵﹣4x a y+x2y b=﹣3x2y,∴a=2,b=1.∴a2﹣b=22﹣1=4﹣1=3.故选:C.9.若代数式x2﹣2kxy+y2﹣6xy+9不含xy项,则k的值为()A.3 B.﹣C.0 D.﹣3【分析】将含xy的项进行合并,然后令其系数为0即可求出k的值.【解答】解:x2﹣2kxy+y2﹣6xy+9令﹣2k﹣6=0,k=﹣3.故选:D.10.若2个单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,则ab的值为()A.0 B.3 C.﹣3 D.2【分析】由单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式知单项式3x2a﹣b y2与2x4y a﹣b是同类项,根据同类项的概念列出关于a、b的方程组,解之求得a、b的值,代入计算可得.【解答】解:∵单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,∴单项式3x2a﹣b y2与2x4y a﹣b是同类项,则,解得,∴ab=0,故选:A.11.如果多项式3x m﹣(n﹣1)x+1是关于x的二次二项式,则()A.m=0,n=0 B.m=2,n=0 C.m=2,n=1 D.m=0,n=1 【分析】根据二次二项式可得m=2,n﹣1=0,再解即可.【解答】解:由题意得:m=2,n﹣1=0,解得:m=2,n=1,故选:C.二.填空题(共6小题)12.将a﹣(b﹣c)去括号得a﹣b+c.【分析】依据去括号法则化简即可.【解答】解:a﹣(b﹣c)=a﹣b+c.故答案为:a﹣b+c.13.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=2m﹣4 .【分析】先根据绝对值的性质把原式化简,再去括号即可.【解答】解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.14.去括号合并:3(a﹣b)﹣(2a+3b)=a﹣6b.【分析】直接利用去括号法则去掉括号,进而合并同类项得出答案.【解答】解:3(a﹣b)﹣(2a+3b)=3a﹣3b﹣2a﹣3b=a﹣6b.故答案为:a﹣6b.15.a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.【分析】①根据括号前是正号添括号后括号内各项不变号,括号前是负号添括号后括号内各项要变号,可得答案;②根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,可得答案.【解答】解:a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.故答案为:ab﹣b2,2x﹣3y+3z.16.如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是16cm.【分析】设两个形状和大小完全相同的小长方形卡片的长为acm,宽为bcm,由图表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+b=6,代入计算即可得到结果.【解答】解:两个形状和大小完全相同的小长方形卡片的长为acm,宽为bcm,上面的长方形周长:2(6﹣a+4﹣a)=(20﹣4a)cm,下面的长方形周长:2(a+4﹣b)=(8+2a﹣2b)cm,两式联立,总周长为:(20﹣4a)+(8+2a﹣2b)=20﹣4a+8+2a﹣2b=28﹣2(a+b)cm,∵a+b=6(由图可得),∴阴影部分总周长为28﹣2(a+b)=28﹣2×6=16cm.故答案为:16cm.17.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是﹣2 .【分析】先去括号、合并同类项,再根据题意可得﹣3x3y m和3x n y是同类项,进而可得答案.【解答】解:﹣(3x3y m﹣1)+3(x n y+1)=﹣3x3y m+1+3x n y+3,=﹣3x3y m+3x n y+4,∵经过化简后的结果等于4,∴﹣3x3y m与3x n y是同类项,∴m=1,n=3,则m﹣n=1﹣3=﹣2,故答案为:﹣2.三.解答题(共5小题)18.去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).【分析】利用去括号法则,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而合并同类项即可.【解答】解:3(5m﹣6n)+2(3m﹣4n)=15m﹣18n+6m﹣8n=21m﹣26n19.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.【分析】(1)把A与B代入2A﹣B中,去括号合并即可得到结果;(2)由2A﹣B与x取值无关,确定出y的值即可.【解答】解:(1)2A﹣B=2(x2+xy﹣2y)﹣(2x2﹣2xy+x﹣1)=2x2+2xy﹣4y﹣2x2+2xy﹣x+1=4xy﹣x﹣4y+1;(2)∵2A﹣B=4xy﹣x﹣4y+1=(4y﹣1)x﹣4y+1,且其值与x无关,∴4y﹣1=0,解得y=.20.已知:A=x2﹣2xy+y2,B=x2+2xy+y2(1)求A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?【分析】(1)根据题意列出算式,再去括号、合并同类项可得;(2)由2A﹣3B+C=0可得C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2),再去括号、合并同类项可得.【解答】解:(1)A+B=(x2﹣2xy+y2)+(x2+2xy+y2)=x2﹣2xy+y2+x2+2xy+y2=2x2+2y2;(2)因为2A﹣3B+C=0,所以C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2)=3x2+6xy+3y2﹣2x2+4xy﹣2y2=x2+10xy+y221.已知A=2a2﹣a,B=﹣5a+1(1)化简:3A+2B﹣3;(2)当a=﹣时,求3A+2B﹣3的值.【分析】(1)将A,B所代表的多项式代入3A+2B﹣3,然后去括号,合并同类项即可得;(2)将a的值代入化简后的代数式计算可得.【解答】解:(1)3A+2B﹣3=3(2a2﹣a)+2(﹣5a+1)﹣3=6a2﹣3a﹣10a+2﹣3=6a2﹣13a﹣1;(2)当a=﹣时,3A+2B﹣3=6a2﹣13a﹣1=6×(﹣)2﹣13×(﹣)﹣1=+﹣1=7.22.已知a,b,c所表示的数在数轴上的位置如图所示:(1)化简:|a﹣1|﹣|c+b|+|b﹣1|;(2)若a+b+c=0,且b与﹣1的距离和c与﹣1的距离相等,求:﹣a2+2b﹣c﹣(a﹣4c ﹣b)的值.【分析】(1)直接利用数轴结合绝对值的性质化简得出答案;(2)直接利用b与﹣1的距离和c与﹣1的距离相等得出b+c=﹣2,进而得出a的值求出答案.【解答】解:(1)由数轴可得:c+b<0,a﹣1>0,b﹣1<0,则|a﹣1|﹣|c+b|+|b﹣1|=a﹣1+(c+b)﹣(b﹣1)=a+c;(2)∵b与﹣1的距离和c与﹣1的距离相等,∴b+c=﹣2,∵a+b+c=0,∴a=2,﹣a2+2b﹣c﹣(a﹣4c﹣b)=﹣a2﹣a+3(b+c)=﹣4﹣2﹣6=﹣12.。

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。

七年级数学上册《第2章 整式的加减》单元测试卷及答案详解

七年级数学上册《第2章 整式的加减》单元测试卷及答案详解

人教新版七年级上册《第2章整式的加减》单元测试卷(2)一.选择题(共5小题)1.下列式子中是单项式的个数为()①,②,③0,④,⑤,⑥2x2﹣1,⑦,⑧﹣1.96,⑨m﹣2,⑩.A.5个B.6个C.7个D.8个2.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y24.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4;④几个非0有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有()A.1个B.2个C.3个D.4个5.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a ﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4二.填空题(共12小题)6.单项式﹣的系数是,次数是.7.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.8.若x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2021的值是.9.多项式是关于x的四次三项式,则m的值是.10.已知2a m b+4a2b n=6a2b,则m+n为.11.多项式﹣﹣(m﹣2)x﹣7是关于x的二次三项式,则m=.12.观察下面的一列单项式:x,﹣2x2,3x3,﹣4x4,…根据你发现的规律,第100个单项式为;第n个单项式为.13.关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,则(a+b)2020=.14.化简:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)的结果是.15.若a﹣5b=3,则17﹣3a+15b=.16.已知等式a2﹣2a﹣3=0,则代数式11+6a﹣3a2的值为.17.按如图所示的程序进行计算,如果输入x的值是正整数,输出结果是150,则开始输入x的值可能是.三.解答题(共7小题)18.(1)化简2x2﹣3x﹣1+4x﹣3x2;(2)计算﹣14﹣8÷(﹣2)3+22×(﹣3)19.化简:(1)﹣5x﹣2y+7x+9y(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+220.已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.21.(1)计算:﹣12018﹣(1+0.5)×÷(﹣4)(2)先化简,再求值:5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)],其中x=﹣2,y=﹣1.22.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.23.马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.(1)请你帮助马虎同学求出这道题的正确结果;(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.24.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.人教新版七年级上册《第2章整式的加减》单元测试卷(2)参考答案与试题解析一.选择题(共5小题)1.下列式子中是单项式的个数为()①,②,③0,④,⑤,⑥2x2﹣1,⑦,⑧﹣1.96,⑨m﹣2,⑩.A.5个B.6个C.7个D.8个【考点】单项式.【分析】直接利用单项式定义分析得出答案.【解答】解:单项式有:①,③0,④,⑤,⑦,⑧﹣1.96,⑩,共7个.故选:C.2.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣【考点】单项式.【分析】直接利用单项式的次数与系数定义分析得出答案.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y2【考点】单项式.【分析】根据同类项的概念解答.【解答】解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.4.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4;④几个非0有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有()A.1个B.2个C.3个D.4个【考点】多项式;有理数的乘法.【分析】根据有理数的乘法,多项式和单项式的概念求解.【解答】解:①单项式5×103x2的系数是5×103,故本项错误;②x﹣2xy+y是二次三项式,本项正确;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故本项正确;④几个非0有理数相乘,当负因数有奇数个时,积为负,故本项正确.正确的有3个.故选:C.5.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a ﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4【考点】多项式.【分析】先根据加减互逆运算关系得出这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5),去括号、合并同类项可得此多项式,再根据题意列出算式(﹣a2﹣2a+1)﹣(2a2+3a﹣5),进一步计算可得.【解答】解:根据题意,这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5)=a2+a﹣4﹣2a2﹣3a+5=﹣a2﹣2a+1,则正确的结果为(﹣a2﹣2a+1)﹣(2a2+3a﹣5)=﹣a2﹣2a+1﹣2a2﹣3a+5=﹣3a2﹣5a+6,故选:B.二.填空题(共12小题)6.单项式﹣的系数是﹣,次数是5.【考点】单项式.【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.据此解答即可.【解答】解:单项式﹣的系数是﹣,次数是5.故答案是:﹣,5.7.多项式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.【考点】多项式.【分析】根据多项式的定义即可得结论.【解答】解:多项式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣78.若x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2021的值是﹣1.【考点】合并同类项;单项式.【分析】利用同类项定义可得a+2=3,2b=4,再解即可.【解答】解:由题意得:a+2=3,2b=4,解得:a=1,b=2,则(a﹣b)2021=(1﹣2)2021=﹣1,故答案为:﹣1.9.多项式是关于x的四次三项式,则m的值是﹣4.【考点】多项式;绝对值.【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式x|m|﹣(m﹣4)x+7是关于x的四次三项式,∴|m|=4,m﹣4≠0,∴m=﹣4.故答案为:﹣4.10.已知2a m b+4a2b n=6a2b,则m+n为3.【考点】合并同类项.【分析】由2a m b+4a2b n=6a2b可知2a m b与4a2b n是同类项,根据同类项是字母相同,相同字母的指数相等,可得m、n的值,再根据m、n的值,可得m+n的值.【解答】解:∵2a m b+4a2b n=6a2b,∴m=2,n=1,∴m+n=2+1=3.故答案为:3.11.多项式﹣﹣(m﹣2)x﹣7是关于x的二次三项式,则m=﹣2.【考点】多项式;绝对值.【分析】根据二次三项式的定义可得:|m|=2,且m﹣2≠0,再解即可.【解答】解:由题意得:|m|=2,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.12.观察下面的一列单项式:x,﹣2x2,3x3,﹣4x4,…根据你发现的规律,第100个单项式为﹣100x100;第n个单项式为(﹣1)n+1nx n.【考点】单项式.【分析】根据单项式系数与指数的变化,可判断单项式.【解答】解:第100个单项式为:(﹣1)100+1•100•x100=﹣100x100,第n个单项式为:(﹣1)n+1•n•x n,故答案为:﹣100x100,(﹣1)n+1•n•x n.13.关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,则(a+b)2020=1.【考点】合并同类项;多项式.【分析】直接利用多项式中不含二次项,则二次项系数都是0,进而得出a,b的值,即可得出答案.【解答】解:∵关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,∴a+2=0,b﹣3=0,解得:a=﹣2,b=3.∴(a+b)2020=12020=1.故答案为:1.14.化简:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)的结果是4(m﹣n).【考点】合并同类项.【分析】先去括号,然后合并同类项即可.【解答】解:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)=3(m﹣n)﹣(m﹣n)+2(m﹣n)=(3﹣1+2)(m﹣n)=4(m﹣n).故答案为:4(m﹣n).15.若a﹣5b=3,则17﹣3a+15b=8.【考点】代数式求值.【分析】把a﹣5b的值代入代数式进行计算即可得答案.【解答】解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.16.已知等式a2﹣2a﹣3=0,则代数式11+6a﹣3a2的值为2.【考点】代数式求值.【分析】将a2﹣2a﹣3=0变形为a2﹣2a=3,11+6a﹣3a2=11﹣3(a2﹣2a),整体代入即可求出所求的结果.【解答】解:∵a2﹣2a﹣3=0,∴a2﹣2a=3,∴11+6a﹣3a2=11﹣3(a2﹣2a)=11﹣3×3=2.故答案为:2.17.按如图所示的程序进行计算,如果输入x的值是正整数,输出结果是150,则开始输入x的值可能是3或10或38.【考点】代数式求值;有理数的混合运算.【分析】当输入数字为x,输出数字为150时,4x﹣2=150,解得x=38;当输入数字为x,输出数字为38时,得到4x﹣2=38,解得x=10,当输入数字为x,输出数字为10时,4x﹣2=10,解得x=3,当输入数字为x,输出数字为3时,4x﹣2=3,解得x=不和题意.【解答】解:当4x﹣2=150时,解得;x=38;当4x﹣2=38时,解得;x=10;当4x﹣2=10时,解得;x=3;当4x﹣2=3时,解得;x=不合题意.所以开始输入x的值可能是3或10或38.故答案为:3或10或38.三.解答题(共7小题)18.(1)化简2x2﹣3x﹣1+4x﹣3x2;(2)计算﹣14﹣8÷(﹣2)3+22×(﹣3)【考点】合并同类项;有理数的混合运算.【分析】(1)根据合并同类项法则计算;(2)根据有理数的混合运算法则计算.【解答】解:(1)2x2﹣3x﹣1+4x﹣3x2=(2﹣3)x2+(﹣3+4)x﹣1=﹣x2+x﹣1;(2)﹣14﹣8÷(﹣2)3+22×(﹣3)=﹣1﹣8÷(﹣8)+4×(﹣3)=﹣12.19.化简:(1)﹣5x﹣2y+7x+9y(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+2【考点】整式的加减.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)﹣5x﹣2y+7x+9y,=﹣5x+7x+9y﹣2y,=2x+7y,(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+2,=15a2b﹣5ab2﹣3ab2﹣15a2b+2,=﹣8ab2+2.20.已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.【考点】整式的加减—化简求值.【分析】解法一:先将所求式子化简,再把A与B代入,去括号合并得到最简结果,把x的值代入计算即可求出值.解法二:先计算A和B的值,再将所求式子化简后代入即可.【解答】解:解法一:∵A=x3﹣5x2,B=x2﹣11x+6,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=x3﹣5x2﹣5(x2﹣11x+6),=x3﹣5x2﹣5x2+55x﹣30,=x3﹣10x2+55x﹣30,当x=﹣1时,原式=(﹣1)3﹣10×(﹣1)2+55×(﹣1)﹣30=﹣96.解法二:当x=﹣1时,A=x3﹣5x2=﹣1﹣5=﹣6,B=x2﹣11x+6=1+11+6=18,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=﹣6﹣5×18,=﹣96.21.(1)计算:﹣12018﹣(1+0.5)×÷(﹣4)(2)先化简,再求值:5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)],其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值;有理数的混合运算.【分析】(1)根据有理数的混合运算法则计算;(2)根据整式的加减混合运算法则化简,代入计算即可.【解答】解:(1)﹣12018﹣(1+0.5)×÷(﹣4)===;(2)5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)]=5xy2﹣2x2y+3xy2﹣2(2xy2﹣x2y)=5xy2﹣2x2y+3xy2﹣4xy2+2x2y=4xy2,当x=﹣2,y=﹣1时,原式=4×(﹣2)×(﹣1)2=﹣8.22.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.【考点】整式的加减—化简求值.【分析】(1)先去括号,然后再进行同类项的合并,最后将x=﹣2,y=﹣1代入;(2)根据题意列式,再利用去括号法则与合并同类项法则化简,再把x的值代入A计算即可.【解答】解:(1)(8x﹣7y)﹣3(4x﹣5y),=8x﹣7y﹣12x+15y,=﹣4x+8y,当x=﹣2,y=﹣1时,原式=﹣4×(﹣2)+8×(﹣1)=0.(2)由题意得:2(﹣2x2+3)﹣A=2x2+2x﹣7,∴A=﹣4x2+6﹣2x2﹣2x+7=﹣6x2﹣2x+13,当x=﹣1时,A=﹣6×(﹣1)2﹣2×(﹣1)+13=9.23.马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.(1)请你帮助马虎同学求出这道题的正确结果;(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.【考点】整式的加减.【分析】(1)先根据题意列出整式相加减的式子进行计算即可.(2)将ab﹣10ac+9bc+6写成(9b﹣10a)c+ab+6,即可得到当b=a时,正确的计算结果与字母c的取值无关.【解答】解:(1)由题意得,(3ab﹣2ac+5bc)﹣2(ab﹣2bc+4ac﹣3)=3ab﹣2ac+5bc﹣2ab+4bc﹣8ac+6=ab﹣10ac+9bc+6,∴正确结果为ab﹣10ac+9bc+6;(2)ab﹣10ac+9bc+6=(9b﹣10a)c+ab+6,由题可得,9b﹣10a=0,∴b=a,∴当b=a时,正确的计算结果与字母c的取值无关.24.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.【考点】整式的加减—化简求值.【分析】(1)先化简整式,再代入值即可求解;(2)代数式4A﹣(3A﹣2B)的值与a的取值无关可知a的系数为0,可求出b的值,进而求解.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B因为A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,所以A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+)=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+当a=﹣1,b=﹣2时,原式=8+2+=10;(2)因为4A﹣(3A﹣2B)=4ab﹣2a+=a(4b﹣2)+因为代数式的值与a无关,所以4b﹣2=0,解得b=∵b4A+b3B=b3(bA+B)=(A+B)=(A+2B)=(4ab﹣2a+)=.答:b4A+b3B的值为.。

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)一

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)一

人教版七年级数学上册第2章《整式的加减》单元测试题一.选择题1.下列说法中,正确的是()A.表示x,y,3,的积的代数式为3xyB.a是代数式,1不是代数式C.的意义是a与3的差除b的商D.m,n两数的差的平方与m,n两数积的2倍的和表示为(m﹣n)2+2mn2.已知下列各式:,﹣3,﹣n2,2m3﹣7n,4m3n,,其中是单项式的是()A.2个B.3个C.4个D.5个3.对于多项式x2﹣5x﹣6,下列说法正确的是()A.它是三次三项式B.它的常数项是6C.它的一次项系数是﹣5D.它的二次项系数是24.下列计算正确的是()A.3a+5b=8ab B.3a3c﹣2c3a=a3cC.3a﹣2a=1D.2a2b+3a2b=5a2b5.若多项式8x2﹣3x+5与多项式3x3+(m﹣4)x2﹣5x+7相加后,结果不含x2项,则常数m的值是()A.2B.﹣4C.﹣2D.﹣86.已知关于x的多项式﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)的结果不含x2项,那么a的值是()A.﹣1B.1C.﹣2D.27.下列运算正确的是()A.3x2﹣x2=3B.3a2+2a2=5a6C.3+x=3x D.﹣0.25ab+ab=0.75ab8.下列各式中去括号错误的是()A.x﹣(3y+)=x﹣3y﹣B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣[4x+(6y﹣3)]=﹣2x﹣3y﹣3D.(a+b)﹣(﹣c+)=a+b+c﹣9.一个菜地共占地(6m+2n)亩,其中(3m+6n)亩种植白菜,种植黄瓜的地是种植白菜的地的,剩下的地种植时令蔬菜,则种植时令蔬菜的地有()亩.10.把两张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为xcm,宽为ycm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是()A.2(x+y)cm B.4(x﹣y)cm C.4xcm D.4ycm二.填空题11.已知﹣5x3y|a|﹣(a﹣5)x﹣6是关于x、y的八次三项式,则a的值为.12.多项式﹣1+x2y﹣xy2按x的降幂排列是.13.在代数式①0,②a+2b,③,④,⑤x,⑥中,单项式有,多项式有,整式有.(填序号)14.减去3m后,等于3m2+m﹣1的多项式是.15.若5a m+2b4与﹣a5b n的和仍是一个单项式,则m+n=.16.一个多项式与x2﹣2x﹣1的和是3x﹣2,则这个多项式为.17.若代数式ax+bx合并同类项后结果为零,则a,b满足的关系式是.18.已知代数式x﹣2y的值是3,则代数式y+2x+1﹣5y的值是.19.若多项式x4﹣ax3+3x2+bx+x3﹣2x﹣5不含x3和x项,则a+b的值为.20.“整体思想”是数学中的一种重要的思想方法,它在数学运算、推理中有广泛的应用.如:已知m+n=﹣2,mn =﹣3,则m+n﹣2mn=(﹣2)﹣2×(﹣3)=4.利用上述思想方法计算:已知2m﹣n=2,mn=﹣1.则2(m ﹣n)﹣(mn﹣n)=.三.解答题21.化简:(1);(2)已知3x2y b+1与x﹣a y3是同类项,先化简再求值:4a2﹣(2b2﹣a)+(b2﹣4a2).22.先化简,再求值.(1)﹣(4x2+2x﹣1)+3x2﹣3x.其中x=﹣;(2)(3a2﹣ab+5)﹣2(5ab﹣4a2+2),其中a2﹣ab=2.23.已知:关于x,y的多项式x2+ax﹣y+b与多项式bx2﹣2x+6y﹣3的和的值与字母x的取值无关.(1)求a,b的值.(2)求代数3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.24.已知,A=2x2+3xy﹣2x﹣1,B=x2﹣xy+1.(1)求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.25.数学课上,张老师出示了这样一道题目:“当a=,b=﹣2时,求多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1的值”解完这道题后,小阳同学指出:“a=,b=﹣2是多余的条件”.师生讨论后,一致认为小阳说法是正确的.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x,y取任何值,多项式2x2+ax﹣5y+b﹣2(bx2﹣x﹣y﹣3)的值都不变,求系数a,b的值”.请你解决这个问题.(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.参考答案一.选择题1.解:A、表示x,y,3,的积的代数式为xy,原说法错误,故此选项不符合题意;B、a是代数式,1也是代数式,原说法错误,故此选项不符合题意;C、的意义是:a与3的差除以b的商,原说法错误,故此选项不符合题意;D、m,n两数的差的平方与m,n两数积的2倍的和表示为(m﹣n)2+2mn,原说法正确,故此选项符合题意.故选:D.2.解:单项式有:﹣3,﹣n2,4m3n,共3个,故选:B.3.解:A、它是二次三项式,故原题说法错误;B、它的常数项是﹣6,故原题说法错误;C、它的一次项系数是﹣5,故原题说法正确;D、它的二次项系数是1,故原题说法错误;故选:C.4.解:A、3a与5b不是同类项,所以不能合并,故本选项不合题意;B、3a3c与﹣2c3a不是同类项,所以不能合并,故本选项不合题意;C、3a﹣2a=a,故本选项不合题意;D、2a2b+3a2b=5a2b,故本选项符合题意.故选:D.5.解:根据题意得:8x2﹣3x+5+3x3+(m﹣4)x2﹣5x+7=3x3+(m+4)x2﹣8x+12,∵结果不含x2项,∴m+4=0,解得:m=﹣4.故选:B.6.解:﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)=﹣2x3+6x2+9x+1﹣6ax2+10x﹣6=﹣2x3+(6﹣6a)x2+19x﹣5,∵关于x的多项式﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)的结果不含x2项,∴6﹣6a=0,7.解:A、3x2﹣x2=2x2,故本选项不合题意;B、3a2+2a2=5a2,故本选项不合题意;C、3和x不是同类项,所以不能合并,故本选项不合题意;D、﹣0.25ab+ab=0.75ab,故本选项符合题意;故选:D.8.解:A、x﹣(3y+)=x﹣3y﹣,正确,不合题意;B、m+(﹣n+a﹣b)=m﹣n+a﹣b,正确,不合题意;C、﹣[4x+(6y﹣3)]=﹣2x﹣3y+,错误,符合题意;D、(a+b)﹣(﹣c+)=a+b+c﹣,正确,不合题意;故选:C.9.解:种植时令蔬菜的地的面积为6m+2n﹣[(3m+6n)+(3m+6n)]=6m+2n﹣(3m+6n)=6m+2n﹣4m﹣8n=2m﹣6n(亩),故选:A.10.解:设图1小长方形卡片的长为mcm,宽为ncm,根据题意得:两块阴影部分的周长和为2[m+(y﹣n)]+2[n+(y﹣m)]=2(m+y﹣n+n﹣m+y)=2×2y=4y(cm).故选:D.二.填空题11.解:∵﹣5x3y|a|﹣(a﹣5)x﹣6是关于x、y的八次三项式,∴|a|=5且﹣(a﹣5)≠0,12.解:多项式﹣1+x2y﹣xy2的各项为﹣1,x2y,﹣xy2,按x的降幂排列为x2y﹣xy2﹣1.故答案为:x2y﹣xy2﹣1.13.解:在代数式①0,②a+2b,③,④,⑤x,⑥中,单项式有①③⑤,多项式有②④,整式有①②③④⑤,故答案为:①③⑤,②④,①②③④⑤.14.解:根据题意得:3m2+m﹣1+3m=3m2+4m﹣1.故答案为:3m2+4m﹣1.15.解:由题意得,两者可以合并说明两式为同类项,可得m+2=5,n=4,解得:m=3,n=4.所以m+n=3+4=7.故答案为:7.16.解:该多项式为:3x﹣2﹣(x2﹣2x﹣1)=3x﹣2﹣x2+2x+1=5x﹣x2﹣1,故答案为:﹣x2+5x﹣1.17.解:ax+bx=(a+b)x,∴a+b=0,故答案为:a+b=0.18.解:y+2x+1﹣5y=2x+1﹣4y,∵代数式x﹣2y的值是3,∴x﹣2y=3,∴2x﹣4y=6,∴原式=6+1=7,故答案为:7.19.解:x4﹣ax3+3x2+bx+x3﹣2x﹣5=x4+(1﹣a)x3+3x2+(b﹣2)x+﹣5,∵多项式x4﹣ax3+3x2+bx+x3﹣2x﹣5不含x3和x项,∴1﹣a=0,b﹣2=0,解得a=1,b=2,故答案为:3.20.解:∵2m﹣n=2,mn=﹣1,∴2(m﹣n)﹣(mn﹣n)=2m﹣2n﹣mn+n=2m﹣n﹣mn=(2m﹣n)﹣mn=2﹣(﹣1)=3.故答案为:3.三.解答题21.解:(1)==﹣x2;(2)∵3x2y b+1与x﹣a y3是同类项,∴﹣a=2,b+1=3,∴a=﹣2,b=2,∴原式=4a2﹣2b2+a+b2﹣4a2=a﹣b2,当a=﹣2,b=2时,原式=﹣2﹣22=﹣6.22.解:(1)原式=﹣6x2﹣3x++3x2﹣3x =﹣3x2﹣6x+,∴当x=﹣时,原式=﹣3×(﹣)2﹣6×(﹣)+=﹣+4+=4;(2)原式=3a2﹣ab+5﹣10ab+8a2﹣4=11a2﹣11ab+1=11(a2﹣ab)+1,=x2+ax﹣y+b+bx2﹣2x+6y﹣3=(1+b)x2+(a﹣2)x+5y+b﹣3,∵和的值与字母x的取值无关,∴1+b=0,a﹣2=0,解得:b=﹣1,a=2;(2)3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]=3a2﹣6ab+3b2﹣4a2+2(a2+ab﹣b2)=3a2﹣6ab+3b2﹣4a2+a2+2ab﹣3b2=﹣4ab,当b=﹣1,a=2时,原式=﹣4×2×(﹣1)=8.24.解:(1)∵A=2x2+3xy﹣2x﹣1,B=x2﹣xy+1,∴A﹣2B=2x2+3xy﹣2x﹣1﹣2(x2﹣xy+1)=2x2+3xy﹣2x﹣1﹣2x2+2xy﹣2=5xy﹣2x﹣3;(2)A﹣2B=5xy﹣2x﹣3=(5y﹣2)x﹣3;∵A﹣2B的值与x的取值无关,∴5y﹣2=0,∴y=0.4.25.解:(1)7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1=(7+3﹣10)a3+(3﹣3)a2b+(6﹣6)a3b﹣1=﹣1,∴该多项式的值为常数,与a和b的取值无关,小阳说法是正确的;(2)2x2+ax﹣5y+b﹣2(bx2﹣x﹣y﹣3)=2x2+ax﹣5y+b﹣2bx2+3x+5y+6∵无论x,y取任何值,多项式2x2+ax﹣5y+b﹣2(bx2﹣x﹣y﹣3)的值都不变,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1.26.解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1的平衡数,故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.。

第2章 整式的加减 人教版七年级数学上册单元测试卷(含解析)

第2章 整式的加减 人教版七年级数学上册单元测试卷(含解析)

人教版第二章整式的加减单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+62.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣23.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或15.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣28.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x810.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= .12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 元.13.(3分)若a+2b﹣1=0,则3a+6b的值是 .14.(3分)如图,正方形中阴影部分的面积为 .15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= .16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 元,当m大于或等于500时,他实际付款 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+6【解答】解:根据题意知,小明的年龄为(m+2)岁,则小强的年龄为m+2+4=m+6(岁),故选:D.2.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣2【解答】解:由题意得:2m﹣5=1,n+2=3n﹣2,∴m=3,n=2,故选:B.3.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x【解答】解:由题意得:七年级参加书法学习的人数为:(2x﹣1)人,则九年级参加书法学习的人数为:50﹣(2x﹣1)﹣x=(51﹣3x)人,故选:C.4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或1【解答】解:∵多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,∴|m﹣1|=2,∴m=3,或m=﹣1,∵m﹣3≠0,∴m=﹣1,故选:B.5.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式【解答】解:A、π是单项式,故正确,不合题意;B、单项式﹣n的系数是﹣1,故正确,不合题意;C、单项式的次数是7,故正确,不合题意;D、不是整式,故错误,符合题意;故选:D.6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n【解答】解:根据题意,拼摆成n个八边形需要小棒的数量a=8+7(n﹣1)=7n+1,故选:B.7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣2【解答】解:a+2b+2(a+2b)+1=a+2b+2a+4b+1=3a+6b+1,当a=1,b=﹣1时,原式=3×1+6×(﹣1)+1=3+(﹣6)+1=3+1﹣6=﹣2,故选:D.8.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)【解答】解:由题意可得:剩余纸板的面积为:π()2﹣π()2﹣π()2==ab.故选:C.9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x8【解答】解:根据题意得:第8个单项式是﹣27x8=﹣128x8.故选:D.10.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个【解答】解:式子,﹣4x,abc,π,0.81,0是单项式,共6个,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= 5 .【解答】解:∵﹣4x3y n﹣4与3x3y是同类项,∴n﹣4=1,解得:n=5.故答案为:5.12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 (3a+7b) 元.【解答】解:一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付(3a+7b)元.故答案为:(3a+7b).13.(3分)若a+2b﹣1=0,则3a+6b的值是 3 .【解答】解:∵a+2b﹣1=0,∴a+2b=1,∴原式=3(a+2b)=3×1=3.故答案为:3.14.(3分)如图,正方形中阴影部分的面积为 2ab .【解答】解:.故答案为:2ab.15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= ﹣3b .【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .【解答】解:设上山的路程是“1”,则下山的路程是“3”.∵上山的速度为a,下山的速度为b,∴上山的时间为,下山的时间,总时间为:+=,小明全程的平均速度为:(1+3)÷=,故答案为:.三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).【解答】解:(1)原式=x2﹣4x2+y﹣5y﹣1=﹣3x2﹣4y﹣1;(2)原式=7a+3a﹣9b﹣2b+6a=16a﹣11b;18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.【解答】解:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2)=12y2﹣6y+4+2y﹣2﹣2﹣12y2=﹣4y,∵,∴原式=﹣4×=﹣2.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.【解答】解:(1)3※4=2×3﹣4=6﹣4=2.(2)2※2a=2×2﹣2a=4﹣2a,(4﹣2a)※(﹣3a)=2×(4﹣2a)﹣(﹣3a)=8﹣4a+3a=8﹣a.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?【解答】解:180×2.5=450(个),答:女生一共收集了450个.21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?【解答】解:(1)铺木地板的面积为:(5b﹣2b﹣b)×2a+(5a﹣2a)×2b=2b×2a+3a×2b=4ab+6ab=10ab(平方米);铺瓷砖的面积为:5a×5b﹣10ab=15ab(平方米).答:木地板需要铺10ab平方米,瓷砖需要铺15ab平方米.(2)当a=1.5,b=2时,10ab=10×1.5×2=30(平方米),15ab=15×1.5×2=45(平方米),∵地砖的价格为100元/平方米,木地板的价格为200元/平方米,∴每套公租房铺地面所需费用为:30×200+45×100=10500(元).答:每套公租房铺地面所需费用为10500元.22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.【解答】解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y•2.5x+3y•0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.【解答】解:(1)∵A+B=9x2﹣2x+7,B=x2+3x﹣2∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9;(2)A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 594 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 0.9x 元,当m大于或等于500时,他实际付款 (0.8x+50) 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?【解答】解:(1)∵680>500,∴其中500元部分给予9折优惠,超过500元部分给予8折优惠.∴王老师一次性购物680元,他实际付款:500×90%+(680﹣500)×80%=450+144=594(元).故答案为:594.(2)当m小于500但不小于200时,他实际付款(0.9m元);当m大于或等于500时,他实际付款:500×90%+80%(m﹣500)=(0.8m+50)元.故答案为:0.9m;(0.8m+50);(3)∵第一次购物x元,∴第二次购物(960﹣x)元.∵200<x<400,∴560≤960﹣x≤760.∴两次购物王老师实际付款:90%x+500×90%+(960﹣x﹣500)×80%=0.9x+450+368﹣0.8x=(0.1x+818)元.25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ﹣4 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.【解答】解:(1)∵(1,b)是一对“互助数”,∴+=,解得:b=﹣4,故答案为:﹣4;(2)∵(﹣2,x)是一对“互助数”,∴﹣1+=,解得:x=8,(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)==,当x=8时,原式=+16+2=﹣14;(3)∵(m,n)是一对“互助数”,∴,化简得:n=﹣4m①,由m﹣n﹣(6m+2n﹣2)=0化简得,②,把①代入②中得,,解得:m=,则n==2,∴m=,n=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2020秋七年级数学上册第2章整式的加减单元复习题一.选择题
1.下列运算中,正确的是()
A.3a+2b=5ab B.2a3+3a2=5a5
C.3a2b﹣3ba2=0 D.5a2﹣4a2=1
2.在下列单项式中,与2xy是同类项的是()
A.2x2y2B.3y C.xy D.4x
3.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3D.2x3
4.若M和N都是关于x的二次三项式,则M+N一定是()
A.二次三项式B.一次多项式
C.三项式D.次数不高于2的整式
5.已知a﹣7b=﹣2,则﹣2a+14b+4的值是()
A.0 B.2 C.4 D.8
6.长方形的周长为c米,宽为x米,则长为()
A.(c﹣2x)米B.米C.米D.﹣2x米
7.先去括号,再合并同类项正确的是()
A.2x﹣3(2x﹣y)=﹣4x﹣y B.5x﹣(﹣2x+y)=7x+y
C.5x﹣(x﹣2y)=4x+2y D.3x﹣2(x+3y)=x﹣y
8.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()
A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元
C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元
9.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()
A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1
10.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()
A.2a﹣3b B.2a﹣4b C.4a﹣8b D.4a﹣10b
二.填空题
11.单项式﹣的系数是,次数是.
12.当x=1时,代数式x2﹣2x+a的值为3,则当x=﹣1时,代数式x2﹣2x+a=.13.已知一个多项式与3x2+9x+2的和等于3x2+4x﹣3,则此多项式是.
14.七年级一班有2a﹣b个男生和3a+b个女生,则男生比女生少人.
15.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.
16.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=.
三.解答题
17.先化简,再求值:,其中.
18.某同学做一道数学题:已知两个多项式A、B,计算2A+B,他误将“2A+B”看成“A+2B”,求得的结果是9x2﹣2x+7,已知B=x2+3x﹣2,求2A+B的正确答案.
19.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价
格增加了40%,问:
(1)x千克这种蔬菜加工后可卖多少钱?
(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?
20.如图是一所住宅的建筑平面图(图中长度单位:米).
(1)用式子表示这所住宅的建筑面积.
(2)当x=7时,试计算该住宅的面积.
21.“十•一”黄金周期间,人民公园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数)(单位:万人)
日期10月1日10月2日 10月3日 10月4日 10月5日 10月6日 10月7日人数变化+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2 (1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数?
(2)请判断七天内游客人数最多的是哪天?请说明理由;
(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间人民公园门票收入是多少万元?
参考答案
一.选择题
1.解:A、3a和2b不是同类项,不能合并,A错误;
B、2a3和3a2不是同类项,不能合并,B错误;
C、3a2b﹣3ba2=0,C正确;
D、5a2﹣4a2=a2,D错误,
故选:C.
2.解:与2xy是同类项的是xy.
故选:C.
3.解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.
A、﹣2xy2系数是﹣2,错误;
B、3x2系数是3,错误;
C、2xy3次数是4,错误;
D、2x3符合系数是2,次数是3,正确;
故选:D.
4.解:∵M和N都是关于x的二次三项式,
∴M+N一定是次数不高于2的整式.
故选:D.
5.解:∵a﹣7b=﹣2,
∴﹣2a+14b+4=﹣2(a﹣7b)+4=﹣2×(﹣2)+4=4+4=8.
故选:D.
6.解:∵周长=(长+宽)×2,
∴长==米.
故选:B.
7.解:A、原式=2x﹣6x+3y=﹣4x+3y,故本选项错误;
B、原式=5x+2x﹣y=7x﹣y,故本选项错误;
C、原式=5x﹣x+2y=4x+2y,故本选项正确;
D、原式=3x﹣2x﹣6y=x﹣6y,故本选项错误;
故选:C.
8.解:3月份的产值为:(1﹣10%)(1+15%)x万元.
故选:A.
9.解:A、把x=4代入得:=2,
把x=2代入得:=1,
本选项不合题意;
B、把x=2代入得:=1,
把x=1代入得:3+1=4,
把x=4代入得:=2,
本选项不合题意;
C、把x=1代入得:3+1=4,
把x=4代入得:=2,
把x=2代入得:=1,
本选项不合题意;
D、把x=2代入得:=1,
把x=1代入得:3+1=4,
把x=4代入得:=2,
本选项符合题意,
故选:D.
10.解:根据题意得:新矩形的长为a﹣b,宽为a﹣3b,
则新矩形周长为2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,
故选:C.
二.填空题(共6小题)
11.解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.
故答案为:﹣,3.
12.解:∵当x=1时,x2﹣2x+a=3,
∴1﹣2+a=3,即a=4,
∴当x=﹣1时,x2﹣2x+a=(﹣1)2﹣2×(﹣1)+4=7.
故答案为:7.
13.解:根据题意得:(3x2+4x﹣3)﹣(3x2+9x+2)=3x2+4x﹣3﹣3x2﹣9x﹣2=﹣5x﹣5.故答案为:﹣5x﹣5.
14.解:∵年级一班有2a﹣b个男生和3a+b个女生,
∴3a+b﹣(2a﹣b)=(a+2b)人.
故答案为:a+2b,
15.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,
因为不含xy项,
故﹣3k+6=0,
解得:k=2.
故答案为:2.
16.解:由题意得:后面每一排都比前一排多一个座位及第一排有a个座位可得出第n排的座位数
第n排的座位数:a+(n﹣1)
又第n排有m个座位
故a、n和m之间的关系为m=a+n﹣1.
三.解答题(共5小题)
17.解:原式=x﹣2x+y2﹣x+y2
=﹣3x+y2,
当x=,y=﹣2时,原式=﹣2+4=2.
18.解:∵A=(9x2﹣2x+7)﹣2(x2+3x﹣2)
=9x2﹣2x+7﹣2x2﹣6x+4
=7x2﹣8x+11,
∴2A+B=2(7x2﹣8x+11)+(x2+3x﹣2)
=14x2﹣16x+22+x2+3x﹣2
=15x2﹣13x+20.
19.解:(1)x千克这种蔬菜加工后重量为x(1﹣20%)千克,价格为y(1+40%)元.
x千克这种蔬菜加工后可卖x(1﹣20%)•y(1+40%)=1.12xy元.
(2)加工后可卖1.12×1000×1.5=1680元,1.12×1000×1.5﹣1000×1.5=180(元)比加工前多卖180元.
20.解:(1)住宅的建筑面积为:2x+x2+3×2+4×3=x2+2x+18;
(2)当x=7时,住宅的建筑面积有x2+2x+18=81.
21.解:(1)由题意可得,
10月2号的人数为:a+1.6+0.8=a+2.4,
即10月2日的游客有(a+2.4)万人;
(2)10月3号游客人数最多,
理由:由题意可得,
10月1号的人数为:a+1.6,
10月2号的人数为:a+1.6+0.8=a+2.4,
10月3号的人数为:a+2.4+0.4=a+2.8,
10月4号的人数为:a+2.8﹣0.4=a+2.4,
10月5号的人数为:a+2.4﹣0.8=a+1.6,
10月6号的人数为:a+1.6+0.2=a+1.8,
10月7号的人数为:a+1.8﹣1.2=a+0.6,
故10月3号游客人数最多;
(3)10×[(2+1.6)+(2+2.4)+(2+2.8)+(2+2.4)+(2+1.6)+(2+1.8)+(2+0.6)]×10000
=10×27.2×10000
=2720000(元)
=272(万元),
即黄金周期间人民公园门票收入是272万元.。

相关文档
最新文档